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How mutation accumulation depends on the structure of the cell lineage tree
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All the cells of a multicellular organism are the product of cell divisions that trace out a single binary tree,
the so-called cell lineage tree. Because cell divisions are accompanied by replication errors, the shape of the
cell lineage tree is a key determinant of how somatic evolution, which can potentially lead to cancer, proceeds.
Carcinogenesis requires the accumulation of a certain number of driver mutations. By mapping the accumulation
of mutations into a graph theoretical problem, we present an exact numerical method to calculate the probability
of collecting a given number of mutations and show that for low mutation rates it can be approximated with a
simple analytical formula, which depends only on the distribution of the lineage lengths, and is dominated by the
longest lineages. Our results are crucial in understanding how natural selection can shape the cell lineage trees
of multicellular organisms and curtail somatic evolution.

DOI: 10.1103/PhysRevE.109.044407

I. INTRODUCTION

Cells of multicellular organisms, regardless of the ultimate
complexity of the organism they are the part of, trace their
history back to a single cell. They are related by a single
binary tree. Because every cell division is accompanied by
DNA replication, which is an error-prone process, the shape
of this tree (referred to as the cell lineage tree) determines the
rate at which mutations accumulate and, as a result, the tempo
and mode of somatic evolution. Early in development, when
cells of non-renewing tissues (for example, primary oocytes
in the female germline [1,2]) and the initial population of
tissue-specific stem cells in self-renewing tissues (for exam-
ple, the hematopoietic stem cells [3,4] or the spermatogonia
of the male germline [1],[2]) are produced, cell lineage trees
closely follow a perfect binary tree, which minimizes the
number of cell divisions and, consequently, the accumulation
of mutations [5].
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Complex multicellular organisms are, however, defined
by differentiated cells that make up their tissues, most of
which must be continually renewed. The sustained supply of
differentiated cells required during an organism’s lifetime is
produced along differentiation hierarchies, which also have a
second function central to the maintenance of multicellularity:
to limit somatic evolution [5–8]. A fundamental question for
understanding how tissues can limit somatic evolution (and its
consequences such as aging and cancer) is how the shape of
cell lineage trees [5,8–10] determines mutation accumulation.

Cancer is a disease of multicellular organisms, which oc-
curs when a somatic cell, after going through a number of
genetic and epigenetic changes, starts to proliferate uncontrol-
lably [11]. It was Armitage and Doll [12,13] who observed
that the incidence of various types of cancers in humans
grows as a power function of age and proposed a multistage
model of cancer, where the exponent of the power function
increased by unity (which typically falls between 5 and 7)
corresponds to the number m of driver mutations required for
cancer initiation. Although we now know much more about
carcinogenesis, the fundamental concept of the accumulation
of a few critical mutations remains widely accepted [14–16].

After every cell division new driver mutations can occur
randomly, the number of which in each daughter cell is as-
sumed to follow a Poisson distribution with a mean value
denoted as μ and referred to as the driver mutation rate per cell
division. This rate corresponds to the product of the number of
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FIG. 1. Illustration of a cell lineage tree with mutation accumu-
lation. (a) A cell lineage tree T with L leaf nodes (white circles) and
L − 1 internal nodes (gray circles). The lineage length (or divisional
load) Di corresponding to leaf node i is the number of edges (cell
divisions, denoted by arrows) leading from the root (bottom-most)
node to the leaf node. Mutations are indicated by red stars. (b) Cell
lineage tree T ′ obtained by making leaf node L in tree T divide
(indicated by blue dashed arrows and circles).

driver genes, the average mutational target size per gene, and
the base-pair mutation rate per cell division. Estimates for the
driver mutation rate per cell division [17–19] vary in the range
of μ = 10−6 to 10−4, reflecting tissue specific uncertainties in
each factor. What is common in these estimates is that the
driver mutation rate is much smaller than unity (μ � 1), i.e.,
driver mutations occur very rarely.

We make the simplifying assumption that mutations (ex-
cept for deleterious ones, which terminate the respective
lineages) do not affect the dynamics of cell proliferation and,
as a result, do not change the structure of the cell lineage tree
until a critical number of drivers are accumulated. It is unclear
(and might depend on the type of tissue or tumor) to what ex-
tent this assumption of neutrality holds for individual somatic
mutations (including putative driver mutations). While there
are clear exceptions [20], the above assumption of neutrality is
consistent with the fact that the majority of cancers arise with-
out a histologically discernible premalignant phase, and also
with recent timing analyses, which suggest that driver muta-
tions often precede diagnosis by many years, if not decades
[21]. These observations indicate strong cooperation between
driver mutations, suggesting that major histological changes
that would significantly alter the structure of the lineage tree
may not take place until the full repertoire of driver mutations
is acquired [22].

Here we consider the accumulation of a fixed number of
mutations m along a generic cell lineage tree T [demonstrated
in Fig. 1(a)], representing the full history of cell divisions of
an organism until a given moment in time. On this tree the
leaf nodes correspond to the cells that were either present
in the organism at that time or had been lost by then, while
the internal nodes correspond to the cells that had already
gone through a cell division. Similar lineage trees can also
be drawn for tissues or tissue units with the root node being
the founder cell of the tissue or tissue unit. Note that at any
particular moment the entire lineage tree (and not only the
subtree leading to the living cells at a particular point in time)
needs to be considered. This is because wherever a cell col-
lects the critical number of driver mutations, cancer is initiated
and an uncontrolled growth begins. Therefore, even if none of

the descendants of a cell survive along the original (unaltered)
lineage tree, it had a chance to initiate cancer at its birth.

Assuming that driver mutations occur at a uniform rate μ

per cell division (indicated by red stars in Fig. 1) and that they
are neutral until at least m are accumulated, we explore the
fundamental question of how the probability of accumulat-
ing m mutations can be calculated for a generic cell lineage
tree T .

II. RESULTS

The above question can be translated into a mathematical
(graph theoretical) problem: Given a binary tree T , what is
the probability PT (μ, m) that a lineage (i.e., a path from the
root node to a leaf node) with at least m mutations appears,
if mutations are dropped to the edges independently with an
expected value of μ per edge? In Fig. 1(a), e.g., the lineage
belonging to leaf node 4 has three mutations (red stars). Be-
cause mutations occur independently, their number ( j) follows
a Poisson distribution:

p(μ, j) = μ j

j!
e−μ. (1)

Although no general analytical solution is known for this
problem, an exact numerical answer can be given for any
particular tree by following the procedure outlined below.
Any binary tree can be constructed by iteratively merging the
subtrees of sister nodes at their parent node, starting from the
leaves. At each internal node (gray nodes in Fig. 1) the two
subtrees of its descendant nodes (daughter cells) are merged.
The last merger at the root node of the lineage tree completes
the merging sequence.

For a merger event, let us denote the two sibling subtrees
to be merged by A and B. Let us denote the probability that
the lineage with the largest number of mutations in subtree
A has exactly j mutations by P̃A(μ, j), and in subtree B by
P̃B(μ, j). After extending each subtree by adding the edge
that leads to their shared parent node, the probability that the
lineage with the largest number of mutations has exactly k
mutations in the extended subtree A is

P̃+
A (μ, k) =

k∑
j=0

P̃A(μ, k − j) p(μ, j) (2)

and that in the extended subtree B is

P̃+
B (μ, k) =

k∑
j=0

P̃B(μ, k − j) p(μ, j). (3)

After joining the two extended sibling subtrees at their
parent node into subtree (AB), the probability that the lineage
with the largest number of mutations in this newly merged
subtree has exactly m mutations is

P̃(AB)(μ, m) = P̃+
A (μ, m)

m−1∑
k=0

P̃+
B (μ, k)

+ P̃+
B (μ, m)

m−1∑
k=0

P̃+
A (μ, k)

+ P̃+
A (μ, m)P̃+

B (μ, m). (4)
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The initial condition for the merger sequence is that, when the
subtree (e.g., A) is a leaf node (i.e., a trivial graph consisting
of a single node and no edges), P̃A(μ, j) = 0 for j > 0 and
P̃A(μ, 0) = 1.

After the merging process is completed the probability
that the entire lineage tree T has a lineage with at least m
mutations can be obtained as

PT (μ, m) = 1 −
m−1∑
m′=0

P̃T (μ, m′). (5)

No closed-form formula can exist for this result, because it
depends on the detailed structure of the tree. For low mutation
rates, however, simplifying approximations can be made. If
μ is small enough such that PT (μ, m) � 1, then whenever
a lineage with at least m mutations appears, it appears prac-
tically alone, leading from the root node to one or a few
closely related leaf nodes. This suggests that PT (μ, m) can
be expressed as a simple sum,

PT (μ, m) ≈
L∑

i=1

F (i, μ, m), (6)

for all the leaf nodes from 1 to L. Furthermore, because the
only quantity that is specific to a leaf node is its lineage length
(or divisional load, denoted by Di), F (i, μ, m) should depend
on i only through Di. It is also expected to be dominated by
its leading-order term in μ, which is proportional to μm. Al-
together, it can be approximated as F (i, μ, m) ≈ μm f (Di, m).
Thus, for low enough mutation rates μ, the probability that a
lineage with at least m mutations exists in the cell lineage tree
should take the form

PT (μ, m) =
L∑

i=1

μm f (Di, m) (7)

in leading order of μ.
The function f (Di, m) can be determined by introducing

an additional division to the lineage tree [for which we chose
leaf node L, as indicated by blue dashed lines in Fig. 1(b)].
The probability for the new tree T ′ can be written in two ways.
First,

PT ′ (μ, m) =
L−1∑
i=1

μm f (Di, m) + 2μm f (DL + 1, m)

= PT (μ, m) + μm[2 f (DL + 1, m) − f (DL, m)].
(8)

Second,

PT ′ (μ, m) = PT (μ, m) + [1 − PT (μ, m)]GT (L, μ, m), (9)

where the first term accounts for the possibility that a lineage
with at least m mutations has already existed before the intro-
duction of the new division, and the second term corresponds
to the scenario that no such lineage has existed, but with the
elongations at least one of the two new lineages reaches the
necessary number of mutations. The probability of this latter
event is denoted by GT (L, μ, m). In the leading order of μ,
the probability PT (μ, m) can be neglected in the second term

and GT (L, μ, m) can be expressed as

GT (L, μ, m) = 2

{
[μ(DL + 1)]m

m!
− [μDL]m

m!

}
, (10)

where the two terms between the braces describe the prob-
abilities that m mutations occur along DL + 1 and DL long
lineages, respectively, their difference corresponds to the ex-
cess probability conferred by a single elongation, and the
factor 2 stands for the number of elongations. Here μDL � 1
has been assumed, which follows from the condition that
PT (μ, m) � 1. After plugging this formula into Eq. (9) we
arrive at

PT ′ (μ, m) = PT (μ, m) + μmg(DL, m), (11)

where

g(D, m) = 2
(D + 1)m − Dm

m!
. (12)

Comparing the two expressions (8) and (11) for PT ′ (μ, m)
confirms the validity of our expectations on the form of
PT (μ, m) in Eq. (7) and leads to the recursion relation

f (D + 1, m) = f (D, m) + g(D, m)

2
(13)

for the function f (D, m), with the initial values f (0, m) = 0
for any m > 0.

Expanding the recursion results in

f (D, m) =
D∑

l=1

g(D − l, m)

2l
=

D∑
l=1

(D − l + 1)m − (D − l )m

2l−1m!
,

(14)

which cannot be simplified further. However, because in most
real cell lineage trees the lineages [especially the longest ones
that dominate the sum in Eq. (7)] are much longer than unity,
f (D, m) can be well approximated by keeping its highest-
order term in D:

f (D, m) ≈ 2
Dm−1

(m − 1)!
. (15)

Plugging this approximation back into Eq. (7) leads to our
second main result that the probability of accumulating at least
m mutations along a lineage can be well approximated with

Pappr
T (μ, m) = 2μm

(m − 1)!

L∑
i=1

Dm−1
i (16)

in the leading order of μ and for the highest order of the
lineage lengths. This approximation is very accurate for low
enough mutation rates μ [such that Pappr

T (μ, m) � 1, which
is a valid assumption for the cancer risks of independently
maintained units of most human tissues], as demonstrated in
Fig. 2 for a series of lineage trees that interpolate between
the most skewed binary tree (a linear chain of all the internal
nodes) and the most balanced one (the perfect binary tree)
with L = 216 leaf nodes.

III. DISCUSSION

We derived our results for a cell lineage tree, where the
root node is either the zygote or the founder cell of a tissue or
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FIG. 2. Examples for the probability of accumulating at least
m mutations in a series of cell lineage trees. The top panel illus-
trates how a series of lineage trees that interpolate between the
most skewed binary tree (a linear chain of all the internal nodes,
nb = 0) and the most balanced one (the perfect binary tree, nc = 0)
is generated: Identical perfect binary subtrees (indicated with thin
arrows) of depths (lineage lengths) nb are joined (with thick gray
arrows) to an nc long linear chain (indicated with thick black arrows).
The number of leaf nodes can be expressed as L = (nc + 2) 2nb . The
four plots in the bottom panel show the exact probabilities PT (μ, m)
(blue lines, obtained form the merging process) that the lineage trees
(for L = 216 and for four different values of nb = 0, 5, 10, and 15)
have a lineage with at least m mutations (ranging between m = 1
and 10 from left to right) as a function of the mutation rate μ, as well
as their approximation Pappr

T (μ, m) (red dashed lines) using Eq. (16).
The approximation is very accurate as long as Pappr

T (μ, m) � 1.

a unit of tissue. Most tissue units (such as the colonic crypts),
however, are sustained by a population of stem cells, rather
than a single stem cell. Because our main formula (16) is a
simple sum over all the leaves, it is also valid for a collection
of trees, such as those generated by an initial set of stem cells
of an independently maintained tissue unit.

Let us demonstrate our results by comparing two basic
population dynamics models for N cells (or individuals, in
general) in discrete time, as illustrated in Fig. 3 (where each
lost cell is explicitly marked with a cross). One of them is
an ensemble of N parallel linear chains (as introduced in
Fig. 2 with nb = 0). At each time step a randomly selected cell
divides, and one of its daughter cells becomes lost (to maintain
the population size). The other model is the Moran process, in
which at each time step two cells are chosen randomly, one
for division and one for loss (with 1/N chance the same cell is

ti
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FIG. 3. Examples for two basic population dynamics models of
N = 3 cells in discrete time. The left panel shows an ensemble of
N parallel linear chains. At each time step a randomly selected cell
divides, and one of its daughter cells becomes lost. The right panel
shows a Moran process, in which at each time step two cells are
chosen randomly, one for division and one for loss (with 1/N chance
the same cell is chosen for both events, which means that after
division one of its daughters becomes lost). Lost cells are explicitly
marked with a cross.

chosen for both events, which means that after division one of
its daughters becomes lost). In both models as time progresses
the number of past divisions (i.e., the lineage length) of each
cell increases linearly (with slightly different rates in the two
models); therefore, the lineage lengths of the lost cells follow
a uniform distribution on average, and the two models behave
similarly. In both models, time is measured in units of the time
step and the generation time is defined as N time steps, and we
are interested in the value of Pappr

T (μ, m) after a large number
of generations G have passed.

In the model of linear chains, leaf node t (lost at time
t , where 0 < t < NG) has a lineage length of Dt = t/N on
average (because at each time step every cell divides with a
probability of 1/N). Thus, lost cells have a contribution of∑NG−1

t=1 (t/N )m−1 ≈ ∫ NG
0 (t/N )m−1dt = NGm/m to the sum-

mation in Eq. (16). The contribution of the N surviving cells
(NGm−1 with each lineage having a length of G on average) is
negligible for G � 1. From these the value of Pappr

T (μ, m) for
this model can be approximated as

Pappr,chain
T (μ, m) ≈ 2N (μG)m

m!
. (17)

An intuitive argument for the 2N factor is that the last muta-
tion can occur in either of the two daughter cells of any of
the N chains, while all the previous m − 1 mutations must
have occurred along the ancestral lineage, involving only the
surviving daughter cells.

In the Moran model the lineage lengths (numbers of past
divisions) also grow linearly in time, but somewhat faster (as
is apparent in Fig. 3). This can be understood by realizing that
at each time step the sum of the lineage lengths for all the N
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cells of the population increases by λ = 2(1 − 1/N ) + 1/N =
2 − 1/N rather than by unity on average, where the first term
describes the increment produced by the two daughter cells
both surviving with a chance of 1 − 1/N , while the second
term corresponds to the event when only one of the daughters
survives with a chance of 1/N . Thus, after each generation
the lineage length of every cell increases by λ. Again, the
main contribution to the summation in Eq. (16) comes from
the lost cells. With leaf node t (lost at time t , where 0 <

t < NG) having a lineage length of Dt = λt/N on average,
this contribution is

∑NG−1
t=1 (λt/N )m−1 ≈ ∫ NG

0 (λt/N )m−1dt =
Nλm−1Gm/m, and the value of Pappr

T (μ, m) can be approxi-
mated as

Pappr,Moran
T (μ, m) ≈ 2N (μG)m

m!
λm−1 ≈ Pappr,chain

T (μ, m)λm−1.

(18)

Although the Moran model behaves similarly to the model
of linear chains, it produces longer lineages (by a factor of
λ) and, therefore, has a higher chance of accumulating m
mutations after the same number of generations by a factor
of λm−1.

These examples also highlight the significance of our result
that for the calculation of the risk of cancer it is enough to
determine the lineage length distribution of the cell lineage
tree, and no further information is required from its structural
details, as long as the risk is much smaller than unity. To see
how realistic this assumption is, let us make an estimation for
human stem cells. Bases on the latest counts [23] an adult has
around 3 × 1013 cells, out of which of the order of 1010 are
tissue specific stem cells. Because the lifetime risk of cancer
is certainly smaller than unity, the cancer risk carried by the
lineage tree of a single stem cell is smaller than 10−10. Even
if there are (orders of magnitude) errors in this estimation, the
cancer risk per stem cell should be much smaller than unity,
indicating that the parameter range where our approximate
formula is accurate is the biologically relevant one.

There is previous work dealing with the probability of col-
lecting a given number of neutral mutations [24,25]. However,
these studies are restricted to particular population dynamics
models, use stochastic simulations and, as a consequence,
cannot explore the regime of very small, biologically relevant
probabilities. Analytical considerations [25] take only the ge-
nealogy (ancestry) of the population into account and ignore
all cells with no extant descendants. Here we emphasize that
all the cells (no matter if they have any extant descendants)
have a contribution to the total probability and, therefore, the
entire cell lineage tree must always be considered.

The above studies [24,25] point out that stem cell popula-
tions with symmetric divisions (corresponding to the Moran
model) accumulate a given number of neutral mutations with
lower probabilities than populations with asymmetric divi-
sions (corresponding to our model of linear chains), although
the ratio of the two probabilities seems to converge to unity
for very small probabilities. This appears to contradict our
result of λm−1 for this ratio, which is clearly larger than
unity if N > 1 and m > 1. The resolution of this paradox is
that, when two different cells are selected for division and
lost in a time step of the Moran model (with a chance of
1 − 1/N), then the lost cell is considered to produce two

progenitor cells (symmetrically); i.e., these cells undergo one
more round of cell divisions. Thus, in each generation not N ,
but 2(1 − 1/N ) + 1/N = 2 − 1/N progenitors are produced,
which coincides with the value of λ. Consequently, λ cancels
in the per progenitor increment of the lineage length (number
of past divisions), which makes the probability of accumu-
lating a given number of mutations identical in the two cases.
This can be viewed as a direct application of our results, which
shows decisively that for very small (biologically relevant)
cancer risks the symmetric divisions have no advantage over
the asymmetric ones, despite that stochastic simulations at
higher probabilities indicate otherwise.

Our approach considers only rare driver mutations associ-
ated with cell divisions. In reality other types of more frequent
mutations (e.g., ones conferring small fitness advantages or
disadvantages, or lethal ones) also occur. Their effects, how-
ever, are assumed to be incorporated into the structure of the
lineage tree, along which the driver mutations can accumulate,
and therefore, they do not need to be treated together with the
drivers. Some driver mutations can also occur without cell di-
visions. Although they do not fit directly into our framework,
we can mimic them by decorating the original cell lineage tree
with unit-long phantom edges (i.e., by adding phantom cell
divisions, where one of the daughter cells dies immediately).

We note that our results can also be applied to other evolu-
tionary problems (e.g., maintaining cell cultures) where the
divisions of the individuals are accompanied by mutations,
and the accumulation of a given number of rare critical mu-
tations has serious consequences.

In summary, the main results of our work are that assum-
ing neutral mutations (i) the probability of accumulating a
given number of mutations can be calculated exactly with
an iterative method based on subtree merging [Eqs. (2)–(5)]
for an arbitrary tree; and (ii) in the case of rare mutations
(which is typical for the driver mutations necessary for tumor
initiation) it can be approximated with a simple analytical
formula [Eq. (16)], which depends only on the lineage length
distribution of the leaf nodes. Because the approximate for-
mula is a sum of relatively high powers of the lineage lengths,
it is dominated by the longest lineages. This explains why
the minimization of the longest lineages (e.g., through hier-
archical differentiation [5]) is crucial in minimizing somatic
evolution, in general, and cancer risk, in particular. The ap-
proximate formula is the simplest one that is theoretically
possible, because it involves those and only those properties
of the cell lineage tree that matter (the lineage length distribu-
tion); therefore, it cannot be reduced any further. An important
feature of our approach is that it considers the cell lineage
tree fixed, along which mutations accumulate. This makes it
possible to calculate the probability of mutation accumulation
for arbitrary mutation rates (with either the exact method
or the approximate method), without the need for stochastic
simulations of the generation of mutations.

In the context of cancer incidence, our results imply that
the cumulative cancer incidence for any particular tissue
should grow as a power function of age with exponent m,
if the lengths of its longest lineages grow linearly in time
[cf. Eq. (17) for long linear chains]. Indeed, for most large
self-renewing tissues stem cells are known to divide at least
several times a year (e.g., every 25 to 50 weeks [26] or every

044407-5



IMRE DERÉNYI et al. PHYSICAL REVIEW E 109, 044407 (2024)

2 to 20 months [9] for blood, and every 4 days [27,28] for
the colon) and, therefore, are expected to produce dominant
linearly growing lineages.

It is also clear, however, that differences across individuals
and between tissues of different individuals can influence both
the mutation rate (through differential exposure to mutagenic
influences of either endogenous or exogenous origin) and
the shape of cell lineage trees (through, e.g., increased cell
proliferation caused by chronic inflammation in the tissue).
Cancer risk is, thus, influenced by multiple factors, and the
structure of the wild-type cell lineage tree is one of them. The
significance of our work is that our analytical results provide
a tool to determine the contribution of the structure of the
lineage tree to the risk of cancer. This contribution is not
expected to be minimized by evolution, but only to be kept
below some small value (blending into the contributions of
other relevant factors) such that the organism will have a high
chance of not dying of cancer during its natural lifetime.

We foresee direct applications of our analytical results as
more extensive cell lineage tracing data become available with
emerging new single-cell techniques (such as single-cell RNA
sequencing or cytometry by time of flight [29]), at both the
organism level [30,31] and the tissue level [32]. Our results are
also readily applicable for quantifying cancer susceptibility in
theoretical models of tissue development and maintenance.
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[5] I. Derényi and G. J. Szöllősi, Hierarchical tissue organization
as a general mechanism to limit the accumulation of somatic
mutations, Nat. Commun. 8, 14545 (2017).

[6] M. A. Nowak, F. Michor, and Y. Iwasa, The linear process
of somatic evolution, Proc. Natl. Acad. Sci. USA 100, 14966
(2003).

[7] J. W. Pepper, K. Sprouffske, and C. C. Maley, Animal cell dif-
ferentiation patterns suppress somatic evolution, PLoS Comput.
Biol. 3, e250(2007).

[8] M. Demeter, I. Derényi, and G. J. Szöllősi, Trade-off between
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