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Localization transition in non-Hermitian systems depending on reciprocity and hopping asymmetry
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We studied the single-particle Anderson localization problem for non-Hermitian systems on directed graphs.
Random regular graph and various undirected standard random graph models were modified by controlling
reciprocity and hopping asymmetry parameters. We found the emergence of left, biorthogonal, and right
localized states depending on both parameters and graph structure properties such as node degree d . For directed
random graphs, the occurrence of biorthogonal localization near exceptional points is described analytically and
numerically. The clustering of localized states near the center of the spectrum and the corresponding mobility
edge for left and right states are shown numerically. Structural features responsible for localization, such as
topologically invariant nodes or drains and sources, were also described. Considering the diagonal disorder, we
observed the disappearance of localization dependence on reciprocity around W ∼ 20 for a random regular graph
d = 4. With a small diagonal disorder, the average biorthogonal fractal dimension drastically reduces. Around
W ∼ 5, localization scars occur within the spectrum, alternating as vertical bands of clustering of left and right
localized states.

DOI: 10.1103/PhysRevE.109.044315

I. INTRODUCTION

Anderson localization (AL) is a fundamental phenomenon
corresponding to a metal-insulator phase transition where lo-
calized states in a system arise due to on-site energy disorder.
Single-particle AL has attracted much attention in the context
of localization in many-particle interacting systems, such as
many-body localization (MBL). It has been shown [1] that
a phase transition to a MBL phase can be seen as an An-
derson transition on a Bethe lattice [2]. A similar behavior
was described for the random regular graph (RRG) model,
which now serves as a toy model of the Hilbert space of the
many-body system problem [3].

In addition to diagonal disorder, localized states can occur
due to structural disorder, as has been shown for the Wegner
model [4], a system with only local interactions between spins
and fermions [5], models with long-range interaction (for
example, Euclidean random matrices [6,7]), a strong degree
fluctuation with a heavy vertex [8–11], and in exponential
networks with chemical potential of k cycles [12–14] or
in partially disordered RRG models [15,16]. The structural
disorder can also be born in directed graphs with random
direction distribution or asymmetric hopping which leads to
a non-Hermitian system.

Similarly, complex natural networks such as neural net-
works [17], ecosystems [18], gene regulatory networks [19],
social networks [20], and the World Wide Web [21] can
be represented as extensive networks with directed connec-
tions. The right eigenvectors of adjacency matrices in directed
graphs are used in algorithms to determine node centrality
[22–24], detect communities [25–27], matrix completion [28],
and stochastic processes [29,30].

Localization in non-Hermitian physical systems is mainly
studied in one-dimensional chains, for example, the Hatano-
Nelson model with asymmetric hopping [31–33]. Although
the states in the presence of diagonal disorder in one-
dimensional systems are always localized, for example, as
in the Aubry-André model with an aperiodic slowly varying
potential, the mobility edge that separates localized and de-
localized states exists in both Hermitian and non-Hermitian
cases [34–36]. The existence of localization was studied in
the Ginibre ensemble and other non-Hermitian random ma-
trix models [37–44]. The papers [45–47] discuss the spectral
properties of directed graphs and the dependence of the right
eigenvector distribution for an isolated eigenvalue and for
eigenvalues on the boundary of a continuous region of the
spectrum for different distributions of weights and degrees of
outgoing edges [48].

Non-Hermitian systems can have drastic differences be-
tween periodic and open boundary conditions. In the open
boundary conditions, left and right eigenvectors can be lo-
calized on opposite edges of the system. This phenomenon
is called the non-Hermitian skin effect. In addition, a non-
Hermitian system can have exceptional degeneracy where the
eigenvalue and eigenvector collapse. These points are tightly
bounded to localization on system edges [49–54].

In the present study, we discuss a transition to a localized
phase in dependence on the graph’s bidirectionality and the
bandwidth between directions. The paper is organized as fol-
lows. In Sec. II, we demonstrate that localization occurs on
directed random graph models around exceptional degener-
acy. In Sec. III, we describe the model and the main methods
that are used. In Sec. IV, we numerically study the presence of
localization in a modified RRG model and various undirected
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standard random graph models and consider the topological
reasons for the occurrence of localization using the example of
a regular lattice with toroidal boundary conditions. Addition-
ally, in Sec. V, we numerically consider combined disorder
(structural + diagonal). Finally, in Sec. VI, we summarize our
results and raise some problems for future study.

II. EXISTENCE OF LOCALIZATION
IN DIRECTED GRAPHS

In this section, we demonstrate several examples of how
exceptional degeneracy in non-Hermitian systems is associ-
ated with the existence of localization in directed random
graphs.

For any non-Hermitian matrix M, left and right eigenstates
are not complex conjugated, which is the reason why we use
biorthogonal quantum mechanics [55,56] with 〈ψL

i |M|ψR
j 〉 =

λi, 〈ψL
i |ψR

j 〉 = δi j , where ψ
L(R)
i is the left (right) eigenstate for

λi of M. Also, we use the notation φL(R) that denotes eigenvec-
tors with the norm ||φL(R)〉|2 = 1. In this paper, except Sec. V,
we focus on nonsymmetric real adjacency matrices H .

An example of a minimal model with exceptional degener-
acy is two nodes connected by two oppositely directed edges
with weights 1 − ε and ε. The equation for the right eigenvec-
tor is (

0 1 − ε

ε 0

)
φR = λφR, (1)

the solution of which is λ = ±√
ε(1 − ε), φL =

(±√
ε,

√
1 − ε), and φR = (

√
1 − ε,±√

ε)T . At the
exceptional point (EP), ε = 0, the adjacency matrix is
defective, i.e., nondiagonalizable, and has Jordan block
form. In this case, the eigenvalues degenerate, while the
left and right eigenvectors coalesce, λ = 0, φL = (0, 1), and
φR = (1, 0).

We consider a more general example: a directed graph that
can be divided into two clusters A and B with links connecting
nodes between clusters with weight 1 − ε in one direction,
and a weight ε in the opposite. The edges are randomly
distributed inside the blocks, while between them from block
A to block B, A → B, the arrow shows the directed edges
connecting the blocks at the EP. The equation for the right
eigenstate in matrix form is

HφR =
(

A y
x B

)(
φR

A

φR
B

)
= λ

(
φR

A

φR
B

)
, (2)

where the size of the A block is n × n, the size of the B block
is m × m, n + m = N , nonzero elements in y are equal to
1 − ε, nonzero elements in x are equal to ε, and x = ε

1−ε
yT .

The uppercase subscript (A, B, etc.) stands for the part of the
eigenvector that corresponds to nodes in the block with the
same letter. The edges are fully directed between clusters at
the EP, which corresponds to x = 0 in (2). Then the energy
levels are determined only by diagonal blocks: det(H − λI ) =
det(A − λI ) det(B − λI ) = 0. φR

B = 0 if λ∗ satisfies det(A −
λ∗I ) = 0. In other words, the right eigenvector is distributed
only over nodes from the block A. The distribution of the left
eigenvector φL depends on the block B structure. If det(B −
λ∗I ) �= 0, then φL can have nonzero values in all graph nodes.

Otherwise, φL
A = 0, which leads to 〈φL|φR〉 = 0, and, as a

consequence, the adjacency matrix becomes defective at the
EP.

Since φL
B and φR

A takes nonzero values at EP, φL
A and φR

B can
be expressed as follows:

φL
A = φL

Bx(λI − A)−1, φR
B = (λI − B)−1xφR

A . (3)

If the number of different orthogonal states (degree of degen-
eracy) of eigenvalue λ∗ are kA and kB at corresponding blocks,
then the normalized products of the left and right eigenvectors
are

ψL
AψR

A = Z−1φL
Bx(λ − λ∗)−kA R′

A(λ∗)φR
A

∼ O[(λ − λ∗)kB ]

O[(λ − λ∗)kA ] + O[(λ − λ∗)kB ]
,

ψL
BψR

B = Z−1φL
BR′

B(λ∗)(λ − λ∗)−kB xφR
A

∼ O[(λ − λ∗)kA ]

O[(λ − λ∗)kA ] + O[(λ − λ∗)kB ]
,

Z = φL
BR′

B(λ∗)(λ − λ∗)−kB x + x(λ − λ∗)−kA R′
A(λ∗)φR

A ,

(4)

where (λI − A)−1 = adj(λI − A)/ det(λI − A) = (λ −
λ∗)−kA R′

A(λ∗). In (5), we consider the product of the left
and right eigenvectors of infinitesimal order (λ − λ∗). The
distribution of products of the left and right eigenvectors
depends on the degree of degeneracy. If the degrees of
degeneracy are different, kA > kB (kA < kB), then the product
of the left and right eigenvectors is distributed only on block
A, ψL

BψR
B → 0 (B, ψL

AψR
A → 0), which we call biorthogonal

localization. If they are identical, kA = kB, then ψL
AψR

A and
ψL

BψR
B have the same order of infinitesimals and the state

is equally distributed on both blocks, i.e., delocalized. In
the limit ε → 0, diagonal elements are normalized, but
elements ψL

BψR
A ∼ {O[(λ − λ∗)kAε] + O[ε(λ − λ∗)kB ]}−1

tend to diverge.
It is necessary to clarify that the eigenvalue after per-

turbation, (λ − λ∗) ∼ ε1/l , depends on the exceptional order
of degeneracy that is equal to the size of the correspond-
ing Jordan block l . The above Jordan block represents a
one-dimensional chain of l sites with edges, directed from
one boundary to the opposite boundary, and with open
boundary conditions. In this case, for a l-length chain, pertur-
bation around the EP gives the eigenvalue λ ≈ λ∗ + ε1/lλ1 +
ε2/lλ2 + O(ε3/l ) [53].

To show the existence of biorthogonal localization with
separate localization of the left and right eigenvectors, we con-
sider a more general case of the system with three blocks A,
B, and C, A → B → C. Then, the right eigenstate equation is⎛

⎝A y 0
x B z
0 w C

⎞
⎠

⎛
⎜⎝φR

A

φR
B

φR
C

⎞
⎟⎠ = λ

⎛
⎜⎝φR

A

φR
B

φR
C

⎞
⎟⎠, (5)

where x and w contain feedback edges (i.e., edges to opposite
direction) and have an order of ε. If blocks A and C have at
least one common eigenvalue λ∗ at the EP (x = 0, w = 0) and
λ∗ is not the eigenvalue of B, then the right (left) eigenvector
is distributed only on block A (C). Since we know that φR

A is
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nonzero around the EP, for the right eigenvector, we express
the components of blocks B and C through the components of
block A,

φR
B = [λI − B − z(λI − C)−1w]−1xφR

A ,

φR
C = (λI − C)−1w[λI − B − z(λI − C)−1w]−1xφR

A . (6)

Similar formulas can be written for the left eigenvector with
expressions through φL

C . Let us compare the product of the
left and right eigenvectors of the corresponding elements for
different blocks by the order of the ε block,

φL
A,CφR

A,C ∼ O(ε2)

O(εkA,C/l ) + O(ε)
,

φL
BφR

B ∼
(

O(εkA/l+1)

O(εkA/l ) + O(ε)

)(
O(εkC/l+1)

O(εkC/l ) + O(ε)

)
. (7)

Analogically to the two-block structure, we introduce the
degree of degeneracy, kA,B,C , of the eigenvalue λ∗ for the
corresponding blocks. φL

BφR
B elements have a larger infinitesi-

mal order, which means that they are suppressed compared to
φL

A,CφR
A,C . In other words, there is biorthogonal localization on

both blocks A and C or on one of them at small ε, depending
on the degree of degeneracy and the EP order.

Thus, we have shown the possibility of both the emergence
or suppression of localization in the biorthogonal case with
the presence of separate localization on the right and left
eigenvectors.

III. MODEL

We consider a smooth transition from the undirected to the
fully directed graph that varies the reciprocity parameter r and
the hopping asymmetry p. Hereinafter, the resulting graph will
be called r p-network by the names of two control parameters.

A. rp-network

A traditional way to define network reciprocity is in terms
of the ratio of bidirectional to unidirectional connections.
Thus, for each network model, we start from an undirected
graph and then the connections are modified as follows: taking
the probability r (reciprocity) we replace an undirected edge
with two oppositely directed ones with weights p and 1 − p,
choosing a direction randomly. Otherwise, with the proba-
bility 1 − r, the undirected edge is changed to one directed
in a random direction with weight of 1. Therefore, the total
bandwidth of the link between connected nodes is constant
and equal to 1. If r = 0, p = 0, or p = 1, the graph becomes
an oriented directed graph. If r = 1 and p = 0.5, the graph is
equivalent to undirected, where all edges have weights equal
to 0.5.

As we will show later, our model has a tendency to local-
ization in a certain range of parameters. Nevertheless, due to
the unidirectional nature of edges, the adjacency matrix often
becomes defective and the EP emerges. To avoid this issue, we
add feedback edges with small weight ε to unidirected edges
and change the weight of the initial edge to 1 − ε. We call that
procedure ε-perturbation.

For the r p-network, the matrix element of the Hamiltonian
takes the form

Hnm = tnmAnm. (8)

All information about the weight and directions of the network
edges is contained in tnm. Anm is an element of the adjacency
matrix of the initial undirected graph (i.e., undirected graph
from which we have started forming the r p-network) consist-
ing of 1 if there is an edge between the n and m nodes and 0 if
the edge is absent.

From Sec. II, we know that localization may occur when
one part of a graph is connected to another by edges pointing
in the same direction. In the simplest case, one part of the
graph consists of one vertex. For our model, we can esti-
mate the critical value of the reciprocity rc for the random
regular graph (RRG) with the degree of the vertex d , where
localization occurs due to a single node with all incoming or
outgoing edges. The probability of such a node occurring is
[(1 − r)/2]d . The other configurations have probabilities in
power order �2d−1 and could be neglected (see Sec. IV B
for details). Since the localization on a node with all incoming
or outgoing edges exists on the left or right eigenvectors,
respectively, we consider localization on one of them. If
we require that the graph has at least one such node, then
[(1 − r)/2]d N � 1, where N is the number of nodes. Hence,
the critical value of reciprocity is

rc = 1 − 2

N1/d
. (9)

For a RRG with N = 1024 and d = 4, the critical value is rc ≈
0.65. We can also estimate the number of nodes with all in or
out edges: if r = 0, then n = N/2d = 64. Hence, for our r p-
network, it is very common to have modes that are localized at
least on the considered structural pattern with a corresponding
eigenvalue equal to 0.

From (9), we see that the critical value of reciprocity de-
pends on N , and in the thermodynamic limit rc(N → ∞) = 1,
i.e., there is always at least one localized state.

B. Fractal dimensions

To determine localized states, we use the inverse partition
ratio IPRq [43,57–59]:

IPRS
qi =

∑N
n

∣∣ψS
i (n)

∣∣2q

[ ∑N
n

∣∣ψS
i (n)

∣∣2]q , IPRB
qi =

∑N
n

∣∣ψL
i (n)ψR

i (n)
∣∣q[∑N

n

∣∣ψL
i (n)ψR

i (n)
∣∣]q ,

(10)

where IPRS
q refers to separate eigenvectors, i.e., left and right,

and IPRB
q refers to biorthogonal. Because we distinguish left

and right eigenstates, IPRL
i , IPRR

i , and IPRB
i can have dif-

ferent values for the same state. Physical systems require
studying not only squared eigenvectors, but also the product
of left and right eigenvectors because the physical proper-
ties of the system depend on both of them. For example,
the density operator is ρ = |ψR〉〈ψL| or the Green’s func-

tion is G(λ) = ∑
i

|ψR
i 〉〈ψL

i |
λ−λi

[47]. Furthermore, in the context

of the non-Hermitian skin effect, biorthogonal IPRB
q shows

differences between skin-localized and bulk-localized states
[33,53,57,58].
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The following expressions are valid for all types of IPRq.
Averaged over the spectrum:

IPRq = 1

N

∑
i

IPRqi. (11)

As a measure of eigenfunction localization, the fractal dimen-
sion Dq is considered:

IPRq∼N−τq , τq = Dq(q − 1), (12)

where Dq → 0 corresponds to a fully localized phase and
Dq → 1 to a delocalized phase, when N → ∞. If the value
is intermediate, two options are available. First, the phase
consists of nonergodic extended states. Second, the phase is
mixed. Some of the states are ergodic, the others are localized.
The parts can be divided by mobility edge or there are local-
ized scarlike states in the delocalized part of the spectrum, like
in [14,60]. In this case, the appearance of localized states can
be revealed by high IPRq and fractal dimensions,

IPRq ∼ (1 − α)N−(q−1) + α1, (13)

where α is a fraction of the localized states. If there are any
localized states, the first term [∼ − (q − 1)] is suppressed
compared to the second term (∼ − 1) in (13). For the numeri-
cal calculations in Sec. IV, we use q = 4 and q = 6.

In general, the fractal dimension depends on the number
of nodes, Dq(N ) [61], which has extrapolation in the form
Dq(N ) = Dq(∞) + c2/log2N [62]. The last term has inverse
logarithmic dependence; therefore, it is still relevant for calcu-
lating the system size. However, since we seek the transition
from localization to delocalization and not from ergodicity
to nonergodicity, we neglect it. To find the fractal dimension
from IPRq, we use Dq = log2 IPRq/ log2 N .

C. Random graph models

In numerical experiments, we consider various models
of random graphs as initial networks. We use the random
regular graph (RRG) as the main model, it is a random
d-regular graph without self-loops and parallel edges. The
Erdős-Rényi (ER) random graph is a Gn,p model where each
of the possible edges is chosen with probability pER [63].
The Barabási-Albert (BA) random graph is a model using
the Barabási-Albert preferential attachment principle, where
each new node has m edges that are preferentially attached
to existing nodes with higher degree [64]. The Watts-Strogatz
(WS) random graph is a model of a network with a small-
world structure, where each node is joined with its k nearest
neighbors in a ring topology and pW S is the probability of
edge rewiring [65]. The regular square lattice (RL) model is a
two-dimensional grid graph, where each node is connected to
its nearest neighbors with periodic boundary conditions.

IV. NUMERICAL RESULTS

We study Anderson transition depending on graph reci-
procity and hopping asymmetry on directed RRG, RL, ER,
BA, and WS networks. Whereas RRG is the standard model
with a local tree structure for the MBL problem, BA, WS, and
ER are standard random graph models representing various

features of real networks. We use the fractal dimension D4 as
a localization measure (see Sec. III for details).

A. Spectra and fractal dimensions

RRG. Figure 1 shows the numerical simulations for the
RRG model with N = 1024. To avoid the defectivity of the
adjacency matrix due to the emergence of the EP, we consider
perturbation ε = 10−5 around the EP for numerical calcula-
tion (see Sec. III for a detailed description). In the average
fractal dimensions, the left and right fractal dimensions are
included as independent, Dav

q = ∑nreal

j (DL
q, j + DR

q, j )/(2nreal ),
where j is the realization index and nreal is the number of
realizations. This type of average is chosen to show a typical
fractal dimension value for the system size, independent of the
number of realizations.

In the RRG model with hopping asymmetry p = 0.5, the
Anderson’s transition to the localized phase occurs when
varying the reciprocity r and nodes degree in both biorthog-
onal and separate cases (i.e., independent consideration of
the left or right eigenvectors) [Figs. 1(g) and 1(h)]. With
an increase of node degree, the critical value of reciprocity
decreases smoothly until the complete disappearance of the
localized states at values of degree d � 11 for N = 1024 for
both biorthogonal and separate cases, which coincide with our
analytical estimation [black line in Figs. 1(g)–1(j)] calculated
by (9). The transition also occurs with a violation of hopping
asymmetry p, and localized states emerge in a fully bidirec-
tional graph as the difference between p and 1 − p increases
[Figs. 1(i) and 1(j)]. There is also a region in parameter space
where the emergence of localization is influenced by both
hopping asymmetry and reciprocity.

For separate eigenvectors, when r < rc, localized states
occur in the center of the adjacency matrix spectrum with
the formation of a characteristic mobility edge [Figs. 1(a),
1(c)–1(f); see Fig. 7 in the Appendix]. For the biorthogonal
case, the number of localized states is much smaller [Fig. 1(b);
see Fig. 8 in the Appendix]. The spectra in Figs. 1(a)–1(c)
are identical, but colored by the left, biorthogonal, and right
fractal dimensions, respectively. In the biorthogonal case, the
left and right eigenvectors mutually suppress each other. As a
consequence, the states are delocalized. Similar effects hap-
pen in systems with non-Hermitian skin effects [33,53,54].
For example, in a Hatano-Nelson chain, where the left and
right modes are localized on the opposite edges of the chain,
their product is delocalized in the bulk [33]. In our model, only
a small number of states remain localized in the biorthogonal
case. Several reasons for this are presented in Sec. II. Since
the number of localized biorthogonal states is smaller than
the number of separate ones and more nodes participate in
biorthogonal localization (nodes where left and right eigen-
states are localized), the biorthogonal fractal dimension is
higher than the separate fractal dimension, as presented in
Fig. 1.

Figures 2(a) and 2(b) demonstrate the distribution of the
fractal dimension at r = 0.1 and p = 0.5 for the 64 real-
izations of the RRG with d = 4 and N = 1024. Many of
the left and right localized states are observed at the EP
[Fig. 2(a), purple line]. The biorthogonal fractal dimension
does not exist because the adjacency matrix is defective with
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FIG. 1. Numerical study of the single-particle Anderson transition for the RRG using the fractal dimension D4 as a localization measure.
The results of calculations for networks with N = 1024 nodes are shown. (a)–(f) Adjacency matrix spectra for different values of reciprocity
r and hopping asymmetry p. Eigenvalues are colored according to the values of the fractal dimension D4; the color of the frame reflects the
parameters set at the corresponding point in (g)–(j). (a)–(c) Same spectrum, but colored by the left, biorthogonal, and right D4 for d = 4,
r = 0.2, p = 0.5; (d) the right D4 for d = 4, r = 0.2, p = 0.05; (e) the right D4 for d = 4, r = 0.9, p = 0.05; (f) the right D4 for d = 4,
r = 0.9, p = 0.5. The left and right localized states cluster in the center of the adjacency matrix spectrum with the formation of a characteristic
mobility edge. Dependence of the (g),(i) left and right and (h),(j) biorthogonal fractal dimension D4 on (g),(h) reciprocity r and node degree d
for p = 0.5, and (i),(j) r and hopping asymmetry p for d = 4. Fractal dimensions are averaged over 16 realizations, averaging over the left and
right fractal dimensions calculated as independent. The black lines on (g),(h) and the black dots on (i),(j) denote the critical value of reciprocity
calculated by (9) for the studied system size.

the studied parameters. By adding ε-perturbations (solid green
line) to prevent defectivity, the number of localized states
significantly reduces. Previously isolated node structures with
distinct states can now be connected, and eigenvectors spread
across them. Consequently, the number of localized states
decreases. Note that the fractal dimension remains size depen-
dent for the studied number of nodes. For comparison, there
are dash-dotted green lines that are calculated for the graphs
with N = 4096 nodes, while maintaining other parameters.
The occurrence of localization persists, but general D2(N )
behavior requires further investigation.

Figure 2(c) shows the number of states with unnormalized
spectral density with ε-perturbation. The majority of the states
are located around localized states [the graphs in Figs. 1(b)
and 2(c) have the same parameters].

In Fig. 3, the fractal dimension D6 is calculated through
average IPRav

6 over the spectrum and all realizations. This type
of averaging is chosen to show the sharpness of the transition.
For fixed r, the same structural patterns of incoming and
outgoing edges are forming independently of p value. In this
averaging, we have the range of states with a total number of
N × nreal for each p. For the fixed r only changing the hopping
asymmetry influences the average IPR6. Thus, Fig. 3 shows
how p effects the localization properties.

The transition in the reciprocity parameter r is sharp, while
when p changes, the estimated value of the fractal dimen-
sion changes smoothly for both biorthogonal and separate
cases. The reasons are related to the difference between the
mechanisms by which parameters influence the distribution
of the wave function. Reciprocity changes the probability of
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FIG. 2. Fractal dimension for states sorted in ascending order. (a) Left and right fractal dimension D2. (b) Biorthogonal fractal dimension
D2. The green (light-gray) dash-dotted and solid lines show states for the adjacency matrix without diagonal disorder (W = 0); the red (dark-
gray) dash-dotted and solid lines show states with diagonal disorder W = 1. The solid lines represent numerical data for N = 1024 and 64
realizations; the dash-dotted lines correspond to N = 4096 and 16 realizations. The blue dotted and purple dashed lines show states with
(WEP = 10−3) and without (WEP = 0) small diagonal disorder, for the case without ε-perturbation of the adjacency matrix (see Sec. IV A for
details; the adjacency matrix is defective without ε-perturbation and without diagonal disorder at the studied parameters). (c) Logarithmic
scale of unnormalized spectral density with ε-perturbation and W = 0. The results of the calculations for the modified RRG d = 4 (N = 1024
nodes, 64 realizations) with reciprocity r = 0.1 and hopping asymmetry p = 0.5.

occurrence of certain connectivity partners in the network,
while the localization emergence follows from the presence or
absence of a certain connection, and as a result the transition
zone is sharp. With a change in the value of p, the fractal
dimension continuously changes from a fully localized state at
the EP, p = 0, to fully delocalized. Consequently, the hopping
asymmetry p affects the length of the localization. The eigen-
vector of a localized state takes finite nonzero values not only
on the in or out nodes, like at the EP. Therefore, the left and
right eigenvectors can suppress each other, and biorthogonal
localization is more sensitive to changes in p, which leads to
an increase in biorthogonal fractal dimension.

Other models. The Anderson transition under the reci-
procity parameter r and the hopping asymmetry p is also
observed for a regular lattice with periodic boundary condi-
tions, ER, BA, and WS models (Fig. 4). For a scale-free BA
network, localized states are not observed at large values of
the average degree of a vertex in the model. The phenomenon

of percolation is described in detail for the ER model, and
the percolation threshold can be calculated analytically as a
function of network size and density [66]. Localized states in
the ER model are observed for all values of the reciprocity
parameter above the percolation threshold for cliques of the
order of 2 (edges), ppercol

ER = 1/N ≈ 0.001, and are limited
from above by some critical network density, the value of
which slightly depends on reciprocity. In the Barabási-Albert
model, localized states can also be observed at heavy nodes in
the case of a completely undirected graph, which is described
in detail in [9].

B. Origin of localization

Here we show structural patterns that provide the oc-
currence of localization transition. A two-dimensional (2D)
regular grid with periodic boundary conditions with 8 × 8

FIG. 3. Numerical study of the single-particle Anderson transition for the RRG using the fractal dimension D6 as a localization measure
calculated from the average IPRq over the spectrum and all realizations. The results of the calculations for networks with N = 1024 nodes are
shown. Dependence of the (a) left and right and (b) biorthogonal fractal dimension D6 on reciprocity r and hopping asymmetry p for d = 4.
Fractal dimensions are averaged over 16 realizations, averaging over the left and right fractal dimensions calculated as independent.
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FIG. 4. The emergence of localization in various models of random graphs (N = 1024) with varying hopping asymmetry p, reciprocity r,
and specific parameters of models, considering left and right eigenvectors separately (see Sec. III for a description of the specific parameters
of each model). The fractal dimension D4 is averaged for 8 × 2 samples per color cell. (a),(b) BA model with different hopping asymmetry p,
reciprocity r, and minimal node degree m. (c),(d) ER model with different p, r and the probability of the edge appearance, pER. (e)–(g) WS
model with different p, r, number of connected neighbors in a ring topology k for a node, and the probability of the edge rewiring, pW S . (h)
RL model with different p and r.

044315-7



KOCHERGIN, TISELKO, AND ONUCHIN PHYSICAL REVIEW E 109, 044315 (2024)

FIG. 5. Examples of structural patterns that provide the emergence of localization transition in the RL model with periodic boundary
conditions (8 × 8 nodes and r = 0): (a) drain nodes, (b) source nodes, (c) TEN out, (d) TEN in. Color plots show the square module of the
eigenvector with normalization,

∑
n |φL(R)(n)|2 = 1.

nodes and r = 0 is examined as an example. In our research,
we have found two types of localization:

(i) Drain and source nodes for left and right eigenvectors
[Figs. 5(a) and 5(b)];

(ii) Out and in topological equivalent nodes (TENs) for left
and right eigenvectors [Figs. 5(c) and 5(d)].

Drain and source nodes. A set of nodes connected to
an external graph with edges pointing in the same direction
(only in or out) can be the origin of localization. We call
those structures drain (source) nodes for the domination of
the incoming (outgoing) edges. These nodes have an analogy
in the context of the non-Hermitian skin effect; they corre-
spond to the leftmost or rightmost node in Hatano-Nelson
or the non-Hermitian Su-Schrieffer-Heeger chains with an
open boundary condition [49,50,53]. The appearance of the
localization depends on the hopping asymmetry (Fig. 1) and
the number of nodes in the drain (source) set n. For unidi-
rectional edges, if n is small compared to the total number
of nodes in the graph, the eigenvector is distributed only on
the set nodes. The fractal dimension of the left (right) state is
DL(R)

q ∼ log2(n)/ log2(N ) for the drain (source). If the graph
has drain and source nodes with the same eigenvalue, then
the product of the left and right eigenvectors can be localized
too, but it needs to have a higher hopping asymmetry due to
mutual suppression (see Sec. II). At the EP, the simultaneous
existence of the drain and source structures makes the graph
adjacency matrix defective. This issue is discussed in detail in
Sec. II.

TENs. If several nodes have all out or in edges connected
to the same set of other nodes, then the localization on these
nodes appears in the left or right eigenvector, respectively.
Such nodes are called topologically equivalent nodes (TENs).
TENs for an undirected RRG were found in [14]. On an
undirected graph, where the in and out neighbors are identi-
cal, the TENs’ eigenfunction is nonzero only on TENs, and
the eigenvalues of the TENs that are unconnected to each
other are exactly equal to zero. On a directed graph, TEN
states can form a band around zero in the complex plane
[see Figs. 5(c) and 5(d)]. In the case of an undirected graph,
the equation for each vertex is

∑
j ψ

NN
j = λψi, where i runs

over TENs and
∑

j ψ
NN
j is the sum over nearest-neighbor

nodes. In the directed case, the condition is not so strict. The
most probable TEN constructions are shown in Figs. 5(c) and

5(d). Except for simple TENs consisting of two nodes, more
complex TENs are possible. They do not necessarily have to
be TEN pairwise, but each of our neighbors has at least two
neighbors from a TEN cluster.

There is a possibility of biorthogonal localization to be
caused by TENs as well. In this case, vertices included in
TENs must have both incoming and outgoing common neigh-
bors, which makes this case similar to an undirected graph.
The eigenvalue for this state will be real. The formation of
such a structure is impossible on a lattice. In comparison to
the first case, such structures do not require any closeness to
the EP (i.e., they do not require adding feedback correction ε

to make an adjacency matrix diagonalizable). Also, from the
point of view of random walks on the graph, paths through
such vertices are not dead ends.

The determination of localization structures on the other
random graph models is far more difficult due to the complex
nature of the network. However, we suppose that the eigen-
function will be localized on the nodes with the properties
presented above or their combinations.

V. DIAGONAL DISORDER

In this section, we consider diagonal disorder on the r p-
network presented in Sec. II. Since a RRG with diagonal
disorder is a toy model for the many-body localization prob-
lem, we use it as an initial undirected graph.

We consider a spinless fermion with diagonal disorder on
a directed graph described by the following Hamiltonian with
matrix elements [2,42,43,67,68],

Hi j = ti jAi j + εiδi j, (14)

where εi are uniformly distributed on [−W/2,W/2]. Com-
monly, a RRG with vertex degree d = 3 is used, with the
corresponding critical value of diagonal disorder Wc ≈ 18.17
[3,62,69,70]. In our case, with hopping symmetry p = 0.5, at
r = 1 the value of the criticality limit should decrease by half
because all edges are undirected and have a weight of 0.5.
In our r p-network based on a RRG with d = 3, the directed
graph without diagonal disorder has a lot of degenerate states
at r = 0 because a lot of elementary one-node source and
drain configurations appear. Furthermore, localized states are
observed in almost the entire range of reciprocity values, as
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FIG. 6. (a) Left and right fractal dimensions D2 for the RRG for different r and W , p = 0.5; cuts by r (inset). (b) Biorthogonal fractal
dimensions D2 for the RRG for different r and W , p = 0.5; cuts by r (inset). Spectra are colored by fractal dimension D2: (c) left,
(d) biorthogonal, and (e) right fractal dimensions for the same realization, W = 4, r = 0.375; (f)–(h) right and (i)–(k) biorthogonal fractal
dimensions with different absolute values of diagonal disorder, W = 5, 10, 15, r = 0.25. The system size is N = 1024.

it goes from Eq. (9) and Figs. 1(g) and 1(h). To decrease
the number of degenerate states, d = 4 is investigated. The
system size is N = 1024.

We studied the Anderson transition for both separate and
biorthogonal states, while simultaneously varying network
reciprocity and diagonal disorder amplitude in the RRG
(Figs. 6–8).

From the numerical results [Fig. 6(b)], we see that the sharp
transition of the biorthogonal fractal dimension for r < 0.5
(N = 1024) is caused by the presence of a weak diagonal
disorder. At the EP, weak random diagonal disorder elim-
inates the defectiveness of the non-Hermitian matrix. With
the diagonal disorder, each localized structural pattern has its
own eigenstate with different eigenvalues. The blue dotted line
in Fig. 2 demonstrates fractal dimension D2 at WEP ∼ 10−3

without ε-perturbation of the adjacency matrix.
Around the EP, in the presence of weak nonzero disorder,

the number of biorthogonal localized states increases com-
pared to the disorder-free situation [the red and green lines
in Fig. 2(b)]. Considering the first-order perturbation theory of
the Hamiltonian (14), where the second term is an unperturbed
Hamiltonian (diagonal on-site disorder) and the first term is
perturbation (adjacency matrix), the zeroth-order eigenvectors
are localized on-site, ψ0

i ( j) = δ ji. The first-order perturbation

eigenvector is

ψ1
i ( j) = δ ji + Aji

εi − ε j
. (15)

One of the localization criteria is the presence of only a small
number of isolated resonances [resonances at Aji > εi − ε j

(see Sec. 3.2 in [71])]. If there are many resonances and
they overlap, the eigenvector is distributed on many nodes.
Since some of our edges have weight Akl = ε = 10−5, small
perturbations begin to break resonances and the number of the
localized states increases.

Independently of the fractal dimension type, when the am-
plitude of the diagonal disorder increases above the critical
value (Wc ∼ 10 for RRG), all states become localized inde-
pendently of reciprocity, but they may still retain complex
eigenvalues [Figs. 6(g) and 6(j)]. With further increase in
diagonal disorder amplitude W , the spectrum is squeezed to
the real axis [Figs. 6(h) and 6(k)] and all states become real
valued, which is observed around Wc ∼ 20 [Figs. 6(a) and
6(b)].

When the value of the disorder amplitude is around W ∼ 5
and reciprocity is around r ∼ 0.25, the mutual influence of
network reciprocity and disorder can be observed. For the
separate left and right eigenvectors, patterns of alternation
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of localized and nonlocalized states in the distribution of
the phases over the spectrum along the real axis are found
[Figs. 6(c), 6(e), 6(f), and 7]. This phenomenon may be a
consequence of the mutual influence of diagonal disorder and
topological structures born from a small value of reciprocity.
The phenomenon of interchange of delocalized and localized
states with several mobility edges in intermediate diagonal
disorder was found in the Hermitian system, both experimen-
tally [72] and theoretically [73].

VI. CONCLUSION

In the present study, we investigated the single-particle
Anderson localization problem for non-Hermitian systems
considering a smooth transition from an undirected to a
fully directed graph with varying reciprocity parameter r
and hopping asymmetry p. We observed the emergence
of localized states with an increase in the proportion of
unidirectional edges and an increase in hopping asymme-
try near the EP, on both the left and right eigenvectors
separately, as well as on their biorthogonal product. For
separate eigenvectors, the eigenvalues corresponding to lo-
calized states cluster near the center of the spectrum with
the formation of a characteristic mobility edge. Biorthog-
onal localized states affect the transport properties of the
system since the Green’s function contains both left and right
eigenvectors.

Additionally, the combination of structural disorder caused
by graph reciprocity and diagonal disorder is calculated nu-
merically. It turned out that left and right fractal dimensions
have a region around r ∼ 0.25, W ∼ 5 for N = 1024, with
a complex interchange of spectral stripes of localized and
delocalized states. Similar effects exist in the Hermitian case
[72,73], but for non-Hermitian systems, they were found for

the first time. For the biorthogonal case, a significant change
of the fractal dimension with the addition of small diagonal
disorder was shown [Figs. 2 and 6(d)].

The presence of localization in the vicinity of the EP is
similar to that of the non-Hermitian skin effect. However,
the latter is also characterized by topological invariants [53].
The question of whether they exist and what they are in the
case of random graphs requires further investigation. Another
problem that could be solved in the future is an analytical
study of the spectral density for the r p-networks. Since it is
known that the spectra of non-Hermitian systems with open,
semi-infinite, and periodic boundary conditions are different
[54] and our model has an analog of a boundary, the spectral
density can differ when compared to the graph without source
or drain nodes that were found in [45].

Another interesting problem is the criticality indexes of the
Anderson transition of the r p-networks. From the topological
point of view, if the graph has isolated regions and does not
have strong connectivity, it leads to the question of cluster
percolation dependence on reciprocity. Moreover, it will be
necessary to determine the correspondence between directed
graphs and open MBL systems.
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APPENDIX: COMBINED DISORDER SPECTRA

Examples of the RRG spectra colored by the right and
biorthogonal fractal dimension D2, depending on reciprocity
r and disorder W , are shown in Figs. 7 and 8.
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FIG. 7. Examples of spectra of the RRG d = 4 with N = 1024 adjacency matrices depending on r and W , p = 0.5, colored by right fractal
dimensions. For all subfigures, the diagonal disorder distribution has the same realization from [−1/2; +1/2] but multiplied by W .
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FIG. 8. Examples of spectra of the RRG d = 4 with N = 1024 adjacency matrices depending on r and W , p = 0.5, colored by biorthogonal
fractal dimensions. For all subfigures, the diagonal disorder distribution has the same realization from [−1/2; +1/2] but multiplied by W .
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