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We present a multiscale stochastic analysis of foreign exchange rates using the H-theory formalism, which
provides a hierarchical intermittency model for the information cascade in the currency market. We examine the
distributions of returns and volatilities for the three most traded currency pairs: euro–U.S. dollar, U.S. dollar–
Japanese yen, and British pound–U.S. dollar. We find that these markets have a hierarchy of timescales, with
larger markets exhibiting more hierarchy levels. We provide a theoretical framework for understanding why the
number of levels in the information cascade increases with market size, in analogy with similar behavior for
the energy cascade in turbulence as a function of Reynolds number. We briefly argue that using turbulence-
like models for financial markets can also provide valuable insights for developing efficient algorithmic trading
strategies.
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I. INTRODUCTION

Turbulence is a ubiquitous phenomenon that transcends
disciplinary boundaries, manifesting itself in various physi-
cal, biological, social, and even purely mathematical systems.
Beyond its original context [1], turbulence-like behavior has
been observed, for example, in disordered condensed matter
systems, such as random lasers [2] and the integer quantum
Hall transition [3], as well as in complex interdisciplinary
systems, such as brain activity [4,5], seismic processes [6],
and financial markets [7–12]. In many cases, however, the
analogy with turbulence is largely tentative, as it stems from
identifying certain common statistical features, such as power-
law decay of the energy spectrum (akin to Kolmogorov’s
famous 5/3 law) and scale-dependent probability distributions
(associated with intermittency). In foreign exchange (forex)
markets, on the other hand, a deep analogy between price
fluctuations and fully developed turbulence has been proposed
[7], whereby an “information cascade” (from longer to shorter
timescales) among investors plays the role of the energy cas-
cade (from larger to smaller length scales) in fluid turbulence.
But, to date, confirmation of this hypothesis has been mostly
indirect (e.g., via correlation between volatilities at different
time horizons [13,14]). Here we present the first direct evi-
dence of the presence of a hierarchy of timescales in forex
markets, using a multiscale statistical mechanics formalism.
Our findings suggest that the dynamics of forex markets can
be modeled by means of a well-developed stochastic theory
of turbulence [15], which may have deep implications for the
understanding of the price formation process and the develop-
ment of algorithmic trading strategies.

Forex is the most active and liquid financial market in
the world, trading several trillion U.S. dollars per day [16].
It is a platform open 24 h a day, 5 days a week, where
anyone can trade from anywhere in the world, thus repre-
senting a truly global market with a multitude of investors,
from single individuals to large financial institutions. Inter-
estingly, an asymmetric flow of information from long-term
to short-term traders has been observed in this market [13].
These characteristics suggest a natural analogy between forex
price fluctuations and velocity fluctuations in fully developed
turbulence [7].

In this article, we investigate the turbulent nature of three
most traded currency pairs, namely euro and U.S. dollar
(EUR-USD), British pound and U.S. dollar (GBP-USD), and
U.S. dollar and Japanese yen (USD-JPY), which together
represent more than half of the total trading volume. We have
analyzed 1-h quotes from November 2012 to April 2023 [17],
corresponding to about 64 000 points for each currency pair,
as show in Fig. 1. The challenge is to extract from these
random-walk–like time series more precise information about
the underlying complex dynamical process that leads to price
fluctuations. To address this challenge, we have developed
an intermittency model for the information cascade in forex
markets. Our approach is based on a stochastic hierarchical
formalism (H theory), which was first developed in the context
of fluid turbulence [18,19] and has since been successfully
applied to various other systems [2,3,15]. H theory yields a
family of probability distributions labeled by the number, N ,
of levels in the cascade hierarchy. Comparing the model to the
empirical data allows us to estimate the number of effective
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FIG. 1. One-hour quotes for the exchange rates of the three most
traded currency pairs: EUR-USD (blue), JPY-USD (orange), and
GBP-USD (green). Here we have normalized the initial point of all
three series to unity for convenience of visualization.

timescales within each currency market. The ordering of the
forex markets from higher to lower N predicted by the theory
is in complete agreement with the ranking of the currency
pairs according to trading volume. Our results, thus, not only
reveal direct evidence of a turbulence-like hierarchical dy-
namical structure within forex markets but also show that the
more active a market is, the greater the number of levels in the
underlying information cascade.

The paper is organized as follows. In Sec. II, we present
our stochastic volatility hierarchical model (Sec. II A), discuss
the main properties of the resulting stationary distribution of
returns (Sec. II B), and introduce a joint fitting procedure to fit
simultaneously the empirical data for both returns and volatil-
ities (Sec. II C). The results of the application of our approach
to the three most traded currency pairs, namely EUR-USD,
GBP-USD, and USD-JPY, are presented in Sec. III, while
in Sec. IV we briefly discuss the relevance and implications
of our results. Finally, our main findings and conclusions are
summarized in Sec. V.

II. METHODOLOGY

A. The model

We model the logarithmic return of exchange rates, xτ (t ) =
ln S(t + τ ) − ln S(t ), where S(t ) is the rate of a given currency
pair at time t and τ is a short timescale, by the following
Langevin equation:

dxτ (t ) = −μxτ (t )dt +
√

μvτ (t )dW0(t ), (1)

where μ is a positive constant, vτ (t ) is the volatility at scale
τ , and W0(t ) is a Wiener process (standard Brownian mo-
tion). Empirical studies have long shown that volatility of
financial prices not only varies in time [20] but also exhibits
clustering across timescales [21]—a phenomenon analogous
to the intermittency of energy dissipation in turbulence. In
forex markets, in addition, there is evidence of an asymmetric
flow of information from long to short timescales, meaning
that volatility measured at short time horizons is impacted by
long-horizon volatility [13,14], but not vice versa—a process
akin to the energy cascade in turbulence.

Thus, in the spirit of Kolmogorov’s theory of intermittency
[1], we model the information cascade in forex markets by the
following system of stochastic differential equations for the
scale-dependent volatilities [15]:

dvi(t ) = −γi[vi(t ) − vi−1(t )]dt + κivi(t )dWi(t ),

i = 1, . . . , N, (2)

where γi and κi are positive constants and Wi(t ) are inde-
pendent Wiener processes. Here we assume a hierarchy of
timescales, τi � τi−1, i = 1, . . . , N , so that vi is the volatility
at scale τi, with τ0 representing the largest timescale (say, the
span of the time series) and v0 being the historical volatil-
ity (i.e., measured at scale τ0). The deterministic term in
(2) captures the asymmetric flow of information from higher
to lower levels down the hierarchy, while the multiplicative
noise term ensures that volatility fluctuates but remains always
positive [15]. The volatility appearing in (1) is associated
with the volatility at the smallest scale in the hierarchy, i.e.,
v(t ) = vN (t ). We also note that by taking the mean of (2), one
can readily show that in the stationary regime the variables
vi all have the same mean 〈vi〉 = v0, for i = 1, . . . , N . In
essence, this implies that the distinct volatilities across vari-
ous timescales fluctuate around the same mean, namely the
historical volatility v0.

Many stochastic volatility (SV) models have been used
in finance [20], including econometric-based models, such
as GARCH and HARCH models [22], among others. Our
stochastic hierarchical model defined by (1) and (2) has the
advantage that it describes explicitly the different horizon
volatilities and yet admits, under reasonable approximations,
an analytical solution for both the return and volatility distri-
butions which describe remarkably well the empirical data;
see below. Also, because our model for the stochastic volatil-
ity dynamics is formulated hierarchically, it allows us to
probe the number of effective timescales (i.e., levels in the
hierarchy) present in a given dataset—a property that is not
easily accessible in other SV models. In our formulation above
we have assumed that the Wiener processes driving returns
and volatilities are uncorrelated, i.e., 〈dWi(t )dWj (t )〉 = dtδi j ,
i, j = 0, 1, . . . , N . In a more general setting we could allow,
for instance, for correlation between returns and the short-
term volatilities, i.e., 〈dW0(t )dWN (t )〉 = ρdt , with ρ < 0, so
as to capture the so-called leverage effect, which pertains to
the often found negative correlation between asset prices or
returns and volatilities [23,24]. Since here we are mainly in-
terested in the long-term distribution of returns and volatilites,
such correlation effects are not relevant for our purposes.

Because the model composed of (1) and (2) is not exactly
soluble, we appeal to the separation of timescales to obtain
an approximate analytical solution. First, it is clear that the
volatility vN (t ) in (1) varies more slowly than the returns x(t ),
that is, τN � τ , since the former is an aggregate quantity of
the latter. Thus, over a scale of time τN , during which the
volatility vN (t ) does not vary much, the returns will tend
to reach a quasistationary regime described by a Gaussian
distribution with variance vN :

P(x|vN ) = 1√
2πvN

exp

(
− x2

2vN

)
. (3)
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Compounding this Gaussian over all possible values of vN , we
can write the probability distribution, P(xτ ), of returns as

P(xτ ) =
∫ ∞

0

1√
2πvN

exp

(
− x2

τ

2vN

)
f (vN ) dvN , (4)

where f (vN ) is the stationary probability density function of
vN (t ).

In the same vein, we solve (2) by holding the slower
variable vi−1 fixed and computing the stationary solution,
f (vi|vi−1), of the corresponding Fokker-Planck equation,
which yields an inverse-gamma distribution:

f (vi|vi−1) = (βivi−1)βi+1

	(βi + 1)
v

−βi−2
i exp

(
−βivi−1

vi

)
, (5)

where βi = 2γi/κ
2
i . The distribution f (vN ) at the

smallest scale is then obtained by integrating over
the larger scales. More specifically, we first write
f (vN ) = ∫

f (vN |vN−1) f (vN−1)dvN−1 and then use this
expression recursively up to the top level of the hierarchy:

f (vN ) =
∫

dvN−1 . . .

∫
dv1

N∏
i=1

f (vi|vi−1). (6)

Inserting (5) into (6) and performing this multiple integral
yields the following expression [15]:

f (vN ) = 1

v0ω�(β + 1)
G0,N

N,0

(
−β − 1

−

∣∣∣∣∣ vN

v0ω

)
, (7)

where ω = ∏N
j=1 β j , β ≡ (β1, . . . , βN ), �(β) ≡ ∏N

j=1 	(β j ),
and Gm,n

p,q is the Meijer G function [25].
Now, substituting (7) into (4), one obtains (see details of

derivation in the next section)

PN (x) = 1√
2πωv0

�(β + 3/2)
�(β + 1) N F0

(
β + 3/2; − x2

2ωv0

)
,

(8)

where pFq is the generalized hypergeometric function. In the
remainder of the paper, we will set βi = β, i = 1, . . . , N ,
which is justifiable if we assume scale invariance across
the information hierarchy, so that the conditional volatility
distributions f (vi|vi−1) have the same form at all levels of
the hierarchy. From the asymptotic behavior of the function
N F0(a, x), see below, one can show that the distributions PN (x)
have power-law tails:

PN (x) ≈ CN

x2β+3
, |x| → ∞, (9)

for some constant CN that increases with N ; see below. We
also note that by construction PN (x) has zero mean, 〈x〉 = 0,
and finite variance, 〈x2〉 = v0. As discussed elsewhere [15],
there is a second class of intermittency models that leads to
distributions, PN (x), with stretched exponential tails. Here,
however, we shall consider only the power-law distributions
presented above, as this class proved more suitable for forex
data. In the next section we give more details about the deriva-
tion of Eq. (8) and also discuss some relevant properties of this
class of power-law-tailed distributions.

B. The power-law distribution class

In order to obtain Eq. (8), we first insert (7) into (4), which
yields

P(xτ ) =
∫ ∞

0

1√
2πvN

exp

(
− x2

τ

2vN

)
1

v0ω�(β + 1)

× G0,N
N,0

(
−β − 1

−

∣∣∣∣∣ vN

v0ω

)
dvN . (10)

Expressing the exponential as a Meijer G function,

exp(ax) = G1,0
0,1

(
−
0

∣∣∣∣∣−ax

)
, (11)

and making use of integration properties of the product of two
G functions [25], it is straightforward to integrate analytically
(10), yielding:

PN (x) = 1√
2πωv0�(β + 1)

G1,N
N1

(
−β − 1/2

0

∣∣∣∣∣ x2

2ωv0

)
. (12)

Now, using the identity

pFq

(
ap

bq

∣∣∣∣ z

)
= �(bq)

�(ap)
G 1, p

p, q+1

(
1 − ap

0, 1 − bq

∣∣∣∣ − z

)
, (13)

where pFq is the generalized hypergeometric function, it then
follows that PN (x) can be expressed more simply as

PN (x) = 1√
2πωv0

�(β + 3/2)
�(β + 1) N F0

(
β + 3/2; − x2

2ωv0

)
,

(14)

thus obtaining Eq. (8).
The case N = 1 is of particular interest because the distri-

bution in (14),

P1(x) = 1√
2πβv0

	(β + 3/2)

	(β + 1)
1F0

(
β + 3/2,− x2

2βv0

)
,

(15)

can be expressed in terms of a simpler function using the
identity 1F0(a, z) = (1 − z)−a [25], which yields

P1(x) = 1√
2πβv0

	(β + 3/2)

	(β + 1)

(
1 + x2

2βv0

)−(β+ 3
2 )

. (16)

Alternatively, P1(x) can be written in terms of the so-called
q-Gaussian distribution [26,27]:

P1(x) =
√

q − 1√
(5 − 3q)πσ 2

	
(

1
q−1

)
	

(
1

q−1 − 1
2

) expq

[
− x2

(5 − 3q)σ 2

]
,

(17)
where

q = 1 + 2

2β + 3
, (18)

σ 2 = v0 = 〈x2〉, and

expq(x) ≡ [1 + (1 − q)x]
1

1−q . (19)

Relation (18) implies that 1 < q < 5
3 , since β > 0 by defini-

tion. This upper bound ensures a finite second moment for
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the q-Gaussian distribution in (17). The q-Gaussian has been
widely used to model distributions with fat tails, especially
in the context of nonextensive statistical mechanics, where
the q-exponential distribution is obtained from maximizing a
generalized entropy functional [27]. Notably, the emergence
of the q-Gaussian distribution in H theory does not rely on
the formalism of nonextensive statistical mechanics. Rather,
it emerges as the first member of a family of non-Gaussian,
power-law-tailed distributions which arises from an underly-
ing hierarchical stochastic dynamics, as discussed in Sec. II A.

For N = 1 the distribution P1(x) has an explicit algebraic
form, see (16), and hence a power-law decay for large x:

P1(x) ∼ 1

x2β+3
, x � x∗

1 =
√

2βv0. (20)

Now, from the asymptotic behavior of the function N F0,

N F0(a1, . . . , aN ; −x) ∼
N∑

i=1

cix
−ai

[
1 + O

(
1

x

)]
,

for |x| → ∞, (21)

where the ci’s are constants, it follows that the distributions in
(8) all have power-law tails for any N . In particular, under the
assumption of identical βi, that is, βi = β, i = 1, . . . , N , the
distributions PN (x) all have the same power-law tail:

PN (x) ≈ CN

x2β+3
, for |x| � x∗

N , (22)

for some constant CN and some characteristic scale x∗
N . One

thus sees that Eq. (14), with βi = β, provides a large class of
different distributions but all having the same power-law tail
exponent (for fixed β).

One important point to bear in mind, however, is that both
the constant CN and the characteristic value x∗

N in (22) increase
with N . This means that the greater the N , the more delayed
(i.e., for larger values of x) is the start of the power-law
regime. This is illustrated in Fig. 2(a), which shows plots
of the function PN (x) given in (14), for N = 1, 2, 3, 4, 5 and
v0 = β = 1, so that all distributions have unity variance and
the same power-law tail. In Fig. 2(b) we plot in log-log scale
the positive parts (i.e., for x > 0) of the distributions shown in
Fig. 2(a), where one sees that the tails tend to become parallel
for large x, but the crossover to the power-law regime (which
appears in the log-log plot as a straight downward line) is
considerably delayed as N increases. Note furthermore that,
although the distributions have the same power-law tail in
the very large x limit, they differ significantly in the central
region, as seen in Fig. 2(a). Conversely, if one requires that
the distributions PN (x) have, for different N ′s, comparable
behavior in a (small) finite region near the center of the
distribution, then the respective values of β must necessarily
increase with N to compensate the fact that CN increases with
N , then leading to quite different tail behaviors for large x.

The previous discussion thus shows that caution is needed
when fitting empirical data (which usually have limited range)
with theoretical power-law distributions: Fitting the tail may
lead to quite different behavior in the center and vice versa.
Furthermore, as shown above and also discussed elsewhere
[28,29], distributions of the measured signal (say, returns in
financial data or velocity increments in turbulence) can be

FIG. 2. (a) Plots of the distribution PN (x) given in Eq. (12) for
v0 = 1, β = 1, and N = 1, 2, 3, 4, 5. (b) Same as in (a) in log-log
scale for the positive side (x > 0) of the distributions.

fitted reasonably well by different model distributions, thus
making it difficult to select between competing models. In
other words, model selection on the basis solely of the signal
distribution tends to be less discriminating, because different
theoretical curves can yield somewhat comparable results es-
pecially for limited datasets. To circumvent this limitation, we
propose a joint fitting procedure (see below) where we under-
take to fit simultaneously the empirical distributions of both
the signal (returns) and its background (volatilities), using the
respective formulas predicted by our model. We emphasize
that this is a more stringent procedure than simply fitting the
return data, because it tests both the model distribution and
the assumptions that went into deriving the model.

C. The volatility series and the joint fit procedure

As indicated above, since we have analytical expressions
for both the return and volatility distributions, we can fit the
two theoretical curves, Eqs. (8) and (7), simultaneously to the
empirical histograms for returns and volatilities, respectively.
To do this, we first construct a volatility series {v(t )} for a
given empirical return series {xτ (t )}, as described below.
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FIG. 3. Errors of the joint fit as a function of the number N of
hierarchy levels for the three most traded currency pairs: EUR-USD
(blue circles), USD-JPY (orange triangles), and GBP-USD (green
squares).

We start by considering a moving window of size M
over the original time series x(t ) and for each such window
we compute a variance estimator, v(t ) = 1

M−1

∑M−1
j=0 [x(t −

jδt ) − x̄(t )]2, where x̄(t ) = 1
M

∑M−1
j=0 x(t − jδt ). This process

generates a new time series vM (t ). Next, we numerically com-
pound a Gaussian with the empirical distribution of the series
vM (t ), as indicated in (4), where the integral can be computed
simply as a sum:

P(M )(x) = 1

n − M

n−M∑
i=1

1√
2πvM (i)

exp

[
− x2

2vM (i)

]
, (23)

where n is the number of points in the original series x(t ). We
repeat this for various M and select the optimal value M∗ for
which the corresponding compound distribution P(M )(x) best
fits the empirical distribution of the original series.

Once the optimal window size, M∗, is obtained we then
perform a joint fit of the two theoretical distributions PN (x)
and fN (v), see Eqs. (8) and (7), to the signal data, x(t ), and
the auxiliary background series, vM∗ (t ), respectively. More
precisely, for a given N , we determine the parameter β that
minimizes the following joint error function:

Error(N ) = 1

2n − M∗

[
n∑

i=1

|ln PN (xi ) − ln Pi|

+
n−M∗∑

i=1

|ln fN (vi ) − ln fi|
]
, (24)

where Pi and fi are the corresponding empirical values of
the distributions (histograms) of returns and volatilities, re-
spectively. We emphasize that for a given N we only need to
perform a one-parameter joint fit to the data to find the best β,
for we have set v0 = 1, since the empirical distributions are
normalized to unit variance. For a given dataset, we perform
the joint fit procedure for different values of N and then
select the best N as that for which the above error function
is minimum. Note that fixing a value of N means that the
volatility hierarchy is considered up to that value, i.e., we
have i = 1, 2, . . . , N in Eq. (2); see also Eq. (6). Thus, as we
increase N , we increase the depth of the hierarchy. We proceed

FIG. 4. (a) Distribution of exchange rates returns (black circles)
for EUR-USD and the H-theory prediction (lines) for N = 1 and β =
0.53 (green dashed), N = 2 and β = 0.93 (orange dotted), N = 3
and β = 1.36 (purple dashed), N = 4 and β = 1.85 (blue dashed),
and N = 5 and β = 2.27 (red). Here the best joint fit was attained
for N = 5; see Fig. 3. (b) Histogram (black circles) of the volatility
series v(t ) and model prediction (lines) with the same parameters and
colors convention as in (a).

in this manner until we obtain the optimal N for which the
joint fit gives the smallest error. In the next section we show
the results of the joint fit procedure as applied to the three
datasets considered here.

III. RESULTS

In Fig. 3 we show plots of the error function (24) as func-
tion of N for the three currency pairs considered here. From
this figure, we find that the minimum error for the EUR-USD
pair is attained at N = 5, whereas for USD-JPY the minimum
error happens at N = 2. For the GBP-USD pair, however, the
error increases with N and hence we consider N = 1 to the
best value (i.e., smallest error).

In Fig. 4 we show the results of the joint fits of the dis-
tributions of returns and volatilities for the EUR-USD prices
for N = 1, 2, 3, 4, 5, in which case we have found that the
smallest error was attained for N = 5, as just mentioned, and
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FIG. 5. (a) Distribution of exchange rates returns (black circles)
for USD-JPY and the H-theory prediction (lines) for N = 1 and
β = 0.38 (green dashed) and N = 2 and β = 0.85 (red). Here the
best joint fit was attained for N = 2; see Fig. 3. (b) Histogram (black
circles) of the volatility series v(t ) and model prediction (lines) with
the same parameters and colors convention as in (a).

β = 2.27. Here the lines represent the corresponding theo-
retical curves for each N , while the circles correspond to
the empirical histograms. The agreement between theory and
data for the best fit, i.e., N = 5 (red solid lines), is excellent
for both the return [Fig. 4(a)] and the volatility [Fig. 4(b)]
distributions. In particular, note that the theoretical curve for
N = 5 fits remarkably well the empirical return distribution
in all its extension—from the center to the tails. One can also
see that as N increases the agreement between the theoretical
curves and the data visibly improves—both at the center and
at the tails of the distributions—until the best fit among them
is reached for N = 5.

In Fig. 5 we show the corresponding best joint fits for the
USD-JPY pair for N = 1 and for N = 2, where the best fit
occurred for the latter value with β = 0.85; see Fig. 3. Here
again we find a very good agreement between the theoretical
curves and the data for the best fit case (N = 2, red solid
curves), except perhaps on the right tail of the return dis-
tribution [Fig. 5(a)] owing to the data skewness; see below
for further discussion of this effect. In Fig. 6 we show the fit

FIG. 6. (a) Distribution of exchange rates returns (black circles)
for GBP-USD and the H-theory prediction (red line) for N = 1 and
β = 0.35. Here the best joint fit was attained for N = 1; see Fig. 3.
(b) Histogram (black circles) of the volatility series v(t ) and model
prediction (line) with the same parameters and colors convention as
in (a).

results for the GBP-USD data, where the best fit occurred for
N = 1 and β = 0.35, in which the case the distribution PN (x)
reduces to the q-Gaussian distribution; see (17). As discussed
in Sec. II B, the q-Gaussian is but the first member of a hierar-
chical family of power-law distributions. Thus, when seeking
to apply power-law tailed distributions to a specific system, it
is prudent to test the data against different distributions within
that class, to decide which value of N best suits the data. In
our study, we found that the q-Gaussian (N = 1) was the best
choice for only one dataset (GBP-USD).

IV. DISCUSSION

We have seen above that the three most active forex mar-
kets are ranked by our theory in the same order, according
to the number N of timescales, as follows: EUR-USD (28%
of trading volume) with N = 5; USD-JPY (13% of trading
volume) with N = 2; and GBP-USD (11% of trading volume)
with N = 1. These findings show that the hierarchy depth
increases with market size, an interesting result that demands
further discussion.
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Information cascades in financial markets are believed
to arise because traders have different investment horizons,
which in turn affect their investment strategies [13]. Long-
term traders watch the market much less frequently than
short-time traders and hence the former’s investment de-
cisions are not much affected by short-horizon volatility.
Conversely, for short-term traders the level of coarse volatility
matters more because it might reveal trading opportunities.
Thus, volatilities measured at different time horizons tend
to reflect the perceptions and actions of different market
components [13]. In other words, the existence of investors
with different investment horizons naturally leads to dif-
ferent timescales within the volatility dynamics, whereby
longer-horizon volatilities affect the shorter-term volatilities
but usually not the other way around. Because volatility in
financial markets can be viewed as a measure of information,
this asymmetry in the information flow is interpreted as an
information cascade from larger to smaller timescales [30].
What is less clear, however, is how to estimate the number of
relevant timescales in a given dataset for a given market.

In fluid dynamics, the nature of a fluid flow (whether lam-
inar or turbulent) is characterized by the Reynolds number,
Re, which is a dimensionless parameter defined by the ra-
tio of inertial and viscous forces, Re = LU/ν, where L is a
characteristic length scale, U is the mean flow velocity, and
ν is the kinematic viscosity [1]. Fully developed turbulence
appears for high Reynolds numbers. In the turbulent regime,
the existence of typical large (integral) and small (dissipation)
timescales can help to estimate the number of levels in the
energy cascade [19], with the separation between the largest
and smallest scales increasing with Reynolds number [1]. For
example, in an application of H theory to Lagrangian turbu-
lence, on using the integral timescale, TL, and the Kolmogorov
timescale, τη, it was possible to relate the number N of scales
to the Taylor-scale Reynolds number as N = log2(TL/τη ) =
log2(Rλ/

√
15), which was found in good agreement with the

N obtained from fitting the data [19]. (An analogous argument
was made in a recent application of H theory to the mag-
netoconductance fluctuations in the quantum Hall transition,
where N was also estimated as the log-ratio of the system size
and the lattice spacing [3].)

Similar concepts are more elusive in financial markets,
but some attempts have been made to render the “map” be-
tween fluid turbulence and financial markets more quantitative
[7–12,31], including the notion of a “Reynolds number” for
foreign exchange rates [31]. In the context of forex trading,
which is our main focus here, one is led to consider the
market size, say, in trading volume, as a measure of the corre-
sponding integral scale since no other obvious characteristic
large scale is present in such global electronic market. It is
also reasonable to expect that the larger (i.e., more active) a
market is, the larger the spread of investment horizons within
that market, so that more active markets should have a larger
number of relevant timescales (when comparing quotes at the
same short time resolution). This hypothesis is in line with
our result that the largest forex market (EUR-USD) has the
largest number of timescales (N = 5), as identified by our
model, whereas the second most traded currency pair, namely
USD-JPY, was found to have N = 2. Indeed, it is worthy

of note that the size of the EUR-USD market is about 2.2
times that of the USD-JPY market, which is roughly the same
ratio (namely, 2.5) as between the respective N ′s in these
two markets, thus lending further support to our model. The
same proportion does not hold when comparing the USD-JPY
(N = 2) and GBP-USD (N = 1) markets, as the former is
only about 20% larger than the latter. One possible source of
this discrepancy in the fact that our hierarchical cascade is
“discrete,” in the sense that N varies only in steps of 1. (Some
continuous cascade models have been proposed for turbulence
and financial markets [32,33], and it would be interesting to
generalize our hierarchical model in this direction in the fu-
ture.) Also, other economic factors besides market size might
affect the number of relevant timescales. For example, it is
clear from visual inspection of Fig. 1 that the GBP-USD
quotes tend to follow similar patterns of fluctuations as the
EUR-USD pair, which is perhaps expected on the basis of
the close economic ties between the United Kingdom and
the euro zone, particularly before Brexit. This might imply
in turn that traders do not need to watch the GBP-USD as
frequently, as some information about this market can perhaps
be inferred from the EUR-USD prices, thus further reducing
the number of effective timescales in the former, as our model
predicts. In summary, although further studies are necessary
to more firmly establish our hypothesis above—namely that
the number of timescales in forex markets increases with
market size—this relationship is well supported by the results
reported here, where the three most traded currency pairs are
ranked by our model in precisely the same ordering according
to the number N of scales.

Our results open up interesting new avenues of research,
some of which we briefly discuss below. First, we note that
the analysis presented here was limited to the three most
traded currency pairs, where we saw that the third most active
pair (GBP-USD) already gave the least number (N = 1) of
hierarchy levels. It would therefore be interesting to test our
hypothesis—namely, that N increases with market size—in
other markets, such as equity markets and stock exchange
indexes.

Besides the information cascade, another interesting styl-
ized fact in financial data with a counterpart in turbulence
is the negative asymmetry of return distributions, which is
analogous to the negative skewness of velocity increments
in turbulent flows. In turbulence, negative skewness follows
from Kolmogorov’s famous 4/5 law [1]. There is, however, no
similar theoretical underpinning for the asymmetry of returns
in forex markets. Negative skewness in financial data is often
attributed to the investors’ tendency to react more strongly
to losses (“bad news”) than to gains (“good news”) [34], but
this argument does not quite apply to exchange rates which
have higher symmetry [23]. Indeed, all three datasets analyzed
here display a small but noticeable degree of asymmetry, as
can be seen in Figs. 4(a), 5(a), and 6(a). The asymmetry in
forex markets thus seems to be an intrinsic dynamic feature of
the information cascade. Recently, an extended version of the
H theory was introduced to model asymmetric distributions
in turbulence [29] and its application to forex data will be
investigated in the future.

Another important stylistic fact of financial data is the so-
called leverage effect, which refers to the negative correlation
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between asset returns and return volatilities. As mentioned in
Sec. II A, correlation between returns and volatilities can be
introduced in our model by considering correlated Brownian
motions in the respective EDEs. This was not done in the
present paper because it was not relevant for our purposes
here, but it is an interesting avenue of research that could be
worth pursuing.

V. CONCLUSION

We have analyzed the “turbulent” nature of foreign ex-
change markets and found direct evidence of a hierarchy of
timescales in currency market dynamics. More specifically,
we have estimated the number of effective timescales in the
three most traded currency pairs, namely EUR-USD, USD-
JPY, and GBP-USD, using the intermittency model of H
theory. Our results show that the larger the currency market,
the greater the number of relevant timescales, in direct anal-
ogy with turbulence where the separation between the largest
and the smallest scales in the energy cascade increases with
Reynolds number.

Our approach sheds new light into the complex process of
how information, as measured by price volatility, cascades
down from longer to shorter timescales. Understanding the
hierarchical dynamics of exchange rates using turbulence-like

models, as done in the present study, is also of practical
importance for it can provide deeper insights into develop-
ing efficient algorithmic trading strategies. More specifically,
the H-theory approach to modeling the price and volatility
dynamics for a given forex pair can be used to estimate its
local trend and volatility level, which could inform buy-sell
decisions in a trading algorithm. Additionally, our approach
draws inspiration from the use of analog physical systems,
such as hydrodynamic simulations of black hole physics [35],
to gain insights into complex phenomena, demonstrating the
potential of interdisciplinary approaches in advancing our un-
derstanding of financial markets.
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