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Cluster formation due to repulsive spanning trees in attractively coupled networks
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Ensembles of coupled nonlinear oscillators are a popular paradigm and an ideal benchmark for analyzing com-
plex collective behaviors. The onset of cluster synchronization is found to be at the core of various technological
and biological processes. The current literature has investigated cluster synchronization by focusing mostly on
the case of attractive coupling among the oscillators. However, the case of two coexisting competing interactions
is of practical interest due to their relevance in diverse natural settings, including neuronal networks consisting of
excitatory and inhibitory neurons, the coevolving social model with voters of opposite opinions, and ecological
plant communities with both facilitation and competition, to name a few. In the present article, we investigate
the impact of repulsive spanning trees on cluster formation within a connected network of attractively coupled
limit-cycle oscillators. We successfully predict which nodes belong to each cluster and the emergent frustration
of the connected networks independent of the particular local dynamics at the network nodes. We also determine
local asymptotic stability of the cluster states using an approach based on the formulation of a master stability
function. We additionally validate the emergence of solitary states and antisynchronization for some specific
choices of spanning trees and networks.
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I. INTRODUCTION

Due to practical applications in biological and physical
systems, the emergence of collective order [1–14] in sys-
tems consisting of many interacting dynamical elements is a
thoroughly studied topic. Apart from complete synchroniza-
tion [15–17], different kinds of collective states, viz. relay
synchronization [18–20], chimeras [21–23], solitary states
[24–26], antisynchronization [27–29], cluster synchronization
[30–32], extreme events [33–35], splay states [36–38], and
amplitude and oscillation death states [39–41], have gained
significant attention among the scientific community. All the
studies have shown that these emergent states depend cru-
cially not only on the intrinsic properties of the individual
oscillators but also on the nature of the interaction among
them. Large part of the literature considers a generic setting
consisting of a network, where each node of the network is
an oscillator and each link represents an interaction between
pairs of oscillators. Both the network topology as well as the
coupling play a vital role in the origin of a specific collective
dynamical state in ensembles of coupled oscillators.

In what follows, we often refer to coupling among the
network nodes as either attractive or repulsive. Attractive cou-
pling is conducive to stabilizing the oscillators on the same
time evolution while repulsive coupling is not. The simplistic
approach of considering only attractive coupling may not be
sufficient to capture the essence of several real-world systems.
There is only a limited literature on signed networks con-
sisting of attractive and repulsive couplings [42]. However,
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understanding such systems is essential for their relevant ap-
plications from neuroscience with inhibitory and excitatory
connections [43,44] to opinion formation [45,46] in social
networks.

In the present article, instead of choosing only positive
(attractive) coupling strength that generally facilitates the
minimization of the phase difference among the coupled oscil-
lators, we consider a mixed coupling of positive and negative
interactions within the same network. The presence of coex-
isting positive and negative couplings opens a new avenue for
studying various natural settings. For example, Refs. [47,48]
recently showed that the coupled oscillators synchronize de-
spite the presence of both positive-negative couplings, thanks
to the temporal connectivity of the mobile agents. The in-
terplay between such competing interactions can produce a
novel π state as described in Refs. [49–52]. Reference [53]
reported that such repulsive coupling can easily enhance the
synchronization in a small-world network among attractively
coupled nonidentical dynamical units. The interested reader
may refer to the excellent minireview [42] on such systems
consisting of both attractive and repulsive interactions.

Reference [54] showed that whenever repulsive coupling
of adequate strength is passed through a dedicated subgraph
in a bipartite network, the system may settle down on a state
of antiphase synchronization. This corresponds to a dynamical
state in which all of the adjacent oscillators maintain a phase
difference of π , i.e., the whole system splits into two distinct
groups or clusters. The oscillators within the same cluster
possess almost identical phases, while the phase difference
between the two clusters is approximately π . Some research
has indicated that antiphase synchronization may be com-
monly observed in cortical neural networks [55]. However,
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FIG. 1. The complete graph K3. We consider here the most
straightforward nonbipartite connected network with N = 3 nodes.
The red dashed arcs represent one of the available spanning trees
of K3. This spanning tree is isomorphic to the other two available
spanning trees.

one cannot attain antiphase synchronization in any network
with arbitrary structure. For example, let us consider a ring
network of N = 3 oscillators as depicted in Fig. 1. If the
system exhibits antiphase synchronization, then the phase
difference between connected neighbors is π . If the instan-
taneous phase of oscillator 1 is α at a particular time, then the
instantaneous phases of oscillators 2 and 3 will be α ± π at
that time. But oscillators 2 and 3 are connected, too. So their
phase difference should be ±π . Then, we cannot achieve an-
tiphase synchronization in such network. In fact, the presence
of an odd cycle does not allow the system to settle down on
a state of antiphase synchronization. Reference [54] showed
that one needs a network without odd cycles to entertain
antiphase synchronization. Thus, the focus in Ref. [54] was
on networks without odd cycles, which were found to be nec-
essary for antiphase synchronization, particularly in bipartite
networks. Our paper extends this investigation to encompass
both bipartite and nonbipartite networks, where odd cycles
may indeed be present. This extension broadens the scope of
our study and introduces novel insights into the dynamics of
synchronization in connected networks with diverse topologi-
cal structures.

The present article identifies a suitable subgraph within a
larger network, such that whenever we pass repulsive coupling
of appropriate strength between the edges of that subgraph,
the onset of two clusters with π phase difference is observed.
Such repulsive subgraph can be found in any connected graph.
Moreover, one can quickly identify the members of each
cluster using the vertex decomposition of this repulsive path
independent of the local dynamics. Previous work on compet-
itive positive-negative coupling [42] has focused on coupled
phase oscillators. Phase oscillators with sine coupling, like the
Kuramoto and Kuramoto-Sakaguchi models, have received
much attention thanks to the possibility of the analytical
tractability of such systems. However, the case of oscillators
characterized by an amplitude and a phase is more compli-
cated. We place identical Stuart-Landau oscillators [56] on top
of each node. We show the emergence of a particular state in
which the oscillators within the same cluster possess almost
identical phases and amplitudes; nevertheless, the phases of
oscillators from different clusters differ by an angle π .

In Sec. II, we describe our designed model with mixed
positive-negative coupling. We further present necessary in-
formation about the subgraphs and the dynamical states used

in the rest of the article. Section III presents our key findings
with a few undirected networks using numerical simulations.
We also present comparisons between the emergent frustra-
tion [57] in the network and along the chain using different
repulsive subgraphs of the same length. We can successfully
predict these frustrations theoretically without detailed infor-
mation on the local dynamics. We further study the stability of
the synchronized clusters in networks of attractive-repulsively
coupled limit-cycle oscillators. To ensure our discoveries are
accurate, we test them on different kinds of small networks.
Some of these networks are complete networks consisting
of three or four nodes, while others have random struc-
tures having 6, 8, or 10 nodes (please see the Appendix
sections 1–4 for the results on connected networks with ran-
dom structures). These smaller networks confirm that our
findings are accurate and make it easier for us to explain
them. However, we also test our proposals on a much larger
complete network with 100 nodes. Section IV summarizes our
findings.

II. THE MODEL

We consider the following equation describing the dy-
namics of a graph G of d-dimensional coupled limit-cycle
oscillators,

ẋi = f (xi ) +
N∑

j=1

Di jH (xi, x j ), i = 1, 2, . . . , N. (1)

Here f (xi ) : Rd → Rd governs the time evolution of the
oscillator i with state vector xi(t ). The interaction function
H (xi, x j ) is a vector coupling from Rd to Rd . We select
both f and H as odd functions. The rationale behind these
selections is elaborated on explicitly in Sec. III B. The ma-
trix D = [Di j]N×N represents the connectivity structure of the
graph G where the entries of the matrix D are equal to Di j =
εABi j + εRCi j , where εA > 0 is the attractive coupling strength
and εR < 0 is the repulsive coupling strength. We consider
two different types of node-to-node interactions: attractive
and repulsive. The attractive information is passed through a
subgraph G1 of G, characterized by the adjacency matrix B =
[Bi j]N×N . Besides, we choose another particular subgraph G2

associated with the adjacency matrix C = [Ci j]N×N through
which we advance the repulsive coupling strength εR < 0.
Thus, the sum of these two binary matrices B = [Bi j]N×N
and C = [Ci j]N×N provide a new matrix A = [Ai j]N×N which
represents the adjacency matrix of the whole network G.
Further, we assume the whole network to be connected and
the interaction between any two oscillator is bidirectional and
simple, i.e., there is either attractive or repulsive link between
them.

For illustration, in Fig. 1 we present the complete graph
K3 composed of three-node connected to each other. The red
dashed arcs in that figure reflect the repulsive edges of the
chosen regular graph K3. The black arc is used to represent the
attractive edge through which we pass the positive coupling
strength. Thus, for this case

A =
⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ =

⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦ +

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦. (2)
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The first matrix on the right-hand side is B, and the second
one represents the matrix C. The zero (one) entries indicate the
absence (presence) of a link in either graph. Throughout the
article, we use the terms {networks, graphs}, {edges, links,
arcs}, and {vertices, nodes} interchangeably.

Now the presence of both competing couplings creates a
tug of war in the whole network. We will measure this by
adapting the concept of frustration [57] given by the following
expression:

F =
〈

1

L

∑
i< j

Ai j[1 + cos(θi − θ j )]

〉
t

, (3)

where

L = 1

2

N∑
i=1

N∑
j=1

Ai j = 1

2

N∑
i=1

N∑
j=1

(Bi j + Ci j ) (4)

is the total number of links of the graph G and θi is the intrin-
sic phase of the ith oscillator. Here 〈· · ·〉t indicates the time
average taken over sufficiently long iterations after the initial
transient. Moreover, we are also interested in calculating the
frustration,

Fchain =
〈

1

N − 1

N−1∑
i=1

[1 + cos(θi − θi+1)]

〉
t

, (5)

considering the localized frustration between the oscillator i
and oscillator (i + 1) for i = 1, 2, 3, . . . , (N − 1). When the
measure F is zero, the phase difference among two connected
neighbors is the highest as θi − θ j = ±π . This corresponds
to the presence of antiphase synchronization between two
adjacent oscillators, while F = 2 indicates the presence of
inphase synchronization for which θi − θ j = 0 [57]. Note that
the phase difference between neighbors will contribute in the
measure F only when there exists a link between those two
oscillators (i.e., Ai j = 1). However, the calculation of Fchain

only takes into account the phase difference between any
two oscillators i and i + 1 (not necessarily, they are neigh-
bors), viz. i and (i + 1) for i = 1, 2, 3, . . . , (N − 1). It will
be zero if the oscillators 1, 2, 3, . . . , N divide in two clusters,
and these two clusters are opposite in phase with each other
[|θi − θi+1| = π for i = 1, 2, 3, . . . , (N − 1)]. Neither one of
these two measures incorporates information regarding the
amplitude of the oscillators.

The primary goal of this article is to trace out a path that ex-
ists in any connected graph so that we pass repulsive coupling
strength through the selected subgraph and the ensemble of
oscillators split into exactly two synchronized groups of oscil-
lators, irrespective of the chosen underlying network. Further,
we want to predict the members of both clusters without
investigating the local dynamics. In what follows, we choose
the paradigmatic Stuart-Landau (SL) limit-cycle oscillator as
the state dynamics of individual limit-cycle oscillator given by

f (xi ) =
⎧⎨
⎩

[
1 − (

xi
2 + yi

2
)]

xi − ωiyi[
1 − (

xi
2 + yi

2
)]

yi + ωixi

⎫⎬
⎭. (6)

We set the intrinsic frequency ωi = ω = 3.0 to be iden-
tical for all the oscillators and choose the coupling function

H (xi, x j ) = [x j + xi, 0]T which resembles a rescaled pairwise
mean-field interaction through the first state variable of the
SL oscillator. For the numerical simulation, we derive the
instantaneous phase of each oscillator through the principal
value (i.e., tan θi = yi

xi
) of the argument of the complex num-

ber zi = xi + √−1yi = riexp(
√−1θi ). ri =

√
x2

i + y2
i is the

distance from the pole (the origin) in the polar coordinate
plane. All of our numerical simulations are performed using
the Runge-Kutta-Fehlberg method with fixed integration time
step δt = 0.01.

III. RESULTS

Before discussing our key findings, we must discuss three
critical things to understand the presented phenomenon in
a better way. First, we restrict our study mainly to nonbi-
partite networks. Our results are also valid for any bipartite
networks, as long as the networks remain connected. The
results for bipartite networks have already been discussed in
Refs. [54,57]. A bipartite graph is such that the set of vertices
can be partitioned into two disjoint sets such as there is no link
between the members of the same set [9]. References [54,57]
have shown that antiphase synchronization can be achieved in
biparitite graphs based on the choice of the initial conditions
and of the repulsive coupling strength. However, nonbipartite
graphs contain odd cycles and hence cannot achieve such
an arrangement. The fundamental goal of the present study
is to identify a subgraph within any connected network so
that whenever we pass sufficiently strong negative coupling
strength through that path, the coupled oscillators converge to
two π -distant-apart clusters. In this article, in order to achieve
such novel states, we set |εA| � |εR|. Other choices of εA and
εR may not be able to overcome the emergent multistability
in the system (1). Particularly, multistability becomes more
common with increasing network size. Such multistable sig-
nature is common among repulsive oscillators as described in
Refs. [57,58]. We also confirm it using the link frustration
F given in Eq. (3). We identify huge fluctuations in every
figure of the variation of F depending on the choice of εR < 0
and initial conditions. In what follows we fix εA such that
when all the links are attractive the network achieves in-phase
synchronization. We pass the negative coupling through any
of the spanning trees (explicitly discussed in the next sub-
sections) to achieve two approximately π -distant-apart cluster
states. On the other hand, we set |εA| � |εR| in the most cases.
We explicitly discuss all these components of our results so
the readers can quickly identify the reason behind the choice
of weaker attractive coupling strength in magnitude than the
repulsive coupling strength. Throughout the study, we main-
tain εA = εR > 0 as our initial configuration to achieve nearly
in-phase synchronization. Note that F = 2 reveals in-phase
synchronization, and we plot the variation of F in various fig-
ures to confirm this in-phase synchronization for εA = εR > 0.
Subsequently, we vary εR from positive to negative values
while holding εA > 0 fixed and constant. After achieving the
desired collective state, we determine the range of εR within
which the collective state is observable and locally stable.
Subsequently, we set the coupling strength to a fixed value,
εR < 0, from that determined range.
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FIG. 2. Emergence of cluster synchronization in K3. The introduction of the repulsive path (red dashed links) in K3 as shown in Fig. 1
induces cluster synchrony. The system splits into two distinct groups. The vertex decomposition V1 = {1, 3} and V2 = {2} of the repulsive
spanning tree remains consistent with the cluster synchronization, where oscillators 1 and 3 belong to a group and the remaining oscillator 2
lies on the other cluster. The phase difference between these two clusters is π . Panel (a) shows the phase portrait, and panels (b)–(d) reveal the
temporal evolution of yi, ri, and xi, respectively. [(e)–(h)] The second row displays the snapshots at a specific iteration after the transients. For
further information, please see the main text.

A. The complete graph K3

1. Spanning trees

To begin with, we choose the network G to be complete
graph K3. This is the smallest nonbipartite graph with three
vertices. In the case of a connected network with only two
vertices, the only connection can either be attractive or repul-
sive, and hence we discard the case of N = 2.

For passing the repulsive interaction, we choose a sub-
graph of K3 in such a way that this subgraph contains all the
vertices of K3. The existence of such a subgraph in any net-
work is guaranteed using the connectedness of the underlying
network. If the chosen connected network does not contain
any cycle, then it will serve as its own such subgraph. The
presence of a cycle within the connected graph provides us
the opportunity to delete one link from each present cycle
and construct a new connected subgraph containing all the
nodes of the underlying connected network. Hence, our study
is restricted within the domain of the connected network.
Generally, in the existing literature, such a subgraph is known
as a spanning tree [59,60], and its edges are referred to as
branches [60]. In our investigation, we choose all the repulsive
interactions through the branches of a spanning tree, and the
remaining links are subjected to attractive interactions. More
precisely, the subgraph through which we pass the repulsive
interactions is a spanning tree of the whole network.

2. Emergence of clusters

Typically, a connected graph may contain more than one
spanning tree. For instance, this complete graph K3 possesses
exactly three spanning trees as per Cayley’s formula [61]. But
all these three spanning trees are isomorphic to one another.
Hence, we choose a specific spanning tree consisting of two
links, 1-2 and 2-3. We pass the repulsive coupling strength
εR = −0.1 through this spanning tree (see the red dashed arcs
in Fig. 1) and the positive coupling strength εA = 0.01 through
the remaining link (the black arc of K3). The equation (1)

yields

ẋ1 = f (x1) + εRH (x1, x2) + εAH (x1, x3),

ẋ2 = f (x2) + εR[H (x2, x1) + H (x2, x3)],

ẋ3 = f (x3) + εRH (x3, x2) + εAH (x3, x1). (7)

After the initial transient, we find x1 = x3 ≈ −x2 (see Fig. 2).
Due to our choice of repulsive spanning tree, oscillator 2 ex-
periences only the effect of negative coupling strength through
the undirected edges 1-2 and 2-3. Thus, our chosen coupling
function H provides H (x2, x1) and H (x2, x3) approximately
equal to [0, 0]T after the initial transient. Therefore, Eq. (7)
can be rewritten as

ẋ1 ≈ f (x1) + εAH (x1, x3),

ẋ2 ≈ f (x2),

ẋ3 ≈ f (x3) + εAH (x3, x1), (8)

from which we see that a synchronized solution is possible in
which x1(t ) = x3(t ).

The existence of positive coupling strength between the
oscillators 1 and 3 allows them to maintain a coherent
oscillation. Moreover, we choose the repulsive coupling
strength from the saturated domain for fixed attractive cou-
pling strength εA = 0.01, such that the system settles down
to these two clusters for all initial conditions chosen from
[−1, 1] × [−1, 1]. The temporal evolutions of the state vari-
ables in Figs. 2(b)–(d) and the snapshot of phase distribution
in Fig. 2(e) attest both these clusters remain approximately
π -distance apart. The numerical derivation gives F ≈ 0.666
and Fchain = 0.

3. Cluster member prediction

We observe that the repulsive spanning tree is a bipartite
graph, and thus the set of vertices of this repulsive subgraph
can be decomposed into two disjoint and independent sets
V1 = {1, 3} and V2 = {2}. Noticeably, the set of vertices of the
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FIG. 3. K4 and its nonisomorphic spanning trees. The complete graph K4 with four vertices possesses 16 spanning trees, from which the
number of nonisomorphic spanning trees is 2. We draw K4 in (a), and the other two in (b) and (c) represent those two nonisomorphic spanning
trees. This figure is drawn using the software Gephi [62].

repulsive spanning tree can be uniquely partitioned into two
distinct sets, and we notice the emergence of two different
clusters in Fig. 2. This vertex partitioning is consistent with
the members of the clusters, too. This inspection offers an
efficient, effortless method of determining the members of
both groups in advance of the numerical calculation. For the
theoretical prediction purpose, without loss of any generality,
we assign the phase value of α (say) to each element of the
set V1 and allocate the phase value of α + π to each oscillator
of V2. The edges between these two sets V1 and V2 will not
contribute anything to the measure F , as the phase differ-
ence between these sets is π as per our allocation. The set
V1 contains two distinct elements, and a link exists between
these two oscillators. Since, as per our assignment, oscillators
belonging to the same set are in-phase synchronized, and
thus the term A13[1 + cos(θ1 − θ3)] will contribute 2. Hence,
our predicted F will be 2/3, which matches excellently with
our numerical analysis. The denominator of F represents the
number of links L = 3 in the whole network K3. Similarly,
we can predict the value Fchain. We find the theoretically pre-
dicted value of Fchain is zero for the chosen network K3. We
also verify our prediction of F and Fchain in K2. We detect
F = 0 and Fchain = 0 in K2 as per our theoretical as well as
numerical assessment. This F = 0 confirms the occurrence
of antiphase synchronization in the two repulsively coupled
system (figures are not shown here). However, the presence of
an odd cycle in K3 restricts F to diminish to zero. Still, the
arrangement of repulsive coupling leads to the emergence of
a two-cluster state where the oscillators of different clusters
exhibit a phase difference of π .

B. The complete graph K4

1. Impact of various spanning trees

To validate the effectiveness of our described method for
predicting the members of the clusters, we choose a different
globally connected network K4 with N = 4 vertices and L = 6
edges [see Fig. 3(a)]. Cayley’s formula predicts this network
possesses exactly 16 spanning trees. We consider only two
spanning trees of K4, which is shown in Figs. 3(b) and 3(c).
These two spanning trees are nonisomorphic to each other
as two isomorphic graphs must contain the same number of

vertices of the same degree. Moreover, all other 14 spanning
trees are isomorphic to any one of these considered spanning
trees (see Appendix section 5 for further explanations).

2. Solitary state

We first choose the spanning tree shown in Fig. 3(b) and
pass the repulsive coupling strength εR = −0.1 through this
subgraph. The vertex partitioning of the set of vertices of the
chosen spanning tree gives the disjoint sets V1 = {1} and V2 =
{2, 3, 4}. Our arrangement of attractive-repulsive interaction
through the repulsive spanning tree (red arcs) and the attrac-
tive subgraph (black arcs) with εA = 0.01 yields a two-cluster
state as shown in Fig. 4. The members of these clusters are
successfully predicted using only the vertex decomposition
of the repulsive subgraph as illustrated through the snapshots
in Figs. 4(b) and 4(c). Moreover, the two clusters experience
a phase difference of π as depicted through a snapshot in
Fig. 4(b). The temporal evolution of yi in Fig. 4(d) confirms
the agents maintain an oscillatory rhythm, and the system
undergoes through a two-cluster synchronization. The chosen
attractive-repulsive connections portrait that oscillator 1 goes
through only repulsive interactions, and as a consequence, it
will split from the coherent group.

3. Antisynchronization

We pass the repulsive strength εR = −0.1 through a dif-
ferent spanning tree drawn in Fig. 3(c). The rest of the chords
[the black arcs of Fig. 5(a)] of K4 are attractively coupled with
the coupling strength εA = 0.01. Interestingly, this spanning
tree [the red arcs of Fig. 5(a)] looks like a simple chain. In
fact, this repulsive subgraph is a Hamiltonian path because it
visits each node of K4 exactly once. The set of vertices of the
chosen repulsive spanning tree is the union of two disjoint
sets V1 = {1, 3} and V2 = {2, 4}. Again, this vertex decom-
position works perfectly well for predicting the members of
the clusters, as contemplated in Fig. 5. The phase difference
between these two clusters is exactly π [see Fig. 5(b)] after the
initial transient. In addition, the amplitude ri of each oscillator
is identical for all i = 1, 2, 3, 4. The system (1) displays two
synchronized groups, and the phase difference between these
two clusters is π . In fact, whenever we pass the negative
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FIG. 4. Predicting cluster synchronization in undirected and con-
nected network K4. (a) We pass the repulsive coupling through the
spanning tree (red dashed arcs) shown in Fig. 3(b). The vertex
decomposition of this spanning tree allows us to predict which os-
cillators belong to which clusters. The black arcs depict the links
through which we pass the positive coupling strength εA = 0.01.
Panel (b) assures the phase difference between these two clusters
is exactly π . Panel (c) further confirms oscillator 1 belongs to one
cluster, and the other three oscillators lie on another group. The
temporal evolution of yi in (d) reveals the trajectories are oscillating
in the limit-cycle regime maintaining cluster synchronization with π

phase difference.

FIG. 5. Identifying the members of the clusters in K4. (a) We
choose a spanning tree (red dashed arcs) as shown in Fig. 3(c) of
K4. We pass the repulsive coupling with εR = −0.1 through this
spanning tree. (b) Oscillators 1 and 3 lie in one cluster, and the other
two oscillators belong to the other cluster. Moreover, both of these
clusters maintain a phase difference of π . (c) The vertex partitioning
of the repulsive spanning tree predicts the members of the clusters
without investigating the local dynamics. The snapshot of xi at a
particular time after the transient validates our claim here. (d) The os-
cillating temporal evolution of the trajectories contemplates a phase
difference of π between these two clusters.

coupling strength through a simple chain {1, 2, 3, . . . , N} in
a complete graph KN with even N � 2, we find the ampli-
tude ri of each oscillator is precisely same. The term chain
reflects the graph associated with the symmetric adjacency
matrix Ai(i+1) = 1 for i = 1, 2, 3, . . . , (N − 1). Besides, the
complete graph KN with even N for such a repulsive sub-
graph manifests two clusters, where one group consists of the
members with the indices {1, 3, . . . , (N − 1)} and the other
cluster contains the oscillators with the indices {2, 4, . . . , N}.
Furthermore, since the phase difference among the two clus-
ters is π , thus xi + x j = 0 for i ∈ {1, 3, . . . , (N − 1)} and
j ∈ {2, 4, . . . , N}, which is a common signature of antisyn-
chronization [54,63]. During this antisynchronization, if the
ith and kth oscilltors are in antisynchronized state, then we
have

xi + xk = 0. (9)

The time evolution of these two oscillators are given by

ẋi = f (xi ) +
N∑

j=1

Di jH (xi, x j ), and

ẋk = f (xk ) +
N∑

j=1

Dk jH (xk, x j ). (10)

Combining Eqs. (9) and (10), we get

ẋi = f (xi ) +
N∑

j=1

Di jH (xi, x j ), and

ẋi = − f (−xi ) −
N∑

j=1

Dk jH (−xi, x j ). (11)

Both of these equations (11) are compatible and consistent
if they satisfy a few conditions. Of which one will definitely
be, f must be an odd function, i.e., f (−x) = − f (x). Thus, we
choose identical SL oscillators on top of each node. Similarly,
the other necessary condition for obtaining antisynchroniza-
tion is the coupling function H must be an odd function, and
our choice of H (xi, x j ) = [x j + xi, 0]T satisfies this condition,
too. However, such a splitting of two clusters with an equal
amplitude for all oscillators cannot be anticipated even in
a complete network with an odd number of vertices, as we
already observed in Fig. 2. The amplitudes of the two clusters
differ by a small magnitude in Figs. 2(c) and 2(f).

4. Theoretical computation of F and Fchain

Now we are coming back to the calculation of the frus-
tration of K4 through two different spanning trees shown in
Fig. 3. We plot the respective changes of the frustration in-
dices in Fig. 6. Since K4 is a nonbipartite graph, we cannot
expect zero frustration (F = 0) in this network [57]. In both
of these chosen repulsive subgraphs, we fix the attractive cou-
pling strength εA = 0.01 and decrease the repulsive coupling
strength εR with a very small step length −0.00001. Initially,
when εR is positive beyond a critical value, all the oscillators
are in-phase synchronized (in fact, they are oscillating with
identical amplitude, too). But as soon as εR becomes negative
of suitable strength, the asymptotic value of F saturates, as
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FIG. 6. Numerically calculated frustration through two different repulsive spanning trees in K4. We change the value of repulsive coupling
strength εR in the range [−0.03, 0.01], starting from 10−2 with fixed step length = −10−5. The initial conditions are drawn for each εR randomly
within [−1, 1] × [−1, 1]. The red (dark gray) line represents the result when the repulsive path is chosen as drawn in Fig. 3(c). The yellow
(light gray) line portrays the impact of the spanning tree as shown in Fig. 3(b). Here the attractive coupling strength is kept fixed at εA = 0.01.
F deals with the frustration of the whole network, while the measure Fchain contains the information of the frustration only through the chain.
The spanning tree in Fig. 3(c) is more effective than the spanning tree in Fig. 3(b) in terms of attaining the minimum value of F and Fchain.
Every data point in this figure represents a single realization of the process.

observed in Fig. 6. The previous Figs. 4 and 5 are drawn for
εR = −0.1, for which the values of this frustration F becomes
horizontal with respect to the repulsive coupling strength εR.
In both of these subfigures, the red curve illustrates the frus-
tration of the network K4 for the Hamiltonian path shown in
Fig. 3(c). The yellow curve represents the same for a different
spanning tree shown in Fig. 3(b). A noticeable observation
is that the Hamiltonian path of Fig. 3(c) can provide com-
paratively less F value than another repulsive spanning tree.
Furthermore, our analytical prediction of F for these spanning
trees are 2/3 for the Hamiltonian path and 1 for the spanning
tree shown in Fig. 3(b). The red and yellow lines in Fig. 6(a),
i.e., our numerical simulation, exactly agrees with our theoret-
ical prediction. Similarly, the numerical calculations of Fchain

saturate at the values 0 (red line) and 1.333 (yellow line),
while our theoretical prediction is 0 and 4/3, respectively.
Another vital inspection of this Fig. 6 is before the asymp-
totic convergence of both measures F and Fchain, there exists
fluctuations in both of these lines. Actually, the simulations
use random initial conditions from [−1, 1] × [−1, 1] for each
εR. Hence, depending on initial conditions, such fluctuations
are noticed for both spanning trees. However, beyond a critical
value of εR for fixed εA, these values of F and Fchain remain un-
changed irrespective of any random initial conditions chosen
from [−1, 1] × [−1, 1].

5. The stability of antisynchronous clusters

Due to the presence of attractive and repulsive connection
schemes, two clusters {C1,C2} can be observed, and further-
more, these clusters are in an antisynchronized state for some
cases. Let sm, m = 1, 2 be the state of synchronous solution
of the nodes belonging to the cluster Cm. Then the evolution
of the synchronous solution is given by

ṡm = f (sm) +
2∑

j=1

Qm jH (sm, s j ), m = 1, 2, (12)

where the 2 × 2 matrix Q represents the quotient network
[64,65] associated with the two clusters.

To investigate the stability of the cluster synchronous solu-
tion, we consider a small perturbation δxi = xi − sm, i ∈ Cm.
Then the variational equation can be written as

δẋ =
[ 2∑

m=1

W [m] ⊗ J f (sm) +
2∑

m=1

(KW [m] ) ⊗ J1H (sm, sm′ )

+
2∑

m=1

(DW [m] ) ⊗ J2H (sm, sm′ )

]
δx, m′ = 1, 2, (13)

where the dN-dimensional state vector δx =
[δxtr

1 , δxtr
2 , . . . , δxtr

N ]
tr

and ⊗ represents the Kronecker
product. W [m] is a N × N diagonal matrix such that

W [m]
ii =

{
1, if i ∈ Cm

0, otherwise , (14)

and
∑2

m=1 W [m] = IN , the N × N identity matrix. K is the
N × N diagonal matrix whose diagonal entries are given by
Kii = ∑N

j=1 Di j and characterizes the weighted degree of node
i of the underlying signed graph. J1 and J2 stand for the Jaco-
bian operators with respect to the first and second variable,
respectively.

Therefore, the problem of stability requires us to solve
the linearized differential equation (13) along with the non-
linear equation (12) for maximum Lyapunov exponents. The
negative value of maximum Lyapunov exponent transverse
to the cluster synchronization manifold gives the necessary
condition for stable cluster synchronization state.

Now we can further simplify the variational equa-
tion (13) when the clusters are in antisynchronized state.
The presence of antisynchronization between the two clus-
ter state [i.e., s1(t ) + s2(t ) = 0] indicates that the Jacobian
matrices J f (s1) and J f (s2) are related to each other, as
well as JmH (s j, s j′ ) and JmH (s j, s j ), where m, j, j′ = 1, 2.
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FIG. 7. Stability of cluster synchronization state. Cluster syn-
chronization error E (blue line) and the maximum Lyapunov
exponent transverse to the cluster synchronization manifold � (red
dashed line) as a function of repulsive coupling strength εR. The cor-
responding network structure is illustrated in Fig. 5(a). The attractive
coupling strength εA is kept fixed at 0.01. For further information,
please see the main text.

Moreover, antisynchronization between the cluster synchro-
nization states require f (x) and H (x) to be odd functions as
a necessary condition [Eqs. (9)–(11)]. Combining these two
conditions, we can acquire that the Jacobians in Eq. (13)
satisfy the relations J f (s1) = J f (s2) and JmH (s1, s1) =
JmH (s2, s2) = JmH (s1, s2)=JmH (say), for m = 1, 2, since
the Jacobian of odd function is even and thus independent
of the sign of the variables. This eventually simplifies the
variational equation (13) as follows:

δẋ = [IN ⊗ J f (s1) + K ⊗ J1H + D ⊗ J2H]δx, (15)

where s1 denotes the state of nodes in one cluster at coherent
state. Therefore, the problem of stability of cluster synchro-
nization state is then reduced to solving the coupled linear
differential equation (15) for maximum Lyapunov exponent.
For the specific problem where the coupling function H is
an odd function of xi + x j , i.e., H (xi, x j ) = F (xi + x j ), one
can further obtain that J1H = J2H = JH (say), and thus
the stability problem reduced to solving a more simplified
variational equation,

δẋ = [IN ⊗ J f (s1) + M ⊗ JH]δx, (16)

where M = K + D.
To validate the clusters of synchrony in the complete net-

work K4 given in Fig. 5, we compute the maximum transverse
Lyapunov exponent � (red dashed line) of Eq. (15) and plot
the synchronization error Ek of the kth cluster (blue line)
in Fig. 7. We define the cluster synchronization error Ek as
follows:

Ek =
〈[

1

Card(Ck )

∑
i∈Ck

(xi − x̄k )2

] 1
2
〉

t

, (17)

where Card(Ck ) is the cardinality of the set Ck , the group of
vertices involved in the cluster k; x̄k denotes the average of

all vertices within a particular cluster k at time t ; and 〈 · · · 〉t
represents an average over a sufficiently long time interval.
Since the coupled system in Fig. 5 settles down to antisyn-
chronization, both the errors E1 and E2 converge to zero at
the same choice of repulsive coupling strength εR < 0. Thus,

we plot E = E1 = E2 (blue line) in Fig. 7. Figure 7 confirms
the local asymptotic stability of cluster synchronization, as the
maximum Lyapunov exponent transverse to the cluster syn-
chronization manifold becomes negative almost at the same
time where the cluster synchronization error E becomes zero.

C. The complete graph K100

Now we choose again a complete graph which is compar-
atively larger than other previously considered networks. In
Figs. 8 and 9, we choose the global network with N = 100
nodes and L = 4950 links. Cayley’s formula predicts this net-
work contains 10098 number of spanning trees. To represent
our findings, we select two different nonisomorphic spanning
trees. Each spanning tree contains exactly (N − 1) = 99 links.
We pass the negative coupling strength εR of adequate strength
through these spanning trees. Such a minimum fraction of
repulsive edges is able to give rise to two distinct clusters,
and these two clusters maintain a phase difference of π . For
Fig. 8, we pass the repulsive strength εR = −4.0 through a
chain 1-2-3-· · · -98-99-100. Since we increase the network
size significantly, thus we have to enhance the magnitude of
the repulsive strength εR, too, although we keep the attractive
coupling εA = 0.01 as earlier. The result remains unchanged
for random initial conditions from [−1, 1] × [−1, 1]. As dis-
cussed earlier, such a choice of repulsive coupling through
the chain within attractively coupled SL oscillators in any
complete network with an even number of vertices can induce
antisynchronization. Our chosen repulsive chain in K100 also
produces the same. Figure 8 portrays that the identical SL
oscillators break into two halves V1 = {1, 3, 5, . . . , 99} and
V2 = {2, 4, 6, . . . , 100} analogous to the vertex partitioning to
our selected spanning tree. These two synchronized clusters
oscillate opposite in phase with each other. Since the am-
plitude ri of each oscillator is identical, hence xi + xk = 0
for i ∈ V1 and k ∈ V2. One needs to iterate the system for
sufficiently long to achieve the antisynchronization in K100

with the repulsive chain.
We choose a different spanning tree with the set of

vertices V1 ∪ V2 in Fig. 9, where V1 = {1} and V2 =
{2, 3, 4, . . . , 98, 99, 100}. Since the oscillator 1 experiences
only repulsive interactions with other N − 1 = 99 oscillators
as per the arrangement of our spanning tree. Hence, this oscil-
lator 1 leaves the coherent group, and the system manifests
the occurrence of a solitary state. The emergence of such
a solitary state is also contemplated in Figs. 2 and 4. The
adjacency matrix C corresponding to the chosen spanning tree
is given by

C1 j = Cj1 = 1 for j = 2, 3, 4, . . . , N

0 otherwise.

Hence, Eq. (1) yields

ẋ1 = f (x1) + εR

N∑
j=2

H (x1, x j ),

ẋi = f (xi ) + εA

N∑
j=1

Bi jH (xi, x j ) + εRH (xi, x1),

i = 2, 3, 4, . . . , N. (18)
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FIG. 8. Splitting of two distinct clusters in K100. We choose the complete graph K100 with N = 100 vertices and 4950 edges and pass the
repulsive coupling strength εR = −4.0 through the simple chain containing only N − 1 = 99 links. The positive coupling strength is kept fixed
at εA = 0.01 and the initial conditions are randomly chosen from [−1, 1] × [−1, 1]. The phase portrait in (a) and the temporal evolutions in
(b) and (c) reveal the emergence of two clusters. The variation of the amplitude ri of each oscillator is manifested in (d). [(e)–(h)] The lower
panel exhibits the snapshots at a particular time after the transients. These snapshots unveil the system settles down a two-cluster state, and the
phase difference between these two clusters is π . Since the amplitude ri of all oscillators is equal, we observe the onset of antisynchronization.

Due to the dissimilarity between these two equations,
the temporal evolution of oscillator 1 does not coincide
with the other synchronized cluster with members of V2 =
{2, 3, 4, . . . , N}. This understanding is consistent with the
appearance of solitary state in Figs. 4 and 9, respectively. To
validate the stability of each cluster, we compute the maxi-
mum transverse Lyapunov exponent � (red dashed line) of the
Eq. (15) and plot the cluster synchronization error E = E1 =
E2 (blue line) of the Eq. (17) in Fig. 10. The negativity of �

ensures the damping of the transversal modes and assures the
(local) stability of the cluster-synchronized manifold. More-
over, the cluster synchronization error E descends to zero
and leads to the convergence towards the cluster synchronized
state.

For Fig. 9, we consider εR = −3.6 and εA = 0.01, while
for Fig. 8, we consider εR = −4.0 with same εA. The choice
of the spanning tree in Fig. 9 produces an unbounded so-
lution for εR = −4.0 and εA = 0.01. Hence, we restrict the
negative coupling strength at εR = −3.6 for fixed εA = 0.01.
Figure 9 confirms the cluster synchronization in the signed
network. The phase difference between these two clusters is
π . In Fig. 10, it is evident that the cluster-synchronized state
remains locally stable even with a lower repulsive coupling
strength. Hence, one can expect to observe similar behavior
even at εR = −3.6. Thus, while it is possible to set the repul-
sive coupling strength to −3.6 and compare the outcomes in
Figs. 8 and 9, our intention was to convey the message that
beyond a critical value of the repulsive coupling strength, the

FIG. 9. The impact of a different spanning tree on K100. (a) The phase portrait in the xy plane, (b) the temporal evolution of xi, and (c) the
temporal evolution of yi ensure the system splits into two synchronized populations. (d) The temporal evolution of ri is represented in (d).
[(e)–(h)] Due to our chosen spanning tree, oscillator 1 leaves the other synchronized population, and the phase of this oscillator deviates a
distance of π from the phase of the other oscillators. The snapshots in the (e)–(h) validate our claim of predicting the members of the clusters
using the vertex partitioning of the used repulsive spanning tree. Here εR = −3.6 and εA = 0.01.
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FIG. 10. The (local) stability of the cluster-synchronized state.
The simulated maximum Lyapunov exponent � (red dashed line)
transverse to the cluster synchronization manifold becomes negative,
confirming each cluster’s stability. The underlying network K100 con-
tains the chain as the repulsive subgraph as illustrated in Fig. 8. The
stability of the synchronous solution is further validated by plotting
the cluster synchronization error E (blue line), which drops to zero
beyond a specific strength of εR < 0. Here εA = 0.01. Please see the
main text for further information.

solution may become unbounded. As observed, one spanning
tree may permit choosing the negative coupling strength up
to −4, while another may restrict going beyond −3.6. To
clarify further, our aim is to emphasize the generality of
the results: When passing the repulsive coupling of suitable
strength through any one of the spanning trees of a connected
network, it will split into two coherent clusters with a π

phase difference. However, the range of the effective repulsive
strength may vary depending on the choice of the spanning
trees in the connected network.

IV. CONCLUSION

The key finding of this article is the repulsive informa-
tion propagation of an adequate strength through the existing
spanning tree(s) of a connected network can easily induce
two distinct groups. The oscillators within the same group
are in a coherent state, and oscillators of different groups
manifest a phase difference of π . Such splitting of two syn-
chronized clusters is thus possible in any connected graph, as
each connected network possesses at least one spanning tree.
Moreover, we can successfully anticipate the members of each
cluster utilizing the vertex partitioning of the repulsive span-
ning tree. We successfully analyze the local stability of the
cluster synchronous solution by adopting the master stability
function approach [66,67]. In addition, we analyze that

(i) There exists at least one spanning tree in every globally
connected network so that whenever we pass the repulsive
coupling through this spanning tree, the signed networks with
competitive interactions generate a solitary state.

(ii) The repulsive coupling introduced through the simple
chain can originate antisynchronization in any complete graph
with even vertices. For the appearance of antisynchroniza-
tion, the isolated oscillators dynamics given by f must be an
odd function. Also the coupling function H must be an odd
function.

The opposite interaction may create frustration in the cou-
pled system. We are able to predict this frustration, too, in

advance (before numerical simulations). Besides, we also cal-
culate the frustration of the chain. Whenever this Fchain is equal
to zero, each ith oscillator maintains π phase difference with
the (i + 1)-th oscillator for i = 1, 2, , 3, . . . , (N − 1). Thus,
the system gives rise to an exciting formation, where the
vertices with odd indices lie in one group, and other nodes
with even indices belong to a different cluster maintaining π

phase difference. We believe all these findings will foster our
understanding of the peculiar behavior of systems with both
positive-negative mixed couplings.
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APPENDIX

In our main text, we have explored the outcomes concern-
ing complete networks. Here we present results about random
networks. These findings illustrate the broad applicability of
our discoveries to a wide range of connected networks. We
also allocate two subsections for detailed exploration. The
fifth subsection outlines the enumeration of various spanning
trees within the complete graph K4. In the sixth subsection,
we conduct a microscopic examination of the forward and
backward transitions of F , varying the coupling strength εR

specifically for the selected spanning tree.

1. A network with 10 nodes

Till now we present results on complete graphs only. But
our prediction algorithm through the vertex decomposition of
the repulsive spanning tree works quite well even in other
connected networks, too. For instance, we choose a network
with N = 10 nodes and L = 15 edges in Fig. 11. Using Kirch-
hoff’s matrix-tree theorem [68], we calculate this network
contains 810 spanning trees. We select only two nonisomor-
phic spanning trees. The first one is a simple chain of N = 10
nodes connecting the ith and (i + 1)-th oscillators for i =
1, 2, 3, . . . , (N − 1). The repulsive edges, i.e., the branches,
are highlighted using red arcs, and the chords, i.e., the at-
tractive links, are represented by black arcs in Fig. 11(a).
The oscillators rearrange themselves analogously to the vertex
partitioning of the chosen spanning tree irrespective of the se-
lected initial conditions from [−1, 1] × [−1, 1]. Figure 11(b)
reflects that the phase difference of the oscillators within the
same group is nearly zero; nevertheless, the phase difference
between the two clusters is π under numerical accuracy.
Figure 11(c) demonstrates the onset of cluster synchronization
through a snapshot at a particular time step after the initial
transient. Figure 11(d) reveals that the oscillatory rhythm is
maintained despite the presence of mixed interactions.

Figure 12 demonstrates the consistency of our findings. In
this figure, we use the same nonbipartite network considered
in Fig. 11(a) but with a different spanning tree. This consid-
ered repulsive spanning tree in Fig. 12(a) is nonisomorphic to
the earlier contemplated spanning tree in Fig. 11(a). Again,
the identical SL oscillators settle down to a two-cluster state,
and the members of each cluster can be easily identified
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FIG. 11. Predicting the members of two synchronized clusters. (a) Red dashed arcs delineate a spanning tree of the drawn network with
10 nodes. We pass the positive coupling strength through the black edges. Here εA = 10−2 and εR = −10−1. (b) Utilizing the bipartiteness of
the used repulsive spanning tree, we can easily predict the oscillators with indices {1, 3, 5, 7, 9} and {2, 4, 6, 8, 10} belong to two different
clusters. In addition, the phase difference between any two representative oscillators of these respective two clusters is π . (c) The snapshot at a
specific time after the transient validates the occurrence of cluster synchronization. (d) The temporal evolution of yi attests that the trajectories
oscillate in a limit-cycle region, maintaining a fixed π phase difference between these two synchronized populations.

using the vertex partitioning of the repulsive spanning tree.
Figure 12(b) confirms in addition to the spontaneous forma-
tion of cluster synchronization, the clusters obey a π phase
difference between them. The oscillators from the sets V1 =
{1, 4, 5, 8} and V2 = {2, 3, 6, 7, 9, 10} represent two different
groups as shown in Fig. 12(c). The temporal evolution of these
two groups are shown in Fig. 12(d).

Figures 11 and 12 are drawn for fixed εA = 0.01 and
εR = −0.1. This repulsive coupling strength εR is chosen from
the saturated domain of F , as depicted through Fig. 13. The
yellow lines in Fig. 13 delineate the result for the repulsive
spanning tree used in Fig. 12. The theoretical prediction of F
and Fchain are 2/3 and 8/9, respectively, which are perfectly
match with our numerically found F ≈ 0.666 and Fchain ≈
0.889 for this spanning tree. The red one in Fig. 13 is the
numerically evaluated frustrations for the repulsive spanning
tree shown in Fig. 11(a). For this repulsive subgraph, F and
Fchain saturates to the values 0.666 and 0, respectively, which
reveals an excellent agreement with our theoretical prediction
F = 2/3, and Fchain = 0. Note that both the nonisomorphic
spanning trees lead to the same F values for this network. The
initial fluctuations in the numerical simulations are due to the
choice of random initial conditions from [−1, 1] × [−1, 1] for
each εR. Our predicted values of frustrations agree with the
numerical simulations in the saturated domain of F .

2. A network with eight nodes

We choose a different network with N = 8 nodes and
L = 15 links [see Fig. 14(a)] for further numerical assess-
ment. Kirchhoff’s matrix-tree theorem provides the number
of spanning trees for this network is 1606. We provide the
validation of our findings here by randomly selecting two
nonisomorphic spanning trees as presented in Figs. 14(b) and
14(c). Again, we find the splitting of two clusters for both of
these repulsive spanning trees (the results are not shown here
to avoid the monotonicity). We fix the coupling strengths at
εA = 0.01 and εR = −0.1. The SL oscillators split into two
groups maintaining the vertex decomposition of the chosen
repulsive spanning trees. These two synchronized groups ex-
hibit a π phase difference. All the figures of networks are
drawn in this article using the software Gephi [62].

These selected spanning trees can induce the same amount
of frustration in the whole network. To calculate F for both
of these repulsive subgraphs, we plot the variation of F in
Fig. 15(a) by changing the coupling strength εR. The positive
coupling strength εA = 0.01 is kept fixed. When εR is positive,
then the oscillators are almost in-phase synchronized. How-
ever, beyond a critical value of εR, the values of F saturate to
0.666 for both of the chosen spanning trees. This numerically
saturated value of F agrees well with our predicted F = 2/3.
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FIG. 12. Prediction of the members of the clusters through a different spanning tree. (a) We choose the same network as portrayed in
Fig. 11 and pass the negative coupling strength εR = −10−1 through a different spaning tree contemplated through the red dashed arcs. The
attractive coupling strength εA = 10−2 is applied through the black links. The vertex partitioning of the chosen repulsive path provides two
disjoint and independent sets V1 = {1, 4, 5, 8} and V2 = {2, 3, 6, 7, 9, 10}, respectively. Panels (b) and (c) confirm the members of the two
clusters separate as per the vertex partitioning of the repulsive spanning tree. (d) The trajectories in the limit-cycle regime sustain coherent
behavior within the same cluster; however, the clusters undergo a phase difference of π .

FIG. 13. Numerically calculated frustration indices F and Fchain for two nonisomorphic spanning trees. (a) Despite the chosen two spanning
trees being different as depicted in Figs. 11(a) and 12(a), the emergent frustration in the whole network remains the same in the saturated
domain. (b) However, the asymptotically saturated frustration that arises in the subgraph labeled as the chain in the article is zero (red) for the
spanning tree shown in Fig. 11(a) and 0.889206886 (yellow) for the spanning tree used in Fig. 12(a). We vary the negative coupling strength
εR from 10−2 with a tiny step size of −10−5 in both these subfigures by keeping fixed the attractive coupling strength at εA = 0.01. Before the
saturation, we observe random fluctuations in the values of these two measures F and Fchain due to the choice of random initial conditions from
[−1, 1] × [−1, 1] at each step. Every data point in this figure represents a single realization of the process.
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FIG. 14. A randomly chosen graph along with its two different spanning trees. (a) A nonbipartite network with 8 nodes and 15 links is
drawn here. [(b) and (c)] We trace this network’s two distinct nonisomorphic spanning trees as shown in (b) and (c). The vertex partitioning of
the spanning tree in (b) is V1 = {1, 3, 5, 7} and V2 = {2, 4, 6, 8}, whereas the set of vertices for the spanning tree in (c) is V1 = {1, 5, 6, 7, 8}
and V2 = {2, 3, 4}.

For the repulsive spanning tree in Fig. 14(b), the oscillators
split into two groups V1 = {1, 3, 5, 7} and V2 = {2, 4, 6, 8}.
Hence, Fchain should be zero for this repulsive chain as per
our theoretical analysis. This expectation is confirmed in
Fig. 15(b) through the asymptotic convergence of Fchain to zero
[see the red line in Fig. 15(b)]. The spanning tree in Fig. 14(c)
creates two different clusters. Each of these groups is given by
V1 = {1, 5, 6, 7, 8} and V2 = {2, 3, 4}. The presence of links
2-3, 3-4, 5-6, 6-7, and 7-8 within the same set contributes
to Fchain. And thus the predicted value of Fchain is 2 × 5/7 =
10/7. Our prediction works quite well in the saturated domain
[see the yellow line in Fig. 15(b)]. The value of εR = −0.1, for
which we notice the emergence of two clusters with π phase
difference, is chosen from the saturated domain as reflected
through Fig. 15. Once the value of F converges, it will not
fluctuate further irrespective of the choice of initial conditions
within [−1, 1] × [−1, 1]. A similar argument is valid for the
measure Fchain, too.

3. A network with six nodes without containing
the chain as a subgraph

To now, we have considered all networks containing the
chain 1-2-3-· · · -(N-2)-(N-1)-N as a subgraph. Suppose that
chain is not a part of the graph. Then can we anticipate similar
results for such networks? To answer this query, we select a
graph of N = 6 vertices and L = 7 links in Fig. 16(a). This
network contains eight different spanning trees and does not
contain the chain as its subgraph. A spanning tree 1-2-3-6-5-4
is highlighted through the red arcs. The vertex partitioning of
this spanning tree yields two disjoint sets V1 = {1, 3, 5} and
V2 = {2, 4, 6}. Interestingly, the subgraph termed as “chain”
in this study contains the same vertex decomposition. The
coupled oscillators under the influence of this repulsive span-
ning tree give rise to two cluster states, as shown in Figs. 16(b)
and 16(c). The black arcs in Fig. 16(a) represent the attractive
interaction with the coupling strength εA = 0.01. The identi-
cal SL oscillators arrange themselves in two different clusters

FIG. 15. F and Fchain with varying εR. Numerically saturated values of F and Fchain closely match with our theoretically calculated values
of these measures. The red (dark gray) line represents the results for the repulsive spanning tree in Fig. 14(b), whereas the yellow (light
gray) line displays the results for the spanning tree in Fig. 14(c). (a) For both of these nonisomorphic spanning trees, the system saturates
to the F ≈ 0.666431904, while our analytical predicted F = 2/3. (b) Passing the repulsive coupling strength through the spanning tree in
Fig. 14(b), we get Fchain ≈ 0. Fchain ≈ 1.42900455 for the spanning tree in Fig. 14(c), which is very close to the theoretically predicted Fchain =
10/7. Here εA = 10−2 and εR is varied with a small step length −10−5 starting from 10−2. The initial conditions are drawn randomly from
[−1, 1] × [−1, 1]. Every data point in this figure represents a single realization of the process.
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FIG. 16. Cluster synchronization in a network of N = 6 nonbipartite network. (a) We choose a nonbipartite network that does not contain
the chain. We trace a spanning tree whose bipartiteness provides two disjoint sets V1 = {1, 3, 5} and V2 = {2, 4, 6}. We pass the repulsive
coupling strength εR = −0.1 through the red dashed arcs and the attractive coupling strength εA = 0.01 through the black links. (b) If we
choose one oscillator from the set V1 and another one from the set V2, then the phase difference between that two oscillators is π as described
through this snapshot. (c) The system splits into two groups, as revealed through the evolution of the oscillators in the xy plane.

as per the vertex partitioning of the repulsive spanning tree.
Additionally, these two groups possess a π phase difference.
Hence, we find Fchain = 0. Despite the competitive interaction
among those oscillators, the system still maintains its oscil-
latory states. The initial conditions are randomly drawn from
[−1, 1] × [−1, 1]. The value of εR = −0.1 is selected from
the saturated domain of F for fixed εA = 0.01. The saturated
numerically simulated value of F is 0.2859. Our theoretical
prediction suggests the 3-5 attractive link will only contribute
to the calculation of F , and thus our analytically predicted
value of F is 2/7. Therefore, once again, our predicted value
of F matches with the numerically obtained value in the
saturated domain.

4. Another network with six nodes without containing
the chain as a subgraph

For further validation, we consider another nonbipartite
network with N = 6 and L = 7. This network does not pos-
sess the chain as its subgraph. In fact, although this network
contains eight different spanning trees, none of these spanning
trees can be decomposed into two disjoint sets of vertices
{1, 3, 5} and {2, 4, 6}. We select a spanning tree 1-2-4-6-
5-3 as highlighted by red arcs in Fig. 17(a). The vertex

partitioning produces two independent and disjoint sets V1 =
{1, 4, 5} and V2 = {2, 3, 6}. We pass the repulsive coupling
strength εR = −0.1 through this spanning tree and pass the
attractive coupling strength εA = 0.01 through the remaining
chords [black arcs in Fig. 17(a)]. For the theoretical predic-
tion, we allocate the phase α to each oscillator of V1 and
the phase α + π to each element of V2. The attractive link
4 − 5 solely will contribute to the calculation of the measure
F , and the predicted value of F will be 2/7. This predicted
value fits well with our numerically simulated value 0.2859
of F . Similarly, for the calculation of Fchain, the pair of os-
cillators (2,3) and (4,5) contribute. Thus, the predicted value
of Fchain = 4/5. Note that, although the graph in Fig. 16(a)
does not contain the chain as its subgraph, still able to produce
Fchain = 0 for a suitable choice of the repulsive spanning tree.
However, the network in Fig. 17(a) is never able to give zero
value of Fchain for our chosen spanning tree as well as for
any other spanning trees, too. The edges within the same sets
{1, 3, 5} and {2, 4, 6} actually do not allow Fchain to diminish
to zero. However, the ensemble splits into two groups, and the
members of each group are identified easily using the vertex
partitioning V1 = {1, 4, 5} and V2 = {2, 3, 6} of the selected
repulsive spanning tree. We plot the phases of each oscillator
in Fig. 17(b) at a particular time after the initial transient.

FIG. 17. Predicting the members of the clusters through the vertex partitioning of the repulsive spanning tree. (a) The set of vertices of the
chosen spanning tree (red dashed arcs) can be split into two disjoint sets V1 = {1, 4, 5} and V2 = {2, 3, 6}. Here εA = 0.01 is passed through
the black links of the chosen network of N = 6 vertices. (b) The vertex decomposition of the repulsive bipartite subgraph allows predicting the
two clusters appropriately. The snapshot verifies the π phase difference between those two clusters. (c) The formation of two clusters separated
by a phase difference of π is portrayed here.
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The position of the intrinsic phases confirms our successful
prediction approach utilizing the vertex decomposition of the
repulsive spanning tree. Figure 17(c) reflects the oscillatory
nature of each element. Both these clusters are π distance
apart from one another as per Fig. 17.

5. All spanning tress of the complete graph K4

There are 16 spanning trees in total for the complete graph
K4. Below, we will list them by showing the edges present
in each spanning tree. Each vertex is labeled as “1,” “2,” “3,”
and “4.”

Spanning trees possessing the sequence (1,2,2,1) as the
degrees of their vertices:

(1) (1-2, 2-3, 3-4) [see Fig. 3(c)]
(2) (1-2, 1-3, 2-4)
(3) (1-2, 1-4, 2-3)
(4) (1-3, 2-3, 1-4)
(5) (1-4, 2-4, 2-3)
(6) (1-3, 1-4, 2-4)
(7) (1-2, 2-4, 3-4)
(8) (1-3, 2-4, 3-4)
(9) (1-2, 1-3, 3-4)
(10) (1-2, 1-4, 3-4)
(11) (1-3, 2-3, 2-4)
(12) (1-4, 2-3, 3-4)
Spanning trees possessing the sequence (1,3,1,1) as the

degrees of their vertices:
(1) (1-2, 1-3, 1-4) [see Fig. 3(b)]
(2) (1-2, 2-3, 2-4)
(3) (1-3, 2-3, 3-4)
(4) (1-4, 2-4, 3-4)
Each of these sets represents a spanning tree of the com-

plete graph K4.

6. Examining the microscopic dynamics of Fig. 6

On close examination of the purple plots in Fig. 6, one can
notice the distinctive spiky profile exhibited by the frustration
order parameter F in the neighborhood of εR = 0 due to mul-
tistabilty. This spiky profile raises the intriguing possibility of
the presence of a hysteresis loop. Thus, to delve into the hys-
teresis loops, we focus on the complete network K4 and select
the repulsive spanning tree with edges {1-2, 1-3, 1-4}, akin
to the purple plots depicted in Fig. 6. Our approach involves
varying the coupling strength εR with a fixed step length of
0.00001. During the forward transition, we vary εR from 0.01
to −0.03, while for the backward transition, the range shifts
from −0.03 to 0.01. At the outset of both transitions, we
set all initial conditions randomly from [−1, 1] × [−1, 1].
Following the first iteration, we utilize the last simulation
point as the initial conditions for subsequent iterations, with
a minor perturbation added to each oscillator drawn from the
interval [0,0.01]. In the absence of these perturbations, when
the oscillators become synchronized, they maintain the same
initial conditions in the subsequent iteration. Consequently,
this synchronization inhibits the observation of any transition
in F during the forward transition. Thus, F consistently re-
mains at 2 if we do not introduce these small perturbations.
Hence, we opt not to change the value of εR adiabatically.
Instead, we introduce small perturbations to each oscillator
to disrupt synchronization and facilitate the observation of
transitions.

Clearly, the coupling strength εR marking the forward tran-
sition (F = 2 to F < 2) differs from that of the backward
transition, where F = 1 to F > 1 occurs. This distinction
is evident in Fig. 18(b), where we track the variation of
the Kuramoto order parameter, denoted as Order. It is given
by Order = | 1

N

∑N
j=1 eiθ j |, such that Order = 1 when the

FIG. 18. Variation of F and Order with respect to εR. We systematically vary the coupling strength εR with a fixed step length of 0.00001.
For the forward transition, εR ranges from 0.01 to −0.03; conversely, for the backward transition, it ranges from −0.03 to 0.01. Initially,
all conditions are randomly chosen from [−1, 1] × [−1, 1]. Subsequently, the last point from each simulation iteration serves as the initial
conditions for the next iteration, with a small perturbation added to each oscillator from the interval [0,0.01]. Notably, the coupling strength εR

marking the forward transition (F = 2 to F < 2) differs from that of the backward transition (F = 1 to F > 1). This distinction is evident in
(b), depicting the variation of the Kuramoto order parameter, denoted as Order. Despite multiple repetitions with different initial conditions,
the observed transition remains consistent. Every data point in this figure represents a single realization of the process.
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phases of the oscillators are completely synchronized. Despite
multiple repetitions, the observed transition pattern remains
consistent.

We have attempted to determine the forward and backward
transition points analytically but currently find it challeng-
ing to do so. Furthermore, we have only analyzed this
phenomenon within the context of Fig. 6 and have yet to
confirm its presence in other networks. Consequently, we

hesitate to generalize or assert its robustness without further
analytical tractability. It is worth noting that the parame-
ter F solely encompasses information about the phases of
each oscillator, whereas we focus on amplitude oscillators in
our study. Hence, conducting analytical simulations at this
juncture poses challenges. However, we think exploring this
phenomenon more comprehensively can be an interesting fu-
ture research endeavor.
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