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Discrete dynamical systems can exhibit complex behavior from the iterative application of straightforward
local rules. A famous class of examples comes from cellular automata whose global dynamics are notoriously
challenging to analyze. To address this, we relax the regular connectivity grid of cellular automata to a random
graph, which gives the class of graph cellular automata. Using the dynamical cavity method and its backtracking
version, we show that this relaxation allows us to derive asymptotically exact analytical results on the global
dynamics of these systems on sparse random graphs. Concretely, we showcase the results on a specific subclass of
graph cellular automata with “conforming nonconformist” update rules, which exhibit dynamics akin to opinion
formation. Such rules update a node’s state according to the majority within their own neighborhood. In cases
where the majority leads only by a small margin over the minority, nodes may exhibit nonconformist behavior.
Instead of following the majority, they either maintain their own state, switch it, or follow the minority. For
configurations with different initial biases towards one state we identify sharp dynamical phase transitions in
terms of the convergence speed and attractor types. From the perspective of opinion dynamics this answers when
consensus will emerge and when two opinions coexist almost indefinitely.
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I. INTRODUCTION

Dynamical systems can produce complex behavior by iter-
ating very simple local rules [1]. One of the simplest classes
of such systems are cellular automata (CAs) [2–4]. They are
a popular model system due to the fascinating structures pro-
duced in the visualizations of their dynamics [5]. Analyzing
the global dynamics of CAs is, however, notoriously difficult
and many such problems are in fact proven to be undecidable
[6,7]. One aspect of the hardness comes from the fact that the
regular connectivity grid of CAs imposes significant correla-
tions between the cells.

There are numerous ways the CA regular grid structure
can be relaxed to obtain a system amenable to analysis by
statistical physics. For example, the cell (or node) connectivity
can be given by a random directed graph; and a (possibly
different) update rule can be randomly generated for each
node. This architecture gives the synchronous, deterministic,
discrete dynamical systems called random Boolean networks
(RBNs) [8]. Such a significant relaxation famously allows
the RBNs’ global dynamics to be analyzed using mean field
calculations and annealed approximations [9–11].

In this work, we study a more subtle relaxation of the CA
structure. We consider systems where the connectivity of the
nodes is determined by a random regular graph. All nodes in
this network are updated synchronously by a fixed, identical
local update rule. It is natural to call such systems graph
cellular automata (GCAs), although variations are known as
network automata [9]. GCAs are very close to the CA ar-
chitecture, and as such, it is still a challenge to study their
dynamics analytically. Even the annealed calculation of the
number of point attractors is nontrivial compared to the RBNs

due to the nondirected nature of the interactions; see, e.g.,
Ref. [12].

The main goal of this paper is to showcase a set of sta-
tistical physics tools and demonstrate that they are powerful
enough to give asymptotically exact analytical results about
the global dynamics of these discrete dynamical systems.
Concretely, we use the dynamical cavity method (DCM)
[13–18] and its backtracking version (BDCM) [19] to give
new results about the global dynamics of a specific subclass of
GCAs. This class can be intuitively understood using the ter-
minology of opinion dynamics. Specifically, we study GCAs
with conforming nonconformist update rules. They have bi-
nary states {0, 1} and each node is updated in the following
manner:

(1) If the states in a node’s neighborhood are strongly
aligned (i.e., the majority wins by at least 2θ of neighbors
being in the same state), then the node follows the majority
state in its neighborhood

(2) Otherwise, if the majority only has a slim lead over
the minority (i.e., the majority wins by less than 2θ neighbors
being in the same state), then the node gets updated in one of
the following nonconformist ways:

type 1: independent stubborn—the node keeps its state
type 2: independent volatile—the node changes its state
type 3: anticonformist—the node follows the minority
All nodes are updated synchronously and deterministically,

using the same update rule of type 1, type 2, or type 3 for
a given value of θ ∈ N0. The relevance of the conforming
nonconformist rules stems from the fact that their dynamics
can be interpreted as an opinion-formation process.

We note that the literature on opinion dynamics and its
analysis through statistical physics is abundant [20,21]. There
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FIG. 1. A phase transition diagram for a particular instance of a 5-regular GCA with a conforming anticonformist rule 001011. An
illustration of the system’s two phases that depend on the density (i.e., the average number of black-colored nodes) in the initial configuration.
The phases are illustrated by space-time diagrams for a system of size n = 1000 nodes, though only a window of 75 nodes is shown. (Left)
Rapid phase: fast convergence to the all-0 attractor. (Right) Chaotic phase: apparent randomness in the nodes state, convergence takes longer.
(Middle) In the large system limit, when n → ∞, there is a dynamical phase transition. At a particular initial density value ρinit, the typical
behavior of the system abruptly switches from the rapid to the chaotic phase. For each ρinit and each system size n we sampled 1024 initial
configurations with the given ρinit and computed how often the system enters a chaotic phase. For practical purposes, we conclude the system
is in a chaotic phase if it does not converge within 100 ∗ log2(n) time-steps. The resulting frequency exhibits a sharp phase transition between
0.217 and 0.218, where the solid red line is our prediction from the DCM and the shaded red area comes from an empirical approximation.
This transition separates the behavior on the left and the right.

is a plethora of connectivity topologies and update schemes
that have been studied [22–24]. Some are particularly relevant
to our work, as they study the coexistence of conformist and
anticonformist behavior [25–28]. The type of dynamical anal-
ysis that is of relevance in the context of opinion formation
dynamics is usually related to the dependence between the ini-
tial configurations and a type of attractor the system converges
to. Some exemplary questions are:

(1) Which initial configurations can lead to consensus, and
how fast?

(2) Which initial bias allows all opinions to coexist on the
graph for a prolonged period of time?

To answer these questions, we consider the density or bias
of a binary configuration, which is its average number of 1s,
and we show that various conforming nonconformist GCAs
converge to qualitatively different types of attractors depend-
ing on the density of their initial configuration.

When we consider graphs with many vertices n, in the
large system size limit, the transitions between these regions
of different behaviours (e.g., finding consensus or having dis-
agreement) become sharp: the probability to sample initial
configurations that exhibit any other behavior than what is
typical for the region tends to zero. Because the behaviours
we distinguish relate to the system’s dynamics, such a sharp
transition is called a dynamical phase transition.

The DCM and BDCM allow us to analytically identify
values of initial densities where such a phase transition occurs.
This can be confirmed by numerical experiments which show
that around the phase transition, the system takes longer to
converge to its typical attractor; a form of critical slowing
down. Some of the results presented here have previously been
used to illustrate the BDCM in the paper that introduced the
backtracking version [19]. We expand on them, by discussing

their relevance in the context of cellular automata and opinion
dynamics, and add results for new classes of such dynamical
systems.

Concretely, we show that for multiple GCAs with con-
forming nonconformist rules, configurations with low initial
density values almost always converge fast to the homoge-
neous attractor of only 0s (consensus). However, above a
certain initial density threshold, the systems instead exhibit
more complex behavior, which will be the object of our anal-
ysis with the (B)DCM. For example, in the case of a rule
always following the majority, above a certain initial density
threshold the system instead converges to an attractor oscillat-
ing between two configurations of mixed states.

Another interesting type of phase transition occurs for the
anticonformist rules of type 3 (following the minority instead
of the majority when the race is tight). There, as shown in
Fig. 1, for low values of initial configuration densities, the
system converges to an all-0 consensus in time proportional
to the logarithm of the network size. However, above a certain
initial density threshold, the system instead takes an exponen-
tially long time to converge.

These observations bring us back to the notoriously
hard-to-analyse CAs discussed at the beginning: It is a long-
standing challenge in the area of discrete systems to precise
the emergence of complexity [29] and to identify a region
of systems with complex behavior [30]. In multiple works
on classifying dynamics of cellular automata, the typical be-
havior of the system is assessed by averaging over randomly
sampled initial configurations [9,31–33]. Specific analyses
with respect to the initial configuration are the exception [34].
Our results emphasize that for certain systems, averaging
the system’s behavior over initial configurations might be a
coarse process, insensitive to the particularities of different
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initial configuration regions. For the anticonformist rule we
investigate, it is indeed the case that depending on the choice
of initial configurations, the system either converges fast to a
homogeneous attractor (simple regime), or it enters a chaotic
regime. The qualitative difference in the rule’s behavior in the
two phases is significant, see Fig. 1.

To summarize, in this work we show that the DCM and
BDCM methods are powerful tools for analyzing discrete
dynamical systems. We demonstrate the existence of systems
with dynamical phase transitions between ordered and chaotic
behavior, and provide an analytical approach to identifying the
transition between the two phases. From the perspective of
opinion dynamics, we introduce a new twist on the majority
dynamics where nodes are nonconforming when the majority
only has a slim lead. Our analysis then shows how an initial
bias affects the coexistence of both opinions and the time
to reach a consensus or stable configuration. From the per-
spective of cellular automata, we narrow the gap between the
popular systems on the grid and those amenable to statistical
physics.

Note that the results presented in this paper have a certain
overlap with the results presented in Ref. [19] by the same
authors. The paper [19] was focused on the backtracking
DCM that was introduced there and some of the GCAs that
correspond to zero temperature dynamics in spin systems
were discussed to illustrate the power of the method. The
present paper is focused on a more generic class of cellular
automata and their behavior and the BDCM together with
DCM are used as methods known from the existing literature.

The paper is organized in the following manner.
Section II introduces all the necessary terminology regarding
the dynamics of discrete systems and graph cellular automata.
Section III introduces the conforming nonconformist rules,
the dynamical phases present in such systems and showcases
the dynamical phase transitions apparent from numerical ex-
periments. Section IV briefly describes the dynamical cavity
methods. Section V contains the detailed analysis of phase
transitions for particular examples of the conforming noncon-
formist rules.

II. TERMINOLOGY AND NOTATION

We call an undirected graph of size n the tuple G =
(V, E ) where V = {1, . . . , n} is the set of nodes and E =
{{i, j} | i, j ∈ V } is the set of edges. For each node i ∈ V we
define the neighborhood of i to be the set ∂i = { j | {i, j} ∈
E} ⊆ V ; and we define the degree of i as d (i) = |∂i|. We say
an undirected graph is d-regular if each node has degree d . Let
G be a graph with n nodes and let S be a finite set of states.
Each node i can be assigned a state xi ∈ S; we represent such
an assignment by the sequence x = x1 . . . xn ∈ Sn and call it a
configuration.

(a) Graph cellular automata. Let S be a finite set of states.
A Graph Cellular Automaton (GCA) is a discrete dynamical
system that operates on configurations of some graph with
n nodes. In this work we only consider the case of random
d-regular graphs. The state of each node gets updated syn-
chronously, depending on its own state and the state of its
neighbors; each node uses an identical local update rule f :
S × Sd → S. This gives rise to a global mapping F : Sn → Sn

governing the dynamics of the system. For a configuration
x ∈ Sn, the ith node with neighborhood ∂i = (i1, . . . , id ) gets
updated according to

F (x)i = f
(
xi; xi1 , . . . , xid

)
.

We write a semicolon to highlight that the first entry of f is
always the state of the node being updated.

(b) Global dynamics. Let F : Sn → Sn be the global rule
of some GCA. We will use the symbol x to denote a se-
quence of configurations from Sn; i.e., x = (x1, ..., xt ) for
some t ∈ N. If x satisfies that xi+1 = F (xi ) for each i, then
we call it the GCA’s trajectory of length t starting from the
initial configuration x1. We call a matrix whose rows are
configurations of a GCA at consecutive times its space-time
diagram.

Since the configuration space is finite and the update is de-
terministic, each long enough trajectory becomes eventually
periodic. We call the preperiod of the sequence the transient
and its periodic part the attractor or limit cycle. For an attrac-
tor, the set of configurations converging to it is called its basin
of attraction.

We define the configuration graph (also called the phase
space) as an oriented graph whose vertices are the configura-
tions from Sn with edges of the form (x, F (x)), x ∈ Sn. The
notions we defined are illustrated in Fig. 2 and an example of
the complete configuration graph for the majority rule on a
graph with 12 nodes is shown in Fig. 3.

(c) Outer totalistic GCAs. A GCA is outer totalistic if its
local update function is permutation-symmetric, i.e., it “does
not distinguish between node’s neighbors.” A local rule f of
an outer totalistic GCA is thus a function of a node’s state
and the set of states of its neighbors (oblivious to the ordering
of the neighbors). We highlight this by writing the global
dynamics in the form:

F (x)i = f
(
xi; {x j} j∈∂i

)
.

For example, f : {0, 1}4 → {0, 1} given by f (w; u1, u2, u3) =
(u1 + u2 + u3) mod 2 gives rise to a totalistic GCA, whereas
copying neighbor u2’s opinion given by g(w; u1, u2, u3) = u2

does not.
(d) Outer totalistic GCA codes. We restrict our study to

outer totalistic GCAs with states S = {0, 1}. In such a case,
the local rule f : {0, 1} × {0, 1}d → {0, 1} is characterized by
a sequence of unary Boolean functions ( f0, f1, . . . , fd ), where
for each 0 � k � d , the function fk : {0, 1} → {0, 1} dictates
how a node changes its state if exactly k of its neighbors are in
state 1. We further introduce a symbol for each unary Boolean
function:

0 . . . constant 0 function

+ . . . identity function

1 . . . constant 1 function

− . . . negation

Thus, each local rule f of an outer totalistic GCA on a d-
regular graph is characterized by a (d + 1)-tuple of symbols
(s0, s1, . . . , sd ) ∈ {0, 1,+,−}d+1. We will call this symbol
sequence the code of the rule.
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FIG. 2. Example of a GCA and its dynamics. (Left) Defining the GCA from a 3-regular graph G, state set S, and local rule f following the
majority. (Middle) A configuration x (0 is white and 1 is black) and the GCA’s space-time diagram starting from x. (Right) For the majority
GCA defined on the left, we show a part of its configuration graph.

For example, for d = 3, the code + + ++ denotes the
local update rule that preserves the state of each node; and
the code 0011 represents a rule that updates each node based
on the majority state of its neighbors. We note that an anal-
ogous representation has been introduced for example in
Ref. [35].

III. CONFORMING NONCONFORMIST GCAs

In this paper, we study a class of outer totalistic GCAs with
conforming nonconformist update rules (CNC). An update
rule of an outer totalistic GCA on a d-regular graph with states
S = {0, 1} is CNC with threshold θ ∈ N0 if it updates each
node in one of the following ways:

(1) Strong agreement region: If the majority wins by at
least 2θ of nodes; i.e., |∑ j∈∂i x j − d

2 | � θ , then the node
conforms to the majority of its neighbors

(2) Weak agreement region: If the majority wins by less
than 2θ of nodes; i.e., if |∑ j∈∂i x j − d

2 | < θ , then the node
gets updated in a nonconformist way:

stubborn independent: the node keeps its state; code type
“0 + 1”
volatile independent: the node changes its state; code type
“0 − 1”
anticonformist: the node follows the minority of its neigh-
bors; code type “0101”

All the nodes in the network get updated synchronously,
using the same update rule of type 0 + 1, type 0 − 1, or type
0101. As an example, for d = 5, the anticonformist GCA with
threshold θ = 1 corresponds to the rule with code 001011, and
θ = 2 gives the rule with code 011001.

We note that an odd connectivity d and θ = 0 imply that
all neighborhood configurations result in a strong agreement
region. In such a case, a node always conforms to the majority
and this gives the well-studied case of absolute majority rules
with code type “01.” Whenever θ � 1, some neighborhood
configurations result in a weak agreement region where the
rules 0 + 1, 0 − 1, and 0101 demonstrate different forms of
nonconformist behavior.

The anticonformist case of CNC rules has a particularly
interesting interpretation in the context of opinion making:
If the agreement of one’s neighbors is weak, then one has
enough “courage” to demonstrate an attitude different from
the majority. However, once the neighbors’ opinion align-
ment is too strong, one conforms to the opinion of the
majority.

(a) Short attractors. An important property of the CNC
GCAs is that for an arbitrary system size, they only seem to
have short attractors. As we will see, this is a crucial prop-
erty that allows us to apply the BDCM method and analyze
properties of the most typical attractor of the CNC GCAs.

Specifically, the absolute majority rules, together with the
stubborn and volatile independent rules belong to a wider

original configuration graph

FIG. 3. Complete configuration graph of a majority GCA. Every node is a unique configuration of the system. The edges show how the
dynamics evolve from one configuration into another. The different colors distinguish configurations that eventually evolve into different types
of attractors. The orange color marks configurations leading to cyclic attractors of size 2 marked red, the blue configurations converge to point
attractors in cyan. This is the absolute majority rule, the GCA with code 0011 on a 3-regular graph with n = 12 nodes.
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anti-conformist: 001011 volatile independent: 00−11

FIG. 4. Two examples for CNC dynamics. We show two examples for conforming nonconformist dynamics on small random regular
graphs with n = 100 nodes. We sample initial configurations for a fixed initial density ρ and show how they evolve (light gray lines). Some
samples are highlighted in color and their corresponding space-time diagrams are shown. (Left) The anticonformist GCA 001011 is started
from ρ = 0.2, in this case, the time axis is broken for visualization purposes, as for some samples the time to an attractor is extremely long. We
highlight three different behaviours: Two samples converge the the configuration with only 0s (blue), but one takes a very long time to reach it
(light green) and one converges faster to a configuration with only 1s (dark green). (Right) The volatile independent GCA 00 − 11 if started
from ρ = 0.75. Here the orange solid line represents the dynamics of a sample where eventually all nodes change their state in a length-2 limit
cycle. We call such nodes rattling (ratl.) The dashed line shows a sample which is partial rattling, i.e., some nodes are stable in the attractor,
but some are rattling. Finally, the black line is a sample which ends up in the attractor with only 1s.

class of majority threshold rules which, irrespective of the
system size, only have attractors of sizes 1 and 2. This applies
to an arbitrary topology of the connectivity network, as long
as it has undirected edges. This has been proved in Ref. [36]
using an elegant argument by introducing a decreasing energy
function for such systems.

For the case of anticonformist CNC rules, we so far lack
a proof of such a property. However, the numerical results
suggest that attractors larger than 2 are not typical for anti-
conformist GCAs of large size, as we only rarely sampled
them (Appendix, Fig. 14). We note that the topology of a
random regular graph seems crucial here as for preliminary
experiments on a regular grid we encountered attractors larger
than 2.

(b) Related work. The class of CNC rules, seemingly sim-
ple, contains systems with a wide variety of behavior that
have received a lot of attention in the literature, although not
always in exactly the synchronous setting on random regular
graphs. The interest is due to the rules’ relevance in different
application fields. For cellular automata, typically on lat-
tices, density classification is used as a vehicle for reasoning
about their computational capabilities [37,38]. Bootstrap-
percolation [39,40] or the zero-temperature Glauber dynamics
[41,42] can also be modelled with CNC rules and are studied
on various types of graphs.

The CNC rules also play a prominent role in modeling
opinion spreading. The coexistence of conformist and anti-
conformist dynamics has been studied in models of collective
behavior [25,26]. However, the coexistence is typically intro-
duced in one of the two following ways:

(1) The network consists of two types of nodes, con-
formist ones that always follow the majority and anticon-
formist ones always following the minority.

(2) With probability p a node gets updated using a ma-
jority rule, and with probability 1 − p it gets updated in an
anticonformist way.

In contrast, for the conforming nonconformist rules as
considered in the present paper, the behavior of a node is
entirely determined by the nodes in its neighborhood, not
by external probabilities. We show two examples of such
dynamic behavior in Fig. 4, where for the anticonformist GCA
001011 and the volatile independent GCA 00 − 11 we show
three different initializations and their long-time behavior in
space-time diagrams.

The connection between the CAs and opinion dynamics
on graphs is discussed in Ref. [34]. All the mentioned ap-
plications directly raise relevant questions on the dynamics,
e.g., how quickly or if at all one can reach consensus given
an initial configuration [17,43]. In the following, we show
how to answer such questions for these seemingly simple but
ubiquitous rules.

A. Types of dynamical phases

For conforming nonconformist GCAs we identify a num-
ber of qualitatively different phases the system exhibits when
varying the density of 1s in the initial configuration. For the
transients, we distinguish phases of slow and fast conver-
gence. For the attractors, we distinguish between attractors
of sizes 1 and 2, between the density of 1s in the attractor’s
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TABLE I. Four types of attractors, marking different destinations of their dynamical behavior. We emphasize that our definition makes the
distinction for α and ρattr only up to to a finite fraction �(n) of the nodes. This disregards a subleading number o(n) of nodes that might have a
different state in the homogeneous stable attractor, or o(n) nodes that are not rattling in the all-rattling attractor. Likewise, the phases ignore an
o(1) fraction of initial conditions which converge to attractors with limit cycle lengths with c /∈ {1, 2}. [Informally, g(n) ∈ �( f (n)) if g grows
with the same order as f and g(n) ∈ o( f (n)) if g grows slower than f .]

Icon attractor Description Parameters

Homogeneous Almost only point attractors with almost all nodes in state 0 or almost all nodes in state 1 c = 1

Stable ρattr ∈ {0, 1}
Mixed-color Stable Almost only point attractors where at least a constant fraction of both 0s and 1s is present c = 1

ρattr ∈ (0, 1)

Partially rattling Almost only 2-cycles with at least a constant fraction of both rattling and stable nodes c = 2
α ∈ (0, 1)

All rattling Almost only 2-cycles with almost all rattling nodes c = 2
α = 1

configurations and the portion of nodes that are changing their
state in a cyclic attractor. We call a specific combination of a
transient and attractor type a dynamical phase. A dynamical
phase transition is an abrupt, nonanalytic change from one
dynamical phase to another. It is the critical point where the
system exhibits different qualitative behaviours on either side
of the transition. This is defined in the large n limit, when the
system has many interacting nodes. Notably, the behaviours in
each phase apply to almost all graphs, i.e., we do not exclude
the case that single rare graphs exhibit a different behavior.

To define this formally, let x = (x1, ..., xp, ..., xp+c ) be a
trajectory of a threshold GCA with a transient of length p
leading into an attractor of length c.

(a) Initial configuration. We define the density or bias of
a configuration x ∈ {0, 1}n, x = (x1, . . . , xn), as

ρ(x) = 1

n

n∑
i=1

xi. (1)

The initial density for the trajectory x is ρinit(x) = ρ(x1).
We will show that as we vary ρinit, the system exhibits changes
in the phase it converges to that become more and more abrupt
as the system size grows n → ∞.

(b) Transient types. We say that the convergence to an at-
tractor is rapid (ordered), if the transient length p as a function
of the system size n grows as O(log n). Similarly, convergence
is chaotic if it takes a long time, namely p grows in �(exp n).
We conjecture from the numerical investigations that interme-
diate transient lengths do not appear in the systems considered
here.

(c) Attractor types. In general, we define the density of a
limit cycle/attractor of length c as the average density over all
its configurations:

ρattr(x) = 1

c

c∑
t=1

ρ(xp+t ). (2)

For all attractors of size c > 1, we say that the ith node is a
rattler if it changes its state at least once in the limit cycle.
Otherwise, we say that the ith node is stable. We define the
activity of a limit cycle as the average number of its rattlers,

formally:

α(x) =1

n

∑
i∈V

1

⎡
⎣1 �

p+c−1∑
t=p+1

1
[
xt

i �= xt+1
i

]
⎤
⎦. (3)

With these definitions, we distinguish the four attractor types
in Table I.

(d) Empirical locations of dynamical phases. On finite
systems, we can empirically measure all the previously de-
fined properties and their scaling in the graph size n. For
now, we explore GCAs with four rules: The absolute majority
rule, and three rules with the different possible nonconforming
behaviours under weak agreement (stubborn, volatile inde-
pendent, and anticonformist). Figure 5 shows the transient
length scaling in n, the attractor’s density ρattr and activity α

in terms of initial density ρinit.
Clearly, for all four rules the homogeneous all-zero and all-

one state is an attractor of the dynamics. We observe that when
the initial bias is close to such a homogeneous attractor the
convergence to it is rapid for all four rules. All the studied
rules undergo a phase transition for some value ρinit which
jointly occurs with a slowing down of the convergence (an
increase in transient lengths).

The anticonformist rule’s behavior stands out, where the
exponentially long transients lead to the all zero or all one
attractor with equal probability. For the other three rules (ma-
jority, stubborn/volatile independence) the slowing down is
within the O(log n) regime, just with a larger growing pref-
actor in the vicinity of the phase transition. For the volatile
independence rule, there are even two such transitions. The
transient behavior for anticonformist rule is very different.
It switches from the short O(log n) to the long �(exp n)
transients around the critical point close to ≈0.2 and ≈0.8.
The long transients are maintained throughout the dynamical
phase.

The different phases confined by those transitions occur as
follows: The absolute majority rule on the 3-regular graphs
phase rapidly converges to the partially rattling state, where
a core is stable, and some nodes are changing their opinion
at every iteration. The stubborn independent rule on the 4-
regular graph produces an attractor with mixed (i.e., 0 and 1)
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FIG. 5. Numerical experiments for four types of CNC rules for d = 3, 4, 5. For rules 0011, 00 + 11, and 00 − 11 we sampled 1024 graphs
for every n ∈ {103, 104, 105, 106} and every initial density ρinit = k

100 , k ∈ {0, 1, . . . , 100}. For 001011, due to the exponential explosion of the
transient length in ∼(0.2, 0.8), we used n ∈ {50, 100, 150, 200}. (First and second row) Histograms of the properties of attractors: their density
and the fraction of rattlers. With the exception of GCA 001011, they were computed for n = 103 with a binning on the y axis for both ρattr

and α with 101 bins. For the GCA 001011 graphs of size n = 200 and 51 bins on the y axis were used. (Third row) Average transient length
p for 0011, 00 + 11, and 00 − 11; median transient length for 001011. We observe behavior consistent with either exponential or logarithmic
growth of the transient lengths as a function of the system size. (Last row) Diagram showing the dynamical phases corresponding to each of
the attractor and transient type. Transitions between the phases correspond to peaks in the transient length or a change in the scaling of the
transient regime. We use the color schemes from Table I when the convergence to the attractor is rapid. The light green color denotes a slow
convergence. Note that the same data for the rules 00 + 11 and 00 − 11 were already used in Ref. [19] to illustrate the results that the BDCM
can obtain.

stable opinions which is reached rapidly. The volatile rule,
coming from the homogeneous all-zero attractor and in-
creasing ρinit, first goes through a dynamical phase of rapid
convergence towards a partially rattling state, similar to the
majority rule before. For very weak initial bias, eventu-
ally all nodes keep switching their colors—the all-rattling
attractor.

Previous work identified similar dynamical phases for the
threshold q-voter model [44], although that work considers a
thresholded, noisy version of the majority rule.

We further highlight that the transitions only become sharp
for large n. For smaller finite systems and particular initial
density values ρinit, we can observe the coexistence of phases
at both sides of the transitions. For example, this happens for
the two GCAs on small graphs with n = 100 nodes that are
shown in Fig. 4, Sec. III.

In Appendix A we provide some empirical results for ex-
amples with larger degrees. For rules which belong either to
the absolute majority, stubborn and volatile independent rules,
scaling the threshold θ as O(1/

√
d ) exhibits the same transi-

tions as the degree d grows, consistent with the type of large
d behavior observed in Ref. [45]. For the anticonformist the
picture is less clear as new types of behavior emerge that are
different from what we observed for the GCA 001011. Over-
all, we leave thorough empirical and theoretical investigations

of larger degrees and their appropriate parametrizations to
future work.

In the remaining sections, we supplement our empirical re-
sults with a theoretical analysis of the precise positions of the
phase transitions. For this, we first introduce the (backtrack-
ing) dynamical cavity method in Sec. IV, and then present the
derived analytical dynamical phase transitions in Sec. V.

IV. DYNAMICAL CAVITY METHODS

To analyze the dynamics of the previously introduced
family of CNC GCAs, we use the dynamical cavity method
(DCM) [13–18,46] and its extension, the backtracking dynam-
ical cavity method (BDCM) [19]. These methods are inspired
by the cavity method from statistical physics which has proven
its success in the analysis of static systems [47]. While their
results hold in the thermodynamic limit, i.e., when the number
of nodes n tends to infinity, we will see that the behavior of
systems with relatively small n already corresponds well to the
theoretical predictions for large n. Our goal is to explain the
phase transitions that we observed empirically in our analysis.

Before we present these methods, we first motivate why
a more simple method, a mean-field approximation, does
not lead to the desired predictions. As an example, take the
majority update on a d-regular graph. Under the assumption
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that at every time step the graph of degree d is regenerated,
the probability of a node being in one of the two groups
is ρ(t + 1) = ∑d

r=d/2

(d
r

)
ρ(t )r (1 − ρ(t ))d−r . This evolution

would imply (as easy to verify, e.g., for d = 3) that an unstable
fixed point exists at ρ = 1

2 and two stable ones at ρ = 0 and
ρ = 1. Then, the mean-field approximation would not be able
to see that for ρinit close to 1

2 , there are cycle attractors (see
Fig. 5) and would instead predict the dynamics go always
to consensus. Hence, for this example we require the more
powerful dynamical cavity methods, the DCM and BDCM.

Both methods consider motifs from the configuration graph
(Fig. 3) that represent dynamical phenomena as the static
element of a cavity analysis. The idea of the DCM is to take
finite trajectories from the configuration graph. Similarly, the
BDCM considers finite trajectories that lead into cycles of a
fixed length. A general motif that encompasses both ideas is
the (p/c) backtracking attractor, defined as

x = (x1, x2, . . . , xp, xp+1, . . . , xp+c) ∈ (Sn)p+c, (4)

for p, c ∈ N where the first p configurations compose a tran-
sient and the last c configurations a limit cycle, so xp+1 =
F (xp+c). Therefore, c = 0 gives the trajectories without at-
tractors for the DCM and c > 0 gives the BDCM. Despite
the static methodology, the backtracking attractor is inher-
ently dynamic, so the static analysis allows one to infer back
results about the dynamics. To identify the dynamical phase
transitions from the previous section, it suffices to answer the
following question: What are the average properties of the
typical (= most numerous) backtracking attractor for a fixed
ρinit when p → ∞?

(a) Introduction to (B)DCM. Before we answer this ques-
tion precisely for the conforming nonconformist GCAs we
give a brief overview to the (B)DCM, to make clear how
it works—and why this approximation is valid for the con-
forming nonconformist rules on random regular graphs. In
this introduction, we want to give a good understanding of
the method. However, we refer the reader to Ref. [19] for the
original derivation.

The main ingredient to the (B)DCM is a probability distri-
bution over all possible sequences of configurations (Sn)p+c.
In the simple case, the probability assigns a uniform value to
all (p/c) backtracking attractors x that occur in the configura-
tion graph of the dynamics, and a zero measure to any other

sequence:

P(x) = 1

Z
1[F (xp+c) = xp+1]

p+c−1∏
t=1

1[F (xt ) = xt+1]. (5)

Here, 1(·) is the indicator function on a Boolean statement
where a true statement yields 1 and 0 otherwise. If c = 0
and therefore xp+1 is undefined, then we drop the first fac-
tor where it appears. The normalization constant Z of this
distribution is then equivalent to the number of valid back-
tracking attractors. Since this number Z is extensive in the
system size n, we measure it in terms of the free entropy
density � = 1

n log(Z ). However, computing Z and therefore
the entropy directly is intractable, due to the high-dimensional
integral over all possible configurations. To solve this issue,
analogous to the classical cavity method for static analysis,
we use the Bethe-Peierls approximation to compute its leading
exponential factor using belief propagation (BP) on its factor
graph. This approach is exact for factor graphs that are trees
and, in many cases, leads to asymptotically exact results for
sparse locally treelike factor graphs. In the literature, the cases
where the BP provides asymptotically exact results on sparse
random graphs are called replica symmetric and [19] observed
that it indeed plausibly provides asymptotically exact results
for the cases studied there.

Eventually, this approach leads to a lower dimensional
fixed point equation which is amenable to numerical solu-
tions. In addition to the approximation of the free entropy
density �BP, this approximation conveniently admits a means
of computing the marginals of the probability distribution
in Eq. (5) and expectations for observables1 of the system,
e.g., the density of the attractor. By additionally introducing
reweighting of the backtracking attractors in the probability
distribution according to some external potential we can also
“fix” some of their properties to a prescribed constraint, and
extract for example only backtracking attractors with a fixed
initial density ρinit.

(b) Equations for random regular graphs. For random
d-regular graphs this strategy admits a particularly simple
analysis: Under the assumption that all neighborhoods are
locally the same, solving the BP on the factor graph cor-
responding to Eq. (6) is equivalent to solving a fixed point
equation for only one neighborhood. Then, the message on
the factor graph χ→

x,y ∈ R4(p+c) from the center node x to its
neighbor y is defined in terms of all possible values that its
other d − 1 neighbors y can take. It is reweighted by χ→
itself:2

χ→
x,y = 1

Z→ e−λ
̃(x)

︸ ︷︷ ︸
a(x)

observable/
constraint

∑
x,y

[d−1]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
[

f
(
xp+c; yp+c

[d]

) = xp+1
] p+c−1∏

t=1

1
[

f
(
xt ; yt

[d]

) = xt+1
]

︸ ︷︷ ︸
A(x,y

[d]
)

valid (p/c)-backtracking attractor

∏
z∈y

[d−1]

χ→
z,x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

1This is only possible when the observable factorizes over the nodes.
2This equation is equivalent to (17) from Ref. [19], and the derivation and factor graph is described therein using the same notation.
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Here, the inner constraint assures that we only consider valid
backtracking attractors. The Z→ is again the normalization
constant, the interval is [k] = 1, ..., k and 
̃ is the factor-
ized observable of the global extensive variable of interest

(x) = 1

n

∑n
i=1 
̃(x). This localized observable 
̃ with the

factor λ allows for the previously mentioned reweighting and
constraining. As an example, take the initial density, for which
we define the terms of the summand 
̃(x) = x1, so that the
intensive global variant is 1

n
(x) = 1
n

∑n
i=1 
̃(x) = ρinit(x).

To obtain the BP approximation of the entropy density it
suffices to compute the following at the fixed point of Eq. (6):

�BP = log(Z fac) − d

2
log(Zvar ), (7)

Z fac =
∑
x,y

[d]

A(x, y
[d]

)
∏

y∈y
[d]

χ→
x,y, (8)

Zvar =
∑
x,y

a(x)χ→
y,xχ

→
x,y. (9)

Implementing and finding a solution to (6) can be nontrivial
due to numerical instabilities. The solver used for our analysis
is available on github.3

Since the strength of the reweighting λ which we fix during
the iteration of the fixed point, acts only as the Lagrangian
multiplier, it has no immediate correspondence to the value of
the constraint (e.g., ρinit). To find the concrete value, we use
that at a fixed point χ→ it holds that

∂�BP(λ)

∂λ
= −1

n
〈
̃〉BP = −

∑
x,y
̃(x)e−λ ˜
(x)χ→

y,xχ
→
x,y∑

x,y e−λ
̃(x)χ→
y,xχ

→
x,y

. (10)

We can measure the activity α or the density in the attractor
ρattr by adjusting the function 
̃ correctly. This allows us
to obtain their marginals even when we did not reweight
the distribution, as this corresponds to the setting where the
corresponding λ = 0.

Notice that the assumption of all the neighborhoods being
described by Eq. (6) is equivalent to the replica symmetric
assumption which in turn on random regular graphs without
another source of disorder is equivalent to the annealed calcu-
lation of the free entropy. In the present systems, the annealed
calculation is nontrivial, see, e.g., Ref. [12], and writing the
BP equations (6) is the most efficient way to obtain it we know
of.

(c) Application to conforming nonconformist GCAs. No-
tice that above we wrote the equations for dynamical systems
that are updated in parallel, are deterministic and run in dis-
crete time. The update function does not distinguish between
particular neighbors of a node and the connectivity graph of
the neighboring nodes is locally treelike in the large size limit.
Finally, the size of the system’s attractors has to stay constant
as the system’s size increases. Since from our definitions and
our empirical observations all these properties hold for the
conforming nonconformist rules on random regular graphs,
the (B)DCM is perfectly suitable for an analysis of the CNC
rules.

3github.com/SPOC-group/dynamical-phase-transitions-GCAs.

Recall that we want to answer “What are the average
properties of the typical backtracking attractor for a fixed
ρinit when p → ∞?” One can take two approaches to this
question, either by answering it starting from the initial or final
configuration of the backtracking attractor.

To answer “What are the properties later in the dynamics
given that the starting point is fixed?”, we use the DCM. This
means setting c = 0 in the backtracking attractors, so we are
only looking at paths. As we increase the trajectory length
p we can observe how the density on the last configuration
ρp = ρ(xp) evolves.

To answer “How large is the basin of attraction of a specific
type of attractor?”, we use the BDCM. We can fix properties
of the attractor, e.g., c = 2 and α = 0.5 to identify a specific
partially rattling attractor, and then increase p to measure the
evolution of the size of the basin of attraction in terms of its
entropy density. As one increases the length of the incoming
path p, the analysis incorporates a growing fraction of the
attractors’ basin. Comparing this entropy between different
types of attractors allows us to determine which is the most
numerous and typical behavior that is observed in the large n
limit.

We will use these two general principles to identify analyti-
cally the dynamical phase transitions we empirically observed
in Sec. III.

(d) Limitations and alternative methods. A significant
limitation of the (B)DCM is that solving the previously
mentioned fixed point equations numerically requires a com-
putational budget which grows exponentially in d (p + c)
when considering a d-regular graph. While the dependence
on d can be alleviated via dynamical programming [48], it is
prohibitive to analyze very long paths p or large cycles c. This
means that applying the method directly is only possible for
small dynamic motifs which yield interesting results only for
rapidly relaxing properties at the start or end of the dynamics.
However, this is exactly what we observe for the conforming
nonconformist rules and which makes the analysis with the
(B)DCM feasible.

It is worth noting that by making additional assumptions,
such as the one-time approximation, longer dynamics be-
come amenable to the method. However, this is at the cost
of further uncontrolled approximations [49–51]. Alternative
methods of analysis from statistical physics give results for
simpler dynamics; examples include but are not limited to
the random functions in RBNs [9–11] or unidirectional dy-
namics with absorbing states [16,46,52]. Another helpful
feature is the relaxation of the topology, for example oriented
graphs [13], graphs with asymmetrically weighted edges [15]
for straightforward use with the DCM or independently re-
sampled neighborhoods at every iteration [28,44] which are
amenable to mean field methods. However, to the best of our
knowledge the (B)DCM as we use it comes closest to the very
difficult case of understanding cellular automata with its rigid
and deterministic architecture.

V. DYNAMICAL PHASE TRANSITIONS FOR
CONFORMING NON-CONFORMIST GCAs

In the following, we detail how we apply the DCM
and BDCM to the examples we investigated empirically in
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FIG. 6. Transient growth, chaotic phase classification and relaxation time for the anticonformist GCA 001011. (Left) For ρinit < 0.5 we
display the transient growth for graphs of size n ∈ {50, 100, 150, 200}, generated as in Fig. 5. The resolution of ρinit is limited by n = 50,
a stepsize of 0.02. A transition between an exponential (straight line in the log-linear plot) and a much slower transient growth between
ρinit = 0.2 and 0.22 is clearly visible. (Middle) Empirical phase transition for the onset of a chaotic phase, which in this case is defined as
the attractor taking more (chaotic) or less (homogeneous stable) than log(n) ∗ 100 time steps to reach an attractor. The resolution of ρinit is
0.001 and narrows the interval of the dynamical phase transition down to [0.2165,0.2185], the interval for n = 106 between which no samples
out of 1024 exhibit a behavior that is not consistent with their phase. (Right) The relaxation time describes the number of time steps required
until either the chaotic regime or an attractor is reached. We empirically conclude the system is in the chaotic regime if the densities of 100
consecutive configurations remain in the interval (0.5 − 3√

n , 0.5 + 3√
n ). For all values of n the maximal length of the two largest ρinit we

observe are ρinit = 0.21 and 0.22.

Sec. III, Fig. 5. Recall that for all GCAs seen previously, when
ρinit is close enough to either 0 or 1, the dynamics rapidly falls
into one of the homogeneous attractors, while the region in
between exhibits more complex dynamics. This region differs
for every rule type. The goal is to analytically identify these
phase transitions between the regions precisely. Some of these
results have previously been used to demonstrate the BDCM
in Ref. [19].

(a) Anticonformist GCA: 001011. Recall that the anti-
conformist GCA 001011 exhibits both chaotic and ordered
behavior for different values of ρinit, but always converges to
the all-1 or all-0 attractor eventually. The dynamics of this
GCA is fully deterministic, yet the configurations of trajec-
tories in the chaotic phase look random with respect to the
density ρ (see, e.g., Fig. 4), hence the name. The difference in
behavior between the chaotic and ordered phase clearly shows
in Fig. 6 (left), where the transient length grows exponentially
in the graph size n for ρinit � 0.22. However, running larger
system sizes than n = 200 until convergence is prohibitively
expensive, so the resolution of the transition we can obtain
from this method is limited. Therefore, as an additional crite-
rion for identifying the chaotic phase for anticonformist GCA,
we check when the convergence time exceeds a threshold of
100 ∗ log2(n). At this point, the simulation is stopped and tra-
jectories that have not yet converged are classified as chaotic.
Even though this heuristic is robust to changes of the factor
100 to 50 or 1000, we confirm the results with another method.

Inspecting the trajectories of the density ρ in Fig. 4, we
observe that the density of configurations in a chaotic phase is
oscillating around ρ = 0.5; more precisely, it seems to remain
in the interval of densities (0.5 − c√

n
, 0.5 + c√

n
) where n is the

system size and c is a constant (see Appendix C for details).
We use this observation as a heuristic criterion for assessing
whether a trajectory has entered the chaotic phase: Once a tra-
jectory’s densities stay in (0.5 − 3√

n
, 0.5 + 3√

n
) for a sufficient

amount of time (100 time-steps), we conclude the trajectory
is in the chaotic phase. The time it takes to either reach this
chaotic phase or an attractor is shown in Fig. 6 (right), it

peaks around the approximate location of the dynamical phase
transition.

With these three numerical experiments from Fig. 6, we
have a good agreement to identify a phase transition to be
between ρinit = 0.217 and 0.218. We proceed by obtaining it
analytically using the DCM.

Recall that the DCM is limited to small lengths p of the
trajectory for which we can solve the fixed point iterations
efficiently. The question is then, how can we distinguish
whether the dynamics converges fast or slow when we can
look ahead only a finite number of steps p?

To answer this, observe that the relaxation time is ex-
tremely fast for any ρinit, even for the ones that go on to stay
in the chaotic region for an exponentially long time. Further,
we observed that on average, during the chaotic phase, the
density is 0.5. The appropriate question is then: after p steps
of the DCM, what is the density of the last configuration ρp

in the large n limit? At the inflection point for growing p, we
expect to find the dynamical phase transition. In Fig. 7, we
show an overview and zoom-in for the relationship between
ρinit and ρp, for p up to 7. We compare the extrapolated
value for p → ∞, assuming exponential convergence (see
Appendix C), and our empirical extrapolation. Indeed, the
correspondence between theory and empirics is very good,
with a theoretically predicted transition around ρinit ∼ 0.2168.

Since both the chaotic and ordered dynamics for the an-
ticonformist GCA 001011 have attractors of the same type,
the backtracking approach of the BDCM is not very insightful
for this specific transition. However, it is useful to inspect the
other CNC rules in the following.

(b) Absolute majority GCA: 0011. For the absolute major-
ity GCA 0011, the convergence is logarithmic independently
of ρinit and the system’s phases differ only in the type of
attractor they converge to.

In Fig. 8 we show the entropy of backtracking attrac-
tors with a path length p = 1, 2, 3 obtained via the BDCM.
Here, the entropy represents the size of its basin of attraction
when stepping back p steps from the attractor, for a specific
ρinit. Each differently styled line represents a single type of
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DCM prediction
p intersection of ρp and ρp+1

2 0.2039
3 0.2142
4 0.2158
5 0.2165
6 0.2167

→ ∞ 0.2168 ± 0.0001
empiric 0.2175 ± 0.001

FIG. 7. DCM prediction of dynamical phase transition for the anticonformist GCA 001011. (Left) The prediction of the DCM for the
density ρp after p steps, for different initial configurations ρinit. (Middle) Zoom into the region of the phase transition, with data for p = 7
added. (Right) Table of the crossover points between the different lines. The curves in the middle zoom were fitted with a linear regression and
then the intersection was computed. Extrapolating p → ∞ gives a transition at ρinit = 0.2168 ± 0.0001 (see Appendix Fig. 17).

attractor. Their entropy was obtained by solving the BDCM
fixed point iteration under the constraint matching the respec-
tive attractor properties, i.e., c = 1, 2. In addition, the value
of ρinit was constrained, giving the final result. In the large n
limit only the types of attractors with the maximum entropy
are expressed. Therefore, the correct way to interpret the plots
is to check which attractor type has the maximum entropy
for every ρinit—this phase will be the one which is typically
observed in large systems.

At p = 0, we would only count the attractors, without their
basin, essentially using the method from Ref. [18]. However,
only as we increase p and incorporate the basin of attraction,
we observe that the overall picture from the empirics Fig. 5
is reproduced qualitatively by the BDCM: For large ρinit, it
shows the all-one attractor. Decreasing ρinit around 0.5, one
finds the partially rattling attractor.

Since a (p/c) backtracking attractor with c = 1 is also
a backtracking attractor for c = 2, the two entropy curves
naturally merge when the backtracking attractors for c = 2
reduce to attractors that are of length c = 1. This merge be-
tween the two curves is the dynamical phase transition at
a given fixed p, see Fig. 8 (left). Inspecting the fixed point
for c = 2, we indeed find for large enough ρinit that the
activity α, the fraction of rattling nodes in the limit cycle,

becomes essentially zero [Fig. 8 (middle)]. This indicates that
the number of such rattling nodes no longer scales in O(n)
and that the fixed point only considers limit cycles of length
c = 1. Recording the switch from α = 0 to α > 0 gives the
dynamical phase transition, as shown in the Table on the right
in Fig. 8. Even though we did not compute values larger than
p = 5, we extrapolate the BDCM result to p → ∞ to make
our theoretical prediction. This agrees well with the empirical
prediction (Appendix C).

(c) Stubborn independent GCA: 00 + 11. We can do a
similar type of analysis for the stubborn independent GCA
00 + 11. This is the GCA where the node in the weak agree-
ment region is stubborn, i.e., it sticks with its own opinion. In
this analysis, we distinguish between two types of attractors
that go either to the homogeneous all-1 or mixed stable state,
which both have a limit cycle length of c = 1. Recall that
the mixed stable state is defined to be an attractor where the
density in the attractor ρattr is not 0 or 1 (see Table I). In Fig. 9
(left) we show the entropy for small p in terms of ρinit. To
identify the dynamical phase transition we again track the spot
where the attractor type with the maximum entropy switches
over. Here, this is a merge of the two curves again. While we
can restrict the fixed point iteration to variables that always
end up in the all-1 attractor, for mixed stable attractors there

FIG. 8. BDCM prediction for the absolute majority GCA 0011. (Left) Entropy of the basin of attraction for the homogeneous and partially
rattling attractors, for increasing path lengths p = 1, 2, 3. (Middle) The activity in the limit cycle for fixed points for (p/c = 2) backtracking
attractors. The dashed line shows the range of ρinit for which our numerics did not find any fixed points. (Right) The table shows the values of
the smallest ρ∗,p

init > 0.5 for which α(ρ∗,p
init ) = 0.0 together with the normalized entropy at the corresponding given ρinit. It shows the extrapolation

p → ∞ and compares it with the numerical results and related work (see Appendix C).
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FIG. 9. BDCM prediction for the stubborn independent rule 00 + 11. (Left) Entropy of the basin of attraction for the all-1 and mixed stable
attractors respectively, for increasing steps into the basin of attraction p = 1, 2, 3. The dynamical phase transition is marked in red. (Middle)
The density of 1s in the attractor, ρattr, as a function of ρinit for attractors with c = 1. (Right) The transitions is the first ρinit for which the
ρattr = 1. These values are recorded in the table together with the entropy of the basin of attraction at that point. The extrapolation agrees well
with the empirical estimate of the transition from the maximal slowing down (see Appendix C).

is so far no technical means of constraining it to a nonzero
ρattr. This is why we track the ρattr as a function of ρinit in
Fig. 9 (middle) and record when this property becomes close
enough to 1.0, giving us the value of change. The table on
the right of Fig. 9 records these values. The extrapolation to
p → ∞ matches well with the empirical result.

(d) Volatile independent GCA: 00 − 11. The volatile inde-
pendent GCA 00 − 11 is slightly more complex, as it has more
phases than the GCAs discussed previously, and four dynam-
ical phase transitions (Fig. 5). Since the transition between
partially rattling and homogeneous phase is similar to the
GCA 0011, we discuss only the transition between all-rattling
and partially rattling, i.e., the change between attractors of
length c = 2 where either all nodes change (activity α = 1.0)
or some of them are fixed (α < 1).

In Fig. 10 the entropy of the two phases is shown on
the left. This time, the two fixed points intersect, and do
not merge. However, the fraction of the basin of attraction
covered by the p = 4 steps that are taken back, is smaller
than in the other examples. This can be viewed as a reason

for which this dynamical transition is correct qualitatively,
but the approximation is not precise. The fact that for this
GCA, more steps back are necessary, reflects the common
observation that close to phase transitions the convergence
time increases, which makes the use of the BDCM more
challenging computationally in its vicinity by default.

VI. CONCLUSION AND OPEN QUESTIONS

In this work, we use tools from statistical physics—the
dynamical cavity method and its backtracking version—to
demonstrate that they are powerful for deriving analytical
results on the global dynamics of discrete dynamical systems
in the large system size limit.

Concretely, we study a class of graph cellular automata
called the conforming nonconformist GCAs that can be inter-
preted as various models of opinion formation dynamics. We
argue that such systems exhibit a rich set of dynamical phases
defined by their different transient and attractor properties,
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FIG. 10. Dynamical phase transition for the volatile independent GCA 00 − 11. Comparison of the analytical and empirical prediction
of a dynamical phase transition for the volatile independent GCA 00 − 11. We examine the transition between the all and partially rattling
2-cycles. (Left) Analytical prediction of the entropy for each ρinit for the two different types of attractors for increasing transient lengths p. The
intersection of the two entropy marks the phase transition for a given p and is marked in red. Because the computed entropy is not close enough
to the maximal entropy, as shown by the grey line, the approximation of the transition is not very conclusive and extrapolating the four data
points would result in very high uncertainty. (Middle) Zoom in on the average transient length around the phase transition from Fig. 5. (Right)
Probability of obtaining a smaller than o(n) fraction of rattlers, i.e., the fraction of nodes in the attractor. To determine a reasonable threshold
for having a constant o(n) fraction of rattlers, when n is finite, we analysed the scaling of the rattler fraction as a function of n, which resulted
in an attractor having no more than 0.07% of nonrattlers to be classified as a partially rattling attractor (Appendix C). While the thresholds
agree roughly, the accuracy is worse than for the GCAs discussed previously.
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01 GCAs

0 1ρ0

0−1 GCAs

0 1ρ0

0+1 GCAs

0 1ρ0

FIG. 11. Phase diagram scheme for GCAs with rules of type 01, 0 − 1, and 0 + 1. While for all GCAs the homogeneous stable all-white
and all-black phases are at the end of the ρinit spectrum, the intermediate behavior is qualitatively different. We argue that for each rule type,
when increasing ρinit from 0 to 1, the phases occurring always obey the order illustrated in the diagram, though, for degenerate cases, some of
the phases might be missing (e.g., the constant 0 GCA only has the homogeneous all-0 phase).

and we show the existence of sharp transitions between such
phases in terms of the initial configuration density.

For two specific examples with small degrees, we showed
how the (B)DCM methods are applied and predict the phase
transitions. We show that our analytic predictions agree well
with numerical estimates for reasonably large systems.

Such results enforce the narrative that for discrete dynami-
cal systems, different choices of initial configurations can lead
to qualitatively different regimes of the system’s behavior.

(a) Relationship between CAs and GCAs. In its formu-
lation, the graph cellular automata are extremely close to
classical cellular automata—they only differ in how their
nodes are connected. Whereas for CAs, the connectivity net-
work is given by a regular grid, the GCAs’ connections are
defined by a random regular graph. As such, deriving analyti-
cal results about their global dynamics is challenging and our
work shows a variety of new results about such systems.

It is not yet clear in how far our results for the random
regular graphs (GCAs) transfer to the regular lattice (CAs).
Even though classical CAs are not amenable to the analysis
via (B)DCM, a numerical investigation is still possible. Previ-
ous work has shown that similar types of attractors and phases
do occur on the lattice [34], but our own preliminary empirical
investigations did not show an immediate and unambiguous
connection. We leave a thorough investigation of these empir-
ics for future work.

Clearly, an analytic method capable of directly handling
deterministic CAs directly rather than extrapolating behav-
ior from the regular GCAs or probabilistic cellular automata
[34,53] is a challenging goal.

(b) Limitations of the (B)DCM. A major drawback of the
DCM and BDCM is the exponential computational barrier
which depends on the length of the analysed motif p + c.
Even when the system typically relaxes fast, as previously

FIG. 12. Weak agreement region with scaling (very roughly) in θ ∼ √
d . Increasing the degree d for the stubborn/volatile independent

GCAs and the anticonformist GCA, while scaling the weak agreement region (very roughly) as
√

d . Samples were obtained as described in
Fig. 5.
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FIG. 13. Weak agreement region with θ ∈ {0, 1}. Increasing the degree d for the absolute majority and stubborn/volatile independent
GCAs, while keeping the weak agreement region constant. Eventually, all GCAs behave like the absolute majority GCA. Samples were
obtained as described in Fig. 5.

noted, this limitation may lead to less accurate estimates of
the transition [19] as around phase transitions the transient
length may increase due to critical slowing down. Therefore,
it seems worth investigating if and how approximations to the
DCM [48–51,54,55] would give new insights into longer time
scales, and if they remain accurate around phase transitions or

suffer from similar limitations. Moreover, it is an open task to
adapt such approximations to the backtracking version of the
DCM.

(c) Large degrees. For very large degrees d , which scale in
the size of the graph n, we empirically extrapolate our results.
We deduce from the numerics that a scaling of the weak
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FIG. 14. Length of limit cycles for the anticonformist GCA (code 001011). We show the length of the limit cycles for the data collected
for Fig. 5, i.e., 4-regular graphs and different initial densities. (Left) Probability that a sample has a limit cycles length c � 2. Since we only
sample few such long limit cycles, we combine the data for the different initializations ρinit on the (right). The dashed grey line shows the
minimal resolution we are limited to due to our sample size, which was 1024 for each of the 100 different initial densities.

agreement threshold θ approximately as
√

d maintains the
dynamical phase transitions we showed for the small degrees.
For the absolute majority and stubborn/volatile independent
GCAs we conjecture based on our numerical experiments
that only the behavior that we showed previously will occur.
However, preliminary results for the anticonformist GCAs
showed that new types of behavior emerge when we increase
d , hinting at further dynamical phase transitions that require
a higher resolution in d to manifest. We leave a thorough
investigation of this rule space and its peculiarities for future
work.

(d) Short attractors. While for the absolute majority and
volatile/stubborn independent GCAs only short attractors of
length 1 and 2 can occur [56], we showed that empirically
the same holds true for the anticonformist GCAs on sparse
random regular graphs of large size. Based on this evidence,
we conjecture that in the large n limit such GCAs typically
only has short attractors for finite d . This statement remains
to be proven.

0.48 0.49 0.50 0.51 0.52

distance d

10−5

10−4

10−3

10−2

P
(d

)

FIG. 15. Illustration of chaotic phase for anticonformist GCA
001011: evolution of distances of two close-by trajectories. For
GCA 001011 we randomly generated an initial configuration with
length n = 10 000, and density ρinit = 0.5 and a close-by configura-
tion with ε · n different bits; ε = 0.01. While both configurations’
trajectories remain in the chaotic regime, we measure their average
Hamming distance and plot the probabilities for 100 such experi-
ments averaged.

(e) Phase transitions and complexity. There has been a
plethora of works on dynamics of discrete systems that focus
on their complex behavior—this is typically associated with
intriguing visualizations of the systems’ space-time diagrams
or with the capacity to compute challenging tasks [57–59].
Many attempts at formalizing the notion of complexity have
been given with the general belief that the region of complex
behavior is located at a phase transition between “ordered”
and “chaotic” systems [9,30].

In our work, we do not explore the phase transition in
the space of systems. Rather, for a fixed GCA, we describe
the phase transition in the space of its initial configura-
tions. This transition becomes particularly interesting for the

FIG. 16. Histogram of the density ρ for transients with a chaotic
behavior (after relaxation and before convergence to an attractor) for
the anticonformist GCA 001011. We sample 1024 graphs of size
n = 100 with the dynamics of the rule 001011 started at ρinit = 0.2.
The first 100 time steps after the start of the dynamics and last
100 time steps before reaching the attractor are removed for every
sampled trajectory. Since the convergence is fast in the phase where
an attractor is reached rapidly (see Fig. 5), such a cut-off effectively
removes all transients that converge rapidly (less than 200 time steps
long). The histogram shows the density of the remaining trajectory
which exhibits a chaotic behavior. The red lines mark the phase
transition measured empirically for rule 001011 between the phase
of rapid convergence to the homogeneous state (left and right side)
and the chaotic phase (between the red lines). Note that during this
time almost all samples lie within the regime of the chaotic phase.
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FIG. 17. Anticonformist GCA 001011—Extrapolation. Extrap-
olation of the crossover points from Fig. 7 to p → ∞. The plot
shows the distance to the critical ρc

init, the possible location of phase
transition points. Under the assumption of an exponentially fast con-
vergence in p, the best fit seems to lie at roughly ρc

init = 0.2168 ±
0.0001.

anticonformist GCAs that, near the transition, abruptly switch
from logarithmic convergence to attractors (associated with
simple behavior) to an exponential one (interpreted as chaotic
behavior) [33]. As such, it becomes very interesting to ask: Is
the behavior of the system near the phase transition qualita-
tively different? Does it show some signs of “complexity”?
From Fig. 6, middle, it is apparent that as we increase the
system’s size, near the phase transition the system converges
to its typical behavior much more slowly than away from
the transition. Thus, in our case, the complexity arises from
deciding what type of behavior the system will settle to near
the transition. However, assessing the system’s complexity
near the transition would require carefully choosing a formal
metric of complexity. Therefore, we leave such investigations
for possible future work.

(f) Opinion dynamics. As a side product, we investigated
our version of a popular framework from opinion dynamics
[21] on a sparse graph. It encompasses a local update rule
that seems anecdotally ubiquitous in popular culture: The
conforming anticonformist. This is an agent who only acts in

favour of the minority when this minority is not too small, i.e.,
when the race between the majority and minority is tight. Our
analysis showed that such behavior allows for two opinions
to coexist for a prolonged period of time in the system and
thereby maintains a diversity of opinions.
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APPENDIX A: LARGER DEGREE BEHAVIOUR

We studied the dynamics of all conforming nonconformist
rules for connectivity d = 3 and d = 4 and observed the fol-
lowing general trend shown in Fig. 11.

Only the volatile independent rule types 0–1 exhibit both
the all-rattling and partially rattling phases; whereas the stub-
born independent rule types only exhibit stable phases. One
interesting question is: “How does the phase transition behav-
ior scale for larger values of d?” Figure 13 illustrates that if
the threshold θ remains constant as we increase the connec-
tivity d , the interesting region of ρinit shrinks and almost all
initial densities exhibit fast convergence to either the all-0 or
all-1 attractor. Eventually, as the degree grows all these rules
behave as the majority rule.

Let k ∈ N and θ ∈ N. We can parametrize the conforming
nonconformist rules with connectivity d odd in the following
way:

stubborn independent: 0k +2θ 1k,

volatile independent: 0k −2θ 1k,

anticonformist: 0k1θ0θ1k,

with d = 2k + 2θ − 1. We note that the parameter θ indeed
corresponds to the threshold parameter from the definition
of CNC rules in Sec. III. A few examples of the dynamical
behavior for conforming nonconformist rules with larger d
and θ are shown in Fig. 12. For the stubborn/volatile indepen-
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FIG. 18. Absolute majority rule 0011—Extrapolation. Extrapolation of the theoretical BDCM and empirical experiments to n → ∞ and
p → ∞, respectively. (Left) Scaling of the distance to different values of extrapolated ρ∗,∞

init for data for p = 1, ..., 5 for the BDCM. Assuming
exponentially fast convergence in p, a ρ∗,∞

init ∼ 0.7875 ± 0.005 is reasonable. (Right) The location ρinit of the slowest average convergence for
experiments over 4,096 samples of random regular graphs and initial configurations for a given graph size n are recorded, and then extrapolated
to n → ∞. With this we estimate that in the large system limit, the transition happens at ∼0.785 ± 0.005.
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FIG. 19. Stubborn independent GCA 00 + 11—Extrapolation.
As in Fig. 18 we show different extrapolations of the BDCM’s
predictions for dynamical phase transitions for fixed p and extrap-
olate them to p → ∞, concluding that convergence within ∼0.73 ±
0.005. The extrapolation for the empirics is taken from Ref. [19].

dent GCAs we observe that if θ scales approximately as
√

d ,
the phase transitions are preserved (Fig. 12, left). Once θ devi-
ates from

√
d the transitions may collapse and certain phases

are no longer present (Fig. 13). The situation, however, looks
more complicated for the anticonformist GCAs. In Fig. 12,
right, we picked very specific values of k and θ , for which the
general phase transition trend with the interesting region of
alternate behavior around ρinit = 0.5 is present. We highlight
that different values of k and θ yielded new types of behavior
for the anticonformist GCAs that need further investigation
and are left for future work.

APPENDIX B: SUPPORTING EMPIRICS
FOR PHASE CHARACTERIZATION

In Fig. 14 we investigate the lengths c of the limit cycles
for the anticonformist GCA (code 001011). There, we almost
always sample short attractors. As n grows, the number of
large limit cycles drops rapidly. This leads us to the conjec-
ture, that in the large n limit, for the anticonformist GCAs, any
attractors with sizes c > 2 will become vanishingly unlikely.

104 105 106

n

10−4

10−3

10−2

10−1

st
ab

le
n
o
d
e

fr
ac

ti
on

(1
−

α
)

0.60

0.62

0.64

0.66

d
en

si
ty

ρ
in

it

FIG. 20. Scaling of the nonrattling nodes for different ρinit. For
some ρinit the nonrattling nodes scales logarithmic in o(n), for others
they are a constant fraction in �(n). The red value marks the inter-
mediate threshold we selected to classify the all-rattling and partially
rattling phases in Fig. 10 (right), which had 0.7% of stable nodes.

APPENDIX C: SUPPORTING MATERIAL FOR
DYNAMICAL PHASE TRANSITION PREDICTIONS
USING THE (B)DCM AND EMPIRICAL METHODS

In Fig. 15 we show yet another property of the chaotic
phase of anticonformist GCAs. The graph suggests the evolu-
tion of distances of two close-by initial configurations follows
a (pseudo)random walk.

In Fig. 16 we demonstrate that the value of the densities
observed during the chaotic phase to an attractor, fall into the
interval between the dynamical transition lines.

In Fig. 17 we show how we extrapolated the p = ∞ be-
havior from the first 7 time steps using the DCM for the
anticonformist GCA 001011.

We do the same for the absolute majority GCA 0011, in
addition to precise numerics in Fig. 17.

Similarly, the BDCM results for the stubborn independent
GCA 00 + 11 are extrapolated in Fig. 19, and for 0011 in
Fig. 18.

In Fig. 20 we base our selection of the threshold to distin-
guish the all and partially rattling phase on numerical evidence
that shows how the scaling of the activity α behaves differ-
ently for each ρinit.
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