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Subconductance states in a semimicroscopic model for a tetrameric pore
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A physical model for a structured tetrameric pore is studied. The pore is modeled as a device composed of
four subunits, each one exhibiting two possible states (open and closed). The pore is located within a membrane
that separates two reservoirs with ionic solutions. All variables of the model follow physical dynamical equa-
tions accounting for the internal structure of the pore, derived from a single energy functional and supplemented
with thermal noises. An extensive study of the resulting ionic intensity is performed for different values of the
control parameters, mainly membrane potential and reservoir ion concentrations. Two possible physical devices
are studied: voltage-gated (including a voltage sensor in each subunit) and non-voltage-gated pores. The ionic
flux through the pore exhibits several distinct dynamical configurations, in particular subconductance states,
which indicate very different dynamical internal states of the subunits. Such subconductance states become much
easier to observe in sensorless pores. These results are compared with available experimental data on tetrameric
K channels and analytical predictions.
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I. INTRODUCTION

Ion channels are complex biological structures that play a
crucial role in controlling ionic transmembrane flow in dif-
ferent cell types [1]. These channels are biophysical devices
that can permit the flow of specific ions and whose open
and close dynamics can be controlled by membrane volt-
age, ionic concentrations, and other factors, exhibiting a rich
variety of dynamical behaviors. They are involved in many
physiological processes and alterations in their dynamics are
associated with a host of physiological disorders, known as
channelopathies [2].

Among the many types of ion channels, voltage-gated
potassium (Kv) channels have been extensively studied due
to their importance in shaping neuronal excitability, cardiac
action potential, etc. [3]. They are associated with diseases
such as type 1 episodic ataxia [4], neuromyotonia [5], or
long QT syndrome [6], among others. Kv channels have a
tetrameric structure consisting of four modular subunits that
control the opening and closing of the pore domain.

Voltage-gated channels are particularly sensitive to
changes in membrane potential, which determine not only the
magnitude of the ionic flux but also the channel opening and
closing dynamics. This sensitivity together with its tetrameric
structure leads to different conductance behaviors, including
subconductance states, as the channel can exist in different
conformational states depending on the applied voltage [7–9].
In many situations, these intermediate states are rare and diffi-
cult to directly observe, but, even in these cases, their presence
is indirectly manifest through the activation dynamics, which
for instance takes a sigmoidal shape.

The voltage sensor domain in generic Kv channels contains
charges or dipoles that are responsible for detecting changes
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in membrane potential and initiating conformational changes
in the pore domain, thus triggering gating events of the
channel [10]. Nevertheless, there are experiments on other
synthesized channels which have no active sensor domain but
still they respond to the membrane potential. Comparing both
cases, the respective roles of the membrane potential with
respect to the gating dynamics are different [11,12].

The different dynamical open or closed conformational
states can be inferred empirically from the ionic flux across
the membrane. The analysis of the empirical data concerning
these currents can be used to know the different dynamical
configurations that the channel can present and, accordingly,
can stimulate theoretical models for these devices. In par-
ticular, the consideration of results for both sensorless and
unmodified channels could help to refine the modeling of the
different channel elements.

In this paper, we focus on a pore model for a voltage-gated
Kv channel that has four voltage sensor modules, one in each
subunit, which interact with the membrane potential. We have
considered an individual dynamics for each of the the four
subunits (see, for instance, Ref. [13]), but with a coupling
between them [14]. We also consider the deprivation of sensor
modules on the same model. We will see how the gating of
the channel without sensors is still affected by the value of the
membrane potential, an effect observed in some experiments
[15] but not explicitly introduced into the model. In this regard
previous experimental results indicate that ions can have a
direct effect on the channel gating by means of a variety
of mechanisms [16–18], some of which have been identified
in numerical simulations [19,20]. In the present modeling,
we will see that the presence of ions permits the membrane
potential to act on the gating dynamics, even in sensorless
channels, by favoring the open states, and that this effect is
enhanced by the concentration values.

In Fig. 1 is shown the pore model of length L, connecting
two reservoirs with equal ionic densities ρ and a section of

2470-0045/2024/109(4)/044402(12) 044402-1 ©2024 American Physical Society

https://orcid.org/0000-0003-4019-245X
https://orcid.org/0000-0003-3754-2391
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.044402&domain=pdf&date_stamp=2024-04-02
https://doi.org/10.1103/PhysRevE.109.044402


L. RAMÍREZ–PISCINA AND J. M. SANCHO PHYSICAL REVIEW E 109, 044402 (2024)

ρ ρ

L,   VΔ

x

α

αα

y
2

y
1

y
4

y
3

α

FIG. 1. Representation of the model tetrameric pore. Left: pore with varying section. Ions move along the x direction. The constriction is
modulated by means of the state of the four pore domains. Right: schematics of the four pore domains that reduce the available section for ions.
Variables yi ∈ (0, 1) (i = 1, . . . , 4) represent the state of the pore domains. Here three pore domains are in the closed state and one domain
(y2) is open. Also the coupling parameter α between neighboring pore domains is represented.

the four subunits. The state of each subunit is represented
by the gate variables y j . The main control parameters are the
membrane potential �V and the ionic density ρ. Dynamics of
both ions and gate variables are Brownian, obeying Langevin
equations constructed from a common energy functional and
with thermal noise verifying the fluctuation-dissipation rela-
tionship [20–22]. By simulation of the model, we can obtain
dynamical results such as the ionic flux intensity I (t ), the
state of the subunits y j (t ), etc. In particular, it is convenient
to define a conformational order parameter Y (t ),

Y =
4∑

j=1

y j, (1)

which provides information about the different dynamical
configurations of the tetrameric pore, with Y ∈ (0, 4) indi-
cating the number of open subunits. From these outputs we
compute other quantities such as the frequency of each con-
figuration and their relative probabilities, the relevant time
scales, the energy associated with each channel element, etc.
The details of the model and the numerical methods will be
specified below.

As an illustration of the results obtained from this model-
ing, we present here some numerical results of a representative
case for which pores with and without voltage sensors are
compared. For the case with voltage sensors, we show in
Fig. 2, for two different values of membrane potential, numer-
ical results of the output fluctuating current I (t ) (top) and the
conformational order parameter Y (t ) (bottom), whose value
roughly represents the number of open subunits in the chan-
nel. In Fig. 3 we plot for the same cases the probability density
distribution of filtered intensity values, both for the com-
plete time series and for each of the five different dynamical
configurations of the tetramer. The two different membrane
potentials that are plotted in both figures are 50 mV (left)
and 150 mV (right). We see clearly that, most of the time, for
the low-voltage case the channel is in a closed estate and for
the larger voltage the channel is completely open. Subconduc-
tance states are rare and short lived and the channel seems to
behave as a single unit with two main conformational states.

These results can be compared with the case of the sensor-
less channel as shown in Figs. 4 and 5. We see that, even in
this sensorless case, the increase in membrane potential does
have a clear effect on the observed channel states. Still, we

can appreciate very important differences with the previous
case. The cooperativity in the pore opening, in the sense of
a concerted activation of all four channel subunits, is not so
strong. Ion current (Fig. 4, top) shows multiple dynamical
states, including subconductance states, lasting times of the
order of milliseconds to tens of milliseconds. These states
are also observed in the representation of the conformational
order parameter, in Fig. 4, bottom. The probability density
distribution of intensities (Fig. 5) shows different maxima, in-
dicating the presence of several distinct states. The same effect
is observed in experiments with sensorless pore modules [15].

The outline of this paper is the following. In the next
Sec. II, the physical model of the tetramer is presented, with
further details completed in Appendix A. Section III deals
with exhaustive data from numerical simulations for sen-
sorless pores, from which a clear phenomenology of their
different conformational states is obtained. In parallel, we will
compare these results with those of an equivalent tetramer
with voltage sensors in order to highlight the differences. The
numerical results will be compared with the multiple dynam-
ical behaviors observed in experiments on KbLm molecular
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FIG. 2. Time evolution of a channel with voltage sensor modules
(sensor charge Q = 1e). Top: ionic flux intensity I (t ) filtered with
a window of 10 µs. Bottom: order parameter Y (t ) representing the
conformational state of the channel. Ion density is ρ = 1 nm−1.
Membrane potential values are �V = 50 mV (left column) and
150 mV (right column).
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FIG. 3. Probability density for filtered intensity values during a long evolution of a channel with voltage sensor modules (sensor charge
Q = 1e), for the same cases as in Fig. 2. Thick black line: for the complete time series; thin colored (gray) lines: for each internal channel
state, as derived by the value of the order parameter Y . Membrane potential values are �V = 50 mV (left) and 150 mV (right).

channels [7,15,23]. Moreover, with the analysis of the output
data different dynamical quantities are obtained, with a partic-
ular emphasis on the different probability distributions of each
conformational state. Finally, the work ends with a summary
of the main results and perspectives.

II. METHODS: PHYSICAL MODEL
OF A TETRAMERIC PORE

We follow the simplified modeling for a single pore used in
Refs. [20–22], in which only a reduced set of relevant degrees
of freedom is explicitly considered, and the rest of the channel
complexity is assumed to be composed by rapid variables
whose effect can be reduced to friction and fluctuating terms.
This modeling has been modified to take into account the
tetrameric structure of the Kv channel. In particular, we have
considered the four distinct subunits and their corresponding
degrees of freedom.

We consider a one-dimensional (1D) channel of length L,
along which the position of each ion i, inside the channel, is
denoted by xi, i = 1, . . . , N , with N being the number of ions.
The degrees of freedom of the four subunits are represented
by the gate bistable variables y j ∈ (1, 0) ( j = 1, . . . , 4,
denoting the four subunits), with states y j � 0 and y j � 1
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FIG. 4. Time evolution of a channel without voltage sensors
(Q = 0), with the same notation and parameter values as in Fig. 2.

corresponding to the closed and open subunit states, respec-
tively. The energy landscape seen by the ions depends both
on the membrane potential �V and on the states of the four
subunits, {y j}, but we neglect direct interactions between ions.

The dynamical description is based on the use of differ-
ent energy potentials for each relevant part or mechanism as
follows.

(i) VE (xi,�V ) is the potential energy associated with the
action of the membrane potential on one ion of elementary
charge e.

(ii) VI (x, {y j}) is the interaction between ions and gates.
It appears as a barrier potential for the ions, whose height
depends on the subunit state.

(iii) Vg(y) is the bistable potential energy of the gate degree
of freedom, with minima at each subunit state (open and
closed).

(iv) Vs(y,�V ) is the energy corresponding to the interac-
tion of the voltage sensor module of any subunit with the
membrane potential.

(v) Vc({y j}) is the coupling energy between subunits. It
is simplified by considering only linear interactions between
neighboring subunits in a square geometry, as represented in
Fig. 1.

Explicit details and parameters of these energy terms are
given in Appendix A. With all these contributions an en-
ergy functional depending on all the dynamical variables is
constructed as

U ({xi}, {y j},�V ) =
N∑

i=1

VE (xi,�V )

+
4∑

j=1

[
Vg(y j ) + Vs(y j,�V ) + Vc({y j}) +

N∑
i=1

VI (y j, xi )

]
.

(2)

The stochastic dynamics of ion positions xi(t ) and gate
states y j (t ) is given by the Langevin equations that are ob-
tained from this energy functional [21] as

γxẋi = −∂xiU ({xi}, {y j},�V ) + ξi(t ), i = 1 . . . N, (3)

γyẏ j = −∂y jU ({xi}, {y j},�V ) + ξy j (t ), j = 1 . . . 4, (4)
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FIG. 5. Probability density distribution of filtered intensity values during a long evolution of a channel without voltage sensors (Q = 0),
with the same notation and parameter values as in Fig. 3.

where the thermal noises fulfill the fluctuation-dissipation
relation,

〈ξa(t )ξb(t ′)〉 = 2γa kBT δa,b δ(t − t ′), (5)

and γa are friction coefficients.
These equations were numerically integrated by a Heun

algorithm with a temporal step �t = 5×10−5 µs. For each set
of parameters, a long run was performed with a simulation
time of 10 s, typically taking around 200 h of CPU time on a
single core of an Intel-i9 processor at 3.30 GHz. The ionic
concentrations at both sides of the membrane were imple-
mented as boundary conditions at both ends of the channel for
the Langevin dynamics of ions [24]. From the simulation data
we recorded the time evolution of ionic flux intensity I (t ) and
the state of each gate variable yi(t ). Additional information
could be extracted from the evolution of the different vari-
ables, such as the probability of each configuration and their
corresponding time scales, the interaction energy involved in
each configuration, etc.

The values of the employed parameters were kBT =
25 meV, length and main section of the channel L = 4 nm
and S0 = 4 nm2, ion friction γx = 0.5 meV µs/nm2, gate fric-
tion γy = 100 meV µs, energy difference between closed and
open states of each subunit D = 0.5kBT (slightly favoring the
closed state), with a barrier between both subunit states given
by V0 = 4kBT , reference potential �Vref = 100 mV, and a
coupling energy between contiguous subunits α = 3kBT .

In simulations, we have employed the same ionic concen-
tration value at both boundaries of the channel in order to
mimic the conditions of the experiments in Ref. [15], to which
we have performed the main comparisons. In particular, we
have typically employed a 1D density ρ = 1 nm−1 [ions per
unit length along the channel, corresponding to a bulk (3D)
concentration ρbulk = ρ/S0 = 0.415 M] at both boundaries,
but other values have also been used to analyze the effect of
ionic concentration.

In each simulation run, the value of the membrane potential
has been maintained fixed at the prescribed constant value,
in the range �V = 0 . . . 300 mV. The intensity current I (t )
is monitored by counting the number of ions crossing the
channel during an interval of time and filtering the results
with a window of 10 µs. The intensity distributions for each

state were obtained by computing their probability density
p(I ). It is defined such as p(I )�I is the fraction of the total
time in which the channel is in the prescribed state and the
filtered I (t ) takes values in the interval (I, I + �I ), for a small
�I . Its explicit computation was carried out in very long
simulations by considering intensity intervals of size �I =
1.602×10−2 pA and computing the number ni of times (from
a total of N measurements) that the filtered intensity took
values in each of these intervals and the channel was in the
corresponding state. By computing the distribution for each
interval as p(Ii ) = ni

N�I , we obtained a normalized distribution
that roughly does not depend on the chosen �I . Specifically
the area under the curve of any state (colored thin lines in
Figs. 3 and 5) is equal to the probability of this state and the
total area of the complete distribution (thick black line in the
same figures) is equal to unity.

We have then explored the role of both ρ and �V param-
eters in a non-voltage-gated tetramer (sensor charge Q = 0).
Comparisons with a voltage-gated channel (Q = 1e) have also
been included. In the initial stages of the work, we also
explored the role of other parameters, defining the model
but which cannot be easily changed in experiments, such as
D, α, β, V0, γx, and γy, in an ample range. Results (not
shown here for the sake of clarity) did not change quali-
tatively and the observed changes in these parameters only
affected results in expected aspects like temporal scales, rela-
tive weights of the different states, etc., not affecting the main
conclusions of this work and thus confirming the robustness
of the model. Such explorations should also permit one to
tune the parameters for a better quantitative correspondence
with specific experiments. Other tetrameric channels could
also be considered, within this modeling, with the appro-
priate modifications and, possibly, different values of these
parameters.

III. RESULTS

The numerical output of the model variables xi(t ), y j (t ) is
computed to get the physical variables: ionic flux intensity
I (t ) and order parameter Y (t ). With this information, different
and useful physical results are obtained which are described
below. These results are ordered as dependent on the two
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FIG. 6. Probability density distributions of filtered intensity values. Left: channel without sensors (Q = 0); right: channel with sensors
(Q = 1e, �Vref = 100 mV). ρ = 1 nm−1 in both cases. Thick black line: for the complete time series; thin colored (gray) lines: for the times
corresponding to each internal channel state, as derived by the value of Y = ∑

y j . In order to use the same scale for all voltages, the large first
peak near I = 0 has been cut in almost all cases.

external control parameters: membrane potential �V and
ionic density in the reservoirs ρ.

A. Role of the membrane potential �V

Pore dynamical configurations. In the previous Figs. 2–5
two different membrane potentials were employed for both
sensorless and voltage-gated pores. As already discussed
above, the channel with sensors (Figs. 2 and 3) essentially
shows fluctuations around two different values of the intensity,
corresponding to the open and closed channel states, reached
depending on the membrane potential. However, the sensor-
less channel (Figs. 4 and 5) presents, for each membrane
potential, multiple observable steady states, with I (t ) fluctuat-
ing around different values. The intensity values are correlated
with the different values taken by the order parameter Y (t ),
observing a distribution of relative maxima of the probability
density p(I ), which corresponds to the five possible dynamical
configurational states of the pore. It is worth commenting
that we observe in p(I ) four maxima instead of five, because
stochastic fluctuations make the distributions of intensities
wider, and not all the states are isolated enough to be resolved.
A similar behavior, but in an experimental setup, is observed
in Fig. 6 of Ref. [7]. In the experiments of Ref. [15] these five

states are not clearly seen either (see, for instance, Fig. 9 of
that reference).

We analyze in more detail the dependence on the mem-
brane potential in Fig. 6, where we employ six different values
of �V and the two types of channels can be compared. The
first obvious effect is the (trivial) displacement of the intensity
distributions towards higher values as the membrane potential
is increased. Clearly, the intensity crossing the channel in a
given configurational state should be higher as the potential
increases. More interesting is the presence of subconductance
states, which appear to be more persistent in sensorless chan-
nels (Q = 0) for all potentials tested. For this case, we see
that the states with a larger number of open subunits tend
to take a greater statistical weight when increasing potential,
while those with more closed subunits tend to lose statistical
weight. Similar distributions are found in the experiments
with sensorless channels of Ref. [15], where a dependence
on the applied voltage is also observed. A more quantitative
analysis is performed in Fig. 7, left, where the probability
of each conformational state is represented as a function of
membrane potential. In this figure we reach even higher volt-
age values. We see that all states have a nonzero probability at
zero potential, with the all-closed state (0 open subunits) being
the state with the higher probability. This very state reduces
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FIG. 7. Probability for each internal state (computed as the time fraction in each state) vs membrane potential �V . Left: sensorless channel
(Q = 0); right: channel with sensors (Q = 1e). ρ = 1 nm−1 in both cases. Different symbols and colors (gray levels) indicate the channel state
(see inset).

its probability as the voltage increases, reaching values close
to zero for voltages near 300 mV. The rest of the states ini-
tially increase their probability, although the subconductance
states seem to reach a maximum at some intermediate voltage:
∼150 mV for the 1 open subunit state, and ∼250 mV for the
2 open subunits state; the 3 open subunits state seems to have
much reduced the slope at the largest tested voltage so it seems
reasonable to also expect a maximum for some larger value of
the membrane potential. The probability of the all-open state
is observed to monotonously increase with voltage, but it is
apparently very far from saturation even for the largest tested
voltage.

This is in contrast with the voltage-gated channel (Q = 1e),
where the dynamics is dominated by two main states (all
closed and all open states), and the subconductive states are
more rarely observable. In Fig. 6, right, there still can be seen
local maxima of subconductance states for some intermediate
voltages. However, we must bear in mind that in the first
three cases of this figure (voltages up to 100 mV) the peak
at I = 0 is very large (it has been cut to see the characteristics
of the rest of the distribution), so in fact in these cases the
closed state dominates. For larger voltages, it is the all-open
state which dominates and takes most of the statistical weight.
This is best seen in Fig. 7, right, where both main states
present sigmoidal probabilities, dominating the dynamics, and
subconductance states are significantly less probable except
for a limited range of intermediate values of the membrane
potential. Subconducting states also present maxima at inter-
mediate values, with positions slightly shifted to higher values
of voltage as the number of open subunits is larger.

It is remarkable that, in the Q = 0 case, no explicit inter-
action of the membrane potential with the gating variables
has explicitly been included in the model equations. This
observed effect is indirect and, by construction of the model,
it can only be mediated by the ions. Indeed, the interaction
term VI (Yj, xi ) in Eq. (2) between ions and gates depends on
both ion and gate variables, which implies that it appears in
the dynamic equations for both types of variables. That is,
when gates exert forces over the ion, the ion also acts over

the gates, which is a manifestation of the third Newton’s law.
Since both forces come from the same potential energy, and
the involved degrees of freedom evolve with the thermody-
namically consistent formulation of Eqs. (3) and (4), with the
correct thermal noises, we expect this effect to be real, even in
the context of such a crude modeling of a channel.

Pore conductivity and subunit open probability. In Fig. 8,
top, we present results for the effective channel conductivity,
represented by the quotient 〈I (t )〉/�V , vs the applied mem-
brane potential. The mean value is computed as a temporal
average along the simulation time and the results are then
associated with the gating dynamics. They can also be related
to the permeability of a portion of membrane with a large
number of channels.
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FIG. 8. Channel conductivity [〈I (t )〉/�V , where the mean value
corresponds to a temporal average] (top) and open probability of each
channel subunit (bottom), as a function of membrane potential. Red
circles: channel with sensors (Q = 1e for each subunit); blue squares:
sensorless channel (Q = 0); red solid line: fit of the open probability
for subunits with sensors [see Eq. (6)]. Dashed lines are guides to
the eye.
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In the case of the voltage-gated channel (Q = 1e) we
clearly see two regimes. For low voltages, the conductivity is
very low, whereas for large voltages the conductivity is larger,
with a nearly linear dependence. There is a crossover between
both regimes at intermediate voltages, where the slope of the
�V dependence is larger. This behavior can be understood
as a manifestation of the channel bistability, where the two
regimes correspond to the closed and open states adopted for
low and high voltages respectively. The crossover is placed at
the region in which gating occurs. On the contrary, bistability
is not so apparent in the conductivity of the sensorless channel
(Q = 0), where the changes are more gradual and only a
smooth increase is observed when increasing the membrane
potential.

We can relate the effective conductivity of the channel with
its gating activity. To this end we have computed psub, the
probability of the open state for any subunit, by evaluating
the proportion of the total time in which each subunit re-
mains open in long simulation runs. We can see the results in
Fig. 8 (bottom). We can appreciate some similarities between
the dependences of conductivity and open probability on the
voltage in each case. In particular, for the sensorless case,
we see a weak but non-negligible dependence on voltage,
thus confirming that the membrane potential affects the gating
mediated by the ion current.

For the case of a voltage-gated pore, the open probability
for the channel subunits presents a sigmoidal shape marking
the crossover between both states of the subunit. It has been
fitted as

psub(�V ) = 1

2

(
1 + tanh

[
Qeff(�V − �Veff )

2kBT

])
. (6)

This function corresponds to the Boltzmann probabilities of
a bistable gate with an effective sensor charge Qeff and has
often been used in the analysis of channel gating. The result
of the fit is Qeff = 2.21e and �Veff = 103 mV. The value
of �Veff compares well with the value used in simulation
�Vref = 100 mV [see Eq. (A5) in Appendix A].

Regarding the value of the effective sensor charge Qeff, we
note that the value should depend directly on the coupling be-
tween subunits (with likely a very small correction due to the
presence of ions). On the one hand, for the case of completely
uncoupled subunits (parameter α = 0), in which each one is
affected by the membrane potential and they are independent
from each other, one would expect an effective sensor charge
close to Q = 1e, that is, the value used in simulations for each
subunit. On the other hand, for the completely opposite case
of very large coupling (α → ∞), one would expect the four
subunits to behave as a single gate with a total charge 4Q = 4e
and Qeff would be close to this value. Then a monotonous
dependence of Qeff on α is expected and the obtained value has
indeed been intermediate between both limits. This indicates
that the analysis of psub(�V ) in experiments and the com-
putation of the corresponding Qeff for subunits could provide
valuable information about the coupling between subunits in
real tetrameric channels.

Ionic intensity in each configurational state. We have seen
how gating plays a fundamental role by modulating ion in-
tensity. To subtract the effects of gating, we obtained the
mean intensities for each internal state as a function of the

FIG. 9. Mean intensities for each internal state of the channel
vs membrane potential. Symbols: 〈I (t )〉n from simulation results,
averaged during each internal state of the channel; lines: theoretical
results for In [Eq. (7)]. The density in all cases is ρ = 1 nm−1. Dif-
ferent symbols and colors (gray levels) indicate the channel internal
state n during the averaging (see inset).

membrane potential. The results are presented in Fig. 9 and
correspond essentially to the position of the peaks in Fig. 6.
As expected, intensities increase with potential in all cases.
Moreover, the slopes also increase, indicating an increase in
the conductivity at very high voltages. Note, however, that for
such large values of the membrane potential other effects not
included in the model could possibly enter into play [25].

These simulation results have been compared to the clas-
sical analytical expressions for the flow of Brownian particles
through a pore. Considering Vn(x) to be a (static) potential for
each ion, moving with a Langevin dynamics, with n open sub-
units, the resulting intensity is [see Eq. (B13) and derivation
in Appendix B]

In = I0
eVn (0)/kBT − eVn (L)/kBT∫ 1

0 eVn (zL)/kBT dz
, (7)

where, for the parameters of our simulations, the value of
the constant I0 = 2.0025 pA. To plot this prediction, we have
considered for the potential Vn(x) = VE + VI , that is, the terms
in Eq. (2) affecting a single ion, and furthermore considering
constant ( i.e., no fluctuating) values for the gate variables y j

depending on the channel state. We find in Fig. 9 a good agree-
ment, which means that this static approximation, together
with the analytical tools from the stochastic processes theory,
could be of use in the analysis of this kind of problem.

B. Role of ionic concentration in sensorless channels (Q = 0)

In Sec. III A we have shown that membrane potential has a
clear effect on the gating of a sensorless channel. As already
discussed, in our modeling this effect could only be medi-
ated by the ions. In this section, we study the dependence
of gating on the value of the ionic concentration in these
channels.

Pore configurations. In Fig. 10 we observe different
intensity distributions corresponding to four increasing con-
centrations, maintaining a constant value of the membrane
potential �V = 150 mV. First, we see that the position of
the peak for each internal channel state is proportional to
the concentration value. This is a direct consequence of the
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FIG. 10. Probability density distributions of filtered intensity val-
ues for �V = 150 mV and different concentrations. Thick black line:
for the complete time series; thin colored (gray) lines: for the times
corresponding to each internal channel state, as derived by the value
of Y = ∑

y j .

absence of ion-ion interactions in the model. More interesting
is the fact that the relative distribution of weights of these
peaks changes, which is a manifestation of the effect of the
concentration on the gating. In particular, it is manifested that
the increase in concentration enhances the probabilities of
the more open configuration while hindering the more closed
ones. We see also that for lower concentrations, by observing
intensity values, the distributions of the different states are
more difficult to separate and distinguish and that one of
the subconductance states is completely hidden. However, for
larger concentrations, the five configurations are more sepa-
rated and can be clearly seen.

This trend is quantitatively confirmed with the calculation
of the total probability for each internal channel state shown
in Fig. 11, where they are plotted versus the ion density ρ.
We see here that the probability for the all-open configura-
tion increases monotonously with concentration, while for the
all-close one it decreases. The probability of the intermediate
states has a much weaker dependence. Furthermore, the inter-
mediate state with 1 open subunit presents a smooth maximum
around ρ = 1 nm−1 and, for the other intermediate states, the
change in slope appears also to indicate the likely presence
of a maximum at higher values of ρ as the number of open
subunits is larger. In fact, the dependence on density shown
in this figure appears to be very similar to the dependence
on voltage depicted in Fig. 7, left, for the same channel. The
conclusion is that the role of concentration on the gating of
sensorless channels is parallel to that of the voltage and this
is associated with the fact that the permeant ions, interacting
with the barriers, constitute the mechanism by which the
membrane potential acts on the gating in this modeling of
sensorless channels.
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FIG. 11. Probability for each internal state (computed as the time
fraction in each state) vs ion concentration ρ. �V = 150 mV. Lines
are a guide to the eye.

Intensity. The ratio 〈I (t )〉/ρ in shown in Fig. 12, top. From
this figure it can be checked that the resulting mean intensity
〈I (t )〉 is not simply proportional to the concentration ρ (the
ratio 〈I〉/ρ is not constant), as it was for each internal state.
This is obviously an effect of the gating, due to the increase
of probability of the open states with ion concentration. This
probability, specifically the open probability for each subunit,
in shown in Fig. 12, bottom, and it is a monotonously in-
creasing function of ρ, showing a dependence very similar to
that of I/ρ.

A similar effect of ion concentration on gating was already
demonstrated with a simpler (two states) channel model in
Ref. [20], where it was also shown that the increase of ion
concentration favored the open state. It is worth mentioning
that in that model a similar formulation, using a single energy
functional for all interactions, was also employed.
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FIG. 12. 〈I (t )〉/ρ (top) and open probability of each chan-
nel subunit (bottom) for sensorless channels as a function of ρ.
�V = 150 mV. Lines are a guide to the eye.
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IV. CONCLUSIONS

We have presented a simplified model for a tetrameric
ion channel, in which only a reduced set of variables (ion
positions and the four degrees of freedom of the pore subunits,
acting as gates) have been considered, all evolving accord-
ing to Brownian dynamics, with interactions defined by a
single energy functional and noises obeying the fluctuation-
dissipation relationship. Both voltage-gated and sensorless
pores have been considered. In the model for the sensorless
pore the four bistable subunits have a weak coupling between
them, but no direct interaction with the membrane electro-
static field. Ions interact with both membrane potential and
pore subunits. In the case of the voltage-gated pore the same
model and parameter values have been employed for the sake
of comparison, but with the addition of the interaction be-
tween a sensor (one elemental electric charge in each subunit)
and the membrane potential.

Simulations of the voltage-gated pore for different values
of the membrane potential have shown that the model behaves
as a bistable device where, depending on the voltage value,
the two main channel states (with all subunits either closed or
open) dominate the dynamics. Intermediate (semiconducting)
states are sporadic and short lived and are only present in a
significant way for a limited range of intermediate values of
the voltage. The open probability for each subunit presents the
expected Boltzmann dependence on the voltage for a bistable
system, with an effective charge slightly larger than twice its
real charge. Since this effective charge is expected to depend
on the coupling between subunits, a more detailed study could
in principle permit one to obtain information on this coupling
by analyzing experiments on real tetrameric channels. Fur-
thermore, results for the ion flow achieved during each state
(during which the channel variables still fluctuate) agree well
with the classical prediction for the flow of Brownian particles
along a static potential, probably due to the difference of time
scales between ions and gates. This opens the way to study
this problem by using a static approximation [26] that could
accelerate simulations and permit the consideration of a large
number of channels. That could be useful to relate simulation
results to physiological conditions.

Results of simulations of the sensorless channel com-
pare qualitatively well with the experiments on genetically
modified sensorless channels of Ref. [15]. In this case, the
subconducting states (with an intermediate number of open
subunits) have been more probable and definitively observable
by monitoring for instance the ionic flow values. Moreover,
the channel is affected by the membrane potential, but, instead
of appearing as a bistable device like in the voltage-gated case,
it responds to it more smoothly. In particular, results have
shown that the membrane potential has a clear effect on the
distribution of intensity values and the relative frequency of
the different conformational channel states, in a way very sim-
ilar to what was observed in the experiments of Ref. [15]. That
is, the electric field is able to act on the gating without any
voltage sensor. In this action the increase of the voltage has
the general effect of favoring the open state of the subunits,
thus altering the distribution of intermediate states towards the
more open states of the channel. As a consequence, the mean
conductivity of the channel is enhanced.

This effect of the membrane potential on the gating of the
sensorless pore is attributed to the presence of ions. This has
been confirmed by the simulations with different values of
ion concentration, where the changes have been analogous to
those of variations of the voltage values. Similar results have
been obtained in simpler models of gated pores [20]. The di-
rect action of ions on the gates is an unavoidable consequence
of the physically consistent formulation of the model using
a single energy functional. This permits the mutual action
between ions and gates, in a form of Newton’s third law. In
general, experiments on real channels have permitted the iden-
tification of several distinct mechanisms accounting for a vari-
ety of different ion effects of gating [16–18]. Our results have
shown that, for explaining some specific observed effects, the
direct interaction between ions and gates could be sufficient.

The model presented here could be useful for studying
the dynamics of subconducting states in other situations. An
interesting one corresponds to the experiments of Ref. [23],
in which such states could be controlled by the synthesis
of pores formed by subunits with very different activation
voltages. Also, in Ref. [11], the number of voltage sensors in
the tetramer could be controlled by combining a variable num-
ber of full-length subunits and sensorless pore modules. Our
model would be most appropriate for analyzing these kinds
of heterotetramers. More detailed data on similar experiments
could also be interesting for quantitative comparisons with our
model.

A similar formulation could also be used for modeling
other channels, such as the Na or Ca channels. The tetrameric
structure of the Na channel, for instance, is not symmetrical,
since the four voltage sensor domains forming its α subunit
are not equivalent [27,28]—situation that could be addressed
within the present approach. It is also interesting to note
that some characteristics of the activation dynamics of many
channels depend on the existence of the intermediate states,
even if such states are not directly observable, and could be
reproduced with an analogous modeling. For instance, BK
channels very rarely transit to subconductance states, but still
these states play an important role in the gating events [29]. In
this regard, this model could be useful, with the appropriate
modifications, for describing the dynamics of many different
types of tetrameric ion channels. Finally, the model could also
be completed with additional electrophysiological details for
studying processes at the scale of each gating event, such as
the dynamics of the gating currents [30], in tetrameric pores.
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APPENDIX A: POTENTIAL ENERGIES

In this Appendix we provide details on the different terms
appearing in the formulation of the energy functional defin-
ing the model in Sec. II. Each term is the potential energy
corresponding to the interactions associated with each of the
physical mechanisms considered in the model.

Interaction ion-membrane potential. The energy associated
to the interaction between the membrane potential �V and an
ion of elementary charge e, at position x along the channel
with length L, is written as

VE (xi,�V ) = −�V
xi

L
. (A1)

Interaction between ions and gates. The interaction
between each ion and the pore gates is described by an
effective potential, depending on both the ion position
xi and the states of the four subunits. These states are
described by the value of four variables y j ( j = 1, 2, 3, 4),
representing the degrees of freedom of the four subunits
forming the tetrameric structure (y ∼ 0 closed; y ∼ 1 open).
The potential then includes the entropic effect of varying the
section available for the ions along the channel. According
to Ref. [31], the effective entropic potential along a channel
with a varying section S(x) and opening S0, for a particle at
position x, is given by V (x) = −kBT ln[S(x)/S0]. In our case,
we model the channel with a constriction in the middle part,
of length σ , controlled by the parameter β which corresponds
to the fraction of the section that is reduced at the constriction
when the channel is open. The available section for the ion
can be further reduced by the gates, depending on the subunit
states {y j}, when they close.

The resulting potential takes the form

VI (x, {y j}) = −kBT e
−(x−x̄)2

2σ2 ln

⎡
⎣(1 − β )

⎛
⎝1 − 1

4

4∑
j=1

f (y j )

⎞
⎠

⎤
⎦.

(A2)

Here the function

f (y) = 1
2

[
1 − tanh

(
y − 1

2

)/
0.1

]
(A3)

is used to reduce the sensitivity to thermal fluctuations
on the steady states near y ∼ 0, 1. For the present simula-
tions, the constriction is characterized by β = 0.95, a length
scale σ = 0.15L, and a position x̄ = L/2, that is, it is at
the center of the channel. The resulting potentials for the
different conformational states of the channel are shown
in Fig. 13.

Energy potential of a gate. The state of the pore is given
by the value of the four variables y j . For each y j variable, a
bistable potential is defined,

Vg(y) = V0
{−a ln[y(1 − y)] − b

(
y − 1

2

)2} + Dy, (A4)

where we use the values a = 0.1 and b = 15. Then the dy-
namics for the y j variables is limited to the interval (1,0).
There are two minima very close to both limits (specifically
for b 
 a they are placed at y � a

b and 1 − a
b ), corresponding

to the closed and open subunit states, respectively. V0 is an
energy scale associated with the barrier between both states
and D is the energy difference between them.
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FIG. 13. Potential barriers corresponding to the five different
conformational states of the tetramer (see inset).

Interaction between gate sensor and membrane potential.
We consider that the voltage sensor of a subunit has a charge
Q that interacts with the membrane potential �V . This can be
modeled by the following energy potential:

Vs(y,�V ) = Q(�V − �Vref )y, (A5)

where �Vref is a reference potential. Note that the parameters
appearing in Vg and Vs could take different values for each gate
if the channel had not a fourfold symmetry. That could be the
case of modeling mutant K channels composed of subunits
with different properties, such as those of the experiments
in Ref. [23].

Interaction energy between gates. The coupling between
the subunits of the same channel is modeled by an interacting
term between pairs of subunits. We consider a squarelike
configuration (see Fig. 1) in which each subunit interacts with
its two nearest neighbors (NN), whereas the interaction with
its opposed subunit is neglected. This is a ferromagnetic like
interaction favoring equal states. The corresponding energy is
given by

Vc({y j}) = α

2

∑
{i, j}NN

(y j − yi )
2, (A6)

where α represents the coupling energy scale and the sum is
over the four couples {i, j}NN of nearest-neighbor interacting
subunits.

In Fig. 14, left, we schematically represent all the possible
configurations of the subunits, placed on the plot according to
the value of this last coupling energy term Vc and the value
of the configurational order parameter Y . Two of these states,
corresponding to the channel being completely open and com-
pletely closed, have a lower value of this term and therefore
they are energetically favored. It is also interesting to note
that there are two different configurations with Y � 2, that
is, two open subunits and hence with similar conductivities,
but which have different energies. A similar plot, representing
samples of actual values of Vc and Y during a simulation, is
presented in Fig. 14, right. We can see in this plot that the
more energetic state is visited much more rarely than the other
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FIG. 14. Coupling energies
∑

Vc and order parameter Y of the different conformational states of the channel. Left: schematic representation
of each configuration. Right: samples of actual values during a long simulation of the sensorless pore. Note that the configuration with the
highest energy appears very rarely along the simulation compared to the rest of the configurations. ρ = 1 nm−1; �V = 150 mV. Sampled
values are taken at intervals of 0.02 ms during a total run of 10 s.

three intermediate states, which have similar values of the
coupling energy.

Taking together the energy terms corresponding to the
gates, we have represented for illustrative purposes samples
of

∑
V g + ∑

VI + ∑
Vc values versus the order parameter

Y in Fig. 15. We observe large fluctuations in energy val-
ues, but still five groups of points are clearly distinguished,
corresponding to the five main values of the order param-
eter Y . The sixth configurational state, that of the larger
coupling energy, cannot be distinguished in this plot. Inter-
estingly, despite the large fluctuations, the minimum energy
value for each group is quite well defined. These minimum
values are related to some parameters in the simulation. In-
deed, the energy difference between all closed or all open
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Y
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/k
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FIG. 15. Gate energy values
∑

V g + ∑
VI + ∑

Vc, and order
parameter Y , during a long simulation of the sensorless pore.
ρ = 1 nm−1; �V = 150 mV. Sampled values are taken at intervals of
0.02 ms during a total run of 10 s.

states and the intermediate states is approximately 3kBT , that
is, the value α as it would be expected from the Vc term.
And over these values there is added a constant slope of
roughly 0.5kBT per Y unit, which would correspond to the
parameter D in Vg.

APPENDIX B: INTENSITIES FOR
SUBCONDUCTANCE STATES

Let us consider a one-dimensional system (0, L) where
Brownian particles move under a potential V (x). In the over-
damped regime, the stochastic dynamical equation is

ẋ = −V ′(x)

γ
+ η(t )

γ
, (B1)

where the thermal noise η(τ ) has the correlation

〈η(t )η(t ′)〉 = 2γ kBT δ(t − t ′). (B2)

The corresponding Fokker-Planck equation for the density of
particles ρ is

∂ρ

∂t
= ∂

∂x

1

γ

[
V ′(x) + kBT

∂

∂x

]
ρ = − ∂

∂x
J, (B3)

where J is the flux.
In the case of ions moving along a channel, we assume

that the potential depends on the configurational state and in
particular on the number n = 0, 1, . . . , 4 of open subunits. We
can write this potential as

Vn(x) = −�V

L
x + U (x, n), (B4)

where �V is the membrane potential and U (x, n) depends
on n. This term is given by [see Eq. (A2) and Fig. 13 in the
main text]

U (x, n) = −kBT e
−(x−x̄)2

2σ2 ln

[
(1 − β )

(
1 − 1

4
F (n)

)]
. (B5)
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Here, the function F (n) controls the reduction of the available
section on the channel, depending on the number n of open
subunits:

F (n) = n f0 + (4 − n) fc, (B6)

where f0 is the value of f (y) for an open state [see Eq. (A3)
in Appendix A] and fc is the value for a closed state.

Given these conditions, we can find an expression for the
expected flux. In the steady state, the flux obeys the equation

1

γ

[
Vn(x) + kBT

d

dx

]
ρ = −Jn. (B7)

This is a linear nonhomogeneous equation that can be easily
solved. The formal solution is

ρst(x)

=
(

ρst(0)e−Vn (0)/kBT − Jnγ

kBT

∫ x

0
eVn (x′ )/kBT dx′

)
e−Vn (x)/kBT .

(B8)

Imposing the boundary conditions at the edges ρst(0) =
ρst(L) = ρ we get the flux

Jn = kBT ρ

γ

eVn (0)/kBT − eVn (L)/kBT∫ L
0 eVn (x′ )/kBT dx′ , (B9)

where the integral has to be obtained numerically. To perform
this calculation we can make the change of variables z = x/L,
so the integration domain is now (0,1). The flux is then

Jn = kBT ρ

γ L

eVn (0)/kBT − eVn (L)/kBT∫ 1
0 eVn (z)/kBT dz

. (B10)

Taking the values used in the simulation, the prefactor is

J0 = kBT ρ

γ L
= 12.5 µs−1, (B11)

which is expressed as electrical intensity by using the ion
charge e = 0.1602×10−7 pC as

I0 = J0e = 2.0025 pA. (B12)

The final explicit expression, including all information, to
obtain the intensity is

In(�V ) = I0
eVn (0)/kBT − eVn (L)/kBT∫ 1

0 eVn (z)/kBT dz
, (B13)

which is plotted in the main text (Fig. 9).
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