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The COVID-19 pandemic has underscored the importance of understanding, forecasting, and avoiding infec-
tious processes, as well as the necessity for understanding the diffusion and acceptance of preventative measures.
Simple contagions, like virus transmission, can spread with a single encounter, while complex contagions,
such as preventive social measures (e.g., wearing masks, social distancing), may require multiple interactions
to propagate. This disparity in transmission mechanisms results in differing contagion rates and contagion
patterns between viruses and preventive measures. Furthermore, the dynamics of complex contagions are
significantly less understood than those of simple contagions. Stochastic models, integrating inherent variability
and randomness, offer a way to elucidate complex contagion dynamics. This paper introduces a stochastic model
for both simple and complex contagions and assesses its efficacy against ensemble simulations for homogeneous
and heterogeneous threshold configurations. The model provides a unified framework for analyzing both types
of contagions, demonstrating promising outcomes across various threshold setups on Erds-Rényi graphs.
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I. INTRODUCTION

Worldwide pandemics have historically had profound
consequences on societies, economics, and public health. Un-
derstanding the interactions between disease dynamics and
human behavior is pivotal for effectively managing infectious
diseases. With the emergence of COVID-19, there has been an
upsurge in scientific work on the underlying spreading mecha-
nisms [1,2]. Central to this understanding are the fundamental
mechanisms driving transmission. In scientific literature, dis-
ease transmission is often characterized as simple contagion
[3,4], wherein infection can occur through direct contact
with just one individual. However, this likelihood of di-
rect biological transmission can be mitigated to some extent
through social measures, including mask-wearing, adherence
to health guidelines, social interventions, distancing practices,
and vaccination. While the implementation of these measures
significantly impacts epidemic control, the willingness of the
population to engage in these actions is not solely deter-
mined by biological factors but also by social processes. The
dissemination of beliefs, as highlighted in literature, aligns
with the concept of complex contagions, requiring interac-
tion with multiple adopters for transmission to occur. The
seminal work of Centola et al. [4,5] coined the difference
between simple and complex contagions. Simple contagions
can spread through a population after a single exposure or
contact, resembling the rapid spread of viral diseases or in-
formation; the term “simple” denotes the minimal exposure
needed for transmission, yet it does not imply that the con-
tagion lacks complexity in its behavior. Conversely, complex
contagions typically require multiple exposures or reinforce-
ments from various sources to propagate, commonly observed
in the adoption of behaviors or cultural norms. Although the
term “complex” signifies the requirement for multiple steps
or validations for transmission, it does not suggest that this

is the sole factor contributing to the intricacy of spreading
phenomena. In the context of complex contagions, reinforcing
connections between individuals, who have already adopted
the behavior or norm, can increase the likelihood of adoption
by those who are still undecided or resistant.

Contagion processes extend beyond diseases or infor-
mation; they encompass a broad spectrum of phenomena
including malware, memes, emotions, and diverse behav-
iors [6–16]. Moreover, certain biological infections may also
adhere to complex contagion patterns, particularly due to
coinfections [17]. There is also an intertwining of biolog-
ical and social contagion mechanisms, such as in the case
of the COVID-19 pandemic, which was accompanied by an
infodemic [18], deluging society with misinformation, also
involving complex contagion mechanisms [19].

Complex contagion dynamics show chaotic behavior due
to the existence of feedback loops, network structure, emer-
gent behavior, and individual variability such as adoption
thresholds. Considering networks that capture real-world so-
cial interactions, they typically feature clustering, in addition
to other network characteristics, that make modeling of com-
plex contagions challenging [4,20]. Clustered networks often
exhibit high levels of triadic closure (the tendency of nodes
to form triangles). Unlike treelike networks where mean-field
theoretic approaches are more applicable, the presence of
triangles in clustered networks creates complex dependencies
among nodes that cannot be adequately captured by traditional
mean-field approximations [20]. Indeed, clustering introduces
a crucial component for complex contagion processes while
at the same time resulting in nonlinear dynamics, thereby
complicating the application of simple analytical solutions.

To address the issue of a lack of analytical approaches in
complex contagion processes, we present a stochastic model
for simple and complex contagions, depending on the follow-
ing parameters: average degree 〈k〉 of the graph, initial seed
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size d (0), and distinct contagion thresholds T . The evaluation
of its validity is benchmarked against various simulations on
Erds-Rényi graphs.

II. THRESHOLD MODELS

In 1978, Granovetter [13] proposed the notion of adoption
thresholds, arguing that within social contagion processes,
these thresholds represent the minimum level of social rein-
forcement required for an individual to adopt the behavior,
while taking into account individual nuances. Based on this
concept, in 2002 Watts [21] proposed a model to investigate
the structural and threshold conditions that make contagion
processes susceptible to global adoption cascades on random
networks. Here, agents observe the current binary state (active
or inactive) of linked neighbors. If a threshold proportion φ

of these k neighbors are active, agents adopt the active state;
otherwise, they remain inactive. Several analytical approaches
have been proposed for such threshold models [5,22], some of
which are of stochastic nature [23,24]. Improving upon these
models of threshold-based contagion, Centola and Macy [4]
proposed the concept of complex contagions, where thresh-
olds T are independent of the node degree k. This modification
involves intriguing differences in system dynamics. For ex-
ample, the Watts model requires for an agent with high node
degree a high number of active neighbors to surpass its acti-
vation threshold. On the other hand, in the complex contagion
model, the activation threshold remains constant, regardless
of the node’s degree. This results in a lower resistance to acti-
vation for high degree nodes. For nodes with a low degree, the
scenario is revered. This contrasting behavior in the degree de-
pendence of these two models results in significant differences
in spreading paths and contagion dynamics. Consequently,
this underscores the need for distinct research endeavors into
these threshold concepts.

Contrary to simple contagions, the topological structure
of the network has a high impact on the diffusion dynam-
ics of threshold models, including complex contagions, and
has been researched intensively [24–31]. Threshold models
illuminate the importance of network topology and individual
node thresholds, emphasizing the critical role of key nodes
and structures like wide bridges [4,32]. Such phenomena have
been observed in multiple occasions where even within a
connected component it is impossible for a complex contagion
to spread from one node to the other [33–35].

The aim of our proposed model is to build on these findings
on complex contagion cascade dynamics and provide an an-
alytic approach in form of an iterative stochastic model. The
proposed model aims to (i) provide a stochastic approach to
contagion cascades, (ii) unify its applicability for both sim-
ple and complex contagions,—two theories that are typically
studied independently—and (iii) extend the model to hetero-
geneous threshold systems.

III. SIMPLICIAL CONTAGIONS, HIGHER ORDER
SYSTEMS AND HYPERGRAPHS

Simplicial contagions [36], a specialized subset of com-
plex contagions, delve into contagion dynamics through
higher-order interactions within groups, moving beyond

conventional pairwise node connections. These models,
alongside threshold-based contagions, have contributed
unique perspectives to our understanding of complex conta-
gion dynamics [37–39].

While threshold models emphasize the critical role of key
nodes and structures like wide bridges, simplicial contagions
utilize higher-order systems and hypergraphs to intricately
model group interactions and collective behaviors, showcas-
ing their significant impact on contagion processes [37]. The
adoption of hypergraphs, in particular, facilitates a more nu-
anced representation of these complex interactions, enhancing
our comprehension of contagion dynamics [38]. Notably,
higher-order systems and hypergraphs reveal unique types of
transitions in contagion spreads that differ from those con-
tinuous transitions observed in traditional threshold models,
presenting theoretical and practical implications for under-
standing and managing contagion phenomena in complex
networks [39].

Together, these fundamentally different models provide a
robust framework for examining complex contagion prop-
agation, encompassing the micro-level details of individual
nodes and structures and the macro-level complexities of
group dynamics and higher-order interconnections. Further-
more, mean-field approaches for the simplicial contagion
model have been achieved to express the temporal evolution
of the density of infected nodes for the simplicial contagion
model [36]. However, for the common threshold-based com-
plex contagion model examined in this paper, this has not
been done. Our proposed stochastic model closes this gap and
allows us to approximate d (t ) using a stochastic formulation
of this threshold-based model.

IV. METHODOLOGY

The proposed model is tested on random graphs with Pois-
son degree distribution, namely, the Erds-Rényi model [40].
Despite the fact that such randomly generated graphs are not
considered to be particularly realistic [41], they can serve as a
basis for advancing towards more realistic networks [42,43].
Due to this fact and the stochastic character of the Erds-Rényi
model, it makes sense to test our stochastic model on a graph
with a similar fundamental concept.

To configure the graph to match real-world network struc-
tures, the average degree is 〈k〉 ≈ 19, which coincides with
the average degree taken from 59 real-world social networks
obtained from a large network data repository [44]. The
contagion thresholds of the nodes for the homogeneous simu-
lation are in the set of Ti ∈ {1, 2, 3, 4, 5}, matching empirical
research on various complex contagions [10,45]. However,
cascades become progressively difficult to trigger for bigger
threshold values [24]. Regarding seeding strategies in terms
of partial activation on the network, there are typically two
ways this is done for complex contagion simulations. First,
by initialization of a selected part of the network, for exam-
ple, in the neighborhood of one or more preselected nodes
[17,32,46,47]. Second, by activation of a randomly selected
portion d (0) of the network before simulation start, which is
often done for investigation of cascades [23,24,48]. The latter
principle is employed in this paper.
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First, a stochastic complex contagion model for the case
of homogeneous threshold distributions is derived (see Ap-
pendix A 3). The model is then expanded to encompass
complex contagion systems with heterogeneous threshold dis-
tributions (see Appendix A 4). Simulations are carried out to
determine the model’s effectiveness in both homogeneous and
heterogeneous threshold systems.

V. MODEL

We assume networks of size N and average node degree
〈k〉 and that contagion dynamics evolve over time steps t .
Nodes have a binary state (either 0 or 1) which corresponds to
an activation density d (t ) on the graph. The initial activation
density d (t = 0) is reflected by a probability that is given
by the seeding procedure and can vary from complete acti-
vation to complete inactive state of all nodes, d (0) ∈ [0, 1].
The heterogeneous activation thresholds Ti for nodes i are
independent of the node link degree, as is typical for complex
contagions. Considering the macroscopic parameters and, at
the same time, scaling these attributes down to individual
nodes, the macroscopic density d (t ) can be interpreted as the
likelihood that each neighboring node of node i is active by
a probability d (t ). This means that every node is active with
a probability p ≈ d (t ). According to this assumption for each
node’s neighborhood, we extent this stochastic approach by
defining the probability of finding x active neighbors for a
randomly selected node in the graph. Testing nodes for their
binary state gives a sequence of outcomes whose respective
probabilities are described by Bernoulli trials [49] as binomial
distributions. Thus, the problem of determining the probabil-
ity of exactly x active nodes in a neighborhood of size 〈k〉
yields

Prbinom(〈k〉, x, p) =
(〈k〉

x

)
px(1 − p)〈k〉−x. (1)

According to the concept of complex contagions, every
node i in this graph has a threshold Ti which needs to be
overcome by the number of active neighbors in its neigh-
borhood. We can extend our binomial model to the question
of the probability to find Ti or less active neighbors in the
neighborhood of every node given the spreading density d (t )
at time step t .

Prbinomcdf(〈k〉, x, p) =
Ti∑

x=0

(〈k〉
x

)
px(1 − p)〈k〉−x. (2)

From this, we can determine if there are at least Ti active
nodes in the neighborhood of every node i, which is equiva-
lent to the cumulative binomial distribution’s complementary
probability:

Pra(x � Ti|〈k〉, p, Ti ) = 1 − Prbinomcdf(〈k〉, Ti − 1, p). (3)

Notable is the Ti − 1 in the sum, which derives from the fact
that the cumulative binomial distribution is for x � Ti, neces-
sitating Ti − 1 to include Ti in the complementary probability.

A. Homogeneous thresholds

For the homogeneous case Ti = T ∀i ∈ G, to calculate the
spreading density d (t + 1) for the next time step t + 1, we use

Eq. (3) to formulate a change rate for spreading density, such
that

d (t + 1) = d (t ) + (1 − d (t ))Pra(x � T |〈k〉, d (t ), T ). (4)

Without the implementation of a recovery from active to inac-
tive states in the model, the first part d (t ) represents all nodes
that are activated, which will further accumulate for t + 1.
In the latter part of the equation, the share (1 − d (t )) of
inactive nodes are considered. This means that every inactive
node in the neighborhood of an inactive node has at least one
inactive neighbor. Instead of having at least T active neighbors
in 〈k〉, we have T active neighbors in 〈k〉 − 1.

This has the effect of decreasing the probability of finding
a sufficient number of active neighbors in the neighborhood,
resulting in

d (t + 1) = d (t ) + (1 − d (t ))Pra(x � T ) (5)

by usage of the short form

Pra(x � T ) = Pra(x � T |〈k〉 − 1, d (t ), T ). (6)

Finally, if the condition of a sufficient number of active neigh-
bors is met, the probability for activation is instantiated to
adhere to typical contagion process models. This instantiation
is intended to match the formulation of discrete susceptible-
infected (SI) models, particularly in the case of a simple
contagion where T = 1 [50]. For this, the transmission prob-
ability β ∈ (0, 1] is introduced, resulting in the final form
of the underlying equation for the homogeneous threshold
distribution case:

d (t + 1) = d (t ) + (1 − d (t ))Pra(x � T )β. (7)

Note that the interval on the lower bound is closed because
β = 0 would prevent contagion processes.

B. Heterogoneous thresholds

Additionally, heterogeneous complex contagion systems
are also supported by the proposed model. To clarify what
is meant by heterogeneous threshold configurations, let A
be the set of all nodes in G. Let BT be the subsets of A,
such that every subset BT contains all nodes i in A with
threshold Ti = T . Consequently each node can only be an
element in a single subset BT , therefore the number of nodes
N = ∑

BT ∀T ∈{1,2,3,4,5} |BT | is conserved.
This model can be described as follows. First, d (t ) must be

distinct for each subset BT , denoted as dT (t ). Consequently,
dT (t ) is the spreading density in each subset BT . This term
replaces d (t ) in the initial parts of the equation; however,
the macroscopic density is still dependent on all activity
states in the system and not just within each subset of nodes
with the same T . The mean spreading density in the entire
graph is therefore calculated by averaging the densities dT (T )
weighted |BT |, which represents the amount of nodes in each
subset. This holds

dT (t + 1) = dT (t ) + (1 − dT (t ))Pra(x � T |〈k〉
− 1, d (t ), T )β (8)

d (t ) =
∑
T ∈G

dT (t )
|BT |
N

. (9)
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FIG. 1. Results for the time evolution of the spreading density d (t ) for different seed sizes d (0) for homogeneous threshold configurations
T ∈ {1, 2, 3, 4, 5} with the solid line representing the averages over the ensemble simulations and the dashed line representing the result of the
stochastic model.

The average density of active nodes d (t ) is computed as a
weighted sum over all possible contagion thresholds T in the
set G. For each threshold T , the density of active nodes dT (t )
is multiplied by the proportion of nodes |BT |

N , which have the
respective threshold. Summing these products for all T yields
d (t ). Thus, d (t ) represents the ratio of active nodes to the
total nodes in the graph, whereas dT (t ) is similar to d (t ) but
focuses solely on the subset of nodes with the corresponding
threshold T . In the case that the threshold distribution is
homogeneous, Eqs. (8) and (9) become essentially equal to
Eq. (7). This means that the heterogeneous model is applicable
to configurations of homogeneous distributions as well, as the
homogeneous case is essentially a heterogeneous case with
one and only one distinct subset BT ⊆ A and A ⊆ BT .

VI. RESULTS AND DISCUSSION

We show ensemble simulation setups on Erds-Rényi
graphs with N = 5000 and p = k

N−1 resulting in an average
degree 〈k〉 ≈ k and compare the ensemble means to the iter-
ative results of our proposed stochastic model. The ensemble
size is 50; for each simulation, an Erds-Rényi graph is gen-
erated and every node is assigned a random threshold Ti. The
threshold distributions are given by the simulation scenario.
After graph generation, the activity states are initialized by a
seeding procedure which selects d (0)N nodes randomly and
sets them to an active state. Other nodes occupy the inactive
state. The simulation runs until time step tmax = 30 and al-
lows for diffusion of active states according to the complex

contagion mechanism of Sec. II. The transmission probability
β is set to 0.2, which is correlated to reasonable transmission
velocity and transient times until saturation. Moreover, a too
small transmission probability may result in higher numeric
errors due to the iterative nature of our proposed analytic
model, as described in Sec. VI C. The higher this parameter,
the faster the contagion spreads throughout the network. The
lower the transmission probability is, the slower it spreads,
resulting in more steps, therefore increasing the propagated
error in the analytic model in comparison to the simulation
runs.

A. Homogeneous threshold systems

Figure 1 presents the results for the simulations (solid
lines) as well as for the analytic solutions (dashed lines) for
different seed sizes d (0). For each of these different seed sizes,
homogeneous systems with T ∈ {1, 2, 3, 4, 5} are initialized
and simulated 50 times, i.e,. all nodes i ∈ G have the same
threshold Ti = T as stated in Appendix A 3. Therefore, each
line in the graph visualizes the average of the 50 simulation
runs for each T , where every node in the graph has the same
threshold T . Figure 1 illustrates that our model intends to
provide a solution for both simple, i.e., T = 1, and complex
contagions, i.e., T � 2. For simple contagions and complex
contagions with low thresholds, the stochastic model results
correspond almost perfectly with the simulation results. For
complex contagions with higher thresholds, the stochastic and
simulation results overall show a good match and only deviate
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FIG. 2. Results for the time evolution of the spreading densities dT (t ) of each equally sized subset BT with thresholds T ∈ {1, 2, 3, 4, 5}
(heterogeneous case) starting from initial seed sizes d (0) ∈ {0.01, 0.02, 0.05, 0.1} with the solid line being the averages over the multiple
simulation runs and the dashed line the result of the stochastic model. Disappearing dashed lines correspond to a perfect match between the
simulation runs and the stochastic model.

in the case of high T and low d (0). This deviation arises
from the fact that initiating cascades becomes increasingly
difficult at higher thresholds due to the decreased likelihood
of sufficient active neighbors during the early stages of the
spreading dynamics. This is consistent with research on rela-
tive threshold systems [24]. Nonetheless, we argue that this
effect diminishes with increasing network size, as the sig-
nificance of spread-inhibiting node configurations of initially
activated nodes becomes less and less relevant.

B. Heterogeneous threshold systems

For the heterogeneous threshold simulation configuration,
the system is initialized with equally distributed thresholds
T ∈ {1, 2, 3, 4, 5}, where 20% of the total nodes possess
a threshold of T = 1; another 20% have a threshold of
T = 2. This pattern continues for all nodes and their re-
spective thresholds result in equally sized subsets BT (see
Appendix A 4). Again, 50 simulations are executed and plot-
ted against the stochastic model’s solution. The results of the
comparison are shown in Fig. 2. Here, unlike the visualiza-
tions from Fig. 1, the lines represent the time evolution of
the subset specific spreading density dT (t ) simulation runs,
as opposed to each subgroup having its own simulation runs.
Results for the heterogeneous case also show a near-perfect
fit. The simulations demonstrate an excellent correlation with
the stochastic results, with the correlation increasing as the
initial seed size d (0) increases, as can be seen in Fig. 2. For

the case in which d (0) = 0.02, it can be observed that the
simulations are, on average, slightly below stochastic results.
This underperformance can be attributed to the local network
structure, which may mitigate spreading, as the stochastic
model assumes that every active node in the graph possesses
complete spreading potential. However, active nodes tend to
cluster together because a node in the neighborhood of an
active node is more likely to change state under otherwise
identical conditions than one in the neighborhood of an in-
active node. This leads to a local clustering pattern and a
tendency for an excess of active nodes in a given neighbor-
hood compared to the minimum required for the activation
of a particular node i with threshold Ti. As a consequence of
this excessive activation, clustered active nodes fail to trigger
subsequent cascades to their maximum capacity. Furthermore,
the clustering hypothesis is challenged by the simulation’s
tendency to perform better as d (0) increases, thereby reducing
the significance of clustering effects. Notably, the analytic
solution not only provides highly accurate approximations
despite being an iterative process, but also closely mirrors the
simulation curves displaying the spreading densities dT (t ) in
the subsets BT with similar T for all investigated seed sizes.

C. Error classification

In the real world, heterogeneous network attributes are of
high relevance, therefore the following investigation of the
estimation of the accuracy of the model is carried out on
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FIG. 3. Results for the time evolution of the spreading density d (t ) for different seed sizes d (0) for the heterogeneous threshold
configuration with equal amount of T ∈ {1, 2, 3, 4, 5} with the dashed gray lines being the average spreading density over multiple simulation
runs and the red line the result of the stochastic model. The blue area marks the confidence intervals around the stochastic solution determined
via Eqs. (10) and (11).

the heterogeneous threshold simulations from Sec. VI B. Due
to the iterative nature of the proposed model, each step is
dependent on all preceding steps; consequently, errors may
accumulate. To estimate the upper and lower error boundaries,
1000 simulations for the heterogeneous simulations initial
conditions are conducted. Starting with the seed step and mov-
ing to the first step, we assume that the simulation must be as
stochastic as possible due to its random initialization. For all
subsequent steps after initialization, node activations adhere to
the rules outlined in Sec. I and Appendix A 2. Consequently,
it makes sense to identify the error in the initial step and
then extrapolate the upper and lower limits in all subsequent
steps based on it. The average relative error in the first step
between the stochastic result and the simulations is �d (0). It
is determined by running 1000 simulations for all d (0) used
in the heterogeneous simulation and calculating its average
absolute difference to the stochastic solution after a single
step. From this, the upper boundary dupper(t ) as well as the
lower boundary d lower(t ) in step t can be estimated via

dupper(t ) = d (t )(1 + �d (0))t , (10)

d lower(t ) = d (t )(1 − �d (0))t . (11)

In Fig. 3, the heterogeneous simulation from Fig. 2 is dis-
played by showing the mean spreading density d (t ) against
the ensemble simulation runs. The area between the upper
and lower boundaries is colored in blue. All simulations
within this area are within the expected boundaries of error

propagation originating from the single step error �d (0). As
shown in Fig. 3, simulation runs increasingly deviate from
one another, the smaller the seed size d (0) in the beginning.
However, the error in a single step between simulation and
analytic solution and therefore the upper and lower boundaries
are very similar and independent from the seed size. This
indicates that the model performs really well besides a small
numerical error from step to step.

D. Comparison to SI models

Both SI models and complex contagion models function
as binary state contagion models, addressing the dynamics
of how active nodes influence and activate their connected
inactive neighbors.

In traditional SI models, the probability that a node i gets
activated by its connection to an infectious node j is repre-
sented as Pi→ j = β. Contrarily, in complex contagion models,
the activation of node i depends on whether it is connected to
an adequate number of active neighbors. In the case of T = 1,
a simple contagion is present and the contagion is comparable
to discrete SI models. Hence, to replicate this similarity in our
model, we implement the transmission probability β.

This incorporation essentially aligns our model closely
with the classical discrete SI model, but with an added nu-
ance: it accounts for the probability of having an adequate
number of active neighbors and can therefore be considered as
a form of SI model implementing the conditions of complex
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contagions. This nuance elucidates why the presented stochas-
tic results resemble SI models.

E. Comparison of simplicial contagions, hypergraphs,
and higher order systems

The model described in this paper deviates significantly
from simplicial contagion models, foremost due to the fact
that it depends on node-level activation thresholds, which
simplicial approaches do not include. Each node is given a
threshold T , which specifies the minimal number of active
neighbors needed for activation. This threshold mechanism
introduces a deterministic contagion spread pathway that is
highly dependent on the topology of the network and the
initial dispersion of active nodes. Higher threshold conta-
gions have been shown to require extensive connectivity or
wide bridges to spread, highlighting the model’s reliance on
particular structural configurations and the unreachability of
some nodes in the network [32–35]. On the contrary, sim-
plicial contagion models do not incorporate the individual
threshold criterion; rather, they emphasize contagion through
group interactions within simplices [36]. These models prior-
itize the collective behavior of node groups over the discrete
state of individual nodes, capturing dynamics where con-
tagion transmission is governed by the collective state of
multiple interacting nodes rather than meeting individual node
thresholds. The absence of a node-level threshold in simplicial
models permits a more fluid contagion, emphasizing the role
of group interactions and the probabilistic nature of contagion
transmission within complex network structures. Originating
from these group interactions, hypergraphs offer a viable way
of modeling such higher-order interactions [38]. Hypergraphs
extend traditional graph theory by allowing edges to connect
more than two nodes, thus encapsulating the higher-order
interactions intrinsic to simplicial models. These interactions,
represented as hyperedges in a hypergraph, embody the group
dynamics critical to simplicial contagion models, where con-
tagion spread is influenced by the collective state of nodes
within these hyperedges. The absence of node-level thresh-
olds facilitates a contagion spread that is less constrained
by individual node states and more influenced by the over-
all configuration and connectivity of nodes within so-called
simplices [36]. The distinction between the threshold-based
model discussed here and the simplicial contagion models,
particularly in the context of hypergraphs, highlights the
diverse methodologies employed to understand contagion dy-
namics. While the threshold model emphasizes the role of
individual node thresholds and network topologies like wide
bridges, simplicial models, and their hypergraph counterparts
focus on the collective behavior of groups of nodes, offering
a broader perspective on complex contagion spread mecha-
nisms within networks.

VII. CONCLUSIONS

In conclusion, the proposed stochastic approach yields
promising results for both simple and complex contagion
systems on homogeneous and heterogeneous threshold con-
figurations applied on Erds-Rényi graphs. Therefore, this
approach provides a unified model for both simple and

complex contagion systems. The accuracy of the analytical
results improves with larger graph sizes as well as bigger seed
sizes.

However, due to the fact that the model is of discrete nature
in terms of 〈k〉, it means that 〈k〉 has to be an integer number.
As 〈k〉 is the average degree of the graph, it is most likely not
an integer but rather a floating point number, so it needs to be
either ceiled to the next higher integer or floored to the next
lower one, which already induces inaccuracies in the starting
conditions of the model as well as for every consecutive step.
Further research into solving the problem via transitioning to a
continuous model or by approximating the intermediate points
between two integers via polynomial interpolation could show
another improvement in the model performance.

A significant benefit of the stochastic model is its lesser
susceptibility to the graph size in terms of its computational
complexity. Furthermore, we expect that the larger the graph,
the better the match between the simulation results and the
analytic solutions due to the law of large numbers.

A major limitation of the proposed model is that the inves-
tigated Erds-Rényi graph with its Poisson degree distribution
does not capture many network properties which are typically
observed in real social networks. As many real-world graphs
show a power-law degree distribution, we aim to test the
proposed model on Barabási-Albert (BA) graphs in future
research, which are also a form of stochastic graphs, however,
they follow a power-law degree distribution and its generation
is close to real world networks via its preferential attachment
concept. We anticipate that our stochastic model will exhibit
satisfactory accuracy when applied to graphs with a wider
and more heterogeneous degree distribution. We assume that
the incorporation of a correction factor to accommodate topo-
logical configurations of BA networks could be necessary,
especially considering the significant deviation of the node
degree from the network’s average degree compared to Erds-
Rényi graphs. Building on this investigation, benchmarking
the model on real world networks would then also be a rea-
sonable next step.

Furthermore, extending our proposed model to a SIR
model holds considerable promise for further research, given
its substantial relevance in various contagion processes [51].

ACKNOWLEDGMENTS

We would like to thank the University of Graz for their
financial support.

APPENDIX: DEFINITIONS

1. Simple contagions

A simple contagion denotes a spreading mechanism where
an encounter with an infected node is adequate for contagion
transmission to a susceptible node. Formally, this can be de-
scribed by

Pi→ j = β,

where
(1) Pi→ j denotes the likelihood of node i transmitting the

contagion to node j.
(2) β stands for the transmission likelihood.
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2. Complex contagions

In contrast, a complex contagion necessitates to be in con-
tact with multiple active or infected neighbors to also become
active:

Pi activates =
{
β for nactive neighbors � Ti

0 otherwise.

While in simple contagions, only a fraction β of interactions
with an active node instigates an infection, this must also be
applied to complex contagions for uniformity. A consistent
approach is essential as a complex contagion with a threshold
T = 1 is fundamentally analogous to a simple contagion. To
circumvent the case distinction, the likelihood of satisfying
the constraint nactive neighbors � Ti can be introduced as Pra(i),
leading to

Pi activates = Pra(i)β,

where
(1) Pi activates represents the likelihood of node i becoming

active in the next step.
(2) nactive neighbors indicates the count of active neighbors of

node i.
(3) T is the activation threshold, marking the necessary

count of active neighbors for node i activation.

(4) Pra(i) is the likelihood of node i having an adequate
number of active neighbors nactive neighbors � Ti.

(5) β denotes the transmission likelihood.

3. Homogeneous thresholds

For a network with uniform thresholds:

Ti = T for all i ∈ G.

Here, Ti is node i’s complex contagion threshold, T is a
fixed value, and i denotes each network node. Essentially, all
nodes i in the network G share an identical complex contagion
threshold T .

4. Heterogeneous thresholds

For a network with diverse thresholds,

Ti 	= Tj for certain i, j ∈ G,

where
(1) Ti and Tj signify the complex contagion thresholds of

nodes i and j correspondingly.
(2) Nodes i and j represent distinct nodes in the network.

This implies that the network contains at least two nodes, i
and j, with differing complex contagion thresholds, Ti and Tj .
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