
PHYSICAL REVIEW E 109, 044309 (2024)

Meta predictive learning model of languages in neural circuits

Chan Li,1,2,* Junbin Qiu,1,* and Haiping Huang 1,3,†

1PMI Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
2Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

3Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-sen University,
Guangzhou 510275, People’s Republic of China

(Received 6 November 2023; accepted 18 March 2024; published 12 April 2024)

Large language models based on self-attention mechanisms have achieved astonishing performances, not only
in natural language itself, but also in a variety of tasks of different nature. However, regarding processing
language, our human brain may not operate using the same principle. Then, a debate is established on the
connection between brain computation and artificial self-supervision adopted in large language models. One of
most influential hypotheses in brain computation is the predictive coding framework, which proposes to minimize
the prediction error by local learning. However, the role of predictive coding and the associated credit assignment
in language processing remains unknown. Here, we propose a mean-field learning model within the predictive
coding framework, assuming that the synaptic weight of each connection follows a spike and slab distribution,
and only the distribution, rather than specific weights, is trained. This meta predictive learning is successfully
validated on classifying handwritten digits where pixels are input to the network in sequence, and moreover,
on the toy and real language corpus. Our model reveals that most of the connections become deterministic after
learning, while the output connections have a higher level of variability. The performance of the resulting network
ensemble changes continuously with data load, further improving with more training data, in analogy with the
emergent behavior of large language models. Therefore, our model provides a starting point to investigate the
connection among brain computation, next-token prediction, and general intelligence.

DOI: 10.1103/PhysRevE.109.044309

I. INTRODUCTION

Large language models (LLMs) based on transformer
structures greatly boost both industrial and academic inter-
ests in artificial general intelligence [1]. LLMs are able to
achieve state-of-the-art performances in a variety of different
tasks, only trained by next-token prediction. The transformer
structure computes self-attention scores to capture statistical
correlations among input tokens in parallel, which is in stark
contrast to brainlike recurrent computation based on synaptic
feedback in temporal depth (e.g., a short working memory). In
addition, LLMs typically require a sizable number of corpus
to trigger emergence of intelligence, compared to the fact
that much less data is needed for a child to acquire linguistic
ability. Therefore, it is necessary to establish a mechanistic
model of language processing to understand the biological
plausible mechanism and underlying physics law governing
phase transitions through statistical patterns of model hyper-
parameters [2].

In brain science, predictive coding is one of the most influ-
ential hypotheses that can implement hierarchical information
processing [3,4]. The predictive coding derives the neuroplas-
ticity rule based on local error signal [5], whose goal is to
minimize the surprise between the prediction and belief of a
generative model of the outside world [6]. The framework of
predictive coding has several benefits for theoretical research.

*These authors contributed equally to this work.
†huanghp7@mail.sysu.edu.cn

First, this framework can be understood as a joint optimiza-
tion of neural dynamics and synaptic connections in order
to maximize the observation probability of sensory inputs to
the neural circuits [7]. Second, this principle shares exactly
the same spirit adopted in variational free energy frameworks
[6]. Recently, there appeared intense interest in studying the
biological implementation of this hypothesis [8–10], in de-
veloping algorithmic applications [11–13], and in studying
the trade-off between energy minimization and information
robustness in a linear model of lateral predictive coding [14].

Predictive coding postulates that the cortex carries out
a predictive model where the incoming sensory signals are
predicted by using prediction-error-driven learning and infer-
ence. In this sense, predictive coding is a nice framework to
model language processing. However, weight uncertainty is
commonly observed in neural circuits [15,16], e.g., synaptic
transmission is stochastic, and spine size is subject to fluctua-
tion. But these effects were not taken into account in previous
studies of predictive coding, as remarked in a recent review
[17]. In addition, the weight uncertainty was recently studied
in recurrent neural networks [18], inspiring fluctuation-driven
synaptic plasticity. Therefore, exploring how the weight un-
certainty affects predictive coding in language processing will
help to establish a mechanistic model of language process-
ing to understand the biological plausible mechanism and
underlying physics law governing phase transitions through
associated statistical patterns of model hyperparameters. In
this work we derive a mean-field learning rule for predictive
coding in recurrent neural networks (RNNs), which is a funda-
mental structure for natural language processing [19–25], and

2470-0045/2024/109(4)/044309(14) 044309-1 ©2024 American Physical Society

https://orcid.org/0000-0001-8757-4733
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.044309&domain=pdf&date_stamp=2024-04-12
https://doi.org/10.1103/PhysRevE.109.044309

CHAN LI, JUNBIN QIU, AND HAIPING HUANG PHYSICAL REVIEW E 109, 044309 (2024)

we assume that each direction of connection follows a weight
distribution incorporating weight sparsity and variance. We
thus call this rule meta predictive learning (MPL). This frame-
work is tested first on the classification of the MNIST dataset
[26], where pixels in an image are divided into groups, then
a toy language dataset, where we can have a thorough ex-
ploration of algorithmic capabilities, and finally, a language
corpus in the real world (Penn Treebank corpus [27]).

Our proposed MPL achieves equal or even better perfor-
mance compared with traditional methods in all three tasks,
showing the advantage of ensemble predictive coding, since
examples of single networks can be readily sampled from the
trained distribution [18,28]. By analyzing the distribution of
hyperparameters we are able to find that most connections
are deterministic in the input and recurrent layers, while the
output layer has a higher level of variability. The observation
that the output connections bear a higher level of variability
is a universal result in all three tasks, which may particularly
connect to the generative function of the language processing
model. The network performance changes nonlinearly and
continuously with data load α = M

N , where M is the training
data size and N is the number of neurons in the circuit, and
we found that the critical point is given by αc ≈ 0.02, beyond
which a chance level of prediction is absent. With increasing
the size of training data, the performance further improves
until a perfect learning is achieved. We can then test the
resulting network to generate text of arbitrary length (to create
something is the first step to understanding that thing), and
the generated text follows perfectly the grammatical rule set
before training. In addition, our MPL is able to accomplish
comparable performances in the Penn Treebank corpus with
other training methods in RNN, although the framework is
less accurate than the transformer structure, which thereby
calls for further studies about the mechanistic difference
between biological learning and nonbiological transformer
learning, and how the latter can inspire discovery of new
fundamental elements of computation that can realize logical
and mathematical reasoning in many different tasks [29,30].

II. METHOD

Here we consider meta predictive learning in a vanilla
RNN which processes a time-dependent sequence x with time
length T . We adapt the predictive learning framework (see
a recent review [6]) to the following vision and language
processing (main focus of this paper). In this framework a
belief neural state is introduced and updated to minimize the
deviation from the actual neural state (an energy function),
which is called the inference phase; when the currently best
belief is achieved, the learning phase starts, i.e., the synaptic
weights connecting neurons are jointly updated to minimize
the same energy function further for the goal of achieving a
minimal surprise between the belief and prediction (or actual
and target outputs, see details below). This inference-learning
loop can be repeated many times until a satisfied accuracy
is achieved. When inference-learning loops are completed,
a prediction phase starts, during which the generation or
classification ability is tested using the belief state and the
distribution parameters of weights. Our idea is thus to focus
on the weight distribution for the learning phase, including the

sparsity of weights and the weight variance if the connection
is not absent. Because the hyperparameters of the distribution
are learned, rather than the specific weight values, we call this
learning rule meta predictive learning. Rare studies focus on
the important role of weight fluctuations in predictive learn-
ing, especially in language processing. In the following we
detail this framework.

More precisely, the input signal of Nin dimension is first
mapped to the recurrent reservoir of N neurons by an input
weight matrix win ∈ RN×Nin , whose element win

i j indicates the
connection weight value from neuron j in the input to the
reservoir neuron i. The neurons in the reservoir interact with
each other with reciprocal connections w ∈ RN×N , where el-
ements wi j specify the directional coupling from neuron j to
neuron i, and moreover, wi j �= w ji. The self-connectivity wii

is also included and can be learned without imposing any prior
knowledge [18]. The internal neural dynamics ri(t) is read out
via the output weight wout ∈ RNout×N . In the predictive learn-
ing setting, r is interpreted as a belief state when x is observed
as a sensory input, which can be continuously updated to
match the actual prediction whose dynamics reads as follows:

hi(t) =
N∑

j=1

wi j f [r j (t − 1)] +
Nin∑
j=1

win
i j x j (t),

yi(t) = φ

⎛
⎝ N∑

j=1

wout
i j f [r j (t)]

⎞
⎠,

(1)

where hereafter t denotes the discrete time steps to run
the dynamics, yi(t) is the ith component of the network
output, f (·) denotes the nonlinear activation function, and
we use the ReLU function for all tasks. φ(·) is the output
nonlinear function, and we use the softmax function to
specify the probability over all classes, which is defined as
φ[zk (t)] = ezk (t)∑

j ez j (t) . The belief state r(t) is updated for all time

steps up to the sequence length to minimize the prediction
error between r and h, which will be detailed below. Note
that r(0) = 0, and we fix the belief of the output node ry = ŷ,
where ŷ denotes the label of input x. Generally speaking, all
beliefs can be initialized to random values.

The core idea of the proposed MPL is assuming the distri-
bution of the network parameters is subject to the following
spike and slab (SaS) form [18,28]:

P
(
win

i j

) = π in
i j δ

(
win

i j

) + (
1 − π in

i j

)
× N

(
min

i j

Nin
(
1 − π in

i j

) ,
�in

i j

Nin
(
1 − π in

i j

))
,

P(wi j) = πi jδ(wi j) + (1 − πi j)

× N
(

mi j

N (1 − πi j)
,

�i j

N (1 − πi j)

)
,

P
(
wout

ki

) = πout
ki δ

(
wout

ki

) + (
1 − πout

ki

)
× N

(
mout

ki

N
(
1 − πout

ki

) ,
�out

ki

N
(
1 − πout

ki

))
.

(2)

Note that N (1 − π) specifies the mean degree of each neuron
in the reservoir, as 1 − π specifies the synaptic connection

044309-2

META PREDICTIVE LEARNING MODEL OF LANGUAGES … PHYSICAL REVIEW E 109, 044309 (2024)

probability, which is biologically plausible due to unreliable
stochastic noise [31]. The first and second moments of ele-
ments w�

i j (� is in, out, or recurrent, depending on the context;
for the recurrent context, the item has no superscript) can be

derived as μ�
i j = m�

i j

N�
, ��

i j = (m�
i j)

2

N2
� (1−π�

i j)
+ ��

i j

N�
, respectively. Note

that the mean and variance of the Gaussian slab are scaled
by the number of mean synaptic connections, such that the
prediction of neuron is of the order 1.

Considering the statistics of synaptic weights and a large
number of afferent projections for each neuron in Eq. (1),
which is true in real neural circuits [32], we can reason-
ably assume the prediction hi(t) (∀i) follows an evolving
Gaussian distribution whose mean and variance are defined
by Gi = Grec

i + Gin
i and 	1

i = (in
i)2 + (rec

i)2, respectively.
This is intuitively the result of a central limit theorem. The
statistics of readout neural currents can be derived in a similar
way. Therefore, the mean-field dynamics of this model can be
written as

hi(t + 1) = Grec
i (t) + Gin

i (t + 1)

+ ε1
i (t + 1)

√[
	in

i (t + 1)
]2 + [

	rec
i (t)

]2
,

yk (t) = φ
[
Gout

k (t) + ε2
k (t)	out

k (t)
]
,

(3)

where t denotes the discrete time steps to run the dynamics,
and the superscript in ε indicates different types of standard
Gaussian random variables—one for reservoir neurons (with
superscript 1) and the other for readout neurons (with super-
script 2). By definition, {ε1,2

i (t)} are both time and neuron
index dependent. Given μ�

i j and ��
i j , the mean currents to-

gether with the associated fluctuations are derived below:

Gin
i (t + 1) =

∑
j

μin
i j x j (t + 1)

Grec
i (t + 1) =

∑
j

μi j f [r j (t + 1)]

Gout
k (t + 1) =

∑
j

μout
k j f [r j (t + 1)]

[
	in

i (t + 1)
]2 =

∑
j

(
�in

i j − (
μin

i j

)2)
[x j (t + 1)]2

[
	rec

i (t + 1)
]2 =

∑
j

(
�i j − (

μi j
)2)

(f [r j (t + 1)])2

[
	out

k (t + 1)
]2 =

∑
j

(
�out

k j − (
μout

k j

)2)
(f [r j (t + 1)])2.

(4)

The prediction dynamics [Eq. (1) or Eq. (3) in the meta
learning context] can be interpreted as perceptual inference,
widely used in energy-based optimization of brain dynamics
[7], while the learning given below is called the neuroplas-
ticity. Both processes minimize exactly the same energy (or
variational free energy in general [5]).

Predictive learning can be derived from a temporally hi-
erarchical Gaussian probabilistic principle [4,5], where the
objective function is given by the negative log-likelihood of
the joint neural-state distribution. To optimize this objective
function, we apply a mean-field approximation of the joint
distribution and an additional Laplace approximation that

leads to Gaussian forms [17]. We give a brief interpretation in
Appendix A. In essence, the predictive learning maximizing
this log-likelihood aims to minimize the following energy cost
[12,33]:

F =
2∑

j=1

T∑
t=1

E j (t). (5)

This energy function is exactly the variational free en-
ergy in the above Gaussian probabilistic principle. The
choice of E j (t) depends on the problem at hand. If the
network produces an output at every time step as in
the language model, E1(t) = 1

2‖r(t) − h(t)‖2, and E2(t) =
−∑

i ŷi(t) ln[yi(t)]. However, if the network only makes
the final decision in the last time step as in the classi-
fication task, i.e., yk (T) = φ[Gout

k (T) + ε2
k (T)	out

k (T)], we
then have the energy terms E1(t) = 1

2‖r(t) − h(t)‖2 for t =
1, . . . , T − 1, E1(T) = 0, and E2(t) = 0 for t < T , E2(T) =
−∑

i ŷi ln[yi(T)]. Moreover, we define the prediction error
E ′

1(t) = r(t) − h(t) and E ′
2(t) = ry(t) − y(t). This error can

be propagated along the dendritic connections in neural cir-
cuits [34]. In a mathematical sense, the prediction errors can
be interpreted as the gradients of the above energy cost.

In essence, the predictive learning consists of three phases:
inference phase, learning phase, and prediction phase [see
Eq. (1), and in the current meta-learning, Eq. (3) is used].
We next show the predictive learning details for the language
processing, while other applications can be readily adapted.
First of all, during the inference phase, the belief r(t) is
updated to minimize the energy function F with the following
increment:

	ri(t
′) = −γ

∂F
∂ri(t ′)

= −γ
∂E1(t ′)
∂ri(t ′)

− γ
∂

∑
t �=t ′ E1(t)

∂ri(t ′)
− γ

∂E2(t ′)
∂ri(t ′)

= −γE ′
1,i(t

′) + γ
∑

j

E ′
1, j (t

′ + 1)
∂h j (t ′ + 1)

∂ri(t ′)

+ γ
∑

j

E ′
2, j (t

′)
∂
[
Gout

j (t ′) + ε2
j (t ′)	out

j (t ′)
]

∂ri(t ′)

= −γE ′
1,i(t

′) + γ f ′[ri(t
′)]

∑
j

E ′
1, j (t

′ + 1)μ ji

+ γ
∑

j

E ′
2, j (t

′)μout
ji f ′[ri(t

′)]

+ γ
∑

j

E ′
1, j (t

′ + 1)ε̂1
ji + γ

∑
j

E ′
2, j (t

′)ε̂2
ji, (6)

where γ indicates the learning rate for the in-
ference phase (we choose γ = 0.1 for all tasks),

ε̂1
ji = ε1

j (t ′ + 1) [� ji−(μ ji)2] f ′[ri (t ′)] f [ri (t ′)]√
(in

j (t ′+1))2+(rec
j (t ′))2

, and ε̂2
ji =

ε2
j (t ′)

[�out
ji −(μout

ji)2] f ′[ri (t ′)] f [ri (t ′)]
	out

j (t ′) . It is evident that the last

two terms in Eq. (6) are related to the fluctuations caused by
the network statistics. The interplay between the network
statistics and the prediction errors governs the belief
dynamics, which was not considered in previous studies.

044309-3

CHAN LI, JUNBIN QIU, AND HAIPING HUANG PHYSICAL REVIEW E 109, 044309 (2024)

We emphasize this intrinsic property of neural dynamics
is due to ongoing fluctuations of synaptic weights in the
presence of circuit noise [31]. Equation (6) thus addresses
how the neural belief is shaped under the fluctuating circuit
environment.

The goal of this inference process is to find the best
configuration of belief for synaptic weight modifications
(aforementioned neuroplasticity). When the decrease of the
energy F becomes stable, e.g., |F t − F t−1| < 0.1, or when
a maximal number of iterations (n in our algorithm 1) is ap-
proached, the learning phase starts, i.e., the hyperparameters
[m�,π�,��] are updated based on the local error signal E ′

j (t)
with the following increments:

	m�
i j = −η

∂F
∂m�

i j

= −η
∑

t

E ′
�′,i(t)

×

⎡
⎢⎣− 1

N�

ξ �
j − ε�′

i (t)
m�

i jπ
�
i j

(
ξ�

j

)2

(N�)2(1 − π�
i j)

√
	�′

i

⎤
⎥⎦,

	π�
i j = −η

∂F
∂π�

i j

= −η
∑

t

E ′
�′,i(t)

×

⎡
⎢⎣−ε�′

i (t)

(
m�

i j

)2(
ξ�

j

)2

2(N�)2
(
1 − π�

i j

)2
√

	�′
i

⎤
⎥⎦,

	��
i j = −η

∂F
∂��

i j

= −η
∑

t

E ′
�′,i(t)

⎡
⎢⎣−ε�′

i (t)

(
ξ�

j

)2

2N�

√
	�′

i

⎤
⎥⎦,

(7)

where η denotes the learning rate for the learning phase,
	1

i = [in
i (t)]2 + [rec

i (t − 1)]2, and 	2
i = [out

i (t)]2. To de-
rive Eq. (7), the chain rule and mean-field dynamics [Eq. (3)]
are used. The meaning of superscripts depends on the network
structure where the computation is carried out. If � = in,
�′ = 1, ξ�

j = x j (t), N� = Nin; if � indicates the recurrent reser-
voir, �′ = 1, ξ�

j = f [r j (t − 1)], N� = N ; if � = out, �′ = 2,
ξ�

j = f [r j (t)], N� = N . For easy comprehension, we summa-
rize all mathematical items and associated explanations in
Appendix D. The dynamics of π and � are purely driven by
the synaptic fluctuation, while the m dynamics is contributed
by the activity (belief or sensory observation) and the synaptic
fluctuation. The m yields impacts on π and � as well. Note
that the vanilla predictive coding does not take into account
synaptic fluctuations (see also Appendix C), which is indeed
ubiquitous in neural circuits [16]. One typical source is that
the synaptic noise results from noisy biochemical processes
underlying synaptic transmission, while the other source is the
fluctuation of spine sizes in the neocortex, and the existence
of silent synapses [35,36].

In practice, implementation of the meta learning rule in
Eq. (7) immediately follows the inference phase, where the
update of belief r has made F converge. To improve the
prediction performance, the inference and learning phases are
repeated a number of times. The prediction phase is carried
out after a round of inference-learning loop to test the model’s

ALGORITHM 1. Meta predictive learning algorithm.

1: # Inference
2: Given: input x, label ŷ, randomly initialized belief r, ry = ŷ,

standard Gaussian variables ε1 and ε2

3: for iter = 1, . . . , n do
4: for t = 1, . . . , T do
5: hi(t + 1) = Grec

i (t) + Gin
i (t + 1) + ε1

i (t + 1)√
[in

i (t + 1)]2 + [rec
i (t)]2;

6: yk (t) = φ[Gout
k (t) + ε2

k (t)	out
k (t)];

7: r(t) = r(t) + 	r(t).
8: end for
9: end for

10: # Learning
11: for � = in, out, recurrent do
12: for t = 1, . . . , T do
13: m� = m� + 	m�;
14: π� = π� + 	π�;
15: �� = �� + 	��.
16: end for
17: end for
18: Output: r.
19: # Prediction
20: Given: test data x, converged belief r, another set of standard

Gaussian variables ε1 and ε2

21: for t = 1, . . . , T do
22: hi(t + 1) = Grec

i (t) + Gin
i (t + 1) + ε1

i (t + 1)√
[in

i (t + 1)]2 + [rec
i (t)]2;

23: yk (t) = φ[Gout
k (t) + ε2

k (t)	out
k (t)];

24: end for
25: Output: y.

generalization performance. Three phases can be concisely
represented by the pseudocode in Algorithm 1. Codes to re-
produce the numerical results provided in the next section are
available in our GitHub [37]. We finally remark that during
inference and prediction phases, the actual weight configura-
tion is not drawn, and instead, the reparameterized form of the
Gaussian fields is used, which is determined by the first and
second moments, i.e., μ�

i j and ��
i j .

III. RESULTS AND DISCUSSION

In this section we first apply the MPL in the digit classifica-
tion task, where an MNIST digit of 784 pixels is divided into a
sequence of pixels, and subgroups of 28 pixels are input to the
network at each single time step. As a proof of concept, the
first example is to show our framework can be applied to any
computational tasks of temporal structures. Then, we extend
the application to two language processing tasks; one is at the
toy level and the other is the real corpus.

A. MNIST digit classification

The recurrent neural network is trained to classify an input
image after 28 time steps, seeing 28 pixels at each time step.
This task requires long-term memory, because the recurrent
neural network makes the final decision only after seeing all
the pixels, and the information in the previous time steps (up
to 28 steps before) must be stored and processed in the last

044309-4

META PREDICTIVE LEARNING MODEL OF LANGUAGES … PHYSICAL REVIEW E 109, 044309 (2024)

(a) (b)

FIG. 1. The performance of meta predictive learning on the
28 × 28 MNIST classification task. (a) Test accuracy as a function
of epoch. The network with N = 100 recurrent neurons, Nin = 28
input units, and Nout = 10 output nodes is trained on the full MNIST
dataset with 60 k training images (handwritten digits) and validated
on another unseen 10 k test handwritten digits. Predictive coding
indicates the learning direct in the weight space rather than the dis-
tribution space. If the epoch is less than 40, the number of inference
steps is set to n = 100, and n = 200 otherwise. The inset shows
how lnF changes with training in the first 60 training epochs (this
log-energy becomes stable in the late training stage, and is thus not
shown). Five independent runs are considered for the fluctuation of
the result. (b) The logarithmic average value of [��,π�, m�] vs epoch
in all layers, the log means logarithm with the base e. Only the first 20
epochs are considered (the result remains stable in the later training
stage), and the fluctuation is computed from five independent runs.

step. To carry out this task, we use a vanilla RNN with N =
100 recurrent neurons, Nin = 28 input units, and Nout = 10
output nodes indicating the output class in the one-hot form.
The entire dataset is divided into several batches, and we
use stochastic gradient descent (SGD) in the learning phase
to update the hyperparameters [m�,π�,��] and an Adam
optimizer is applied [38]. Despite working on the network
ensemble level and the fact that weight uncertainty must be
taken into account during the inference, learning, and predic-
tion phases, our model can achieve better and more stable
performances than the predictive coding without any distri-
bution training [Fig. 1(a)]. As expected, the overall energy F
consistently decreases during training and reaches the point
near zero in the late stage of training.

The macroscopic behavior of the network is corroborated
by the statistical pattern of model hyperparameters underlying
synaptic weights, as shown in Fig. 1(b). The weight uncer-
tainty characterized by hyperparameters [��,π�] decreases
over training, showing that the weight is becoming more
deterministic, and we use the average value, e.g., 〈�in〉 =

1
N×Nin

∑
i j �

in
i j , to compute the average uncertainty level (for

the mean m, we take its absolute value before the average is
carried out). Interestingly, the uncertainty level is highest in
the output layer, which is in striking contrast to the results
obtained by a generalized backpropagation through time (not
the local learning guided by prediction error considered in
the current work) at the ensemble level [18] where the un-
certainty is highest in the recurrent layer. From the predictive
coding perspective, the readout weight has more flexibility
to extract the information in the reservoir. On one hand, this
higher variability may be due to the local nature of learning
that is driven by minimizing the prediction error, and on
the other hand, the decision making here is implemented by
reading only the belief neural state, which must cooperatively

interact with weight statistics to reduce the readout errors.
A precise mathematical explanation would be insightful but
left for future works. This indicates that a more biological
plausible training may lead to different interpretations of the
same computational tasks as implemented in neural circuits.
Therefore, to reveal biological mechanisms, a biological plau-
sible training is a necessary ingredient.

B. Toy language model

A real language corpus is commonly complicated and not
simple for theoretical studies. To build a metaphor for the
complicated natural language, we set up a generative process
where a text (a stream of tokens) is generated through a fixed
rule (similar to grammar). Following this setting, the artificial
corpus consists of M texts of length T each, and each text is
composed of letters from a, b, c, . . . , z. A periodic boundary
is applied. For example, a single sample x = {a, c, g, i, ...} is
generated according to the grammatical rule that starting from
letter ′a′, only the letter ′c′ or ′e′ which is located two letters
or four letters next to ′a′ (with equal probabilities) can follow
′a′, and the case of two consecutive ′c′ is not allowed. This
rule for generating toy language is just a simple model of real
corpus but nontrivial enough for a neural network to learn the
embedded rule. The generated examples (letter sequences) are
shown to the neural network, which is required to discover the
rule by our meta predictive learning working on next-letter
prediction. After training, the network is tested by generating
a sequence of arbitrary length following the same rule. A
hierarchical compositional structure can also be incorporated
into the generation process, but we leave this more interesting
case to future studies based on this toy setting.

A RNN with N = 100, Nin = 26, Nout = 26 is trained on
the full dataset following the above rule, with a total of 26 624
(calculated as 26 × 2T −1) sequences of length T = 11 (other
values of T can also be similarly studied), and an SGD with
Adam optimizer is applied [38]. To detect a possible phase
transition with increasing data size, we can use an increasing
portion of the entire dataset (i.e., M < 26 624). Each letter can
be encoded into one-hot form before being input to the net-
work, while the readout implements a decoding of the neural
activity into one-hot form as well. Because of the simplicity
in our letter space, we do not need word embedding as com-
monly used in language processing [39]. In Fig. 2(a) we can
easily generate a sequence of arbitrary length by supplying a
network with the letter generated in the previous time step,
and the trained network (in the ensemble sense) successfully
generates sequences following the ground truth rule. Interest-
ingly, the well-trained network also generates sequences with
length T > 11 following the same rule, suggesting the pos-
sibility that the network output could be creative to generate
new grammatically correct sequences.

To study the emergence behavior of this simplified
language model, we define the correct letter ratio to char-
acterize the language generating ability of our model. After
training, the network instance (sampled from the ensem-
ble) is required to generate 26 sequences of length T =
11 whose first letters are one of all 26 letters of the
alphabet, and the correct letter ratio is defined as the av-
erage ratio of correctly predicted letters. For example, the

044309-5

CHAN LI, JUNBIN QIU, AND HAIPING HUANG PHYSICAL REVIEW E 109, 044309 (2024)

(a) (b) (c)

Before Training:

After Training:

network 1: a y f m f m x r x e e

network 2: a v f l m m l l l l b

network 1: a e i m o s u y a c g

network 2: a c g i k o s w a e g

FIG. 2. The properties of meta predictive learning on the simplified language prediction task. The grammatical rule is designed as follows:
starting from a random letter (′a′ here), only the candidates located two letters or four letters after ′a′ can follow the starting letter with
equal probability, and each letter only repeats once in this next-word generation. All letters in the alphabet form a cyclic structure. T = 11
is considered, and the full size of dataset is 26 624. RNN with N = 100, Nin = 26, Nout = 26 is trained, and two instances of networks are
randomly sampled from the (trained or untrained) network ensemble. (a) Starting from the letter a, the network generates the next letter, which
serves as the input at the next time step, until a sequence with desired length is generated. (b) The correct letter ratio as a function of data load
α = M

N , and five independent runs are considered. M examples of sequences are used for training. A chance level of 1
13 is marked. The inset

shows the correct letter ratio in the range of α ∈ [0.02, 0.1]. (c) The log-energy lnF changes with training epochs and decreases to near zero.
The inset shows how the correct letter ratio changes with the length of generated sequence after a full dataset is used for training. The error bar
is computed with five independent networks.

sequence [′a′,′ c′,′ e′,′ g′,′ k′,′ m′,′ o′,′ s′,′ w′,′ a′,′ z′] has nine
correct predictions, with ratio 0.9 (in total the network has
to predict ten letters) for this single sequence. Therefore, the
correct letter ratio indicates the language generating ability
of the network ensemble, with a maximal value of 1 (100%).
In Fig. 2(b) we can easily see that the correct letter ratio
first remains at a very low level (close to chance level) if
the data load α = M

N is small, i.e., the generated sequences
are random when α < 0.02. Beyond this threshold, the per-
formance continuously improves, exhibiting the phenomenon
of a second-order phase transition, which coincides quali-
tatively with empirical results of emergence discovered in
large language models [40,41]. The scaling exponent of the
correct letter ratio (order parameter in statistical mechanics
[42]) around the transition point is about 1.14. A rigorous
derivation of this critical exponent is left for future analytic
works. Training RNNs with different network sizes yields
qualitatively the same behavior, but a larger network size
makes the transition sharper. After the transition, the network
assigns the correctly predicted letter with a larger probability
than other letter candidates, while the possibilities for other
letters are significantly suppressed (see Fig. 3). Another im-
portant characteristic is that the learning with increasing data
occurs first rapidly, followed by a slow period, and finally
the performance is saturated to the perfect generalization of
the language rule. This may be interpreted as a hierarchical
decoding of the information embedded in the noisy (stochas-
ticity in the generation process) sequences. We further remark
that, after a full dataset of sequences with fixed length (e.g.,
T = 11) is trained, the network is able to generate the gram-
matically correct letter sequences of arbitrary length [see
the inset of Fig. 2(c)]. The energy of the language model is
also decreasing with training until getting stationary, which
emphasizes the important role of the energy-based model in
understanding recurrent language processing. A further ex-
tension of meta predictive learning to transformer structure
is possible, as the Gaussian assumption used in the standard

predictive coding has been shown to be generalized to arbi-
trary probability distributions in a recent work [43].

To study the properties of this simplified language model,
we plot the distribution of hyperparameters [π, m, �] for the
input layer, output layer, and recurrent layer (see Fig. 4),
respectively. The distribution of [π,�] has the L-shape in
all layers, while the output layer allows for more variability
in both sparsity and variance of the Gaussian slab, which
is characterized by a slightly broader distribution of [π,�].
Extremes π = 0, π = 1, and � = 0 have particular physics
significance. π = 0 indicates the connection has no sparsity
and thus carries important information for the task. The spike
mass at π = 1 implies that the connection is always zero and
thus is not important for the task, but none of the connections
of our model belong to this case. � = 0 shows the correspond-
ing connection is deterministic, because the corresponding
Gaussian distribution reduces to a Dirac δ peak. This result
is also observed in the 28 × 28 MNIST classification task.
The distribution of hyperparameter m is broadest in the output
layer, ranging from −200 to 200, showing the higher-level
variability in the connection weight of the output layer. This
phenomenon demonstrates that the embedded rule can only be
retrieved by using a highly heterogeneous weighting of each
neuron’s activity in the reservoir, which is particularly inter-
esting from the perspective of neural decoding of language
information and probabilistic computation in a biological
plausible setting [10,15,30], since our embedded rule is ac-
tually a probabilistic generative rule mixed with a predefined
grammatical structure. As in the digit classification example,
this high variability may be the direct result of local learning
and cooperative updates of belief and distribution parameters.
We leave a precise mathematical analysis for future work.

C. Experiments on natural language

In this section we apply our MPL algorithm to a more com-
plex language corpus, i.e., the Penn Treebank (PTB) corpus

044309-6

META PREDICTIVE LEARNING MODEL OF LANGUAGES … PHYSICAL REVIEW E 109, 044309 (2024)

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

FIG. 3. Softmax values of the output units for different data loads α. Panels (a,b), (c,d), (e,f), and (g,h) show two typical patterns for each
data load α = 0, α = 0.01, α = 0.03, and α = 0.05, respectively. Only predictions following the designed language rule are displayed, and
the text shown in the panel ′′a → c′′ means inputting the letter ′a′ and the network predicts the immediate following letter ′c′ (corresponding
to the largest softmax output). The training conditions are the same as in Fig. 2.

[27], which contains nearly 50 000 sentences collected from
the Wall Street Journal. The PTB is one of the most known
and used corpus for word-level language modeling.

Due to the large space of the corresponding vocabulary,
the corpus needs to be pre-processed using word embedding
techniques before sending the sentences into the network [39].
Here we describe the main steps. The first step is to use a
tokenizer tool to split the sentences into tokens and replace

the useless words or characters with a special token named
<unk>, indicating an unknown token. In addition, the tokens
that appeared less than five times in the whole corpus will be
replaced with <unk> to help the network concentrate on the
major tokens of high frequency. Next, we collect all tokens
to generate a vocabulary to store all the different tokens.
However, directly inputting the tokens (treated as one-hot
vectors) into the network is inconvenient when the size of

044309-7

CHAN LI, JUNBIN QIU, AND HAIPING HUANG PHYSICAL REVIEW E 109, 044309 (2024)

(a) (b)

(c)
(d)

FIG. 4. Illustration of hyperparameters [π, m, �] in meta predictive learning on the simplified language task. The training conditions are
the same as in Fig. 2. In (c-d) we show statistical properties of bidirectional connections, and i < j is considered.

vocabulary is large. Hence, we set up a look-up table called
an embedding layer to transform every token into vectors in
a low-dimensional feature space via neural networks. The
training goal is to learn word vector representations that are
able to predict the nearby words. Rows of the trained encod-
ing matrix give the distributed representation of words. The
embedding layer is trained by a traditional backpropagation
algorithm [39], while both the recurrent reservoir and the
readout layer are trained by our MPL as described above
(or other alternatives if comparison among algorithms is
made).

The overall energy for the predictive learning is given
below:

F = 1

2

∑
t

||E ′
rec(t)||2 + L, (8)

where E ′
rec denotes the prediction error for the recurrent

reservoir, L(y, ry) = −∑
t

∑
i(ry)i(t) ln yi(t) is related to the

readout error. In order to measure the accuracy of the language
model, we use a perplexity metric, which measures how well
the model predicts the next token, i.e., the uncertainty about
the prediction, precisely given by [20]

ppl =
[

T∏
i=1

p(wi|wi−1, . . . ,w0)

]− 1
T

. (9)

It is intuitive that minimizing the perplexity is equivalent to
maximizing the probability of a corpus which is composed of
T words indicated by {w0,w1, . . . ,wT }. Because the output
of our model yi(t) is actually the prediction probability in
the nonlinear softmax form, we can recast the perplexity as

044309-8

META PREDICTIVE LEARNING MODEL OF LANGUAGES … PHYSICAL REVIEW E 109, 044309 (2024)

FIG. 5. Training performance of networks with different archi-
tectures in the Penn Treebank dataset. In the upper part of the figure,
we choose the vanilla RNN [42], SaS RNN (ensemble learning)
[18], RNN with standard predictive coding [12], and RNN with meta
predictive learning to show how test perplexity decreases with the
training epoch. The first two algorithms belong to the backprop-
agation through time category [42]. In the inset we provide the
performance of transformer model (see details in Appendix B) with
single encoder block for comparison. We also mark the mean test
accuracy of the transformer model at the beginning of training and
at the end of training. In the bottom part of the figure, we select
untrained, trained-for-five-epoch, and full-trained RNNs with meta
predictive learning to show the performances at different training
stages in generating one of the sentences in the test dataset. The cor-
rectly predicted tokens from the test sentence are highlighted, while
the wrongly predicted tokens are gray colored. The indicated accu-
racy is the ratio of the number of correctly predicted tokens from the
test sentence to the total number of tokens in the sentence. The mean
accuracy evaluated from 100 sentences is about 0%, 21.3% ± 10.5%,
23.5% ± 11.3% at the three shown stages, respectively. Note that
all the models share the same training hyperparameters, such as
batch size, learning rate, and training optimizers (see Appendix B
for details).

ppl = eL, where L represents the cross-entropy objective used
to train the network.

We apply our MPL to model this real corpus with com-
parison among other competitive algorithms (see Fig. 5).
The test perplexity obtained by backpropagation through time
with/without meta learning reaches a similar level to those
obtained by standard predictive coding and our MPL method,
after tens of epochs. A salient feature is that those trainings
without the SaS premise get easily overfitted at later stages
of training. For comparison, the transformer network with
self-attention blocks (see Appendix B for details) achieves
the lowest perplexity among all considered methods, which
demonstrates that the current biological recurrent computation
has still a large gap to the artificial transformer computa-
tion, where the input tokens are not shown to the network

in sequence but in the form of a single block, such that
the self-attention is able to integrate information from differ-
ent parts of the input. This also implies that new elements,
e.g., attention mechanisms, possibly in to-be-revealed bio-
logical forms, might be added to our current framework to
minimize the gap on one hand, and on the other hand to
develop a biological computational model of intelligent sys-
tems that can handle natural language, particularly without
relying on a long working memory and an astonishingly large
corpus.

To study the network behavior, we plot the distribution of
hyperparameters m, π , � when the RNN network is trained
with the MPL method, as shown in Fig. 6. We find that the
mean weight m for all layers is symmetrically distributed
around zero, with a relatively narrow distribution. The dis-
tribution of π for all layers is of an L shape and peaks at
π = 0, indicating a dense network is favored and formed after
learning. The distribution of � is of the U shape and has two
peaks. One peak is at � = 0, indicating that these weights
are deterministic and could only take a single value of m,
and the other peak is at � � 0.01, indicating that the corre-
sponding connection can carry a range of candidate values.
Currently, it remains unknown how to relate these microscopic
details of the network structure to the decoding of the seman-
tic information in the corpus. It is thus important in future
works to design an analytically tractable model of language
processing bridging neurophysiological plausibility and su-
perperformance observed in the state-of-the-art architectures,
which would help to uncover key neuron, synapse, and circuit
motif types in the human brain.

IV. CONCLUSION

Predictive coding is a prediction-error-driven learning with
local updates, performing a joint process of both inference
and learning, thereby being a potential candidate for how the
brain builds an internal generative model of the complex,
evolving outside world [2]. We take the predictive coding
within the language processing context, which is currently
attracting intense research interest due to ChatGPT [1]. We
propose a meta predictive learning method in recurrent neural
networks, which encode and predict tokens in text sequences,
in the presence of uncertainty. A continuous phase transi-
tion is revealed in our model, and perfect generation can be
achieved after a sufficient number of training sequences are
provided. Therefore, our toy model provides a good start-
ing point to dissect the mechanism of learning in language
processing [2].

Our MPL framework is relatively not prone to overfitting in
training real corpus. In addition, there emerge intriguing sta-
tistical patterns of hyperparameters in our networks. However,
it remains unclear how these statistical properties explain the
performance (e.g., accuracy in next-token predictions) of the
recurrent computation, which highly resembles what occurs
in human brains. In contrast, the self-attention leveraged in
transformer networks is not biological (e.g., not recurrent
and nonlocal learning). Nevertheless, the transformer struc-
ture leads to emergence of intelligence to some extent, and
in particular the phenomenon of in-context learning, where
the trained network can perform novel tasks by a prompting

044309-9

CHAN LI, JUNBIN QIU, AND HAIPING HUANG PHYSICAL REVIEW E 109, 044309 (2024)

-1 1

m

0.00

0.25

0.50

0.75

1.00
P

ro
b
a
b
il
it
y

D
is

tr
ib

u
ti

o
n

0 1

π
0 0.04

Ξ

-1 1

m

0.00

0.25

0.50

0.75

1.00

P
ro

b
a
b
il
it
y

D
is

tr
ib

u
ti

o
n

0 1

π
0 0.04

Ξ

-1 1

m

0.00

0.25

0.50

0.75

1.00

P
ro

b
a
b
il
it
y

D
is

tr
ib

u
ti

o
n

0 1

π
0 0.04

Ξ

FIG. 6. Probability distribution of hyperparameters m, π , � in the RNN networks trained with meta predictive learning. Distributions of
hyperparameters m, π , � at the input layer are shown at the top of the figure (blue histogram), and those at the hidden layer and output layer
are shown at the middle (salmon histogram) and at the bottom (green histogram) of the figure, respectively.

of example demonstrations without any further learning. The
ability of in-context learning emerges by only scaling models
and computation costs [41]. The deviation from known brain
computation for language processing triggers a hot debate
on what the nature of intelligence is [44] and whether the
intelligence can be achieved by next-token prediction [30].
More precisely, how a compressed representation of hierarchi-
cal compositional structure in linguistic data can be achieved
by biological learning (or resulting in multitask performances
beyond transformer) remains largely mysterious. Our current
study shows that meta predictive learning for language pro-
cessing may be a fruitful route toward this goal.

A recent work demonstrated that the weight uncertainty
with the form of SaS structure can be also incorporated into
the transformer [45]. In addition, gated recurrent neural net-
works with multiplicative mechanisms were recently shown
to be able to learn to implement linear self-attention [46].
Furthermore, the relationship between linear transformers

allowing for faster autoregressive learning and RNNs was
established in a recent work [47]. Taken together, our current
work would be a starting point to establish the bridge between
the biological learning (towards the science of specialized
brain circuits) and transformer learning within the seminal
predictive coding hypothesis, which can be put in the theoret-
ically solid variational free energy minimization conceptual
framework.

ACKNOWLEDGMENTS

This research was supported by the National Natural Sci-
ence Foundation of China for Grant No. 12122515 (H.H.),
Guangdong Provincial Key Laboratory of Magnetoelectric
Physics and Devices (Grant No. 2022B1212010008), and
Guangdong Basic and Applied Basic Research Foundation
(Grant No. 2023B1515040023).

044309-10

META PREDICTIVE LEARNING MODEL OF LANGUAGES … PHYSICAL REVIEW E 109, 044309 (2024)

APPENDIX A: INTERPRETATION OF PREDICTIVE
CODING AS VARIATIONAL FREE ENERGY

MINIMIZATION

For a recurrent dynamics, we write the neural activity at
each step as a latent variable r(t), and then it is reasonable to
assume the joint probability of a trajectory can be written into
the following Markovian form:

P[r(0), . . . , r(T)] = P[r(0)]
T∏

t=1

P[r(t)|r(t − 1)]. (A1)

We further assume a Gaussian form for the transition prob-
ability P[r(t)|r(t − 1)] = N [r(t); h(t), σ 2

t I], where h(t) =
w f [r(t − 1)], and σ 2

t is a time-dependent variance, and for
simplicity, we can set the variance to 1 without loss of gener-
ality, as the mere effect is leading to a rescaled cost function
below. This Gaussian form can be obtained as an approxima-
tion by using the Laplace approximation even if the transition
probability is of other forms. The goal is to optimize the
negative log-likelihood of the joint distribution, defined by

F = − ln P[r(0), . . . , r(T)]

= 1

2

∑
t

‖r(t) − h(t)‖2

σ 2
t

+ const, (A2)

which corresponds exactly to the cost function of predictive
coding if we treat σ 2

t = 1 and neglect the constant term.

APPENDIX B: TRANSFORMER MODEL

A transformer network consists of an embedding layer,
encoder blocks, and decoder blocks [48]. In analogy to the
RNN model, all tokens (one-hot vectors) are transformed into
representations X ∈ Rd×T by an embedding layer, where d
denotes the dimension of embedding space and T denotes the
sequence length. As a clear difference from the RNN train-
ing, the input to the transformer is an entire X matrix rather
than one column for each step during training RNNs. Note
that we have not considered the position encoding scheme
(e.g., adding a vector of sinusoids of different frequencies
and phases to encode position of a word in a sentence) in our
model.

An encoder block includes two parts. The first part is the
self-attention mechanism, aiming to evaluate the correlations
among words in the input block X. To this end, we introduce
three trainable matrices, namely, query Q, key K , and value
V . Then a linear transformation of the input is applied:

Q = WQ · X,

K = WK · X,

V = WV · X,

(B1)

where WQ,WK ∈ Rdh×d , and WV ∈ Rd×d are transformation
matrices, and dh is the internal size of the attention operation.
Therefore, we define Xt as the t th column of X, and then we
can define three vectors, namely, kt = WK Xt , vt = WV Xt , and
qt = WQXt . Then the t th column of the self-attention matrix

SA(X) is given by

attn(t) =
T∑

i=1

αi(t)vi,

αi(t) = ek

i qt /

√
dh∑T

j=1 ek

j qt /

√
dh

,

(B2)

where αi(t) is a softmax operation containing information
about the pairwise interactions between tokens. The normal-
ization factor

√
dh is required to retain relevant quantities in

the exponential function being of the order 1.
The second part is two feed-forward layers with skip con-

nection, i.e.,

z1 = SA(X) + X (residual layer 1)

z2 = ReLU(W1 · z1 + b1) (feed-forward layer 1)

z3 =W2 · z2 + b2 (feed-forward layer 2)

zout =z1 + z3 (residual layer 2),

(B3)

where W1,W2 and b1, b2 are weights and biases of the two
feed-forward layers. The output representations zout can be
considered to be the input of the next encoder block. Here,
we use the single headed attention transformer and do not use
the layer normalization, which scales each element of a vector
by the mean and variance of all elements in that vector.

Our used transformer model has only one encoder block
and one decoder layer. The decoder layer is a linear layer (the
readout layer), where the output representations zout can be
translated into the probability of the next token, which has
the same function as the readout layer of the RNN model.
The dimension of representations d = 300 for all models in
Fig. 5. For four RNN models, the number of neurons in the
recurrent reservoir is N = 512. For the transformer model,
it is convenient to set the hidden dimension dh = d = 300.
The training parameters for all models are set to be the same.
The batch size is 128, and the learning rate is 0.001. We have
chosen the Adam algorithm as our training optimizer [38].

APPENDIX C: THE VANILLA PREDICTIVE
LEARNING ALGORITHM

The vanilla predictive learning algorithm is a simplified
version of our meta predictive learning algorithm, without
considering weight uncertainty. Hence, setting π = 0 and
� = 0 in Eq. (6) and Eq. (7) in the main text leads to the
following update equations for belief and weights:

	ri(t
′) = −γE ′

1,i(t
′) + γ f ′[ri(t

′)]

×
∑

j

E ′
1, j (t

′ + 1)w ji + γ f ′[ri(t
′)]

×
∑

j

E ′
2, j (t

′)wout
ji , (C1)

and

	w�
i j = η

N�

∑
t

E ′
�′,i(t)ξ�

j , (C2)

044309-11

CHAN LI, JUNBIN QIU, AND HAIPING HUANG PHYSICAL REVIEW E 109, 044309 (2024)

TABLE I. Mathematical items used in the main text and associ-
ated explanations.

Item Explanation

ri(t) belief of neuron i at time step t
hi(t) prediction of neuron i at time step t
yi(t) activity of output unit i at time step t
ŷ label of input
f (·) nonlinear activation function for recurrent dynamics
φ(·) nonlinear activation function for network output
� in, out or recurrent (no superscript or subscript)
N� the number of neurons for �

w�
i j directed coupling from neuron j to neuron i

μ�
i j first moment of w�

i j : μ�
i j = m�

i j

N�

��
i j second moment of w�

i j : ��
i j = (m�

i j)2

N2
�

(1−π�
i j)

+ ��
i j

N�

Gin
i (t + 1) input mean current: Gin

i (t + 1) = ∑
j μ

in
i j x j (t + 1)

Grec
i (t + 1) recurrent mean current: Grec

i (t + 1) = ∑
j μi j f [r j (t + 1)]

Gout
k (t + 1) output mean current: Gout

k (t + 1) = ∑
j μ

out
k j f [r j (t + 1)]

	in
i (t + 1) input fluctuation:

√∑
j (�

in
i j − (μin

i j)
2)[x j (t + 1)]2

	rec
i (t + 1) recurrent fluctuation:

√∑
j[�i j − (μi j)2](f [r j (t + 1)])2

	out
k (t + 1) output fluctuation:

√∑
j (�

out
k j − (μout

k j)2)(f [r j (t + 1)])2

	1
i 	1

i = [in
i (t)]2 + [rec

i (t − 1)]2

	2
i 	2

i = [out
i (t)]2

ε1, ε2 standard Gaussian variables
E1(t) E1(t) = 1

2 ‖r(t) − h(t)‖2

E2(t) E2(t) = −∑
i ŷi(t) ln[yi(t)]

F energy cost: F = ∑2
j=1

∑T
t=1 E j (t)

E ′
1 (t) prediction error vector 1: E ′

1 (t) = r(t) − h(t)
E ′

2 (t) prediction error vector 2: E ′
2 (t) = ŷ(t) − y(t)

ε̂1
ji ε̂1

ji = ε1
j (t ′ + 1) (� ji−(μ ji)2) f ′[ri (t ′)] f [ri (t ′)]√

	1
j

ε̂2
ji ε̂2

ji = ε2
j (t ′)

[�out
ji −(μout

ji)2] f ′[ri (t ′)] f [ri (t ′)]√
	2

j

γ learning rate for the inference phase
η learning rate for the learning phase
ξ�

j ξ in
j = x j (t), ξ j = f [r j (t − 1)], ξ out

j = f [r j (t)]
M the number of training sequence examples
α data load α = M

N

T sequence length

ALGORITHM 2. Vanilla predictive coding algorithm.

1: # Inference
2: Given: input x, label ŷ, randomly initialized belief r, ry = ŷ
3: for i = 1, . . . , n do
4: for t = 1, . . . , T do
5: hi(t) = ∑N

j=1 wi j f [r j (t − 1)] + ∑Nin
j=1 win

i j x j (t);
6: yi(t) = φ(

∑N
j=1 wout

i j f [r j (t)]);
7: r(t) = r(t) + 	r(t).
8: end for
9: end for

10: # Learning
11: for � = in, out, recurrent do
12: for t = 1, . . . , T do
13: w� = w� + 	w�.
14: end for
15: end for
16: Output: r
17: # Prediction
18: Given: test data x, converged belief r
19: for t = 1, . . . , T do
20: hi(t) = ∑N

j=1 wi j f [r j (t − 1)] + ∑Nin
j=1 win

i j x j (t)
21: yi(t) = φ(

∑N
j=1 wout

i j f [r j (t)])
22: end for
23: Output: y

where the definition of �, �′, ξ�
j , and N� bear the same meaning

as in the main text (see Table I). We present the pseudocode
of the vanilla predictive learning algorithm in Algorithm 2.

APPENDIX D: MATHEMATICAL ITEMS USED IN THE
MAIN TEXT AND ASSOCIATED EXPLANATIONS

We list mathematical items used in the main text and as-
sociated explanations to help readers go through the paper
smoothly, as shown in the Table I.

[1] S. Bubeck, V. Chandrasekaran, R. Eldan, J. A. Gehrke, E.
Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y.-F. Li, S. M. Lundberg,
H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, Sparks of
artificial general intelligence: Early experiments with GPT-4,
arXiv:2303.12712.

[2] H. Huang, Eight challenges in developing theory of intelli-
gence, arXiv:2306.11232.

[3] R. P. N. Rao and D. H. Ballard, Predictive coding in
the visual cortex: A functional interpretation of some
extra-classical receptive-field effects, Nat. Neurosci. 2, 79
(1999).

[4] Y. Huang and R. P. N. Rao, Predictive coding, WIREs Cognit.
Sci. 2, 580 (2011).

[5] J. C. R. Whittington and R. Bogacz, An approximation of the
error backpropagation algorithm in a predictive coding network
with local Hebbian synaptic plasticity, Neural Comput. 29, 1229
(2017).

[6] B. Millidge, A. Seth, and C. L. Buckley, Predictive coding: A
theoretical and experimental review, arXiv:2107.12979.

[7] K. Friston, Does predictive coding have a future? Nat. Neurosci.
21, 1019 (2018).

[8] A. M. Bastos, W. Martin Usrey, R. A. Adams, G. R. Mangun, P.
Fries, and K. J. Friston, Canonical microcircuits for predictive
coding, Neuron 76, 695 (2012).

[9] Y. Chen, H. Zhang, and T. J. Sejnowski, Hippocampus
as a generative circuit for predictive coding of future
sequences, bioRxiv doi: https://doi.org/10.1101/2022.05.19.
492731 (2022).

[10] L. Wang, L. Schoot, T. Brothers, E. Alexander, L. Warnke,
M. Kim, S. Khan, M. Hämäläinen, and G. R. Kuperberg, Pre-
dictive coding across the left fronto-temporal hierarchy during
language comprehension, Cereb. Cortex 33, 4478 (2023).

[11] S. Golkar, T. Tesileanu, Y. Bahroun, A. Sengupta, and D.
Chklovskii, Constrained predictive coding as a biologically

044309-12

https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2306.11232
https://doi.org/10.1038/4580
https://doi.org/10.1002/wcs.142
https://doi.org/10.1162/NECOa00949
https://arxiv.org/abs/2107.12979
https://doi.org/10.1038/s41593-018-0200-7
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1101/2022.05.19.492731
https://doi.org/10.1093/cercor/bhac356

META PREDICTIVE LEARNING MODEL OF LANGUAGES … PHYSICAL REVIEW E 109, 044309 (2024)

plausible model of the cortical hierarchy, in Advances in Neu-
ral Information Processing Systems, edited by S. Koyejo, S.
Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(Curran Associates, Inc., Red Hook, NY, 2022), Vol. 35, pp.
14155–14169.

[12] T. Salvatori, Y. Song, T. Lukasiewicz, R. Bogacz, and Z. Xu,
Predictive coding can do exact backpropagation on convolu-
tional and recurrent neural networks, arXiv:2103.03725.

[13] B. Millidge, T. Salvatori, Y. Song, R. Bogacz, and T.
Lukasiewicz, Predictive coding: Towards a future of deep
learning beyond backpropagation? Proceedings of the 31st In-
ternational Joint Conference on Artificial Intelligence, edited by
Luc De Raedt (IJCAI/AAAI Press, 2022), pp. 5538–5545.

[14] Z.-Y. Huang, R. Zhou, M. Huang, and H.-J. Zhou,
Energy–information trade-off induces continuous and
discontinuous phase transitions in lateral predictive coding,
arXiv:2302.11681.

[15] A. Pouget, J. M. Beck, W. J. Ma, and P. E. Latham, Proba-
bilistic brains: Knowns and unknowns, Nat. Neurosci. 16, 1170
(2013).

[16] H. Kasai, Noam E. Ziv, H. Okazaki, S. Yagishita, and T.
Toyoizumi, Spine dynamics in the brain, mental disorders and
artificial neural networks, Nat. Rev. Neurosci. 22, 407 (2021).

[17] T. Salvatori, A. Mali, C. L. Buckley, T. Lukasiewicz, R. P. N.
Rao, K. Friston, and A. Ororbia, Brain-inspired computational
intelligence via predictive coding, arXiv:2308.07870.

[18] W. Zou, C. Li, and H. Huang, Ensemble perspective for under-
standing temporal credit assignment, Phys. Rev. E 107, 024307
(2023).

[19] Sepp Hochreiter and Jurgen Schmidhuber, Long short-term
memory, Neural Comput. 9, 1735 (1997).

[20] Y. Bengio, Réjean Ducharme, P. Vincent, and C. Janvin, A
neural probabilistic language model, J. Mach. Learn. Res. 3,
1137 (2003).

[21] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence
learning with neural networks, Advances in Neural Informa-
tion Processing Systems 27 (Curran Associates, Inc., 2014),
pp. 3104–3112.

[22] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F.
Bougares, H. Schwenk, and Y. Bengio, Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine
translation, in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (Associa-
tion for Computational Linguistics, 2014).

[23] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evalu-
ation of gated recurrent neural networks on sequence modeling,
arXiv:1412.3555.

[24] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine trans-
lation by jointly learning to align and translate, in ICLR
2015: International Conference on Learning Representations
(2015).

[25] Y. Lakretz, G. Kruszewski, T. Desbordes, D. Hupkes, S.
Dehaene, and M. Baroni, The emergence of number and syntax
units in LSTM language models, in Proceedings of the 2019
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies (Association for Computational Linguistics, 2019),
pp. 11–20.

[26] Y. LeCun, The MNIST database of handwritten digits, retrieved
from http://yann.lecun.com/exdb/mnist.

[27] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, Build-
ing a large annotated corpus of English: The Penn Treebank,
Comput. Linguist. 19, 313 (1993).

[28] C. Li and H. Huang, Learning credit assignment, Phys. Rev.
Lett. 125, 178301 (2020).

[29] C. Caucheteux and J.-R. King, Brains and algorithms partially
converge in natural language processing, Commun. Biol. 5, 134
(2022).

[30] K. Mahowald, A. A. Ivanova, I. A. Blank, N. Kanwisher,
J. B. Tenenbaum, and E. Fedorenko, Dissociating language
and thought in large language models: A cognitive perspective,
Trends Cognitive Sci. (2024).

[31] A. A. Faisal, L. P. J. Selen, and D. M. Wolpert, Noise in the
nervous system, Nat. Rev. Neurosci. 9, 292 (2008).

[32] L. Luo, Architectures of neuronal circuits, Science 373, 1103
(2021).

[33] R. Rosenbaum, On the relationship between predictive coding
and backpropagation, PLoS ONE 17, e0266102 (2022).

[34] J. Sacramento, R. Ponte Costa, Y. Bengio, and W. Senn, Den-
dritic cortical microcircuits approximate the backpropagation
algorithm, Advances in Neural Information Processing Systems,
edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (Curran Associates, Inc., Red
Hook, NY, 2018), Vol. 31, pp. 8721–8732.

[35] B. Barbour, N. Brunel, V. Hakim, and J.-P. Nadal, What can we
learn from synaptic weight distributions? Trends Neurosci. 30,
622 (2007).

[36] H. Huang, Role of zero synapses in unsupervised feature learn-
ing, J. Phys. A: Math. Theor. 51, 08LT01 (2018).

[37] https://github.com/Qjbtiger/Meta-predictive-coding.
[38] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-

mization, arXiv:1412.6980.
[39] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,

Distributed representations of words and phrases and their
compositionality, in Proceedings of the 26th International Con-
ference on Neural Information Processing Systems - Volume 2,
NIPS’13, pp. 3111–3119 (Curran Associates Inc., Red Hook,
NY, 2013).

[40] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess,
R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, Scaling
laws for neural language models, arXiv:2001.08361.

[41] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler, Ed. H. Chi, T.
Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus, Emer-
gent abilities of large language models, Trans. Mach. Learn.
Res. (2022), https://openreview.net/forum?id=yzkSU5zdwD.

[42] H. Huang, Statistical Mechanics of Neural Networks (Springer,
Singapore, 2022).

[43] L. Pinchetti, T. Salvatori, Y. Yordanov, B. Millidge, Y. Song,
and T. Lukasiewicz, Predictive coding beyond Gaussian distri-
butions, Advances in Neural Information Processing Systems,
edited by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K.
Cho, and A. Oh (Curran Associates, Inc., 2022), Vol. 35, pp.
1280–1293.

[44] T. J. Sejnowski, Large language models and the reverse Turing
test, Neural Comput. 35, 309 (2023).

[45] J. Zhao, B. Xie, and X. Li, Weight uncertainty in transformer
network for the traveling salesman problem, in 2023 Interna-
tional Symposium of Electronics Design Automation (ISEDA)
(2023), pp. 219–224.

044309-13

https://arxiv.org/abs/2103.03725
https://arxiv.org/abs/2302.11681
https://doi.org/10.1038/nn.3495
https://doi.org/10.1038/s41583-021-00467-3
https://arxiv.org/abs/2308.07870
https://doi.org/10.1103/PhysRevE.107.024307
https://doi.org/10.1162/neco.1997.9.8.1735
https://jmlr.org/papers/v3/bengio03a.html
https://arxiv.org/abs/1412.3555
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1103/PhysRevLett.125.178301
https://doi.org/10.1038/s42003-022-03036-1
https://doi.org/10.1016/j.tics.2024.01.011
https://doi.org/10.1038/nrn2258
https://doi.org/10.1126/science.abg7285
https://doi.org/10.1371/journal.pone.0266102
https://doi.org/10.1016/j.tins.2007.09.005
https://doi.org/10.1088/1751-8121/aaa631
https://github.com/Qjbtiger/Meta-predictive-coding
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.1162/necoa01563

CHAN LI, JUNBIN QIU, AND HAIPING HUANG PHYSICAL REVIEW E 109, 044309 (2024)

[46] N. Zucchet, S. Kobayashi, Y. Akram, J. van Oswald, M.
Larcher, A. Steger, and J. Sacramento, Gated recurrent neural
networks discover attention, arXiv:2309.01775.

[47] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, Trans-
formers are RNNs: Fast autoregressive transformers with linear
attention, Proceedings of the 37th International Conference
on Machine Learning, edited by H. Daumé III and A. Singh,

Proceedings of Machine Learning Research Vol. 119 (2020),
pp. 5156–5165.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all you need,
in Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17 (Curran Associates,
Red Hook, NY, 2017), pp. 6000–6010.

044309-14

https://arxiv.org/abs/2309.01775

