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Statistically inferred neuronal connections in subsampled neural networks strongly
correlate with spike train covariances
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Statistically inferred neuronal connections from observed spike train data are often skewed from ground
truth by factors such as model mismatch, unobserved neurons, and limited data. Spike train covariances,
sometimes referred to as “functional connections,” are often used as a proxy for the connections between
pairs of neurons, but reflect statistical relationships between neurons, not anatomical connections. Moreover,
covariances are not causal: spiking activity is correlated in both the past and the future, whereas neurons
respond only to synaptic inputs in the past. Connections inferred by maximum likelihood inference, however,
can be constrained to be causal. However, we show in this work that the inferred connections in spontaneously
active networks modeled by stochastic leaky integrate-and-fire networks strongly correlate with the covariances
between neurons, and may reflect noncausal relationships, when many neurons are unobserved or when neurons
are weakly coupled. This phenomenon occurs across different network structures, including random networks
and balanced excitatory-inhibitory networks. We use a combination of simulations and a mean-field analysis with
fluctuation corrections to elucidate the relationships between spike train covariances, inferred synaptic filters, and
ground-truth connections in partially observed networks.
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I. INTRODUCTION

Identifying the strength and timescales of synaptic trans-
mission between neuron pairs is a major goal of neuroscience,
as it would greatly facilitate our understanding of how a neural
circuit’s computational properties are shaped by its structure.
It is now possible to record simultaneous activity from large
populations of neurons, enabling the use of statistical methods
to infer interactions between neuron pairs [1–4]. This has
become a foundational tool for understanding the encoding
and decoding properties of many biological neural networks.
However, because no in vivo recording technique can record
from all neurons in a circuit (Fig. 1) the inferred connections
between neurons may only reflect statistical relationships be-
tween neurons, shaped by, but not necessarily representative
of, the underlying anatomical connections [5–8].

To this end, it is useful to distinguish between two promi-
nent measures of “functional” or “effective” interactions
between neurons. “Functional” connections between neurons
are estimated using pairwise crosscovariances between neuron
spike trains, or other measures of neural activity, such as
BOLD signals in fMRI [9]. Crosscovariances are not causal
functions, as both the past and future of two spike trains are
correlated. As a result, the covariance cannot generally predict
whether the past spiking activity of one neuron drives the
future activity of another neuron, and extracting information
about causal circuit responses from functional connections
is not always possible. In contrast, “effective” interactions
obtained by performing, e.g., maximum likelihood inference
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on neural activity data, can be constrained to be causal func-
tions, and could therefore represent actual causal responses
of neurons to spikes from pre-synaptic partners. In princi-
ple, effective interactions should therefore be more useful
for understanding how the underlying dynamics of neurons
implement computations. However, in this work we use a
combination of simulations and analytically tractable cases
to show that when only a few neurons are recorded in a
neural circuit—the typical case in any in vivo recording—the
effective filters inferred from spontaneous neural activity cor-
relate strongly with the corresponding half of the underlying
spike train covariances. Relationships between covariances
and the underlying synaptic connectivity of network models
have previously been derived [10–12], but fewer studies have
investigated the relationships to synaptic filters estimated by
statistical inference. Other studies that have investigated this
problem have focused on the effect of unobserved neurons
in weakly coupled networks [5] or fully observed strongly
coupled networks [13]. Our work will span these extremes.

We define the model and present our results in Sec. II
and discuss the implications and directions for future work
in Sec. III.

II. RESULTS

A. Model definition

Our goal is to understand how the circuit properties in-
ferred using maximum likelihood inference are related to the
ground-truth properties of the network or the statistics of
spontaneous neural activity—that is, in this work we do not
consider stimulus-driven activity. We require both a gener-
ative model and an inference model. We choose to use the
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FIG. 1. Schematics of the hidden neuron problem and effective
neuronal connection inference. Recording techniques are often only
able to record from a subset of neurons in a neural circuit, especially
in the tissue of a living organism. In this schematic three neurons’
spike trains are shown to be recorded, while the activity of other
nearby neurons remains unobserved. Statistical inference techniques
applied to this activity data can predict effective connections between
neurons, but these do not necessarily reflect the true anatomical
connections.

same model family for both, a generalized linear point pro-
cess model (GLM). As a generative model the GLM can be
interpreted as a leaky integrate-and-fire model in which spike
emission is stochastic [10,11,14,15]. As an inference model
the GLM has been used to fit neural spiking data from many
brain areas, including the retina [1] and the lateral intraparietal
area of macaques [16].

The GLM models spike train emission as an inhomoge-
neous Poisson process in which the instantaneous firing rate
is conditioned on the past history of neural activity in the
network:

ṅi(t )dt ∼ Poiss

⎡
⎣φ

⎛
⎝μi +

N∑
j=1

∫
dt ′ Ji j (t − t ′)ṅ j (t

′)

⎞
⎠dt

⎤
⎦,

(1)

where ṅi(t )dt is the number of spikes neuron i fires within
a small window [t, t + dt], φ(x) is a nonlinear activation
function, μi is the baseline drive for neuron i that sets the
baseline firing rate, and Ji j (t ) is the synaptic interaction or
coupling filter from neuron j to neuron i; we will use the terms
“interaction” and “coupling” interchangeably in this paper.
We allow the “autocoupling” filter Jii(t ), often called the self-
history filter, to be nonzero and typically negative to allow
neurons to suppress their own firing after spiking, mimicking
the effects of membrane potential hyperpolarization observed
experimentally. In this work we do not assign neurons spatial
locations, so the indices correspond only to an arbitrary order-
ing of neurons, though the order may correspond to properties
such as excitatory or inhibitory cell types. The parameters to
be inferred from data are the baselines μi and synaptic filters
Ji j (t − t ′); the nonlinearity φ(x) is often fixed, the canoni-
cal choice being an exponential, φ(x) = λ0 exp(x) [1], where
λ0 is a constant that determines the units of time. We will
adopt this choice for our inference model, as it offers several

simplifications in both our statistical inference procedure and
mathematical analysis of the maximum likelihood procedure
(but see Appendix K for a brief discussion of the expected
effects of nonlinearity mismatch.). It is important to stress
that when the number of observed neurons Nobs is not equal
to the number of neurons N in the generative model we are
dealing with a model mismatch problem and we do not expect
statistical inference to recover the parameters of the generative
model [11,13]. To obtain the true generative model of just
the observed neurons one should in principle marginalize out
the unobserved neurons. This was done approximately by
Ref. [11], but the resulting model is much more complex than
the fully observed network model, and may not be suitable as
a statistical inference model. It is therefore worth understand-
ing how the inferred filters relate to the ground-truth circuit
properties when Eq. (1) is used as the inference model with
Nobs < N .

The maximum likelihood estimates (MLE) of circuit prop-
erties are the model parameters that render the observed data
as probable as possible under the inference model. These
parameters can be found by maximizing the (log)-likelihood.
Because at each time step the GLM is Poisson conditioned on
the spike train history, each neuron is conditionally indepen-
dent and each has its own likelihood, which is a product of
Poisson distributions at each time point:

Li(μ̂, Ĵ ) = Prob({ṅi(t )}|μ̂i, Ĵi j )

=
∏

t

(φ̂i(t )dt )ṅi (t )dt

(ṅi(t )dt )!
e−φ̂i (t )dt , (2)

where the equation should be interpreted in discrete time;
we take the continuous time limit momentarily. The non-
linearity of the inference model is φ̂i(t ) = λ0 exp(μ̂i +∑

j

∫
dt ′ Ĵi j (t − t ′)ṅ j (t ′)); we use hats to distinguish pa-

rameters of the inference model from their corresponding
ground-truth counterparts. Note that the parameters μ̂i and
Ĵi j (t − t ′) may be inferred independently for each neuron i.
In the likelihood function the spike trains ṅi(t ) are considered
to be observed from a single long trial.

After taking the logarithm we may properly take the con-
tinuum time limit to obtain the log-likelihood Li({μ}, {J}) =
T −1 ln Li(μ̂, Ĵ ),

Li({μ}, {J}) = 1

T

∫ t0+T

t0

dt {ṅi(t ) ln φ̂i(t ) − φ̂i(t )}, (3)

where we have dropped the parameter-independent term
− ln(ṅi(t )dt )! and normalized the log-likelihood by the dura-
tion of the spike trains, T . We take the time window to be t ∈
[t0, t0 + T ] for some initial time t0. The maximum likelihood
estimates of the parameters μ̂i and Ĵi j (t ) are those that maxi-
mize Li({μ}, {J}) for the observed data. Taking derivatives of
the log-likelihood with respect to the parameters and equating
the derivatives to zero yields implicit maximum likelihood
estimation equations:

1

T

∫ t0+T

t0

dt ṅi(t ) = 1

T

∫ t0+T

t0

dt φ̂i(t ), (4)

1

T

∫ t0+T

t0

dt ṅi(t )ṅ j (t − τlag) = 1

T

∫ t0+T

t0

dt φ̂i(t )ṅ j (t − τlag),

(5)
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for a time-lag τlag, and where we have explicitly used the
fact that we take the nonlinearity φ̂ to be exponential; see
Appendix D for the derivation of the MLE equations. The
left-hand sides of Eqs. (4) and (5) can be recognized as the
empirical mean and covariance, respectively, of the observed
spike trains.

We solve Eqs. (4) and (5) and investigate the inferred
synaptic interaction filters in two ways. In Sec. II B we
perform maximum likelihood estimation on simulated data,
mimicking analysis of real data, and in Sec. II C we analyze
the inference problem theoretically, deriving an approximate
system of equations for the inferred filters that we can
study analytically. In both cases we focus on how the in-
ferred filters change as a function of the number of neurons
recorded.

B. Simulations

We simulate two types of circuit networks in this study.
The first network type comprises random Gaussian networks
in which Ji j (t ) = Ji jte−t/τ /τ 2�(t ), where τ is the mem-
brane time-constant and the synaptic weights Ji j are normally
distributed with zero mean and variance J2

0 /(pN ): Ji j ∼
N (0, J2

0 /(pN )). We set the baseline μi = −2 for all neurons
and set the network sparsity to p = 50% (i.e., each synaptic
connection may be nonzero with a probability p = 50%). For
an exponential nonlinearity this allows us to tune the weight
matrix coefficient J0 up to an integer value of ∼3 before the
network becomes unstable. We do not need to restrict our
simulations or analysis to the weak-coupling regime [5].

Though random networks are commonly used in theoreti-
cal studies, they lack biological realism because every neuron
can make both excitatory (positive) and inhibitory (negative)
synaptic connections. We therefore also consider balanced
networks of excitatory and inhibitory (E-I) populations, for
which each neuron is either excitatory or inhibitory and only
makes connections of a single sign [17,18].

We simulate Eq. (1) by discretizing the spiking process
into bins of size �t . We determine the parameters that solve
the discrete-time MLE Eqs. (4) and (5) by gradient ascent.
For each network type we simulate the spiking activity of
64 neurons for 2 million time points. While simulating larger
networks is possible, fitting to larger networks is very memory
intensive. To fit the GLM to these simulated data sets it is
necessary to parametrize the filters Ĵi j (t ), either by inferring
the value of the filter at each discrete time point (requiring as
many parameters as the number of time-bins used to represent
the filter) or by representing the filters as weighted sums of
basis functions αn(t ), Ĵi j (t ) = ∑

n w
(n)
i j αn(t ), and inferring the

unknown weights w
(n)
i j . The basis function approach reduces

the number of unknowns to the number of weights, which
requires less data than inferring each time point. The filter
shapes that can be inferred are constrained by one’s choice
of basis functions αn(t ), whereas inferring each time-point
can represent any function given enough temporal resolu-
tion and data, but often results in noisy estimates without
adding fit penalties to impose smoothness. In most studies
the basis function representation is preferred, but for our
analyses the time-point inference will reveal interesting re-

lationships between the inferred filters and statistics of the
circuit activity. For this reason we also do not impose any
regularization on the basis-less fit to smooth out the in-
ferred filters. For additional details on our simulations, see
Appendix A.

In Fig. 2 we show the results of statistical inference on
Nobs = 3 observed neurons out of 64 from the sparse ran-
dom network, comparing the inferred filters and spike train
covariances to the ground-truth filters. The results show that
neither the inferred filters (red solid lines, basis fit; red points,
basis-less fit) nor the empirical covariances (grey bars) match
the ground-truth filters of the generative model (blue dashed
lines). However, we observe that the basis-less inferred filters
match quite well with the empirical covariances. Since the
MLE inferred filters and spike train covariances are estimated
using two independent methods, it is surprising to observe
such a strong correlation between them. Elucidating this
strong correlation between inferred filters and covariances,
and their deviation from the ground-truth filters in subsampled
networks, is the main goal of this work.

1. Only the strongest spike train covariances
are indicative of true connections

First, we investigate the spike covariances in the random
and E-I networks. In Fig. 3 we plot histograms of the di-
rected magnitudes of the covariances, defined as ||Ci j || ≡√∫ ∞

0+ dt Ci j (t )2; note that we integrate over only positive lags,
so the magnitude of ||Ci j || �= ||Cji|| and the δ function at
zero-lag is excluded when calculating the directed magnitudes
of the autocovariances ||Cii||. We condition the histograms by
whether Ji j = 0 or not. For sparse random networks we find
that (i) the autocovariances have a strong positive peak near
zero-lag, unlike the purely negative autocoupling filter that
implements the soft-reset of the membrane potential, and (ii)
the largest covariances between synaptically connected neu-
rons are larger than the covariances between neurons that are
not connected, though there is considerable overlap between
the distributions. This means that a strong covariance may be
indicative of a genuine synaptic connection between neurons,
but weaker covariances may not distinguish between absence
or presence of connections. The results hold in both sparse
random networks and the E-I networks, even when separated
by the types of neurons connected.

2. Correlations between spike train covariances, ground-truth
filters, and inferred filters shift as fewer neurons are observed

Next, we investigate the apparent correlation between the
maximum likelihood estimates of the filters with the spike
train covariances. To verify the correlation is robust and not
just a visual artifact, we calculate the linear Pearson corre-
lation coefficient between the ground-truth filters, inferred
filters, and the empirical spike train covariances, varying
the number of observed neurons in both random and E-I
networks.

We first look at the correlations between the positive-
lag halves of the empirical covariances and the ground-truth
filters, shown in Fig. 4. We see that there is generally a positive
correlation between the two, though there is quite a bit of
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FIG. 2. Maximum-likelihood estimates (MLE) of coupling filters Ji j for Nobs = 3 observed neurons out of 64 in a circuit with 50% sparsity
and Gaussian weights. The ground-truth synaptic filters of the generative model are shown in blue dashed lines (values on left axis). Two types
of inferred filters are shown: for each time point (red points) and using a basis expansion (red solid line). We also compare the filters to the
empirical covariances, shown in grey bars (scaled up to be visible on the same plots as the filters; true values on right axes). The covariances
correlate strongly with the filters inferred without using a basis expansion.

spread. This spread is due to two factors: the strength of the
synaptic connections in these simulations and the finite-time
estimates of the covariances (e.g., estimates of the covari-
ance C3,2(t ) in Fig. 2 are noisy and of either sign, while the
synaptic connection is strictly positive, which will lead to a
small estimate of the correlation coefficient). We explain later
why strong connections will bias covariances away from the
ground-truth filters.

The spike train covariances and ground-truth filters do
not depend on the number of observed neurons, whereas the
inferred filters do change with the number of neurons used
in maximum likelihood estimation. In Fig. 5 we show the
distribution of the correlation coefficients between covari-
ances and inferred filters (estimated pointwise, not using basis
functions) as a function of the fraction of neurons observed,
for both sparse random networks [Fig. 5(a)] and E-I networks
[Fig. 5(b)]. For both network types we find that the correlation
between autocovariances and autocoupling filters is generally

very close to 1 when � 10% of the network is observed,
dropping to a median of ∼0.7 when the network is fully
observed. The crosscovariances between different neurons are
even more strongly correlated with their corresponding in-
ferred crosscoupling filters.

We compare the covariance-inferred filter correlations with
the correlations between the inferred filters and the nonzero
ground-truth filters; for Ji j (t ) = 0 the correlation is not de-
fined. As shown in Fig. 6, we find that the correlations are
strong when the network is fully observed, as expected, and
decrease as fewer neurons are observed. In random networks
we observe a considerable spread in the distribution of the co-
variances for the crosscouplings between neurons, with some
inferred filters even being anticorrelated with the ground-truth
filter (see, e.g., J2,1 in Fig. 2)—this may be due to the rela-
tively large distribution of synaptic weights in these networks.
Variability in the E-I crosscouplings is due only to spar-
sity, and we observe smaller correlation distributions in these
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(a) (b)

FIG. 3. Directed magnitudes ||Ci j || =
√∫ ∞

0+ dt Ci j (t )2 of the empirical spike train covariances estimated with the simulated spike trains.
(a) (Log-)Magnitudes for a sparse random network. Top: Directed magnitude of the positive-lag of the autocovariance with zero-lag excluded;
bottom: directed magnitudes of the crosscovariances. (b) (Log-)Magnitudes for a balanced excitatory-inhibitory network. Left-most column:
directed magnitudes for the autocovariances with zero-lag excluded, separated by cell type (51 excitatory, 13 inhibitory). Middle- and right-
most columns: directed magnitudes for the crosscovariances, separated by which pairs of cell types are connected. For the crosscovariances
the histograms are separated also by whether the ground-truth connection is zero or not, showing that there is overlap between the covariances
of connected and unconnected pairs of neurons.

networks. There is no variability in the autocouplings of either
network.

The results of Figs. 5 and 6 are consistent with the
covariance-ground-truth correlations shown in Fig. 4. For ex-
ample, in random networks the strong correlations between
covariances and inferred filters combined with the occasional
anticorrelation between inferred filters and ground truth trans-
lates into the occasional anticorrelation between covariances
and ground truth.

Our results therefore suggest that when the number of
recorded neurons Nobs is a large fraction of the total number of
neurons N in the network, the inferred filters correlate strongly
with the ground-truth filters but less so with the spike train
covariances. However, when the fraction of observed neurons
is small, Nobs/N � 1, the inferred filters correlate strongly
with the positive-lag half of the covariances, but less so with
the ground-truth filters.

3. Correlations become stronger in weakly coupled networks

So far we have shown results for strongly connected net-
works with synaptic weights just below the critical value for
which the network activity would become unstable. We also
investigated how the strength of these correlations depends
on the synaptic weights. For random Gaussian networks we

varied the standard deviation of the weights, J0 ∈ {1, 2, 3},
while for balanced E-I networks we varied both excitatory and
inhibitory weights by a multiplicative factor J0 ∈ {1, 4, 7}.
The results shown in Fig. 5 correspond to the strongest synap-
tic strengths we investigated, namely, J0 = 3 for the random
networks and J0 = 7 for the E-I networks. We find that cor-
relations between covariances grow even stronger when the
synaptic connections are weaker, shown in Fig. 7. As shown
in the right panel of Fig. 7(a), in the weak coupling limit the
Pearson correlations between the MLE inferred filters and the
spike train covariances are high even if all the neurons in
the network are observed. Smaller J0 confined the network
to a noise-driven regime, where each neuron’s firing rate is
dominated by the same baseline drive μ set in the generative
model, and a higher J0 tunes the network into a strong cou-
pling regime with more variable firing rates across neurons.

Because our simulation results demonstrate a high degree
of correlation between the inferred synaptic filters (without
using basis functions) and the empirically estimated spike
train covariances, some property of the network statistics or
maximum likelihood inference procedure must give rise to
these strong correlations when the network is subsampled.
To better understand this relationship, we turn to an analytic
analysis of the maximum likelihood estimation of subsampled
networks.
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FIG. 4. Pearson correlation coefficient between the empirical spike train covariances and ground-truth synaptic filters. (a) Correlations
for a sparse random network. Top: correlation between the positive-lag of the autocovariance and the autocoupling (self-history) filter;
bottom: correlation between the crosscovariances and the crosscoupling filters between pairs of neurons. (b) Correlations for a balanced
excitatory-inhibitory network. Left-most column: correlations between autocovariances and autocoupling, separated by cell type (51 excitatory,
13 inhibitory). Middle- and right-most columns: correlations between the crosscovariances and crosscouplings, separated by which pairs of
cell types are connected. For the crosscovariances/couplings correlations are only computed for synaptic connections which are nonzero.

C. Theoretical analyses

To understand the observed correlations between spike
train covariances, the underlying ground-truth synaptic con-
nections, and the inferred synaptic filters, we analyze the
spiking network models using a mean-field approximation
with Gaussian fluctuation corrections. We analytically inves-
tigate the maximum-likelihood equations in the continuous
time limit and the infinite data limit T → ∞.

1. Mean-field approximation with Gaussian
fluctuation corrections

We use a self-consistent mean-field approximation to esti-
mate the firing rates, which consists of neglecting fluctuations
in activity:

ri ≡ 〈ṅi(t )〉 =
〈
φ

⎛
⎝μi +

N∑
j=1

∫
dt ′ Ji j (t − t ′)ṅ j (t

′)

⎞
⎠〉

≈ φ

⎛
⎝μi +

N∑
j=1

∫
dt ′ Ji j (t − t ′)〈ṅ j (t

′)〉
⎞
⎠

= φ

⎛
⎝μi +

N∑
j=1

Ji j r j

⎞
⎠, (6)

where we assume the networks reach a time-independent
steady state, ri = 〈ṅi(t )〉. We then approximate the spik-
ing process as Gaussian fluctuations around the mean-field
estimates and calculate the covariances using the path in-
tegral formalism developed in Ref. [10]; see Appendix D
for details. Within this approximation the covariances may
be written

Ci j (t − t ′) =
N∑

k=1

∫ ∞

−∞
dt ′′ �ik (t − t ′′)� jk (t ′ − t ′′)rk, (7)

where �i j (t − t ′) are the linear response functions of the
network: the average response of neuron i at time t to a forced
spike from neuron j at time t ′. The response functions are
causal: �i j (t − t ′) = 0 for all t − t ′ < 0, reflecting the fact
that neurons cannot respond to perturbations that occur in
the future. While the response functions contain information
about causality in the network, they are more difficult to mea-
sure because they cannot be directly inferred from ongoing
activity, only from trial-averages of responses to forced-spike
perturbations. We therefore focus on the covariance, and the
extent to which it reflects the underlying causality of the
synaptic connections Ji j (t ).

It is instructive to expand the covariance in a series for
weak synaptic connections. In this regime the covariance may
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(a)

(b)

FIG. 5. Pearson correlation between the spike train covariances
and inferred coupling filters in strongly coupled random networks
and balanced E-I networks of 64 neurons. (a) Violin plots show
how the correlations change when different fractions of neurons are
observed in a network with sparse Gaussian synaptic connections,
3%, 6%, 12%, 25%, 50%, 75%, and 100%. In this 64 neuron network
these fractions corresponds to 2, 4, 8, 16, 32, 48, and 64 observed
neurons. The spike train covariance functions strongly correlate with
the inferred filters inferred for each time point when fewer neu-
rons are observed and the correlation decreases as more neurons
are observed. The left panel shows the distribution of the Pearson
correlation coefficients between the autocovariance and autocoupling
(self-history) filters, while the right panel shows the distribution of
the Pearson correlation coefficients between the crosscovariance and
coupling filters between neuron pairs. (b) Same as panel (a) but for
the balanced E-I networks.

be written (see Appendix F)

Ci j (t − t ′) ≈ riδi jδ(t − t ′) + giJi j (t − t ′)r j + g jJji(t
′ − t )ri

+
N∑

	=1

∫ ∞

−∞
dt ′′ [g jJj	(t ′ − t ′′)g	J	i(t

′′ − t )ri

+ giJi	(t − t ′′)g	J	 j (t
′′ − t ′)r j

+ giJi	(t − t ′′)g jJj	(t ′ − t ′′)r	], (8)

where gi ≡ φ′(μi + Ji j r j ) is gain of neuron i, equal to the
firing rate ri when φ(·) = exp(·). We thus see that for suffi-
ciently weak coupling the synaptic filters Ji j (t ) and Jji(t ) can
be estimated from the positive- and negative-lag halves of the
covariances, respectively, up to constant factors.

For stronger synaptic connections feedback with the rest
of the network, represented by the higher-order terms in
the expansion (8), cannot be neglected. The shape of the
covariances between pairs of neurons will be skewed away

(a)

(b)

FIG. 6. Pearson correlation between the inferred spike train fil-
ters and the ground-truth filters in strongly coupled random networks
and balanced E-I networks of 64 neurons. (a) For sparse random
networks. (b) For balanced E-I networks. Plot details are the same
as in Fig. 5. The correlation between ground-truth and inferred filters
are highest when the network is fully observed, and are relatively
high for the E-I network, but can be negative in the random network.
The left panels show the distribution of the Pearson correlation
coefficients between the autocouplings (self-connections implement-
ing the soft reset), while the right panels show the distribution of
correlation coefficients between the crosscouplings between neuron
pairs.

from the ground-truth synaptic filters in the strong coupling
regime. Moreover, the last term in Eq. (8),

∑
	

∫
dt ′′ giJi	(t −

t ′′)g jJj	(t ′ − t ′′)r	, is not causal, as it is the contribution to the
covariance of neurons i and j due to synaptic input from other
neurons 	.

To investigate the covariances at strong coupling, for both
the sparse random network and the E-I network, we solve
for the mean-field firing rates and linear response functions
numerically, from which we estimate the covariances using
Eq. (7). The accuracy of the mean-field approximation is
expected to be quantitatively inaccurate but remain qualita-
tively accurate as the coupling strength increases [11]. We
find, as shown in Fig. 9, that many spike train covariances
remain strongly correlated with the ground-truth filters, but
many pairs display weaker correlations. Weak correlations are
particularly notable between the autocoupling filters and the
autocovariances.

Our mean-field analysis of the networks indeed yields qual-
itatively similar results to the simulations, though simulations
show a wider spread of correlation values between the em-
pirical covariances and the ground-truth filters. This is likely
due to non-Gaussian contributions to fluctuations in spiking
activity that are not negligible in strongly coupled networks.

044404-7



TONG LIANG AND BRADEN A. W. BRINKMAN PHYSICAL REVIEW E 109, 044404 (2024)

FIG. 7. Correlations are high for both random and balanced excitatory-inhibitory networks in weak coupling regimes. (a) Random network.
When the weight matrix coefficient J0 decreased from 3 to 1, the network transitioned into a noise-driven regime, and the mean firing rates
of the neurons varied less and were driven by the same baseline drive in the generative model, as shown in the left panel. As shown in the
right panel, in the weak coupling regime, such as when J0 = 1, high correlations between the MLE inferred filters and spike train covariances
were observed even when all the neurons in the network are observed, as compared to the network in a strong coupling regime where the high
correlation between the MLE inferred filters and spike train covariances only happen in the sub-sampled network. (b) Similar results hold for a
balanced excitatory-inhibitory network, where 20% of the neurons are inhibitory and 80% of them are excitatory. The weight matrix coefficient
J0 is tuned from 1 to 7, with J0 = 7 the largest possible integer value for which the spiking process is still stable.

Nevertheless, the mean-field approximation remains qualita-
tively accurate, and we investigate the inferred filters within
the scope of this approximation.

2. Maximum-likelihood estimation equations

Next, to understand the correlations with the inferred
filters, we need to derive the maximum likelihood equa-
tions within this mean-field approximation. Because we are
focusing on ongoing network activity, in this limit the inte-

grals over time in Eqs. (4) and (5) become expectations over
the spiking process:

〈ṅi(t )〉 = 〈φ̂i(t )〉, (9)

〈ṅi(t )ṅ j (t
′)〉 = 〈φ̂i(t )ṅ j (t

′)〉, (10)

where the angled brackets denote an expectation over spike
trains of the generative circuit model, not the inference model.

(a) (b)

FIG. 8. Directed magnitudes ||Ci j || =
√∫ ∞

0+ dt Ci j (t )2 of the spike train covariances calculated using mean-field theory. (a)
(Log-)Magnitudes for a sparse random network. Top: Autocovariance magnitudes; bottom: crosscovariance magnitudes. (b) (Log-)Magnitudes
for a balanced excitatory-inhibitory network. Left-most column: Autocovariance magnitudes separated by cell type. Middle- and right-most
columns: crosscovariance magnitudes separated by which pairs of cell types are connected. For the crosscovariances the histograms are
separated also by whether the ground-truth connection is zero or not, showing that there is overlap between the covariances of connected
and unconnected pairs of neurons.
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FIG. 9. Pearson correlation coefficient between the mean-field spike train covariance estimates and ground-truth synaptic filters. (a)
Correlations for a sparse random network. Top: correlation between the positive-lag of the autocovariance and the autocoupling (self-history
filter); bottom: correlation between the crosscovariances and the crosscoupling filters between pairs of neurons. (b) Correlations for a
balanced excitatory-inhibitory network. Left-most column: correlations between autocovariances and autocoupling, separated by cell type.
Middle- and right-most columns: correlations between the crosscovariances and crosscouplings, separated by which pairs of cell types
are connected. For the crosscovariances/couplings correlations are only computed for synaptic connections which are nonzero in ground
truth.

In a stationary steady-state Eq. (9) will be independent of time
t and Eq. (10) will depend only on the time difference t − t ′.

We exploit the choice of the exponential nonlinearity to
relate the expectations in Eqs. (9) and (10) to the moment
generating functional of the spike train process:

〈φ̂i(t )〉 = λ0
〈
eμ̂i+

∑
j

∫
dt ′ Ĵi j (t−t ′ )ṅ j (t ′ )〉

= λ0eμ̂i Z[ j̃ j (t
′) = Ĵi j (t − t ′)], (11)

〈φ̂i(t )ṅ j (t
′)〉 = λ0eμ̂i

δZ[ j̃]

δ j̃ j (t ′)

∣∣∣∣∣
j̃ j (t ′ )=Ĵi j (t−t ′ )

, (12)

where Z is the moment generating functional of the fluctua-
tions, defined for an arbitrary “source” variable j̃i(t ) as Z[ j̃] ≡
〈exp(

∑
i

∫
dt j̃i(t )ṅi(t ))〉. The moment-generating functional

for the spiking network cannot be evaluated exactly, hence the
need for approximations. Within the mean-field and Gaussian
fluctuation approximation the moment-generating functional
can be evaluated explicitly [19]:

Z[ j̃] = exp

(
N∑

i=1

∫ ∞

−∞
dt j̃i(t )ri

+ 1

2

∑
i j

∫
dtdt ′ j̃i(t )Ci j (t − t ′) j̃i(t

′)

)
. (13)

An important implication of Eqs. (11) and (12) is that the mo-
ment generating functional contains only information about
the noncausal statistical moments of the spike train process;
they do not directly contain any information about the causal
response functions. In a path integral formulation of this
stochastic process, one can formulate a more general mo-
ment generating functional that contains information about
both the statistical moments and the causal response functions
of the process [19]. Crucially, however, the information about
the response functions drops out of the expectations we have
computed, meaning that the MLE equations do not directly
contain any information about the response functions. The
response functions enter only through their relationships to
the covariances. In fully observed systems in steady-states it
is often possible to derive fluctuation-dissipation relationships
that linearly relate statistical moments and response functions
[20]. While our results suggest that such a relationship may
enable accurate inference of the ground-truth connections in
a fully observed circuit, inference from subsets of neurons
cannot recover information about circuit response functions,
and the inferred connections may reflect only covariances in
neural activity.

Evaluating Eqs. (9) and (10) using the Gaussian fluctuation
approximation and using Eq. (11) to eliminate the dependence
on μ̂i in Eq. (12) results in a system of Wiener-Hopf integral
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equations to solve for the filters Ĵi j (t ):

Crr′ (t ) = rr

∑
r′′∈obs.

∫ ∞

0+
dt ′′ Ĵrr′′ (t ′′)Cr′′r′ (t − t ′′), (14)

where t > 0 and the sum is only over the Nobs observed
neurons. Although we expect Ĵrr′′ (t ′′) = 0 for t ′′ < 0, which
would let us extend the range of integration to the whole real
line, the restriction to t > 0 prevents a straightforward solu-
tion via Fourier transform. If this restriction is neglected, then
the resulting solutions Ĵrr′ (t ) may be noncausal. Analytically
solving this system of equations while imposing causality is
difficult and an area of active research [21], so here we pursue
two analyses: an approximation via Picard iteration and a
simple case that admits an analytic solution.

First, we use the fact that the spike train covariances
can be separated into singular and regular terms, Crr′ (t ) =
rrδrr′δ(t ) + Crr′ (t ), where the δ-function term is due to the
conditionally Poisson nature of the spike trains. We can use
this to rewrite the integral equation as

Ĵ(t ) = R−1C(t )R−1 −
∫ ∞

0+
dt ′′ Ĵ(t ′′)C(t − t ′′)R−1, (15)

where we have written this using a matrix notation, where
R = diag(r) is a diagonal matrix of the Nobs observed firing
rates, and Ĵ(t ) and C(t ) are also Nobs × Nobs matrices. Equa-
tion (15) lends itself well to a numerical solution via Picard
iteration, which consists of approximating Ĵ(t ) by an initial
guess and updating this guess by repeatedly plugging it into
the right hand side of Eq. (15) until it converges to within
some numerical tolerance. We use this procedure to numer-
ically estimate the inferred filters; we can also verify that
when Nobs = N the ground-truth filters satisfy the equation.
We may then compute the correlations between the ground-
truth filters, spike train covariances, and inferred filters within
the mean-field approximation. We quantify the correlation
by the overlap between functions. The overlap between two
functions A(t ) and B(t ) is defined as

ρAB ≡
∫ ∞

0+ dt A(t )B(t )√∫ ∞
0+ dt A(t )2

∫ ∞
0+ dt B(t )2

. (16)

The overlap is equivalent to the Pearson correlation coefficient
estimated from infinite time-points. We can compute the over-
laps between pairs of C, J , and Ĵ by numerically evaluating the
integrals. The trends, shown in Figs. 10 and 11, qualitatively
agree with the full simulations.

While Eq. (15) is useful for estimating the inferred filters
within the mean-field approximation, the relationship to the
ground-truth filters remains opaque. To this end, it is again
useful to expand the covariance in a Taylor series in powers of

(a)

(b)

FIG. 10. Pearson correlation between the mean-field theory pre-
dictions of the spike train covariances and inferred coupling filters
in strongly coupled random networks and balanced E-I networks of
64 neurons. (a) Results for sparse random networks. (b) Results for
balanced E-I networks. The left panels show the correlation coef-
ficients between the autocovariance and autocoupling (self-history)
filters, while the right panels show the distribution of correlation
coefficients between the crosscovariance and coupling filters. For
both types of networks we use the same synaptic weight matrices as
the simulations shown in Fig. 5. We estimate the covariances using
Eq. (7) and the inferred filters using Eq. (15). Violin plots show
how the correlations change when different numbers of neurons are
observed in a network with sparse Gaussian synaptic connections;
the percentages shown for this 64 neuron network correspond to
2, 4, 8, 16, 32, and 48, observed. For small Nobs several different
pairs are randomly sampled. In the fully observed case, Nobs = 64,
the inferred and ground-truth filters are perfectly correlated, and the
corresponding correlation is shown in Fig. 9. The mean-field esti-
mates qualitatively reproduce the trends seen in simulations, shown
in Fig. 5, displaying large correlations when only a small fraction of
the network is observed. The vertical axis has been truncated to [0,1]
to show details more clearly, cutting off the long tails of the crossco-
variance distributions, which extend close to −1. i.e., the mean-field
theory estimates that several inferred filters are anticorrelated with
the spike train covariances.

riJi j (t ), similar to the investigation of subsampled inference
in the weak coupling limit by Ref. [5]. We find, to quadratic
order,

Ĵrr′ (t − t ′) ≈ Jrr′ (t − t ′) +
∑

h∈hidden

∫ ∞

−∞
dt ′′ [Jrh(t − t ′′)rhJhr′ (t ′′ − t ′) + Jrh(t − t ′′)Jr′h(t ′ − t ′′)rh] + . . . , (17)

where the sum is only over unobserved (or “hidden”) neurons
and t − t ′ > 0; Ĵrr′ (t − t ′) is zero for negative arguments.

Note that when all neurons are recorded–i.e., there are no
hidden neurons—the nonlinear correction term vanishes. We
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(a)

(b)

FIG. 11. Pearson correlation between the mean-field estimates of
the inferred spike train filters and the ground-truth filters in strongly
coupled random networks and balanced E-I networks of 64 neurons.
(a) Results for sparse random networks. (b) Results for balanced E-I
networks. The left panels show the correlation coefficients between
the autocovariance and autocoupling (self-history) filters, while the
right panels show the distribution of correlation coefficients between
the crosscovariance and coupling filters. Other details are the same
as Fig. 10. The results qualitatively reproduce the trends seen in
simulations, shown in Fig. 6, albeit with a quantitatively weaker
agreement, particularly for the sparse random network.

expect this to hold at all orders. This form of the solution
highlights how the unobserved neurons distort the inferred
filters: the inferred filters between recorded neurons must
capture the variability caused by the hidden neurons. The
first correction term in Eq. (17) captures the effects of a
recorded neuron r′ driving a hidden neuron h, which in
turn drives the post-synaptic recorded neuron labeled r. The
second correction term describes the activity of the two
recorded neurons r and r′ driven by common input from an
unobserved neuron h. It is terms like this in particular that
confound attempts to estimate causality from covariances, as∫

dt ′′ Jrh(t − t ′′)Jr′′h(t ′ − t ′′) is nonzero regardless of the sign
of t − t ′. Higher-order terms will involve similar contributions
involving more hidden neurons.

When the synaptic connections or covariances are strong
the iterative scheme considered above may take many itera-
tions to converge, making it susceptible to numerical error.
To gain more insight into the inferred filters, we turn to an
analytically tractable special case.

3. Homogeneous networks

We consider a homogeneous network of all-to-all cou-
pled neurons, which displays the key features observed in

our simulations. We choose Ji j (t ) = Jt exp(−t/τ )�(t )/τ 2,
including the autocouplings i = j, and homogeneous base-
lines μi = μ. The self-consistently calculated mean firing
rates can be solved in terms of the Lambert W func-
tion, r = −(NJ )−1W−1(−NJλ0eμ), defined as the solution
of the transcendental equation z = W−1(z) exp(W−1(z)) for
which −1/e < z < 0. This restriction defines the branch
of the Lambert W function that we must use for excita-
tory J > 0. It follows that the network is only stable for
NJλ0 exp(1 + μ) < 1.

The mean-field approximation of the spike train
covariance is

Ci j (t − t ′)

= r

[
δi jδ(t − t ′) + (a2

−(1) − b2
+)(b2

+ − a2
+(1))

(b+ − b−)(b+ + b−)

e−b+|t−t ′|/τ

2b+τ

− (a2
−(1) − b2

−)(b2
− − a2

+(1))

(b+ − b−)(b+ + b−)

e−b−|t−t ′|/τ

2b−τ

]
, (18)

where a±(n) =
√

1 + (N − n)Jr ± √
(N − n)Jr(4 − Jr) and

b± = 1 ± √
NJr. We plot C(t > 0) for several values of

NJλ0e1+μ < 1 in Fig. 12, where we see that the decay time
of the covariances is much slower than the ground truth J (t )
as NJλ0e1+μ → 1−. Because all synaptic filters are the same
in this special case, we may assume the inferred filters will all
be equal as well, which reduces Eq. (14) to a single equation.
We can then use the scalar Wiener-Hopf procedure [21] to
solve Eq. (14) for the inferred filters of Nobs observed neurons.
We find

Ĵ (t ) = 1

r
[A+(Nobs)e−a+(Nobs )t/τ

− A−(Nobs)e−a−(Nobs )t/τ ]
�(t )

τ
, (19)

where A±(Nobs) depend on a±(Nobs), a±(1), and b±. Their full
expressions are bulky and unenlightening, so we defer writ-
ing them out to Appendix I. For Nobs = 1 these coefficients
reduce to A+(1) = (a+−b− )(a+−b+ )

a+−a−
and A−(1) = (a−−b− )(a−−b+ )

a+−a−
.

In the limit Nobs → N this filter recovers the ground-truth filter
J (t ) = Jt exp(−t/τ )�(t )/τ 2. The inferred filter differs from
the effective filters of the model in which all but the recorded
neuron are marginalized over [11], due to the fact that our
inference model does not include an effective Gaussian noise
generated by the fluctuations of the unobserved neurons’ ac-
tivity. Models with common Gaussian driving noise have been
fit to data [22], but the fitting procedure is more involved
than standard maximum likelihood inference, and we do not
consider it here. In Fig. 12(a), we plot the filters for different
numbers of observed neurons Nobs, observing that the ampli-
tude and decay rate of the filters decreases as Nobs increases,
for both fits to simulated data and our solutions of Eq. (14)
(inset). The mean-field theory correctly captures the quali-
tative trend. In the homogeneous network the autocoupling
(self-history) filters Ĵii(t ) ≡ Ĵauto(t ) and crosscoupling filters
Ĵi �= j (t ) = Ĵcross(t ) are identical, though the inferred filters dif-
fer slightly due to finite data effects.

We can use Eq. (16) to compute the overlaps between
pairs of C, J , and Ĵ analytically. The expressions are rather
unwieldy, but can be expressed as a function of the combined
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FIG. 12. Dependence of fits on the number of observed neurons in a homogeneous network. (a) The empirical covariance looks similar
to the ground-truth filter, but shows clear differences in both simulations and the mean-field approximation (inset), especially for stronger
networks. Simulation parameters: N = 64, J = 0.00925, 0.0185, 0.037, μ = −2, λ0 = 1, 4×106 time points. (b) For the strongest synaptic
weight (J = 0.037), the inferred filters decrease in amplitude as the number of observed neurons Nobs increases to the total number of neurons in
the network N , observed in fits to simulated data and our mean-field analysis (inset). In the ground-truth model the autocoupling (self-history)
filters Ĵauto(t ) and crosscoupling filters Ĵcross(t ) are identical, as is the theoretical prediction from solving Eq. (14). The inferred auto- and
crosscoupling filters differ due to finite data effects, but are close. (c) The predicted overlap ρCĴ drops as the synaptic weight J increases (i.e.,
NJλ0e1+μ increases), with varying speed depending on the ratio Nobs/N . Nobs/N = 1 corresponds to the fully observed case. The inset shows
an enlarged view of the drop. Compare to Fig. 5. (d) The predicted overlap between inferred and ground-truth filters drops as the synaptic
weight J increases (i.e., NJλ0e1+μ increases), approaching a finite limit of ∼(Nobs/N )1/4. The correlation between covariance and ground-truth
filters, ρCJ , is included for comparison in both panels (c) and (d), being a limiting boundary in both cases.

parameter NJλ0e1+μ � 1, where 1 is the edge of stability of
the network, and the ratio Nobs/N . We plot the overlaps be-
tween the covariance C and inferred filters Ĵ in Fig. 12(c), and
the overlap between the inferred and ground-truth filters in
Fig. 12(d). We see that the overlap between the covariance and
ground truth [dashed line in Figs. 12(c) and 12(d)] is always
less than the overlap between the inferred and ground-truth
filters, as well as the overlap between the covariance and the
inferred filters. In fact, ρCJ bounds the other overlaps in op-

posite limits: limNobs/N→0 ρJĴ = limNobs/N→1 ρCĴ = ρCJ . This
reflects the fact that in a fully observed network Ĵ (t ) = J (t ),
but when Nobs/N is small Ĵ (t ) ≈ C(t ). Generally, we observe
that the overlaps are generally very high away from the edge
of stability of the network, but drop as the edge of stability is
approached, capturing the behavior observed in Fig. 7.

In the three cases the overlaps are weakest close to the edge
of network stability at NJλ0e1+μ = 1 and for small Nobs/N .
In these limits we can derive the leading order behavior of the
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three overlaps. The overlap between the covariances and the
ground-truth filters is independent of Nobs, and scales near the
edge of stability as

ρCJ ∼ 25/4(1 − NJλ0e1+μ)1/4; (20)

i.e., the overlap between the covariance and the ground-truth
filter vanishes as the network approaches its stability limit.
The overlap between the ground-truth and inferred filters is
finite as NJλ0e1+μ → 1−, but scales as

ρJĴ ∼ 2(Nobs/N )1/4 (21)

for Nobs/N � 1. Finally, the overlap between the covariances
and inferred filters scales as

ρCĴ � 25/4(Nobs/N )−1/4(1 − NJλ0e1+μ)1/4. (22)

The window 1 − NJλ0e1+μ over which the correlation be-
tween Ĵ (t ) and C(t ) drops from ρ = 1 to 0 is O(Nobs/N ).
Thus, even when the synaptic strength is quite strong, a heav-
ily subsampled network must be tuned extremely close to the
edge of stability before the inferred filters and spike train
covariances differ appreciably.

In summary, the covariances correlate strongly with the
ground-truth filters when connections are weak, independent
of the number of neurons observed, while the inferred filters
correlate slightly more strongly, tending to a finite limit for
strongly coupled neurons, albeit a limit that is small for small
numbers of observed neurons.

III. DISCUSSION AND FUTURE DIRECTIONS

The homogeneous network yields valuable insight into
what is occurring in our simulations of random networks and
balanced excitatory-inhibitory networks. The inferred filters
obtained by maximum likelihood estimation are shaped by
network responses through the causal halves (positive lag) of
the otherwise noncausal spike train covariances. The causal
halves of the spike train covariances tend to correlate with
nonzero ground-truth synaptic connection between neurons,
but this correlation is weak when the synaptic connections
are strong. While the inferred filters tend to correlate with
the ground-truth filters, this correlation becomes weak when
the network is heavily subsampled and synaptic connections
are strong. For weaker synaptic connections the inferred fil-
ters correlate more strongly with the spike train covariances
than the ground-truth synaptic filters. Altogether, our results
suggest that in heavily subsampled and weakly coupled net-
works the synaptic connections inferred from spontaneous
activity data may offer only modest advantages over the cross-
covariances (“functional connections”). In strongly coupled
networks, neither the spike train covariances nor the inferred
filters may be fully reflective of the underlying ground-truth
synaptic connections. Interestingly, our simulation results
show a strong correlation in the finite-data fluctuations of the
empirical covariances and inferred filters (Fig. 2), suggesting
a stronger relationship than we have been able to show in
our analytic and numerical analyses of the mean-field network
models.

Mapping out the network structure and inferring connec-
tions between neuron pairs from the recorded spike train
data are challenging tasks, and understanding the results

one obtains requires careful consideration of the assumptions
underlying the statistical models fit to data. For example,
Refs. [23] and [24] showed that it is possible to reconstruct
neuronal connections from spike train covariances in cer-
tain sparse networks. Our results provide some support to
this possibility: if one neuron synapses onto another then
the directed crosscovariance magnitude is typically larger
compared to neuron pairs with no connections (Figs. 3 and
8), but there is considerable overlap in the distribution of
magnitudes, so perfect identification of ground-truth connec-
tions will not generally be possible, especially in subsampled
circuitry. While some efforts have been made to infer neuronal
connections between observed and hidden neurons, these
methods must often make unrealistic assumptions, like allow-
ing acausal connections between the observed and the hidden
neurons [25], the number of hidden neurons is less than the
observed neurons [26,27], or require careful modeling of the
hidden neuron populations [28].

Other data-driven methods have emerged for inferring pu-
tative causal flows of information in neural circuitry, such as
Granger causality, information-theoretic measures, or novel
sampling paradigms [2,4,7,29–33]. However, even causality
tests like Granger causality may not identify true causal in-
fluences between neurons due to unobserved neurons [34].
Theoretical and simulation-based analyses like Refs. [5,13],
and this work are needed to understand the limits of statistical
inference on subsampled neural data.

There are several natural directions our work on under-
standing the impact of unobserved neurons on statistical
inference may continue in. In addition to unobserved neurons
causing model mismatch, there are many other sources of
model mismatch that could be treated with our formalism.
Simple extensions would include investigating the impact of
nonexponential nonlinearities in the generative and inference
models. When the generative model has a nonexponential
nonlinearity φ(·) we expect, based on the calculations de-
tailed in the appendices, that the synaptic connections are
reweighted by the ratio of the gains to the firing rates, gi/ri.
When the inference model’s nonlinearity is nonexponential
the MLE equations become nonlinear, even within the mean-
field approximation we make in this work. This allows for the
possibility of multiple solutions, reflecting the fact that the
log-likelihood function is not concave for most nonlinearities
[35]. We outline the form of these equations in Appendix K.

Another realistic source of model mismatch is that the
form of the generative process that produces the data and
the inference model will not match in reality, though one
hopes the inference model is a reasonable approximation of
the generative process. It is therefore valuable to understand
the impact that using models with different features will
have on inference. For instance, recently Ref. [36] has devel-
oped a path-integral formalism for spiking network models
with hard resets—i.e., after a spike the membrane potential
(which can be interpreted as the argument of the nonlinearity,
μi + ∫

dt ′ Ji j (t − t ′)ṅ j (t ′)) is reset to 0, regardless of its value
before the spike. In the “soft reset model” we use in this
work the neurons inject a negative current into themselves
after they spike, independent of the value of the current mem-
brane potential. Because the membrane potential dynamics
are explicit in such a model, the impact of nonlinearities in the
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membrane potential dynamics could also be studied. If we use
the generalized linear model as our inference model, then such
changes to the generative model would enter our formalism
through the mean-field estimates of the firing rates, gains, and
covariances of the network model.

Finally, in this work we focused on analyzing maximum
likelihood inference applied to spontaneous activity data.
However, applications of this method to real data often involve
stimulus-driven activity [8]. One might wonder whether such
input drives would result in maximum likelihood estimates
that reflect the network response functions directly, rather than
covariances, and thereby capture true causal activity within a
circuit. The answer is no if the stimulus is provided as an input
over a long single trial, or if it is chosen randomly across
multiple trials, as in that case the stimulus can be treated as
an additional stochastic process, and we expect the maximum
likelihood estimates to reflect stimulus-spike covariances, not
response functions. However, if an intra-cortical perturbation
is delivered to a circuit and repeated several times after the
activity returns to its steady state, then it becomes possible to
align data to these events and estimate network response func-
tions. These perturbations can be explicitly included in the
likelihood of the model and may enable inference of synaptic
filters Ĵi j (t ) that directly reflect the truly causal response func-
tions of the network, and hence causal flows of information
through neural circuitry. Responses to perturbations have been
gaining traction in neuroscience [37–39], and extensions of
the analyses presented here will be valuable in guiding this
next phase of probing neural circuitry.
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APPENDIX A: SPIKE TRAIN SIMULATION

In this work, we use a generalized linear model (GLM)
to simulate the neuron spike trains. In the GLM generative
model, neurons emit spikes probabilistically following a Pois-
son process, with the rate given by φ(μi + ∑

j

∫
dt ′ Ji j (t −

t ′)ṅ j (t ′)). Discrete spikes are generated for a small obser-
vation window dt = 0.1 ms. A first-order alpha function
Ji j (t ) = Ji j t e−t/τ /τ 2�(t ) is used as the ground-truth inter-
action filters that govern the interaction of neuron j’s spike
train history on neuron i’s instantaneous firing rate. Causality
is imposed through the Heaviside step function �(t ) = 1 if
t > 0 and 0 otherwise. The weight matrix J with entry Ji j sets
the interaction strength of the filters and τ = 1 sets the typical
timescale of the decay of the response. The spike train is
simulated by solving a second-order differential equation with
a fourth-order Runge-Kutta method to conveniently track the
spike train history, following the method used in previous
works [10,11,40]. While simulating the spike train data, we
run the simulation up to 2 million observation windows for
the random and E-I networks.

1. Random network weight matrix generation

Following previous work [10,11], we generated a 64-
neuron random network weight matrix with a sparsity p =
50%, so that around half of the connections are nonzero. The
nonzero synaptic weight strengths were drawn independently
from a normal distribution with zero mean and standard de-
viation J0/

√
pN , where J0 is the weight matrix coefficient

and N is the number of neurons in the network. The weight
matrix coefficient J0 takes three values 1, 2, 3, while we set
the baseline drive μi = −2 throughout the study. J0 = 3 is the
largest integer value we can set to still have a stable spike
train process in the simulation, thus the network is considered
to be in a strong coupling regime in that case. Importantly,
the diagonal entries of the weight matrix were always set to
−1 for different J0 to simulate a soft refractory period for the
neurons from their own spike history.

2. Balanced E-I network weight matrix generation

Following previous works [17,18], we generated a 64-
neuron excitatory-inhibitory (E-I) network weight matrix with
20% (13) inhibitory neurons and 80% (51) excitatory neurons.
Excitatory neurons make connections to excitatory neurons
with a probability 20% and all other neuron pairs (E-I, I-E,
and I-I) make connections with a probability 50%. The weight
matrix coefficient J0 was set to be a multiplicative factor of
the base weight matrix. The base weight of the excitatory to
excitatory connections was set to 0.0875, while the weight
of excitatory to inhibitory connections was set 0.04125 and
the weights of the inhibitory to excitatory and inhibitory to
inhibitory connections were set to −0.16625 when J0 = 1.
Thus for the largest possible integer weight matrix coefficient
J0 = 7 in Fig. 7(b), the excitatory to excitatory, excitatory
to inhibitory, and inhibitory to both excitatory and inhibitory
weights were 0.6125, 0.28875, and −1.16375, respectively.
The diagonal entries were always set to −1 for different J0

to simulate a soft refractory period for the neurons from their
own spike history.

APPENDIX B: NEURONAL CONNECTION INFERENCE
WITH MAXIMUM LIKELIHOOD ESTIMATION

We infer the neuronal connections based on a generalized
linear model with an exponential inverse-link function, which
amounts to a model-matched inference given the same model
used in generating the spike trains. The observed neuron spike
train {ṅi(t )} are assumed to follow ṅi(t )dt ∼ Poiss[φ̂(μ̂i +∑

j∈obs

∫
dt ′ Ĵi j (t − t ′)ṅ j (t ′))dt], where μ̂i and Ĵi j are the in-

ferred baseline drive and interaction filters to be determined
and the observation window dt is set to 0.1 ms. The likelihood
function is thus

Li(μ̂, Ĵ ) = Prob({ṅi(t )}|μ̂i, Ĵi j )

=
∏

t

(φ̂i(t )dt )ṅi (t )dt

(ṅi(t )dt )!
e−φ̂i (t )dt . (B1)

We use the Tweedie regressor with power 1 and log-link
function in the scikit-learn (v.0.24.2) package to perform the
inference [41], which minimizes the unit deviance and can be
shown to be equivalent to maximizing the likelihood function

044404-14



STATISTICALLY INFERRED NEURONAL CONNECTIONS … PHYSICAL REVIEW E 109, 044404 (2024)

in Eq. (B1). No regularization penalty is added for all the
inference procedures used in this work.

For the inference of the filters with basis functions as
shown in Fig. 1(c), we use basis functions of the form

αn(t ) = t n exp(−t/τ )�(t )/τ n,

for n = 0, 1, and 2. In this scenario, the number of unknowns
for inferring the filters decreases to 3, the same as the num-
ber of basis functions. The inferred neuronal connections are
truncated at 100 observation windows, corresponding to 10
ms for the chosen time window dt = 0.1 ms. These basis
functions are motivated by theoretical work that suggests the
linear spike train filters in the true effective model for the
observed neurons is a series of such functions [11].

For the inference of the filters without using basis func-
tions, we use the same number of 100 observation windows,
and thus 100 unknowns need to be inferred to determine the
coupling filters at each time point preceding the spikes.

APPENDIX C: MEAN-FIELD ANALYSIS WITH GAUSSIAN
FLUCTUATION CORRECTIONS

To estimate firing rates and covariances in the spiking net-
work model we use the path integral formalism introduced for
the stochastic spiking model [10,11,19,42]. Following Ocker
et al. [10], we introduce an auxiliary variable ñ, called the
“response variable,” and then the action of the spike train
process under our neuron model becomes

S[ñ, ṅ] =
N∑

i=1

∫ ∞

−∞
dt

[
ñi(t )ṅi(t ) − (eñi (t ) − 1)

× φ

⎛
⎝μi +

N∑
j(=1

∫ t

−∞
dt ′ Ji j (t − t ′)n j (t

′)

⎞
⎠
⎤
⎦, (C1)

such that the joint probability distribution of the spike train
and auxiliary variable follows

Prob[ñ, ṅ] ∝ e−S[ñ,ṅ]. (C2)

Going forward, we make a change of variables ṅi = ri +
δni where ri = 〈ṅi〉 is the mean firing rate of neuron i, so that
the expansion below is around the first moment of the spike
train process. Eq. (C1) can be split into free and interacting
actions. We expand the action in powers of δṅi(t ) and ñi(t ),
keeping only terms to quadratic order, which amounts to the
Gaussian process approximation,

S[ñ, δṅ] ≈
∑

i j

∫
dtdt ′

{
ñi(�

−1)i j (t, t ′)δṅ j − 1

2
ñi(t )2φi

}
,

(C3)

where

(�−1)i j (t, t ′) ≡ δi jδ(t − t ′) − φ
(1)
i Ji j (t − t ′) (C4)

is the inverse of the linear response function and φ
(n)
i =

dnφ(x)
dxn |x=μi+

∑
j Ji j r j

is the nth derivative of the nonlinear acti-
vation function evaluated at the mean firing rate ri. The linear

order terms have been eliminating by imposing that ri satisfies

ri = φ

⎛
⎝μi +

∑
j

Ji j r j

⎞
⎠, (C5)

and assuming a time-independent solution. This is equivalent
to calculating the average of the spike train 〈ṅi(t )〉 by neglect-
ing fluctuations in spiking and self-consistently estimating the
firing rate [Eq. (6) in the main text].

The quadratic action (C3) corresponds to a Gaussian distri-
bution for the fluctuations δṅi(t ), which have zero mean and
covariance [10]

Ci j (t
′, t ′′) =

∑
k

∫ ∞

−∞
dt �ik (t ′, t )� jk (t ′′, t )rk . (C6)

For steady-state networks the response function and covari-
ances are time-translation invariant, �i j (t, t ′) = �i j (t − t ′)
and Ci j (t, t ′) = Ci j (t − t ′). In this case we can compute these
functions efficiently in the Fourier domain. The linear re-
sponse function can be computed by a matrix inverse for each
frequency ω:

�(ω) = [I − diag(g)J(ω)]−1, (C7)

where we have written the equation in matrix form, with g a
vector of the mean-field estimates of the gain, gi = φ′(μi +∑

j Ji j r j ). In the case of exponential nonlinearity that we
focus on in this work, gi = ri.

Given �(ω), the covariance can then be calculated as

C(ω) = �(ω)diag(r)�T (−ω). (C8)

To calculate the response functions and covariances numer-
ically we discretize frequencies into steps of size dω = 0.1
and frequencies from dω × (−1000 : 1 : 1000) (i.e., 2001 fre-
quency bins). We transform back into the time domain by
numerically discretizing the integrals in the inverse Fourier
transform,

�(t ) =
∫ ∞

−∞
dte−iωt�(ω),

where time is discretized in steps of dt = π/1000 and the
limits are taken to be ±2π/dω. To improve the numerical
accuracy of the inverse Fourier transform, we find it is actually
beneficial to subtract the identity matrix from �(ω), which
removes a δ function in the time-domain; i.e., we inverse
transform �(ω) − I and similarly compute the covariance
function with the δ function at zero-time removed.

APPENDIX D: MAXIMUM LIKELIHOOD ESTIMATE
EQUATIONS USING THE PATH INTEGRAL FORMALISM

Maximizing the likelihood function in Eq. (B1) amounts
to solve for the zero points of its derivatives with respect to
the unknowns Ĵi j and μ̂i in φ̂i(t ) = λ0 exp(μ̂i + ∑

j Ĵi j ṅ j ).
For mathematical simplicity, we take the logarithm of the
likelihood to get the log-likelihood function Li = log(Li ) and
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maximize the log-likelihood,

∂Li

∂μ̂i
= lim

T →∞
1

T

∫ T/2

−T/2
dt

(
ṅi(t )

φ̂i(t )
− 1

)
∂μ̂i φ̂i(t )

= lim
T →∞

1

T

∫ T/2

−T/2
dt

(
ṅi(t )

φ̂i(t )
− 1

)
φi(t )

= 0, (D1)

where we note that ∂μ̂i φ̂i(t ) = φ̂i(t ) for the choice of exponen-
tial nonlinearity. For a stationary system the time average will
tend to the expected value due to ergodicity, and is equivalent
to forming the log-likelihood using a large number of inde-
pendent trials, which limit to the expected value for infinitely
many trials. Thus, Eq. (D2) can be simplified to

〈ṅi(t )〉 = 〈φ̂i(t )〉, (D2)

which will be independent of the time t for a stationary pro-
cess, which we assume the steady state to be.

Similarly,

δLi

δĴi j (t )
= lim

T →∞
1

T

∫ T/2

−T/2
dt ′

(
ṅi(t ′)
φ̂i(t ′)

− 1

)
∂Ĵi j (t )φ̂i(t

′)

= lim
T →∞

1

T

∫ T/2

−T/2
dt ′

(
ṅi(t ′)
φ̂i(t ′)

− 1

)
φ̂i(t

′)ṅ j (t
′ − τ )

= 0, (D3)

where we note that ∂Ĵi j (t )φ̂i(t ′) = φ̂i(t ′)ṅ j (t ′ − t ) for the

choice of exponential nonlinearity φ̂(x) = λ0 exp(x) and thus
the equation can be reduced to Eq. (10).

As explained in the main text, for an exponential non-
linearity we can relate the expectations over φ̂i(t ) to the
moment-generating functional of the spiking process,

〈φ̂i(t )〉 = λ0eμ̂i Z[ j̃ j (t
′) = Ĵi j (t − t ′)],

〈φ̂i(t )ṅ j (t
′)〉 = λ0eμ̂i

δZ[ j̃]

δ j̃ j (t ′)

∣∣∣∣∣
j̃ j (t ′ )=Ĵi j (t−t ′ )

[Eqs. (11) and (12) in the main text], where Z[ j̃] ≡
〈exp(

∑
i

∫
dt j̃i(t )ṅi(t ))〉. The moment generating functional

cannot generally be solved in closed form, so to make use of
these equations we will need an approximation. We use the
mean-field approximation with Gaussian fluctuation correc-
tions described in Appendix C to approximate the spike trains
as a Gaussian process and compute the moment generating
functional is known in closed form.

For a Gaussian process the moment generating functional
of the spike train is [19]

Z[ j̃] =
∫

Dñ(t )Dṅ(t ) e
∑

i

∫
dt j̃i (t )ṅi (t ) e−S[ñ,ṅ]

≈ exp

(∑
i

∫
dt j̃i(t )ri

+ 1

2

∑
i j

∫
dt ′dt ′′ j̃i(t

′)Ci j (t
′, t ′′) j̃ j (t

′′)

⎞
⎠. (D4)

Combined with Eqs. (11) and (12), the derived moment gen-
erating functional can be used to evaluate the expectations in
the MLE equations in Eqs. (9) and (10), leading to the closed
maximum likelihood estimation equations,

Ci j (t − t ′) = ri

Nobs∑
k=1

∫ ∞

−∞
dt ′′Cjk (t ′ − t ′′)Ĵik (t − t ′′)

[Eq. (14) in the main text], which establishes the relationship
between the spike train covariance function Ci j and the MLE
inferred filters Ĵi j (t ) in the Gaussian process approximation.

APPENDIX E: GENERAL SOLUTION
OF THE INTEGRAL EQUATION

Equation (14) is an integral equation for the unknown fil-
ters Ĵi	(t ′). One might hope to be able to extend the limits of
integration to the entire real line and take a Fourier transform
to obtain a matrix system of equations that can be solved,
but without explicitly imposing the causality constraint this
procedure will generally yield a noncausal solution. To use the
Fourier method, one first needs to generalize the equation to

Gi j (t ) = ri

Nobs∑
	=1

∫ ∞

−∞
dt ′′ Ĵi	(t ′′)Cj	(t ′′ − t ), (E1)

where

Gi j (t ) =
{

Ci j (t ), t > 0,

G−
i j (t ), t � 0,

(E2)

for some unknown functions G−
i j (t ) that must be determined

as part of our solution. Although we have introduced an extra
set of unknowns, once we solve for Ĵi	(t ′′) the G−

i j (t )’s will
be determined. This extra set of functions enables causal so-
lutions for the filter by absorbing any noncausal pieces into
them. We apply the Fourier transform to obtain

G+
i j (ω) + G−

i j (ω) =
Nobs∑
	=1

riĴ
+
i	 (ω)C	 j (ω),

where we use Cj	(t ) = C	 j (−t ) and defined the transforms

f +(ω) =
∫ ∞

0+
dte−iωt f (t ),

f −(ω) =
∫ 0+

−∞
dte−iωt f (t ),

f (ω) =
∫ ∞

−∞
dte−iωt f (t ).

We can write the equation to solve in matrix form,

G+(ω) + G−(ω) = Ĵ+(ω)C(ω).

Next, we assume we can decompose C(ω) = S+(ω)S−(ω),
where S+(ω) is analytic and nonvanishing in the upper half
plane and S−(ω) is analytic and nonvanishing in the lower
half plane.

Continuing, we assume S−(ω) has an inverse, such that we
may write

G+(ω)[S−(ω)]−1 + G−(ω)[S−(ω)]−1 = Ĵ+(ω)S+(ω).
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Next, we split G+(ω)[S−(ω)]−1 = (F−1[G+[S−]−1)+(ω) +
(F−1[G+[S−]−1])−(ω), where the two terms are defined by
first taking the inverse Fourier transform of the left-hand side
and then splitting the terms up in causal and acausal halves,
which are then Fourier transformed. We can then rearrange
our equation as

(F−1[G+[S−]−1])−(ω) + G−(ω)[S−(ω)]−1

= Ĵ+(ω)S+(ω) − (F−1[G+[S−]−1)+(ω),

where by construction the left-hand side has all of its poles in
the lower half plane and the right hand side has all of its poles
in the upper half plane. Because the two sides are analytic
on different half-planes, the only possibility is that they are
both equal to the same function, which must be polynomial
of degree n if we require the growth at |ω| → ∞ to be less
than O(ωn) [21]. If we demand that the filters decay as |ω| →
∞ (which excludes a δ-function component), then the only
option is that the two sides must be equal to zero, and hence
we arrive at the formal solution

Ĵ+(ω) = (F−1[G+[S−]−1)+(ω)[S+(ω)]−1. (E3)

In practice, the primary obstacles in performing this proce-
dure are finding a spectral decomposition of the kernel C(ω)
and then splitting up G+(ω)[S−(ω)]−1 into its separate ad-
ditive factors that are analytic on different half planes. For a
one-dimensional system there is a general procedure for per-
forming both of these steps, but for a system of equations the
noncommutativity of matrices prevents the use of the scalar
method.

APPENDIX F: SOLUTION FOR WEAK COUPLING

While the Weiner-Hopf integral equation cannot be solved
easily in general, but we can derive an approximate solution
in the case of weak synaptic coupling. In the weak coupling
limit we can derive the linear response functions and spike
train covariances to a desired order in the mean-field firing
rates ri. We will work to quadratic order here. To this end
we introduce a bookkeeping parameter ε attached to the firing
rates, which we will use to keep track of the order of terms in
a series expansion. Introducing this parameter into the matrix
expression for the response function �(ω) gives

�(ω) = [I − εA(ω)]−1

≈ I + εA(ω) + ε2A(ω)2 + · · · ,

where (A(ω))i j = giJi j (ω) and A†(ω) = AT (−ω). The co-
variance is then

C(ω) = �(ω)diag(r)�†(ω)

≈ [I + εA(ω) + ε2A(ω)2]

× diag(r)[I + εA†(ω) + ε2A†(ω)2]

= diag(r) + ε[A(ω)diag(r) + diag(r)A†(ω)]

+ ε2[A(ω)2diag(r) + diag(r)A†(ω)2

+ A(ω)diag(r)A†(ω)].

Working out the individual terms we find

(A(ω)diag(r))i j = giJi j (ω)r j,

(diag(r)A†(ω))i j = g jJji(−ω)ri,

(A(ω)2diag(r))i j =
∑

k

giJik (ω)gkJk j (ω)r j,

(diag(r)A†(ω)2)i j =
∑

	

g jJj	(−ω)g	J	i(−ω)ri,

(A(ω)diag(r)A†(ω))i j =
∑

	

giJi	(ω)r	g jJj	(−ω).

Putting everything together and returning to the time-domain,
we may write the covariance as

Ci j (t − t ′) = riδi jδ(t − t ′) + εC(1)
i j (t − t ′)

+ ε2C(2)
i j (t − t ′) + . . . ,

where

C(1)
i j (t − t ′) = giJi j (t − t ′)r j + g jJji(t

′ − t )ri (F1)

and

C(2)
i j (t − t ′) =

∑
	

∫ ∞

−∞
dt ′′ [g jJj	(t ′ − t ′′)g	J	i(t

′′ − t )ri

+ giJi	(t − t ′′)g	J	 j (t
′′ − t ′)r j

+ giJi	(t − t ′′)g jJj	(t ′ − t ′′)r	]. (F2)

Note that this result gives Eq. (8) in the main text.
Next, we assume we can expand the filter as

Ĵrr′ (t ) = εĴ (1)
rr′ (t ) + ε2Ĵ (2)

rr′ (t ) + · · · .

Plugging this into the integral equation gives, for t > 0,

rrrr′ Ĵ (1)
rr′ (t ) = C(1)

rr′ (t ), (F3)

rrrr′ Ĵ (2)
rr′ (t ) = C(2)

rr′ (t ) − rr

∑
r′′

∫ ∞

0+
dt1 Ĵ (1)

rr′′ (t1)C(1)
r′′r′ (t1 − t ).

(F4)

Because t > 0 we have

Ĵ (1)
rr′ (t ) = gr

rr
Jrr′ (t ),

where the second term in C(1)
rr′ (t ) vanishes for t < 0. The

second term in rrrr′ Ĵ (2)
rr′ (t ) reduces to

−
∑

r′′

∫ ∞

0
dt1grJrr′′ (t1)[gr′′Jr′′r′ (t1 − t )rr′ + gr′Jr′r′′ (t − t1)rr′′].

We can now use the fact that Jrr′′ (t1) is zero for t1 < 0 to
extend the range of integration to the whole real line. This
will allow us to rewrite this term as

−
∑

r′′

∫ ∞

−∞
dt1[grJrr′′ (t − t ′′)gr′′Jr′′r′ (t ′′)rr′

+ grJrr′′ (t − t ′′)gr′Jr′r′′ (−t ′′)rr′′],

where we made the change of variables t1 = t − t ′′ for reasons
that will become clear momentarily.
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Now, looking at C(2)
i j (t ), we see that the term Jj	(−t ′′)J	i(t ′′ − t ) must vanish, because the first filter is nonzero when t ′′ < 0,

but the second is nonzero when t ′′ > t > 0, meaning the two intervals are mutually exclusive and the term must vanish. This
leaves

C(2)
rr′ (t ) =

∑
	

∫ ∞

−∞
dt ′′[grJr	(t − t ′′)g	J	r′ (t ′′)rr′ + grJr	(t − t ′′)gr′Jr′	(−t ′′)r	].

Putting our results together, we see that

rrrr′ Ĵ (2)
rr′ (t ) =

∑
	

∫ ∞

−∞
dt ′′[grJr	(t − t ′′)g	J	r′ (t ′′)rr′ + grJr	(t − t ′′)gr′Jr′	(−t ′′)r	]

−
∑

r′′

∫ ∞

−∞
dt ′′[grJrr′′ (t − t ′′)gr′′Jr′′r′ (t ′′)rr′ + grJrr′′ (t − t ′′)gr′Jr′r′′ (−t ′′)rr′′].

We see that both sums look similar, except for the fact that
the first sum is over all neurons, observed or hidden, while
the second sum is only over the observed neurons. Thus,
when all neurons are observed these two terms cancel out
and Ĵrr′ (t ) ≈ Jrr′ (t ) to O(ε3). As stated in the main text, We
expect this result to hold to all orders so that the ground-truth
filters are recovered in the limit of a fully observed network.
When not all neurons are observed a sum over the unobserved,
or “hidden” neurons remains. This is the result quoted in the
main text [Eq. (17)].

APPENDIX G: ITERATIVE NUMERICAL SOLUTION

While an analytic solution is not generally tractable, the
integral equation for the inferred filters is amenable to an
iterative solution. We define A(t ) = RĴ(t )R, such that the
equation to be solved is

A(t ) = C̄(t ) −
∫ ∞

0+
dt ′′A(t ′′)R−1C̄(t − t ′′), t > 0.

Solving for A(t ) instead of Ĵ(t ) avoids multiplications by R−1

on each iteration.
We convert this to the following iterative equation:

A(n+1)(t ) = ηA(n)(t ) + (1 − η)�(t )

×
(

C̄(t ) −
∫ ∞

−∞

dω

2π
e−iωt A(n)(ω)C̄(ω)

)
,

where η is an “update” rate that controls how much to update
the solution on each iteration. For η = 0 the convergence
oscillates around the eventual limit, and values η = 0.5 or 0.8
work well in practice. The Fourier transform implements a
convolution,

∫ ∞

0+
dt ′′A(n)(t ′′)C̄(t − t ′′);

we use the fact that A(n)(t ′′) is causal at every step of the
iteration (enforced by the Heaviside step function) to extend
the range of integration to the whole real line.

In the limit n → ∞ this equation should converge to the
solution of the original integral equation. We choose as our

initial guess A(0)(t ) = C̄(t )�(t ) and iterate until the error∫ ∞
0+ dt

(
A(n+1)

i j (t ) − A(n)
i j (t )

)2

∫ ∞
0+ dt

(
A(0)

i j (t )
)2 + ∫ ∞

0+ dt
(
A(n)

i j (t )
)2 < 10−5

for every pair i j. The denominator interpolates the error be-
tween a relative error and an absolute error, as in some cases
A(∞)

i j (t ) may be zero.
To solve the iterative equation numerically we dis-

cretize the integrals in time and frequency space, using a
frequency step-size of dω = 0.1 and a frequency range of
dω × (−1000 : 1 : 1000). The corresponding time domain
uses a step size of dt = 2π/1000 and π/dω bins.

APPENDIX H: EXAMPLE CASE: ALL-TO-ALL COUPLED
NETWORK DRIVEN BY INDEPENDENT NOISE

To evaluate an explicit example that is valid in the strong
coupling regime, we consider an all-to-all coupled network
with Ji j (t − t ′) = Jh(t − t ′), for some temporal profile h(t ).
We evaluate the solutions explicitly for an exponential fil-
ter, which has simpler analytic expressions than the alpha
functions we use in our simulations, and then give the cor-
responding results for α function filters.

For this all-to-all network the mean-field equation reduces
to a single rate equation (due to homogeneity of the network),

r = λ0 exp (μ + NJr),

where
∑

j

∫
dt ′ Ji j (t − t ′)r j integrates to NJr for constant r.

By manipulating this into the form of the Lambert transcen-
dental equation, W (z)eW (z) = z we can write the solution in
terms of the Lambert W function,

r = −W−1(NJλ0eμ)

NJ
.

Next, we can calculate the linear response function by
inverting Eq. (C4). This is easiest to do by first Fourier
transforming the equation to turn the convolutions in time
into multiplications in frequency space, and then solving the
matrix equation

N∑
k=1

[δik − gJh(ω)] = δi j,
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where g ≡ φ′(μ + NJr) is the gain of the network in steady-
state (equal to the firing rate r when φ is exponential), and
h(ω) is the Fourier transform of h(t ). If we denote I as the
identity and P as a matrix of all 1’s, then the inverse is [43]

[aI + bP]−1 = 1

a
I − b

a(Nb + a)
P.

In our case we have a = 1, b = −gJh(ω), giving

�i j (ω) = δi j + gJh(ω)

1 − NJgh(ω)
.

Let’s now assume an exponential filter h(t ) =
exp(−t/τ )�(t )/τ , which has Fourier transform h(ω) =
1/(1 + iωτ ) using the convention h(ω) = ∫ ∞

−∞ dte−iωt h(t ).
Thus, in the time-domain �i j (t ) is given by

�i j (t ) =
∫ ∞

−∞

dω

2π
eiωt

(
δi j + J

h(ω)−1 − NJg

)

=
∫ ∞

−∞

dω

2π
eiωt

(
δi j + gJ

iωτ + 1 − NJg

)

= δi jδ(t ) + gJ exp(−(1 − NJg)t/τ )�(t )/τ,

where to evaluate the second term we used the residue
theorem: factoring out a iτ from the denominator, we ob-
serve a pole at ω = i(1 − NJg) in the upper-half plane when
1 > NJg. This restriction requires either 0 < Jg < 1/N or
J < 0 for the process to be stable. For t < 0, iωt =
−iR|t |(cos θ + i sin θ ) on a contour of radius R, and the real
part of this, +R|t | sin θ is only negative in the lower-half
plane, so we must close the contour there and the integral
evaluates to zero because there are no poles contained in the
contour. For t > 0 the real part of the arc is −R|t | sin θ , and
we must close the arc in the upper half plane, obtaining the
contribution from the pole. Note that the response function is
causal in time.

With the response function in hand we may use Eq. (7) to
evaluate the covariance for this model. In the Fourier domain
we have

Ci j (ω) =
N∑

k=1

�ik (ω)� jk (−ω)r

= r
N∑

k=1

(
δik + J

iωτ + 1 − NJg

)(
δ jk + Jg

−iωτ + 1 − NJg

)

= r
N∑

k=1

(
δikδ jk + Jδ jk

iωτ + 1 − NJg
+ Jgδik

−iωτ + 1 − NJg
+ J2g2

|iωτ + 1 − NJg|2
)

= r

[
δi j + 2JgRe

[
1

iωτ + 1 − NJg

]
+ NJ2

(1 − NJg)2 + (ωτ )2

]

= r

[
δi j + 2Jg(1 − NJg) + NJ2g2

(iωτ + 1 − NJg)(−iωτ + 1 − NJg)

]

= r

[
δi j + Jg(2 − NJg)

(iωτ + 1 − NJg)(−iωτ + 1 − NJg)

]
.

We again evaluate the inverse Fourier transform by using the
Residue theorem. There are now two symmetric poles at ω =
±i(1 − NJg)/τ , so we get a contribution from both planes, as
expected for a covariance. The result is

Ci j (t ) = r

[
δi jδ(t ) + Jg(2 − NJg)

2(1 − NJg)

exp(−(1 − NJg)|t |/τ )

τ

]
.

We can use this result with Eq. (14) to solve for the inferred
filters Ĵ (t ).

APPENDIX I: SOLUTION FOR HOMOGENEOUS
NETWORKS

Equation (14) is a Wiener-Hopf integral equation that is
difficult to solve in the multivariate case, but is tractable in the
scalar case, which corresponds to a single observed neuron in
our context. We calculate this here for unit i = 1 in the all-to-

all network. The equation to solve is

G+(ω) + G−(ω) = rĴ+(ω)C(ω),

where

G+(ω) = r
∫ ∞

0+
dτe−iωτ

(
δ(τ ) + a

2bτ
e−b|t |/τ

)

= ar

2b

1

iωτ + b
,

where we introduce a = Jg(2 − NJg) and b = 1 − NJg to
simplify the upcoming formulas. The full Fourier transform
of C(ω)

C(ω) = r

[
1 + a

(iωτ + b)(−iωτ + b)

]
.
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Therefore, we need to solve the equation

a

2b

1

iωτ + b
+ r−1G−(ω)

= rĴ+(ω)

(
1 + a

(iωτ + b)(−iωτ + b)

)

= rĴ+(ω)

(
(iωτ + b)(−iωτ + b) + a

(iωτ + b)(−iωτ + b)

)

= rĴ+(ω)

( −(iωτ )2 + b2 + a

(iωτ + b)(−iωτ + b)

)

= rĴ+(ω)

(
(iωτ + √

b2 + a)(−iωτ + √
b2 + a)

(iωτ + b)(−iωτ + b)

)
,

where we divided both sides by one factor of r. We now
separate the factors that are analytic and nonvanishing on the
lower-half-plane and the upper half-planes. We have

a

2b

1

iωτ + b

−iωτ + b

−iωτ + √
b2 + a

+ r−1G−(ω)
−iωτ + b

−iωτ + √
b2 + a

= rĴ+(ω)

(
iωτ + √

b2 + a

iωτ + b

)
.

We use partial fractions on the left-hand-side to write

a

2b

1

iωτ + b

−iωτ + b

−iωτ + √
b2 + a

= A

iωτ + b
+ B

−iωτ + √
b2 + a

,

where

A = a

b + √
b2 + a

, B = − a

2b

√
b2 + a − b√
b2 + a + b

.

Here we will only care about the filter Ĵ+(ω), so we only need
the A term. After separating the terms analytic in the upper
versus lower half planes, demanding that the filters decay at
infinite ω means we must have

rĴ+(ω)

(
iωτ + √

b2 + a

iωτ + b

)
= a

b + √
b2 + a

1

iωτ + b

⇒ rĴ+(ω) = a

b + √
b2 + a

1

iωτ + √
b2 + a

Because Ĵ+(ω) only has poles in the lower half plane, as
desired, we know it will be causal and we can use the reg-
ular Fourier transform to recover it in the time domain (as
Ĵ+(ω) = Ĵ (ω)). The result is

Ĵ (t ) = 1

r

a

b + √
b2 + a

e−√
b2+at/τ

τ
�(t ).

Restoring a = Jg(2 − NJg) and b = 1 − NJg gives

Ĵ (t ) = g

r

J (2 − NJg)

1 − NJg +
√

(1 − NJg)2 + Jg(2 − NJg)

× e−
√

(1−NJg)2+Jg(2−NJg) t/τ

τ
�(t ). (I1)

We can check the limit of the fully resolved case when
N = 1. We have (1 − Jg)2 + Jg(2 − Jg) = 1 − 2Jg +
(Jg)2 + 2Jg − (Jg)2 = 1, giving Ĵ (t ) = g/rJe−t/τ�(t )/τ .
This shows that when the nonlinearity of the generative model
is not exponential (a model-mismatch) the inferred filter is off
from the ground truth by a multiplicative factor g/r. For the
model-matched case where both the generative model and the
inference model use an exponential nonlinearity the gain is
equal to the rate, g = r, and we recover the true filter. We can
also verify in Mathematica that this solution does satisfy the
original integral equation.

Now that we have Ĵ (t ) and C(t ) we can evaluate the nor-
malized overlap between them,

ρ =
∫ ∞

0 dt Ĵ (t )C(t )√∫ ∞
0 dt Ĵ (t )2

∫ ∞
0 dtC(t )2

.

Using Mathematica, this works out to

ρ = 2
√

1 − NJr 4
√

(1 − NJr)2 + Jr(2 − NJr)

1 − NJr +
√

(1 − NJr)2 + Jr(2 − NJr)

for the model-matched case g = r. Plotting this as a func-
tion of x = NJr ∈ [0, 1) for fixed N , we see that for small
x ρ ≈ 1, and rapidly approaches 0 as x → 1 from below. As
N increases the fraction of the range of x for which ρ ≈ 1
increases.

1. Nobs observed neurons

For the homogeneous all-to-all network we can also ex-
actly solve for the inferred synaptic connections, as all
connection filters will be the same, Ĵrr′ (t ) = Ĵ (t ). The equa-
tion we must solve becomes

a

2b

1

iωτ + b
+ r−1G−(ω)

= rĴ+(ω)

(
1 + Nobsa

(iωτ + b)(−iωτ + b)

)
.

Following the same steps as above, we obtain the inferred
filters

Ĵ (t ) = g

r

J (2 − NJg)

1 − NJg +
√

(1 − NJg)2 + NobsJg(2 − NJg)

× e−
√

(1−NJg)2+NobsJg(2−NJg) t/τ

τ
�(t ). (I2)

The reader can check that we recover the ground-truth filter
when Nobs → N and g → r.

APPENDIX J: RESULTS FOR α-FUNCTION FILTERS

The manipulations work similarly for an alpha func-
tion filter h(t ) = te−t/τ�(t )/τ 2, which has Fourier transform
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h(ω) = 1/(iωτ + 1)2. This introduces more poles to deal with
when using the residue theorem and partial fraction decom-

position, but the calculations are tractable for the most part.
We find the covariance of the units to be

Ci j (t − t ′) = r

[
δi jδ(t − t ′) + (a−(1)2 − b2

+)(b2
+ − a+(1)2)

(b+ − b−)(b+ + b−)

e−b+|t−t ′|/τ

2b+τ
− (a−(1)2 − b2

−)(b2
− − a+(1)2)

(b+ − b−)(b+ + b−)

e−b−|t−t ′|/τ

2b−τ

]
, (J1)

where a±(n) =
√

1 + (N − n)Jg ± √
(N − n)Jg(4 − Jg) and b± = 1 ± √

NJg, and the effective autocoupling (self-history)
filter to be

Ĵ (t ) = 1

r
[A+(Nobs)e−a+(Nobs )t/τ − A−(Nobs)e−a−(Nobs )t/τ ]

�(t )

τ
. (J2)

The full expressions for the amplitudes are

DA+(Nobs) = a−(1)2a+(1)2b2
− + a−(1)2a+(1)2b−b+ + a−(1)2a+(1)2b2

+ − a−(1)2b2
−b2

+ − a+(1)2b2
−b2

+ − b3
−b3

+

− a+(Nobs)2{a−(1)2a+(1)2 − b3
−b+ − b2

−b2
+ + b−b+(a−(1)2 + a+(1)2 − b2

+)}
− a−(Nobs)(b− + b+){−a−(1)2a+(1)2 + b2

−b2
+ + a+(Nobs)2(a−(1)2 + a+(1)2 − b2

− − b2
+)}, (J3)

−DA−(Nobs) = −a−(1)2a+(1)2b2
− − a−(1)2a+(1)2b−b+ − a−(1)2a+(1)2b2

+ + a−(1)2b2
−b2

+ + a+(1)2b2
−b2

+ + b3
−b3

+

+ a+(Nobs)(b− + b+){−a−(1)2a+(1)2 + b2
−b2

+ + a−(1)2 + a+(1)2 − b2
− − b2

+}
+ a−(Nobs)2{a−(1)2a+(1)2 − b3

−b+ − b2
−b2

+ + b−b+(a−(1)2 + a+(1)2 − b2
+)}, (J4)

where D = (b− + a−(Nobs))(b− + a+(Nobs))(b+ + a−(Nobs))(b+ + a+(Nobs))(a−(Nobs) − a+(Nobs)). As stated in the main text,
when Nobs = 1 these simplify to

A+(1) = (a+(1) − b−)(a+(1) − b+)

a+(1) − a−(1)
, A−(1) = (a−(1) − b−)(a−(1) − b+)

a+(1) − a−(1)
.

APPENDIX K: INFERENCE WITH NONEXPONENTIAL
NONLINEARITIES

In this work we have focused on generative and inference
models that use exponential nonlinearities for the instanta-
neous firing rate, φ(x) = exp(x). This is the canonical choice
in performing statistical inference as it guarantees, for ex-
ample, that the log-likelihood function is convex, ensuring
a unique solution. It also offers several simplifications in
our theoretical analyses. However, some behaviors may not
be possible with an exponential nonlinearity—the networks
considered here become unstable if the synaptic connection
strengths are too large, for example. The derivations given in
the above Appendices generally assume an arbitrary nonlin-
earity in the generative model, and suggest that inference with
an exponential nonlinearity will scale the inferred nonlinear-
ities by the ratio of the gain to the firing rate, gi/ri [see, e.g.,
Eqs. (I1) and (I2)], though we do not simulate this case in this
work.

In this Appendix we briefly describe how the formalism
could be adapted to study networks for which the nonlinearity
in the inference model is also nonexponential, highlighting the
difficulties that arise.

For nonexponential nonlinearities the maximum likelihood
equations are more complicated compared to Eqs. (9) and (10)

in the main text: 〈
ṅi(t )

φ̂′
i (t )

φ̂i(t )

〉
= 〈φ̂′

i (t )〉,
〈

ṅi(t )ṅ j (t
′ − τ )

φ̂′
i (t )

φ̂i(t )

〉
= 〈φ̂′

i (t )ṅ j (t
′ − τ )〉,

where φ̂i(t ) = φ̂(μi + ∫ ∑
j Ĵi j (t − t ′)ṅ j (t ′)) and the prime

on φ̂i(t ) indicates a derivative with respect to the argument of
φ̂(x), not t . We cannot exploit the definition of the moment
generating functional in this case, so the simplest approxi-
mation one can imagine performing is to write ṅi(t ) = ri +
δṅi(t ), where ri is the mean-field approximation of the firing
rate and δṅi(t ) are fluctuations, which we might assume to be
small enough to expand the nonlinearities φ̂i to second order
in the fluctuations. We obtain a superficially similar system of
integral equations for the filters

Crr′ (t ) =
[
φ̂r − rr + rr

(φ̂′
r )2

φ̂′′
r φ̂r

]

×
∑

r′′

∫ ∞

0
dt ′′Ĵrr′′ (t ′′)Cr′′r′ (t − t ′′),
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where the nonlinearities are evaluated at the mean-field val-
ues, e.g. φ̂i ≡ φ̂(μ̂i + ∑

k

∫
dt ′ Ĵik (t )rk ). If the nonlinearity is

exponential, then the equation for the rates (not shown) re-
duces to ri = φ̂i and we recover Eq. (14)—however, note that
in the exponential case in the main paper our derivation only
assumes the fluctuations can be approximated as Gaussian,
not that they are weak, and no expansion of the nonlinearities
is necessary. This said, the Gaussian approximation of the
fluctuations is expected to be better when the fluctuations are
weak.

For general nonlinearity the system of equations is much
more difficult to solve because both unknowns Ĵ and μ̂ appear
inside the nonlinearities, rendering this a nonlinear integral
equation which could potentially have multiple solutions. The

possibility of multiple solutions makes sense from analyses of
feedforward networks. In feedforward GLMs (i.e., single units
lacking synaptic connections) the log-likelihood is provably
concave for a class of functions including φ(x) = x, |x|, and
exp(x), yielding a unique solution to the maximum likelihood
estimation problem [35]. Other nonlinearities violate this con-
cavity, and there is no guarantee of a unique solution.

Nonetheless, the approximately linear form of the integral
equation suggests we may expect linear correlations between
the spike-spike covariances and inferred filters even when
the nonlinearity is nonexponential, but this could break down
if the variability of spiking is strong—i.e., if δṅi(t ) can-
not be approximated as Gaussian and small relative to the
mean ri.
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