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Regulation of phonon localization on thermal transport in complex networks
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The regulation of thermal transport is a challenging topic in complex networks. At present, the hidden
physical mechanism behind thermal transport is poorly understood. This paper addresses this issue by proposing
a complex network model that focuses on the thermal transport regulation through the manipulation of the
network’s degree distribution and clustering coefficient. Our findings indicate that increasing the degree distri-
bution regulation parameter σ leads to reduced phonon localization and improved thermal transport efficiency.
Conversely, increasing the clustering coefficient c results in enhanced phonon localization and reduced thermal
transport efficiency. Meanwhile, by calculating the pseudodispersion relation of the network, we find that the
maximum (or the second smallest) eigenfrequency decreases with increasing σ (or c). Finally, we elucidate that
phonon localization plays a pivotal role in the thermal transport of the network, as demonstrated through density
of states and the participation ratio.
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I. INTRODUCTION

As is well known, the field of thermal transport has con-
sistently been a focal point of research and innovation. On
the one hand, significant strides have been taken in this do-
main, aiming to enhance control over heat flux and mitigate
thermal management challenges to a certain extent [1–6].
Concurrently, as research in this area has intensified, notewor-
thy thermally conductive materials have emerged, including
thermally conductive silicone rubber [7], thermal interface
materials [8], graphene [9], thermal insulating material [10],
nanowires and nanotubes [11], and more.

On the other hand, complex networks have experienced
comprehensive and profound development across diverse dis-
ciplines and fields, encompassing domains such as neuronal
networks [12], biological networks [13], and nanotube and
nanowire networks [14]. Notably, nanowires have garnered
significant research attention in materials science and nan-
otechnology owing to their distinctive physical and chemical
properties [15,16]. In the contemporary technological land-
scape, the emergence of nanowire nanojoining technology
presents a captivating opportunity to craft intricate networks
at the nanoscale [17–20]. This cutting-edge approach involves
techniques such as nanowelding and nanofolding to establish
nanojunctions. Consequently, it becomes imperative to de-
velop models for these nanonetworks, scrutinize their thermal
transport characteristics, and delve into the mechanisms un-
derpinning these properties.

Presently, significant strides have been taken in the study
of thermal transport within complex networks. For instance, it
has been recognized that alterations to the network topology
impact thermal transport, encompassing aspects such as node
degree [21], degree correlation [22], and the self-organization
of carbon nanotubes [23]. Furthermore, these changes can
give rise to novel phenomena, such as interface thermal
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resistance [24], thermal rectification [25], thermal siphon [26],
and the vortex ratchet heat flow phenomenon [27]. However,
despite these advances in controlling heat flux, the underly-
ing physical mechanisms have remained largely unexplored.
Therefore, there is an urgent need to gain a deeper under-
standing of the thermal transport properties within complex
networks. It is well known that phonon localization can exert a
significant influence on thermal transport in low-dimensional
systems [28–30]. Nevertheless, the exploration of phonon lo-
calization in network structures has been limited, primarily
due to the absence of translational invariance resulting from
network structural disorder, which renders the conventional
dispersion relation inapplicable to our model, making the
study of phonon localization for thermal transport in complex
networks a challenging endeavor.

Motivated by these challenges, we have undertaken a com-
prehensive investigation using a general network model to
gain insights into the impact of clustering coefficient and
degree distribution on thermal transport modes. Our findings
reveal that network topology exerts a profound influence on
thermal transport, with thermal transport efficiency decreasing
as clustering coefficient c increases and as the parameter σ

decreases. Furthermore, we have observed a significant in-
fluence of parameter σ and clustering coefficient c on the
temperature distribution within complex networks. Specifi-
cally, an increase in parameter σ results in a progressively
narrower temperature distribution, indicating a reduction in
thermal resistance on each network edge. Conversely, an in-
crease in clustering coefficient c leads to a progressively wider
temperature distribution, signifying an increase in thermal
resistance on each edge. Most importantly, we have conducted
calculations to derive a pseudodispersion relation by comput-
ing the eigenvalues of the Laplacian matrix. Subsequently, we
have determined the density of states and the participation
ratio of the network. The results fully support the above simu-
lation results, thus elucidating that phonon localization plays a
pivotal role in regulating thermal transport within the network.
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The subsequent sections of this paper are organized as
follows. In Sec. II, we present the thermal transport model of
the network we have constructed, elucidating its Hamiltonian,
potential, dynamic equations, and other pertinent details. In
Sec. III, we present the results of our numerical simulations,
showcasing the thermal transport efficiency and the corre-
sponding thermal resistance of the network across various
parameter settings. Section IV offers insights into the under-
lying mechanisms shaping our numerical simulation results,
with a particular emphasis on the role of phonon localization.
This is elucidated through an analysis of the density of states
and the participation ratio of the network. Finally, in Sec. V,
we summarize our primary findings and provide a comprehen-
sive discussion of the implications and future directions of our
research.

II. MODEL

Over the past two decades, the study of complex networks
has witnessed significant advancements, leading to the devel-
opment of various network models [31–33]. Among them,
Erdős-Rényi (ER) networks and Barabasi-Albert (BA) scale-
free networks [32] stand out as two typical examples. Notably,
these two models exhibit distinct differences in their degree
distributions. In the case of random networks, the degree dis-
tribution follows a binomial distribution, typically represented
as P(k) ∼ e−k , while the BA model exhibits a power-law
degree distribution, often expressed as P(k) ∼ k−γ , where k
denotes the number of connections for each node.

In this study, we employ a generalized network model
that offers flexibility with varying structures, ranging from
random to scale-free, by adjusting the parameter σ [34]. The
construction process for this generalized network model is as
follows: Initially, m nodes are taken as initial nodes and each
node is made to have m connected edges. Subsequently, at
each time step, a new node is introduced. The m connected
edges of the added nodes connect m existing nodes with
probability

∏
i ∼ (1 − σ )ki + σ , where ki is the degree of

node i at that time, with the parameter 0 � σ � 1, and
a network with an average degree 〈k〉 = 2m is generated
after a long time of evolution. It should be emphasized that
(1 − σ )ki in

∏
i denotes preferred connections and σ in∏

i denotes random connections. The degree distribution
follows P(k) ∼ [k + σ/(1 − σ )]−γ [34], where the scaling
exponent γ = 3 + σ/[m(1 − σ )]. Therefore, the degree
distribution of the generated network will satisfy the power
law P(k) ∼ k−γ for σ = 0, that is, the scale-free network;
the degree distribution of the generated network satisfies the
Poisson distribution P(k) ∼ e−k/m for σ = 1, that is, random
network; the network presents a complex structure between a
random network and a scale-free network when 0 < σ < 1.

In addition, the change of clustering coefficient values has
a significant effect on the topological patterns of complex
networks. When clustering coefficient is small, it indicates
the lower probability that the neighbors of a node are also
connected with each other, as shown in Fig. 1(a). Conversely,
when clustering coefficient is large, it indicates the higher
probability that the neighbors of a node are also connected
with each other, as shown in Fig. 1(b). Therefore, the topology
of a network with a fixed degree distribution P(k) can be

FIG. 1. The influence of network topology on clustering coeffi-
cient. In the network with six nodes and eight edges, (a) and (b) are
network structures of low clustering coefficient 0 and high cluster-
ing coefficient 0.83, respectively. (c) Kim’s reconnection method:
randomly select two edges A-B and C-D each time in the original
network, then delete the two edges A-B and C-D, and create two new
edges A-D and B-C.

further modulated by manipulating its clustering coefficient,
which denoted as c, it is defined as [35]:

c = 1

N

∑ 2Ei

ki(ki − 1)
, (1)

where Ei is the number of edges actually connected between
the ki neighbors of node i. To modulate the clustering co-
efficient c, we utilize Kim’s reconnection method [36], and
implement an annealing algorithm [37] to get the maximum
(or minimum) clustering coefficient within the network. The
process unfolds as follows: First, set the parameter σ to gen-
erate a complex network with an average degree 〈k〉 = 6.
Second, randomly select two edges, one connecting node A
and B, and the other connecting node C and D. By making
each node change partners, the original edges A-B and C-D
cease to exist and are replaced by new edges A-D and B-C, as
illustrated in Fig. 1(c). Note that duplicate edges are avoided
during the reconnection process. Following such cross edg-
ing, the degree of each node does not change, so the degree
distribution of the whole network nodes remain unchanged.
Furthermore, this approach preserves the essential properties
of the node. This ensures that certain pivotal nodes in the
network maintain their significance from the original network
even after the reconstruction [36]. Next, check whether the
new connections lead to an increase (or decrease) in the sum
of clustering coefficient for the four nodes involved in the
two connected edges. If so, the operation is considered valid.
Conversely, if this operation fails to increase (or decrease)
the network’s clustering coefficient, we introduce a minute
probability parameter, denoted as f = 0.01, to determine
whether to retain the aforementioned edge connection op-
eration. Specifically, if a randomly generated number falls
below f , the operation is preserved. Otherwise, if the ran-
dom number exceeds f , the operation is abandoned, and the
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edges remain unchanged, proceeding to the next iteration.
This iterative process persists until the disparity between the
global clustering coefficient and the desired clustering co-
efficient is less than 10−3. At this point, we consider that
the target clustering coefficient has been achieved. This ap-
proach enhances the algorithm’s likelihood of escaping local
optima and increases the probability of reaching the target
clustering coefficient. Leveraging this methodology, we can
manipulate the degree distribution and clustering properties of
the network, respectively, thereby enabling a comprehensive
exploration of their impact on the network’s thermal transport
characteristics.

The study of thermal transport in networks typically em-
ploys the FPU model [38], and the potential energy of the FPU
model is defined as

V (x) = g2

2
x2 + g3

3
x3 + g4

4
x4. (2)

This potential energy can be understood as arising from
the expansion of V around its equilibrium position at x = 0.
Specifically, for the case of g4 is equal to zero, the model is
referred to as the FPU-α model; for the case of g3 is zero, the
model is referred to as the FPU-β model [39–41].

The Hamiltonian of the system is

H =
N∑

i=1

[
p2

i

2Mi
+ U (xi ) + Vi(xi+1 − xi )

]
, (3)

where i traverses all nodes of the network, i = 1, 2, . . . , N ,
Mi represents the mass of the ith node, xi represents the
displacement from the equilibrium position of the ith node,
U (x) denotes the substrate potential energy, in order to main-
tain the variables, we let U (xi ) = 0 and only the interactions
between the nearest-neighbor nodes are considered, therefore,
the system potential energy can be expressed as

Vi(xi ) = 1

2

ki∑
j=1

[
1

2
(xi − x j )

2 + β

4
(xi − x j )

4

]
. (4)

For simplicity, we set Mi = 1. The thermostats are chosen
as the common Nose-Hoover thermostats [42,43], and the
dynamics of the source nodes satisfy

ẋh = ∂H

∂ ph
, ṗh = −∂H

∂xh
− ξh ph,

ẋl = ∂H

∂ pl
, ṗl = −∂H

∂xl
− ξl pl . (5)

The dynamic equations of the thermostats satisfy

ξ̇h = ẋh

Th
− 1,

ξ̇l = ẋl

Tl
− 1. (6)

Except for the source nodes, the motions of all other nodes in
the network obey the canonical equations

ẋi = ∂H

∂ pi
,

ṗi = −∂H

∂xi
. (7)
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FIG. 2. Schematic diagram of heat flux distribution and node
temperature distribution in a random network. The solid red cir-
cle represents the node, and its color depth represents the temper-
ature. The node surrounded by the red (blue) circle is connected to
the thermostat with the high temperature Th (low temperature Tl ). The
arrows represent the direction of heat flux at steady state, and their
darker color means a larger heat flux. Here the size of the network
N = 200 and the average degree 〈k〉 = 6.

It should be emphasized that the dynamics simulation in
this study employs the fourth-order Runge-Kutta algorithm
with an integration time step of 0.01, and after a transient
process of time 106, the thermal transport within the network
reaches a steady state. The local temperature of node i can be
defined as [39,40]

T (i) =
〈

p2
i

Mi

〉
. (8)

The heat flux at the edge between neighboring nodes i and j
can be calculated by the following equation:

Ji j = 〈ẋi∂V/∂x j〉, (9)

where 〈· · ·〉 is the long time average, which takes the value of
107 in this study.

III. NUMERICAL SIMULATION

In the numerical simulation, we consider a network size
of N = 200 nodes with an average degree of 〈k〉 = 6, and
randomly select two nodes in the network as the high- and
low-temperature source nodes connected to the Nose-Hoover
thermostat [42,43]. Fixed boundary conditions are applied to
the source nodes. The temperatures of the thermostats are set
as Th = 0.9 and Tl = 0.1, respectively, as illustrated in Fig. 2.
We define J as the total heat flux in the network, with its
magnitude serving as a measure of heat transport efficiency,
which is calculated as the sum of heat flux from the high-
temperature source node i0 to all its neighboring nodes, or as
the sum of heat flux from the network to the low-temperature
source node j0. This can be expressed as [44]

J =
ki0∑
j=1

Ji0 j . (10)

After the transient process, J will stabilize.
To elucidate the impact of the degree-distribution regula-

tion parameter σ and the clustering regulation parameter c on
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FIG. 3. Effect of parameter σ on the total heat flux J of the
network. (a) and (b) illustrate the variation of total network heat
flux J with parameter σ , where Th = 0.9 and Tl = 0.1, at β values
of 0.0 and 1.0, respectively. (c) and (d) illustrate the variation of
total network heat flux J with parameter σ , where Th = 0.09 and
Tl = 0.01, at β values of 0.0 and 1.0, respectively. Black squares, red
circles and blue triangles represent the cases of clustering coefficient
c = 0.1, 0.4, and 0.7, respectively.

thermal transport, we conducted an extensive series of numer-
ical simulations for networks with different parameters σ and
different clustering coefficients c at different β values. Specif-
ically, we considered β values of 0 [Fig. 3(a)] and 1 [Fig. 3(b)]
for the cases of Th = 0.9 and Tl = 0.1. It is evident from the
results that the total heat flux J monotonically increases as
σ increases. This suggests that random networks are more
conducive to thermal transport to scale-free networks. In order
to further explore the influence of thermostats’ temperatures
on this characteristic, we research the dependence of the total
heat flux J for the case of Th = 0.09 and Tl = 0.01. The
outcomes presented in Figs. 3(c) and 3(d) affirm that the total
heat flux J monotonically increases as σ increases. Thus the
change of the thermostat temperatures do not alter the con-
clusion that random networks are conducive for the thermal
transport.

Next we further explored the variation of the total heat flux
J with different clustering coefficients c where β values are
taken as 0 [Fig. 4(a)] and 1 [Fig. 4(b)] for the cases of Th = 0.9
and Tl = 0.1, respectively. As the clustering coefficient c in-
creases, J monotonically decreases. Notably, the curve with
σ = 1 exhibits the most significant reduction, while the curve
with σ = 0 displays the smallest reduction. This implies that
larger values of c is less conducive for the thermal transport
in the network and larger values of σ promote the thermal
transport within the network. In our pursuit of a deeper un-
derstanding of the impact of thermostat temperatures on this
characteristic, we investigated the dependency of the total
heat flux J under different thermostat temperatures, specif-
ically Th = 0.09 and Tl = 0.01. The outcomes presented in
Figs. 4(c) and 4(d) affirm that the total heat flux J mono-
tonically decreases as c increases. Thus the change of the
thermostat temperatures do not alter the conclusion that larger
values of c is less conducive for the thermal transport.

FIG. 4. Effect of clustering coefficient c on the total heat flux J
of the network. (a) and (b) illustrate the variation of the total network
heat flux J with the clustering coefficient c, where Th = 0.9 and
Tl = 0.1, at β values of 0.0 and 1.0, respectively. (c) and (d) illustrate
the variation of the total network heat flux J with the clustering
coefficient c, where Th = 0.09 and Tl = 0.01, at β values of 0.0
and 1.0, respectively. Black squares, red circles, and blue triangles
represent the cases of σ = 0.0, 0.5, and 1.0, respectively.

In order to explore whether the average degree of the
network has an effect on the above-mentioned thermal trans-
port, we carried out a large number of numerical simulations
of the thermal transport of the network with different de-
gree distribution control parameters σ and cluster coefficients
c. Figures 5(a)–5(c) show the dependence of the total heat
flux J on the parameter σ for c = 0.1, 0.4, and 0.7, re-
spectively, where β = 1, squares and circles represent the
network when the average degree 〈k〉 = 6 and 10 of the net-
work, respectively. As can be seen from the figure, when
the average degree is large, the change of parameter σ has
little influence on the heat flux, because the randomness
of the network is weakened when the average degree is
large.

Figures 6(a)–6(c) show the dependence of total heat
flux J on the cluster coefficient c of degree distribution
when σ = 0.0, 0.5 and 1.0 where β values are taken as 1,
respectively, squares and circles represent the network when
the average degree 〈k〉 = 6 and 10, respectively. We observe
that the average degree of the network does not alter the

FIG. 5. Effect on the total heat flux J of the network after
changing parameter σ for different average degrees. (a)–(c) illustrate
the variation of the total network heat flux J with parameter σ

for c = 0.1, c = 0.4, and c = 0.7 under different average degrees,
respectively. Black squares and red circles represent the cases of
〈k〉 = 6 and 10, respectively.
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FIG. 6. Effect on the total heat flux J of the network after
changing clustering coefficient c for different average degrees. (a)–
(c) illustrate the variation of the total network heat flux J with the
clustering coefficient c for σ = 0.0, σ = 0.5, and σ = 1.0 under
different average degrees respectively. Black squares and red circles
represent the cases of 〈k〉 = 6 and 10, respectively.

conclusion regarding the impact of the aforementioned clus-
tering coefficient c on thermal transport.

Additionally, when we maintained a fixed clustering coef-
ficient c = 0.1 [Figs. 7(a)–7(d)], the temperature distribution
progressively narrowed as the parameter σ increased. This
suggests that with larger values of σ , the temperatures of most
nodes in the network tend to approach uniformity. In order to
understand the mechanism of these significant differences, we
further investigated the variation of thermal resistance, which
can be expressed by the following equation [24]:

Ri j = �Ti j

Ji j
, (11)

where �Ti j denotes the temperature difference between two
neighboring nodes i and j and Ji j is the same as the repre-
sentation in Eq. (10), which denotes the heat flux transferred
between two neighboring nodes i and j.

It is worth noting that higher values of thermal resistance
signify greater hindrance to heat transfer, leading to slower
efficiency of thermal transport. Conversely, lower thermal
resistance facilitates faster thermal transport efficiency. We
show in Figs. 7(e)–7(h) the relationship between the change
in thermal resistance of each edge for σ = 0.0, 0.3, 0.7, and
1.0, respectively. As σ increases, the probability of connection
between nodes increases and the connections in the network
are more uniform. Consequently, larger values of σ lead to
reduced thermal resistance on each edge, making heat transfer
more efficient between nodes. The smaller loss of heat transfer

FIG. 7. Nodes temperature distribution and thermal resistance of
each edge. (a)–(d) are the distribution D(T ) of nodes temperature
T for different parameters σ = 0.0, 0.3, 0.7, and 1.0 for clustering
coefficient c = 0.1, respectively. (e)–(h) are the values of thermal
resistance corresponding to each edge for different parameters σ =
0.0, 0.3, 0.7, and 1.0 for clustering coefficient c = 0.1, respectively.
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FIG. 8. Heat flux and nodes temperature distribution in network.
(a) and (b) are heat flux distribution with average degree 〈k〉 = 6 for
σ = 0 and 1, respectively. The difference in node color represents
the difference in temperature. The nodes surrounded by red (blue)
circles are connected to the thermostat with the high temperature Th

(low temperature Tl ). The arrows represent the direction of heat flux
at steady state, and their darker color means a larger heat flux.

in the network reduces the temperature difference between
nodes and contributes to a relatively narrow temperature dis-
tribution within the network.

Next, we visualize the above results in Fig. 8. Figures 8(a)
and 8(b) show the heat flux on the network and the temper-
ature distribution among the nodes for the parameters σ =
0.0 and 1.0, respectively, which illustrate that as the degree
distribution regulation parameter σ increases, the heat flux
increases, and the temperature distribution tends to be consis-
tent, which is consistent with the results we discussed above.

Similarly, we fix the parameter σ = 1.0, and vary the
clustering coefficient c [Figs. 9(a)–9(d)], we observe that the
temperature distribution gradually widens as the clustering
coefficient c increases. This indicates that larger values of c
result in a broader range of temperature distribution among
the nodes in the network, which can be similarly interpreted
in terms of thermal resistance [Figs. 9(e)–9(h)]. When the
clustering coefficient c increases, it means that denser con-
nections are formed between the nodes in the network and the
aggregation of nodes increases, which results in increasing
heat transfer losses. Consequently, the thermal resistance on
each edge rises, leading to greater hindrance to thermal trans-
port. This, in turn, results in larger temperature differences
between nodes. In other words, the wider the temperature
differences between nodes, the broader the temperature dis-
tribution across the network.

We then visualize the above results in Fig. 10. Figures 10(a)
and 10(b) show the heat flux and the temperature distribution
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FIG. 9. Nodes temperature distribution and thermal resistance of
each edge. (a)–(d) are the distribution D(T ) of nodes temperature
T for different clustering coefficients c = 0.1, 0.3, 0.5, and 0.7 for
parameter σ = 1.0. (e)–(h) are the values of thermal resistance cor-
responding to each edge for different clustering coefficients c = 0.1,
c = 0.3, c = 0.5, and c = 0.7 for parameter σ = 1.0, respectively.

on the nodes for clustering coefficient c = 0.1 and 0.7 on
the random network, respectively. These visualizations illus-
trate that with a larger clustering coefficient, the heat flux
decreases, and the range of temperature distribution becomes
wider, which is in line with the results we discussed above.

IV. PHONON LOCALIZATION

In order to explore the mechanism behind the simulation
results in Sec. III, we introduce the pseudodispersion relation
of the general network structure to elucidate the observed

Th

Tl

Tl

Th

(b)

(a)
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0.4

0.5

0.6

0.7

0.8

0.9

FIG. 10. Heat flux and nodes temperature distribution in net-
work. (a) and (b) are heat flux distribution with average degree
〈k〉 = 6 and σ = 1 for clustering coefficient c = 0.1 and 0.7, re-
spectively. In these visualizations, variations in node color indicate
differences in temperature. Nodes encircled by red (blue) circles are
linked to the thermostat with high temperature Th (low temperature
Tl ). The arrows represent the direction of heat flux at steady state,
and their darker color means a larger heat flux.

FIG. 11. The influence of parameter σ and c on the pseudo-
dispersion relation. (a) The eigenfrequency ω versus its eigenmode
index λ of random networks for σ = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0,
respectively. (b) The eigenfrequency ω versus its eigenmode index λ

of networks for c = 0.1, 0.3, 0.5, and 0.7, respectively.

outcomes [45]. First, by substituting Eq. (3) into (7), we obtain

üi =
ki∑

j=1

(u j − ui ) + β

2
(u j − ui )

3. (12)

Decomposing the amplitude ui in the above equation into the
eigenvector eω,i with eigenmodes eω

ui =
∑

ω

Qωeω,i, (13)

where Qω is a time-dependent expansion coefficient with the
expression Qω(t ) = exp(−iωt ). Then Eq. (12) can be simpli-
fied as

−ω2eω = G · eω, (14)

where the matrix G represents the coupling interactions of
neighboring nodes and the N × N matrix G can be expressed
as

Gi, j = Xi, j − Ii, j, (15)

where matrix X denotes the adjacency matrix in the network.
If there is a connecting edge between node i and node j, then
X (i, j) = 1, otherwise X (i, j) = 0. The matrix I is a diagonal
matrix denoted as Ii, j = δi, jki.

Figure 11(a) shows the eigenfrequency ω versus its eigen-
mode index λ for a general network with different parameters
σ = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 for clustering coefficient
c = 0.1. Variation of the parameter σ significantly perturbs
the pseudodispersion relation of the network, specifically, for
the same eigenmode index λ, the maximum eigenfrequency
(cutoff frequency) ωmax = ωλ=200 monotonically decreases as
σ increases, as shown in Fig. 11(a). This implies that the
degree distribution influences the extent of distribution of
vibration modes within the network.

Similarly, we investigated the pseudodispersion relation
for different clustering coefficients under random networks.
Figure 11(b) shows the eigenfrequency ω versus its eigen-
mode index λ for random networks with different clustering
coefficients c = 0.1, 0.3, 0.5, and 0.7. Variations in the clus-
tering coefficient c perturb the pseudodispersion relation of
the network. Specifically, for the same eigenmode index
λ, the second smallest eigenvalue decreases with increasing
clustering coefficient c, as shown in Fig. 11(b). This implies
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FIG. 12. Phonon density of states for different parameters σ of
size N = 200. (a)–(f) are the DOS of a network for σ = 0.0, 0.2,
0.4, 0.6, 0.8, and 1.0, respectively.

that the clustering coefficient also has an effect on the dis-
tribution range of the vibration modes. We all know that the
variation of the second smallest eigenvalue can have an effect
on epidemic spread [46], system synchronization [47], etc.,
and we find here for the first time that the variation of the
second smallest eigenvalue can also have an effect on thermal
transport.

In order to more accurately analyze the variation of the
pseudodispersion relation in Fig. 11 and to further understand
the properties of phonon vibrations, we introduce the phonon
density of states, which is defined as [48]

g(ω) =
∑

�ω→0

�n

�ω
. (16)

We further investigate the density of states (DOS) of the
parameter σ and the clustering coefficient c. We know that
the DOS spikes are often referred to as van Hove singularity,
which indicates the transition between different vibrational
modes. By adjusting the parameter σ and the clustering co-
efficient c, we can observe changes in the position and shape
of the spikes in the DOS. The positions of these spikes can
correspond to specific vibrational patterns, and changes in
their shapes can reveal interactions between variations in net-
work structure and vibrational patterns. Figure 12 shows the
DOS for different parameters σ , which can be regarded as the
inverse of the derivative of the curve shown in Fig. 11(a).
It can be clearly seen that in Fig. 12, as the parameter σ

increases, the spikes gradually weaken and eventually dis-
appear. Figure 13 shows the DOS for different clustering
coefficients c under the random network, and it can be seen
that the spikes gradually appear as the clustering coefficient c
increase. These changes in the DOS provide valuable insights
into the relationship between network parameters and vibra-
tional patterns.

We further introduce the participation ratio (PR) to quan-
tify the strength of localization of different vibrational modes
[49,50]

Pω = 1

N
∑

i (e∗
i,ωei,ω )2 , (17)

where N is the number of phonon occupancies given by
the Bose-Einstein distribution and eω,i is the eigenvector

FIG. 13. Phonon density of states for different clustering coef-
ficients c of size N = 200. (a)–(d) are the DOS of a network for
c = 0.1, 0.3, 0.5, and 0.7, respectively.

component of the eigenvalue ω. For a perfect extended state
we have P = 1, while for a state strongly localized on one
node it tends to 1/N [49]. Thus, the PR provides a measure
of the extent to which the vibrational modes are spatially
distributed; a large PR indicates that the modes have a broad
spatial distribution, while a small PR indicates that the modes
are localized. We show the PR of vibrational modes in general
networks as a function of the eigenfrequency ω of various
degree distribution modulation parameter σ and clustering
coefficient c. These results demonstrate that the structural
properties of the network influence the spatial distribution
of vibrational modes, subsequently affecting the intensity of
localization within the network.

Figure 14 illustrates the PR of the vibrational modes in
the general network as a function of the eigenfrequency ω

of the various parameters σ . It can be clearly seen that the
variation of the parameter σ has an impact on the local-
ized intensity. Specifically, as the parameter σ increases, the

FIG. 14. Eigenmode participation ratio of generalized networks
vs. the eigenfrequency, ω, for different σ : (a) σ = 0.0, (b) σ = 0.2,
(c) σ = 0.4, (d) σ =0.6, (e) σ = 0.8, and (f) σ = 1.0. Simulation
data for spring networks with n = 200 and M = 1.

044311-7



XIONG, LIU, ZHOU, DONG, AND YAN PHYSICAL REVIEW E 109, 044311 (2024)

FIG. 15. Eigenmode participation ratio of generalized networks
vs. the eigenfrequency, ω, for different c: (a) c = 0.1, (b) c = 0.3,
(c) c = 0.5, and (d) c =0.7. Simulation data for spring networks with
n = 200 and M = 1.

PR of the high-frequency part increases continuously, which
means that the extended mode predominates. The value of
PR for regions ω > 1 is initially smaller and increases with
increasing σ , which implies that the vibrational modes are
transitioning from localized states to extended states. Fig-
ure 15 shows the PR of the vibrational modes in the random
network as a function of the eigenfrequency ω for various
clustering coefficient c. As the clustering coefficient c in-
crease, we can see that the PR for the high-frequency part
of the network keeps decreasing, which implies that localized
modes predominate. Illustrated in Fig. 14(a), the participation
ratio exhibits two distinct peaks, suggesting the presence of
two van Hove singularities. This indicates a transition from
the local state → the extended state → the local state → the
extended state → the local state, resulting in the observation
of double peaks in Fig. 12(a). Figure 15(a) emphasizes this
observation, depicting the occurrence of double peaks when
the parameter c = 0.1. Nevertheless, as c increases, one of
the peaks diminishes and eventually disappears in Fig. 15(d),
signifying a transition from the local state → the extended
state → the local state, resulting in the observation of only
single peak in Fig. 13(d). Therefore, under these conditions,
the corresponding density of states behaves unimodally. It is
widely known that phonon localization hinders the transport
of energy. By assessing the degree of phonon localization
using the participation ratio, we can deduce that as the pa-
rameter σ increases, phonon localization becomes weaker.
As a result, thermal transport efficiency improves, leading
to an increase in heat flux at the network’s edges. This, in
turn, reduces thermal resistance and narrows the temperature
distribution among network nodes. Conversely, when the clus-
tering coefficient c increases, phonon localization becomes
more pronounced, causing a decrease in thermal transport
efficiency. This weakens the heat flux at the connecting edges
of the network, leading to higher thermal resistance and a
broader temperature distribution among network nodes.

V. CONCLUSION AND DISCUSSION

We employed a generalized network model to investigate
the influence of the degree distribution modulation param-
eter σ and the clustering coefficient c on thermal transport
within the network. Our findings reveal that as the clustering
coefficient c increases, the thermal transport efficiency of the
network decreases and, accordingly, the thermal resistance of
each edge increases. Conversely, as the parameter σ increases,
the thermal transport efficiency of the network subsequently
increases and the thermal resistance of each edge decreases.
Most significantly, we elucidate the physical mechanisms by
which both the degree distribution and clustering coefficient
influence the thermal transport within the network through
calculations of the pseudodispersion relation, states density,
and the phonon participation ratio. Specifically, with the in-
crease of parameter σ , the state density spikes gradually
diminish, and the PR in the high-frequency part increases,
indicating that the vibrational modes are transitioned from
localized states to extended states. Conversely, with the in-
crease of the clustering coefficient c, the state density spikes
gradually strengthen, and the PR in the high-frequency part
decreases, indicating that the vibrational modes are transi-
tioned from extended states to localized states. Therefore,
phonon localization will affect the thermal transport efficiency
of the network. With the weakening of phonon localization,
the thermal transport efficiency of the network increases. On
the flip side, with the enhancement of phonon localization, the
thermal transport of the network decreases.

The above theoretical results are consistent with some
experimental results. For example, it has been demonstrated
in experiments measuring the thermal conductivity of ultra-
thin single-walled carbon nanotube networks that the thermal
transport properties of carbon nanotube networks are ex-
tremely sensitive to the intertube junctions of the nanotubes
[51,52]. Moreover, it has been shown in experiments mea-
suring the thermal conductivity of random networks of
three-dimensional carbon nanotubes that the coefficient of
thermal conductivity of double junctions at room temperature
is about an order of magnitude smaller than that of single
junctions [53], which is consistent with our theoretical result
that the network thermal transport increases with the increase
of the degree distribution regulation parameter σ . Because
when the parameter σ increases, the number of nodes with a
higher count of cross-connected edges decreases. In addition,
the clustering coefficient c represents the probability that the
neighbors of nodes are also connected to each other, corre-
sponding to the aggregation behavior of nanoparticles in the
experiment. the latest research in experiments indicates that
the thermal conductivity of composites will decrease with the
increase of particle aggregation concentration [54,55], which
is consistent with our theoretical result that the network ther-
mal transport decreases with the increase of the clustering
coefficient c. This greatly enhances the credibility of our
conclusions.

In summary, we establish a fundamental link between
network topology and system eigenfrequencies, offering a
theoretical foundation for understanding the vibrational char-
acteristics of networks. We have shown that for the same
eigenmode index λ, the maximum cutoff frequency ωmax
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decreases with the increase of the degree-distribution mod-
ulation parameter σ , and the second smallest eigenvalue
decreases with the increase of the clustering coefficient c, in-
dicating that the strength of localization in a complex network
can be manipulated by adjusting the topology of the network.
In this way, thermal transport can be controlled by tuning the
structural or vibrational properties of the network, enabling
the optimization of thermal performance. These findings are
of great significance for the development of strategies to
regulate thermal transport for complex networks and provide

further exploration and development in the study of phonon
localization in disordered networks.
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