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Critical properties of Heider balance on multiplex networks
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Heider’s structural balance theory has proven invaluable in comprehending the dynamics of social groups
characterized by both friendly and hostile relationships. Since people’s relations are rarely single faceted,
we investigate Heider balance dynamics on a multiplex network, consisting of several copies of the same
agent displaying correlated relations at different layers building the multiplex. Intralayer interactions in our
model adhere to Heider dynamics, while interlayer correlations stem from Ising interactions, with the heat-bath
dynamics of link signs. Our investigation reveals a multifaceted system with a diverse equilibrium landscape
contingent on the coexistence of distinct phases across layers. We observe that, starting from a paradise state
with positive links in all layers, an increase in temperature triggers a discontinuous transition to a disordered
state akin to single-layer scenarios. The critical temperature surpasses that of the single-layer case, a fact verified
through extended mean-field analysis and agent-based simulations. Furthermore, the scenario shifts when one
layer exhibits a two-clique configuration instead of a paradise state. This change introduces additional transitions:
synchronization of interlayer relations and a transition to the disorder, appearing at a different, lower temperature
compared to matching paradise states. This exploration shows the intricate interplay of Heider balance and
multiplex interactions.
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I. INTRODUCTION

Multiplex structures [1] find widespread application in
characterizing diverse systems such as social groups, trans-
portation networks, and biological frameworks, including
protein-protein interaction systems [2–8]. Humans are inher-
ently complex beings, and when they form interconnected
groups bound by relationships, the intricacy only deepens.
Individuals frequently maintain a plethora of relationships,
varying in nature from familial and professional ties to
friendships and online connections. A multiplex network
representation is invaluable in addressing this diversity of
relations [4,9,10]. Through distinct layers or edge types, this
representation delineates the assorted interaction types. Incor-
porating the multiplex essence of these relationships provides
an enriched comprehension of the system’s dynamics. In
certain instances, this approach unveils hitherto undiscov-
ered mechanisms or phenomena that had remained concealed
within simple, aggregated network models [11,12].

When examining human interactions, a fundamental cat-
egorization involves distinguishing between friendly and
hostile relations. Within a group of individuals, these re-
lations can be effectively portrayed using signed networks
[13]. Positive links denote friendly relations between nodes
representing individuals, while negative links signify hostile
relations. In this context, Heider introduced the structural
balance theory (SBT) to social psychology as a means to
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delineate the underlying tensions within such networks [14].
Central to Heider’s theorem is the principle that a signed
network attains balance when all triads exhibit either three
positive relations or one positive and two negative relations
[15,16].

Balance theory posits that networks characterized by
friend-or-foe relationships evolve towards a state of greater
equilibrium [17]. Notably, Cartwright and Harary demon-
strated that, beyond an all-positive paradise state, a complete
graph is balanced if agents can be segregated into two groups,
featuring solely positive ties within each group and exclu-
sively negative ties bridging the groups [18,19].

Recent studies have extended the concept of structural bal-
ance to the realm of statistical physics, establishing a parallel
between the tension of imbalanced triads and energy excita-
tion above the system’s ground state [20–22]. This framework
enables the incorporation of uncertainty regarding individual
actions as thermal noise, quantifiable through temperature.
Adopting this approach obviates the need for specific mi-
croscopic dynamical rules governing changes in relations.
Furthermore, it harnesses established statistical methods from
physics to describe and predict system behavior.

Several models have been developed, grounded in the prin-
ciples of SBT, aiming to elucidate human behavior within
social networks [23–27]. However, the exploration of struc-
tural balance within the realm of multiplex networks remains
limited to a handful of investigations [28–32].

Within this study, we extend the Heider balance (HB)
concept to the domain of multiplex networks, wherein nodes
(agents) are linked by various kinds of relations corresponding
to different network layers. Imagine a case of a group of
people that work for the same company and, simultaneously,
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privately belong to a sports club where they also know each
other. The social ties between people in different contexts
(work or club) correspond to links in different layers, with the
network nodes being the same across layers and representing
the same people. Each layer of the signed network describes
relations in a specific context, and there are no signed links go-
ing across layers. It is possible for a relation between people to
depend on context: Two people may be competing “enemies”
within the company while at the same time being friends
on their own time while interacting in the club. However,
our premise is rooted in the idea that individuals exhibit a
predilection for the consistency of various relation types. If
they share a friendly link within a work context, this amiabil-
ity is likely to extend beyond the workplace and vice versa.
There is an influence of relation in one layer on the relation in
the other, and we assume these influences are symmetric and
can be represented as a tension between incoherent relations
in different contexts. To capture this concept, we introduce a
coupling mechanism that fosters similarity among relations
linking the same pair of individuals, akin to the coupling
between spins in the Ising model of ferromagnets.

Our objective is to understand the impact of layer-to-layer
coupling on the signed relation configurations across diverse
layers. We start by considering a duplex network configura-
tion, where intralayer relations in each layer form a complete
graph and interlayer Ising interactions are exclusive to the
same link replicas. Subsequently, we generalize this model to
encompass an arbitrary number of layers. The dynamics of
relation signs within each layer is governed by Heider struc-
tural balance dynamics. Conversely, Ising dynamics dictates
the interlayer coupling of relation signs concerning the same
pairs of individuals.

The forthcoming section extends the classical mean-field
theory of HB to the context of multiplex networks. Our
theoretical approach correctly predicts the occurrence of a dis-
continuous order-disorder transition induced by thermal noise,
including both duplex and multiplex network cases. The sub-
sequent section employs Monte Carlo simulations to validate
the analytical findings. Further investigation includes a more
thorough overview of HB dynamics within a duplex network,
where layers can exist in different states not described by the
analytical approach. The dynamics of such a system encom-
passes a temperature-driven transition toward synchronization
between layers in different states and a subsequent transition
toward disorder.

II. MODEL

Our model represents people as agents placed in vertices of
a multiplex network, with dynamical relations between them
represented by signed edges. Edges belonging to a specific
layer correspond to some type or context of relation (such as
workplace or private relations), while the same vertices exist
across all layers. The vertices representing agents have no
dynamical attributes, while edge signs obey Heider structural
balance related to interactions within each layer and Ising-
type dynamics related to interactions between layers to take
into account positive correlations between different relations
for the same pair of agents.

FIG. 1. Example of interactions between edge signs (blue solid
line for +1 and red dashed line for −1) on a duplex network.
Edge sign changes are driven by intralayer interactions according to
Heider structural balance (with strength A(1) or A(2), respectively) as
well as interlayer coupling of Ising nature between the edges, with
strength K . The signs of relations evolve over time, according to the
heat-bath dynamics with energy as expressed by Eq. (1) and given
temperature T .

Let us consider a multiplex network with N nodes and L
layers. For simplicity, we assume that every pair of agents
has a relation between them, meaning that the topology of
each layer is a complete graph. This situation corresponds
to a small social system where everybody knows everybody.
Each pair of agents i and j has therefore L signed relations
x(α)

i j = ±1 between them, where i and j indicate agents and

α = 1, 2, . . . , L indicates the layer. The edge signs x(α)
i j are

dynamic variables and can change over time. Let us stress
that the nodes representing people are the same across all
layers; the layers represent different relation contexts between
the same people, not different groups of people. We assume
that each imbalanced triad (i j, jk, ki) of relations causes a
certain tension that the agents i, j, and k involved try to
relax. This is represented as a specific energy associated with
the triad: −A(α) if the triad is balanced and +A(α) if it is
not, according to Heider structural balance theory. Energy
A(α) > 0 represents the strength of the Heider coupling be-
tween link signs within each layer. Similarly, a discrepancy
between relations in different layers between the same pair of
agents i and j causes a tension, also represented as energy:
−K if the relations are the same and +K if they are different.
Energy K > 0 corresponds to the ferromagnetic Ising model
coupling between link signs across layers. An important detail
to note is that the coupling described by K constant is between
link states, not nodes, and is therefore not expressed as links.
Figure 1 illustrates the model for a duplex network.

The Hamiltonian H of the system, or its energy E , is

H = −
L∑

α=1

A(α)
∑

i> j>k

x(α)
i j x(α)

jk x(α)
ki

− K
∑
α>β

∑
i> j

x(α)
i j x(β )

i j . (1)

The state of the system will change according to the Hamil-
tonian in the presence of temperature T , which represents
the uncertainty of relations or tolerance towards imbalanced
relations in the social systems modeled.

044306-2



CRITICAL PROPERTIES OF HEIDER BALANCE ON … PHYSICAL REVIEW E 109, 044306 (2024)

The model has degenerate ground states, where any di-
vision of vertices into two groups is a ground state, if all
intragroup edges in all layers are positive and all intergroup
edges are negative [15]. We will call this state a two-clique
state. This also includes the so-called paradise state, where
one group contains all vertices and the other no vertices so
that all relations are positive. Due to thermal fluctuations, at
any temperature T > 0 the system settles into an equilibrium
different from the ground state and in fact is multistable, with
the exact state reached via a dynamical process depending not
only on parameters but also on the initial conditions.

III. ANALYTIC APPROACH

A. Mean-field approximation for a duplex network

Let us consider a duplex network, a particular case of a
system described by the Hamiltonian (1) corresponding to
L = 2 where each of the two link layers has the structure
of the complete graph. A mean-field approach for a single
network was proposed in [33], where every single link xi j

interacts with the mean-field proportional to 〈x〉2 as a result
of the presence of this link in all N − 2 triads. Here angular
brackets indicate an ensemble average over all possible states.
This method works accurately for a single-layer complete
graph with N � 1 since each individual link interacts with
a significant fraction of all other links, which is accurately
captured by the mean-field approach. Extending this approach
to multiplex networks is not as straightforward as it may
seem at first glance. A naive inclusion of the second layer’s
influence as an Ising mean field would represent each edge
having an Ising-type interaction with all the edges of the
second layer, instead of only the single edge it actually should
interact with. This can drastically alter the behavior of the
system, especially for strong interlayer interactions.

In order to tackle this for a duplex network, a mean-field
approach is employed with a pair of coupled links �xi j =
[x(1)

i j , x(2)
i j ] instead of a single link x(1)

i j as our elementary
subsystem that will be interacting with the mean field. Our
pair �xi j will be experiencing interlayer interaction as internal
energy of the state �xi j and intralayer interactions (in both
layers) as the interaction of �xi j with a two-dimensional mean
field proportional to [〈x(1)〉2, 〈x(2)〉2]. Since we assume the

system dynamics is expressed by state energy and thermal
equilibrium in a specific temperature T , the probabilities of
states �xi j of this pair are described by the canonical ensemble

P(�xi j ) = exp[−E ( �xi j )/T ]∑
�xmn

exp[−E (�xmn)/T ]
, (2)

where

E (�xi j ) = − A(1)
∑
k �=i, j

x(1)
i j x(1)

jk x(1)
ik − A(2)

∑
k �=i, j

x(2)
i j x(2)

jk x(2)
ik

− Kx(1)
i j x(2)

i j . (3)

We will assume the same interaction parameters for all the
layers, i.e., A(1) = A(2) = A. The expected value of 〈�xi j〉 can
be written as

〈�xi j〉 =
∑

�xi j

P( �xi j )�xi j . (4)

Following the mean-field method, we assume that the link sign
x(α)

i j interacts not with a specific link sign product x(α)
jk x(α)

ki but
with a mean field (x(α) )2, with the mean link signs x(α) that
will be defined as

�x ≡ [x(1), x(2)]. (5)

We call this mean link sign value a polarization of the network
(if considering the entire vector) or of the given layer (if
considering specific components x(α) of it). This allows us to
write the energy of a given state �xi j as

E (�xi j ) = − A(N − 2)x(1)
i j (x(1) )

2 − A(N − 2)x(2)
i j (x(2) )

2

− Kx(1)
i j x(2)

i j . (6)

Combining (6) and (2) into (4) allows us to calculate the
expected value of link signs 〈�xi j〉 in the considered pair i j (see
Appendix). Assuming that the calculated 〈�xi j〉 is the same as
the �x in the mean field, meaning 〈�xi j〉 = �x, allows us to write
a set of self-consistent equations for mean polarization �x,

x(1) = f1(x(1), x(2) ),

x(2) = f2(x(1), x(2) ), (7)

where

fα (x(1), x(2) ) = e2d sinh
{
a
[
(x(1) )2+(x(2) )2]}+ sinh

{
a(−1)α

[
(x(2) )2−(x(1) )2]}

e2d cosh
{
a
[
(x(1) )2 + (x(2) )2]} + cosh

{
a
[
(x(1) )2 − (x(2) )2]} , (8)

with α ∈ {1, 2}. The parameters a = AM
T and d = K

AM are
rescaled intralayer and interlayer interaction strengths with
M = N − 2 the number of triads each edge belongs to.
Figure 2 shows the numerical solution of average link polar-
ization based on the mean-field solution [solution of Eq. (7)]
for different values of rescaled interlayer coupling strength d .
We observe from Fig. 2 that by increasing temperature T , the
mean polarization continuously decreases to a point xc when it
jumps to zero. At this point, a first-order transition is observed
at a critical temperature Tc. The values Tc and xc depend on
the coupling strength K between the layers. Increasing the

coupling strength increases Tc, asymptotically approaching a
certain saturated Tc value (as seen in Fig. 5). Note that the crit-
ical temperature Tc represents the temperature where a stable
polarized state (�x �= 0) disappears. Since the unpolarized state
is always stable in the mean-field approach, this first-order
transition is always from a polarized to an unpolarized state,
the reverse transition does not take place, and an unpolar-
ized system will remain unpolarized even if the temperature
is reduced below Tc. The actual behavior of the system,
outside the mean-field approach, is more complex (see
Sec. V).
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FIG. 2. Mean-field solution for average link polarization x(1) for
various interlayer coupling strengths. The coupled layers undergo
a discontinuous transition at a critical temperature Tc that increases
with coupling strength. The results are shown for d = 0.2, 0.5, 1, 3
with the transition point moving from left to right with increasing d .

To tackle the problem analytically, one can treat Eqs. (7)
as recurrence equations describing how the average link po-
larizations [x(1), x(2)] evolve when influenced by the mean
field and its past state. This allows us to consider the issue
of multistability that our system exhibits and how it could
change between these states, instead of being limited to just
finding equilibria. The dynamical equations are

x(1)(t + 1) = f1(x(1)(t ), x(2)(t )),

x(2)(t + 1) = f2(x(1)(t ), x(2)(t )), (9)

where fα (x(1)(t ), x(2)(t )) are the right-hand sides of Eqs. (7)
taken at time t . Then the fixed points of the map [Eqs. (9)] are
solutions of the implicit equations (7). It is worth noting that
�x0 = [0, 0] is always a stable solution of Eqs. (9), which for
lower temperatures can coexist with another stable solution.
When considering the behavior of the system, we are looking
at the critical temperature Tc where the nonzero solution dis-
appears and the stable state of the system starting in paradise
discontinuously changes from xc to 0.

The values Tc and xc can be obtained from a pair of
transcendental algebraic relations (10) and (11) that describe
the fixed point and its Jacobian matrix at the point where
the largest eigenvalue of the Jacobian crosses 1 (the critical
point). Detailed calculations are shown in Appendix. The
relation between Tc and xc is given by the auxiliary variable
z = e(AM/Tc )x2

c that obeys

8 ln z = (z4 − 1)(z4D2 + 2z2 + D2)

z2(z4 + 2z2D2 + 1)
, (10)

where D = ed . Solving this equation numerically allows us
to find z satisfying it, which depends only on D and thus
indirectly on the ratio of interlayer coupling K and intralayer
coupling A (Fig. 15 in the Appendix shows the general shape
of this solution).

Given the z value, it is possible to find critical polarization
xc(D, z) and the temperature Tc(xc, z),

Tc

AM
= x2

c

ln z
=

(
1

ln z

)(
D2(z4 − 1)

D2(z4 + 1) + 2z2

)2

. (11)

The dependence of this critical temperature on coupling can
be seen in Fig. 5. For D = 1 (noninteracting layers), the
approach is effectively reduced to the one-layer case and
Eq. (11) gives the critical temperature of a single-layer net-
work.

B. Generalization to a higher-order multiplex network

In order to study multilayer effects, we generalize the du-
plex network considered in Sec. III A in the following way.
We consider L layers of the same set of nodes and assume
that each layer corresponds to a different type of relation-
ship or communication context. Edges in each layer interact
with corresponding edges in all other layers since different
relationships of the same pair of agents are correlated. For
simplicity, the same parameters A(α) = A are used for all the
layers and the coupling strength between each pair of layers is
the same K . The energy of all L interactions between a given
pair of agents i j is

E (�xi j ) = −A

⎛
⎝ Mi j∑

k

L∑
α=1

x(α)
i j x(α)

jk x(α)
ki

⎞
⎠ − K

∑
α>β

x(α)
i j x(β )

i j . (12)

The approach used to analyze duplex networks can be used for
a higher number of layers. For L = 3, using Eq. (4) with �xi j =
(x(1)

i j , x(2)
i j , x(3)

i j ) and energy (12) for the three-layer network
and following the same methodology as for duplex net-
work, we can write a set of self-consistent equations for �x =
(x(1), x(2), x(3) ). Using a method analogous to that for a duplex
network (see the Appendix), we arrive at the transcendental
equation for an auxiliary variable z = z(D) = e(AM/Tc )x2

c ,

8 ln(z) = (D4z6 + z4 − z2 − D4)(D4z6 + 3z4 + 3z2 + D4)

z2(D4z8 + 4D4z6 + 3D8z4 + 3z4 + 4D4z2 + D4)
,

(13)

with the critical temperature for L = 3 being

Tc

AM
= 1

ln z

(
D4(z6 − 1) + z2(z2 − 1)

D4(z6 + 1) + 3z2(z2 + 1)

)2

. (14)

The dependence of this critical temperature on coupling can
be seen in Fig. 5 and on the number of layers in Fig. 6. While
this approach can be used for any specific L, considering L-
dimensional �x, the equations quickly become intractable with
increasing L.

To make a general prediction for the critical temperature
Tc where the order in the system disappears, the states of all
layers are assumed to be statistically the same. This allows
us to simplify our approach. Instead of considering the exact
microstate �xi j of the set of links between i and j, we consider
a mesostate described only by the number of positive links L+
among all L links in the set. Since by assumption all layers are
statistically the same, the exact placement of positive and neg-
ative signs within the L copies does not matter, and the energy
of a microstate depends only on the mesostate variable L+, so
the dynamics of the system can be described entirely through
that variable. For a set of L links, with L+ positive and L−
negative links, then L− = L − L+ and the mean polarization
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is

〈x〉 =
〈

L+ − L−

L

〉
= 2〈L+〉

L
− 1, (15)

where 〈x〉 is the average polarization of links in each of the
layers 〈x〉 = 〈x(α)

i j 〉, with the mean over all links and ensemble,
and α being any of the layers (they are statistically identical by
assumption). Because the number of microstates aggregated
into a given mesostate L+ is not fixed but is equal to the
number of ways in which L+ positive links are distributed
across L total, we need to consider this number of microstates
contributing to a given mesostate L+ when calculating canon-
ical ensemble probabilities. The number of microstates M for
mesostate L+ is given by

M =
(

L

L+

)
. (16)

The energy of state L+ for a set of links between a given
node pair is the sum of the Heider energy of links interacting
with different layers as well as the Ising energy of interac-
tion between different links in the set. The Heider energy is
according to Eq. (12), but instead of specific x(α)

i j terms we
have L+ positive and L− negative components in the sum over
layers and instead of all x(α)

jk and x(α)
ki terms we have mean-field

polarization x,

EHeider (L
+) = −A(N − 2)[L+〈x〉2 − (L − L+)〈x〉2]. (17)

One should be cautious not to mistake the macroscopic mean-
field variable 〈L+〉 that appears in the expression for 〈x〉 with
the microscopic state variable L+. The distinction can be
dropped only when calculating the mean value of microscopic
L+ later in Eq. (20).

The Ising energy corresponds to the sum over all pairs of
links, L+ of which are positive and L− negative, giving

EIsing(L+) = − K
L+(L+ − 1) + (L − L+)(L − L+ − 1)

2

+ KL+(L − L+), (18)

with the complete energy being the sum of these two

E (L+) = EHeider (L
+) + EIsing(L+). (19)

Hence the mean number of positive links can be calculated
from the canonical ensemble, multiplying the factor for spe-
cific L+ by the number of microstates such a state actually
represents. At this point, the mean value of microscopic L+
is considered the same as the mean-field variable 〈L+〉, which
means we obtain a self-consistent equation for 〈L+〉,

〈L+〉 = g(〈L+〉) =
∑L

L+=0 L+( L
L+

)
e−E (L+ )/T

∑L
L+=0

( L
L+

)
e−E (L+ )/T

. (20)

Here 〈L+〉 = L is a paradise state and 〈L+〉 = L/2 is a
completely disordered state with half the links positive and
half negative. Due to using a mesostate description, instead
of L equations we have a simple scalar equation (20) that
could be solved using a similar stability analysis approach.
Figure 3 shows a graphical representation of the right-hand
side of Eq. (20), whose solution is given by the intersection

FIG. 3. Graphical solution of the mean-field state equation (20)
for L = 10 layers. The blue solid curve is y = g(〈L+〉) and the red
straight line is y = 〈L+〉. When T > Tc there is a single stable fixed
point. When T < Tc there are three fixed points and the inner one is
unstable

of the straight line L+ and right-hand side. For T > Tc there
is only one stable fixed point L+ = L/2, which corresponds
to a disordered state of the system, while for T < Tc an addi-
tional stable fixed point appears, corresponding to an ordered
state, as well as an unstable fixed point separating basins of
attraction for each stable solution. When T = Tc both addi-
tional points are the same unstable fixed point tangential to
the diagonal line. The critical temperature can be numerically
estimated from the fixed-point equation (20) and its deriva-
tive dg(〈L+〉)/d〈L+〉 = 1. The L coupled layers undergo a
first-order transition at Tc for any number of layers, which is
confirmed numerically for up to ten layers using Eq. (20).

C. Saturation of critical temperature

The critical temperature Tc
AM depends on d (relative cou-

pling strength) and it increases with an increase of this
coupling strength, saturating for high d values (see Fig. 5).

(a) (b)

FIG. 4. Mean link polarizations x(1) = 〈x(1)
i j 〉 and x(2) = 〈x(2)

i j 〉 (a)
and corresponding energies (b) for a duplex network as a function
of temperature T for the complete graphs with N = 50 nodes and
a coupling strength K = 50 (corresponding to d = 1). The results
show averages over 50 independent simulations. Initial conditions
were paradise states at both layers, where the overlapping red pluses
and yellow crosses correspond to layers 1 and 2, respectively. In
contrast to the intralayer energies (overlapping red pluses and yellow
crosses), the interlayer energy (black circles) increases slowly when
T > Tc, with layers remaining partially synchronized even when
intralayer disorder sets in.
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FIG. 5. Critical temperature Tc increases with coupling strength
K and saturates to T ≈ LTc,L=1 for high K/M values. The black
solid line and black triangles show the mean-field prediction (11)
and numerical results for L = 2, respectively, while the red dotted
line and red circles show mean-field prediction (14) and numerical
results for L = 3, respectively.

For large coupling strength D → +∞, Eqs. (10) and (11) can
be reduced to

8 ln z = z8 − 1

2z4
⇒ z ≈ 1.723 46 . . . , (21)

Tc

AM
= 1

ln z

(
z4 − 1

z4 + 1

)2

⇒ Tc

AM
≈ 1.165 16 . . . . (22)

Comparing this to the results for a single layer, where
Tc/AM ≈ 0.582 58 (in agreement with [33]), we find that

Tc|L=2,d→+∞ ≈ 2Tc|L=1. (23)

To ensure the generality of the observed relationship (23)
between the number of layers and the critical temperature, our
study extends to a system with three layers L = 3. In the limit
D → +∞, Eqs. (13) and (14) can be reduced to

8 ln z = z12 − 1

3z6
⇒ z ≈ 1.437 49 . . . , (24)

Tc

AM
= 1

ln z

(
z6 − 1

z6 + 1

)2

⇒ Tc

AM
≈ 1.745 16 . . . . (25)

The obtained saturation critical temperature satisfies the
relation

Tc|α=3,d→+∞ ≈ 3Tc|α=1. (26)

For L coupled layers, the transcendental equation at D →
+∞ could be used to obtain the saturation critical temperature

8 ln z = z4L − 1

Lz2L
, (27)

Tc

AM
= 1

ln z

(
z2L − 1

z2L + 1

)
. (28)

Equation (28). allows us to conclude that

Tc|α=L,K→+∞ ≈ LTc|α=1. (29)

Thus the saturation critical temperature increases proportion-
ally to the number of layers L.

IV. NUMERICAL SIMULATIONS OF PARADISE
STATE STABILITY

For the verification of the analytical calculations presented
in the preceding section, numerical Monte Carlo simulations
of the model are performed. We use a heat-bath algorithm,
with each update changing an entire set of links between
randomly selected agents i and j and updates happening asyn-
chronously, with N (N − 1)/2 elementary updates treated as a
time step. Each update consists of randomly choosing a pair of
agents i j with uniform probability and then changing the link
signs of all parallel links �xi j to one of 2L possible states, with
probabilities corresponding to the canonical ensemble prob-
abilities P(�xi j ) = 1/Z exp[−E (�xi j/kBT )]. The energy E (�xi j )
is calculated using the current state of the rest of the entire
system (meaning all �xkl where kl �= i j), according to Eq. (12).
The initial condition is always started with a fully connected
graph in the paradise configuration (all links positive). The
heat-bath algorithm is used rather than the more well-known
Metropolis algorithm due to the extremely slow convergence
of the single-link update Metropolis algorithm for a larger
number of layers and relatively strong interlayer coupling. It
is worth noting that for L = 2 the results of simulations using
both algorithms are the same, up to the fluctuations inherent
in the stochastic Monte Carlo methods.

For the complete graph, the number of pair neighbors of
nodes i j is equal to M = N − 2 and we keep A(1) = A(2) = 1.
The intralayer energy is rescaled to the average value of Hei-
der energy per triad whereas the interlayer energy is scaled to
the average energy value per interacting link pair.

The simulations are repeated for a range of temperatures
from T = 0 with step �T to find the highest value of T for
which 〈x(α)

i j 〉 is positive. The true value of Tc lies in the interval
[T ∗, T ∗ + �T ] and the estimated value of critical temperature
is Tc = T ∗ + �T/2.

For the initial condition of the paradise state, the system
moves to a disordered state above temperature Tc. Figure 4
shows that both layers behave in the same aligned way. The
intralayer energies E (x(1) ) and E (x(2) ) approach zero above
the critical temperature and the mean polarization values fluc-
tuate around zero. The interlayer energy E (K ) is negative
both above and below the critical temperature, showing that
the link signs in different layers are partially aligned even
in the disordered state above Tc. The critical temperature Tc

predicted from numerically evaluated analytical mean-field
theory is compared to those obtained from Monte Carlo sim-
ulations (Fig. 5). In spite of the slight shift of the transition
when comparing numerical simulations with that of the mean-
field approximation, the analytical method is found to be
successful. Figure 6 shows how the critical temperature varies
with the number of layers where the simulations also validate
Eq. (29) in the saturation limit. Here there is some discrepancy
between our predictions and simulation results for a large
number of layers. The analytical approach predicts that as
L increases, even if coupling K is small, at some point the
critical temperature will start rising nonlinearly, increasing
all the way up to the same saturated critical temperature Tc,
regardless of K . Even low K values show this behavior for a
sufficiently large number of layers L. This behavior can be
best seen in Fig. 6 for K = 10 and 20. Simulations show,
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FIG. 6. Critical temperature Tc increases with the number of
layers L when coupling K is positive. Black symbols and dotted lines
show the results of Monte Carlo simulations, while orange symbols
and solid lines show the mean-field prediction [iterating Eq. (20) as a
map] at different interlayer coupling strengths for N = 50 and A = 1.
The critical temperature for a single layer is shown as a closed red
circle at Tc = 26.5.

however, that no such transition exists and the critical tem-
perature increases linearly with L for any K , with a slope
depending on K . This means that our mean-field approach
is unable to fully and accurately predict the behavior of the
system with many weakly interacting layers, although it is still
qualitatively correct. Our predictions work for both low K and
L, where the analytical approach predicts a linear increase of
Tc with L, as well as high K values, where the temperature is
essentially always saturated.

V. CRITICAL BEHAVIOR OF THE SYSTEM
WITH LAYERS IN DIFFERENT STATES

The critical temperature investigated so far was defined as
the temperature where the nonzero stable state disappears.
The analytical approaches only describe the existence of a
paradise state and look into its stability and transition into
disorder. The multistability of the system means that in the
range of parameters where paradise is stable, other states
may exist, and starting from different initial conditions, the
system may settle into different stable states. In this section we
explore what happens in a multiplex network in more detail,
focusing on situations where the two layers are in different
configurations.

For the Heider balance dynamics, there are many specific
states that are fully balanced, but it can be described in general
as a two-clique state, where vertices are split into two groups,
with all internal links in these groups positive and all links
between groups negative. The specific states can differ by the
relative sizes of the groups, from evenly sized up to a specific
state where one group consists of all vertices and the other has
none, which is the paradise state. The division of the entire
network into two cliques of approximately the same size is
the most likely to emerge from disorder out of all the possible

FIG. 7. If both layers of a duplex are in two-clique states, the
overlap between the layers can vary from (a) full overlap (with
matching order and overlap o = 1) through (b) partial overlap (with
partial matching order and overlap o = 3/4 in this example) to
(c) minimal overlap displayed by orthogonal two-clique states (with
mismatched order and overlap o = 1/2). The same nodes exist in
both layers and interlayer interactions exist only between the same
link replicas with coupling strength K . Blue solid lines represent
positive links, red dotted lines represent negative links, and yellow
circles enclose agents belonging to different groups in both layers.

balanced states as a consequence of Heider balance dynamics
[15] and thus is the most likely balanced state to be present.
The paradise is extremely unlikely to emerge but represents
a notable state, where every agent is friendly with another,
similar to consensus in opinion dynamics. We limit our in-
vestigation to consider only three possible equilibrium states,
namely, the two-clique state (with groups of equal sizes), the
paradise state, and the disordered state, and ignore states with
unequal group sizes.

In the case of a duplex network, the possible states that are
balanced according to intralayer Heider balance dynamics (ig-
noring unequal-size two-clique states) consist of both layers
being in the paradise state, one being a paradise and the other
being a two-clique state, or both layers being in a two-clique
state. Both layers in the paradise states have matching link
signs across layers since all of them are positive. The state
of one layer featuring paradise and the other two cliques has
mismatched link signs across layers: Approximately half of
the links (between groups) in the two-clique state are negative,
while the corresponding links in the layer in paradise are posi-
tive, resulting in a net interlayer energy close to zero. The dual
two-clique state is a special case, in the sense that the grouping
of agents into cliques in both layers can display a varying de-
gree of correlation. Two two-clique states can range from both
layers having the same groupings (matching order), through
vertex groupings that are partially correlated (partial matching
order), down to minimal overlap between groupings (mis-
matched order), as shown in Fig. 7. We measure how different
the two-clique states in two layers are by overlap o, which
is a fraction of vertices belonging to the same groups in both
layer or, in other words, how much the assignments of vertices
to cliques in both layers overlap. Note that, due to groups
themselves having no identity, we always consider groups
that have higher overlap to be the same, so the overlap o is
limited to the range [ 1

2 , 1]. This overlap is directly tied to the
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Spearman correlation between groups an agent belongs to in
both layers (this correlation is equal to c = 2o − 1), as well
as to the interlayer energy of fully Heider balanced states
(neglecting fluctuations) Einter = KN

2 [1 − N (1 − 2o)2], where
N is the number of agents and K is the interlayer coupling
strength introduced in Sec. II. Note that, due to the discrete
nature of agents, only some specific discrete overlap values
are possible for a given specific N , but they will all be con-
tained within the range [ 1

2 , 1]. Overall, a duplex system in
equilibrium at a specific temperature can be in a state of
matching order with both layers in the paradise state or match-
ing two-clique states with o = 1, a state of partial matching
order with two-clique states of varying overlap o ∈ ( 1

2 , 1), a
completely mismatched order state of two-clique states with
overlap o = 1

2 or two-clique and paradise layers, and finally
a disordered state where both layers are disordered instead of
being internally balanced. In the case of a multiplex with a
higher number of layers, there are more states, with each pair
featuring a different degree of overlap, such as a matching
pair of layers and a third layer that does not match, three
mutually mismatched layers, or a combination of partial over-
laps. Note that there are certain restrictions on overlaps, such
as a perfect match between layers being transitive; it is, for
example, impossible for layers 1 and 2 to match or for layers
2 and 3 to match while 1 and 3 do not match, but there may
be many different mutually mismatched layers, depending on
a total number of agents N . For the easiest case of N = 2n

agents, there can be as many as 1 + (N/2
N/4

)
two-clique states

with overlap o = 0 with each other.
The analytical approaches introduced in Sec. III A do not

consider the existence of two-clique states (other than the
special case, the paradise). The conclusions from the in-depth
numerical investigation presented here may differ signifi-
cantly from mean-field predictions whenever two-clique states
are involved. The most important difference is that the mean
field predicts a disordered state to be always stable, even at
low temperatures, which is not true in reality, as is shown later
in this section. In simulations, the system orders into a Hei-
der balanced two-clique state under such conditions, which
also possesses zero polarization, just like the disordered state.
Because the analytical approach does not take the existence
of two-clique states into account, it is unable to predict any
critical behavior involving two-clique states that is presented
in this section. In particular, the temperatures Ts, Td , To, and
Tm introduced later in the section are outside the scope of our
analytical approach.

We consider and investigate numerically five scenarios
where the initial condition contains mismatched layers: (i)
One layer is in the paradise state while the other is a two-
clique balanced state, (ii) both layers are in a mutually
mismatched two-clique balanced state, (iii) both layers are in
two-clique states that are partially matching, (iv) a three-layer
network has one layer in the paradise state and two layers
in matching two-clique states, and (v) a three-layer network
has one layer in the paradise state and two other layers in
mismatched two-clique states. Based on the results obtained in
these situations as well for the initially disordered system, we
draw conclusions regarding what system states exist in what
range of parameters, what are transitions between them, and
the overall shape of the phase diagram for the system.

A. Coupling between a paradise and a two-clique state

Consider a mismatched order state containing paradise in
one layer and a two-clique state in the second. Assume that
the size of the entire group is an even number N = 2m and
that each hostile group has the size m. Each node possesses
m − 1 positive links to agents in its own clique and m negative
links to the second clique. The behavior of the system depends
on temperature and interlayer interaction strength, with four
out of the total of five characteristic or critical temperatures
visible from the simulation results shown in Fig. 8.

The temperature Ts is the temperature above which the
mismatched order loses stability. In consequence, above Ts the
initially mismatched layers will synchronize with each other,
creating a matching order state. Above To it is possible that
mismatched layers will become disordered instead of creating
a matching order state. For higher interaction strength K this
temperature coincides with Td [Fig. 8(c)], which is a minimum
temperature required for a disordered state to be stable. If
the interaction strength is low, as K → 0 these temperatures
diverge, with To going towards single-layer critical temper-
ature Tc (where order loses stability) and Td going towards
single-layer critical temperature Td (where disorder gains sta-
bility), as shown on Fig. 13. Note that above To, whether
the system ends up in a matching order state or a disordered
state is essentially random, with probabilities depending on
temperature T and layer overlap. The temperature Tm is an
upper bound for two mismatched layers to evolve towards a
matching order state. Above Tm the clash of two mismatched
layers always results in a disordered state. Note that Tm < Tc,
so the initial mismatched order evolves to disorder at a lower
temperature than the initial matching order, which can persist
up to temperature Tc (the only temperature not seen in Fig. 8).
We consider Ts and Td as critical temperatures, since certain
states gain or lose stability, while at To and Tm no such thing
happens. Hence we do not refer to Tm and To as critical tem-
peratures but as characteristic temperatures.

The outcome of synchronization of the initially mis-
matched order state is not always the same and contains
randomness. In our case of a mismatched paradise and two-
clique state, the outcome could be either a matching paradise
or a matching two-clique state. In addition, the resulting two-
clique state does not need to match the state of the initial
two-clique layer; the cliques could be of different sizes and
placement than initially, which suggests both layers may un-
dergo reconfiguration, instead of one layer imposing its own
state on the other. The mean link polarization of a two-clique
state depends on the sizes of cliques m1 and m2,

〈xi j〉 =
(m1

2

) + (m2

2

) − m1m2(N
2

) , (30)

where 〈xi j〉 would be near 1 for clique sizes m1 � m2 and
close to 0 for m1 ≈ m2. We quantitatively investigated the
frequency f of mean link polarization for both network layers
after the synchronization event. Figure 9 shows the distri-
bution of mean link polarization. Even though the paradise
state 〈xi j〉 = 1 is the most likely result of the synchronization,
two-clique states are also probable results.

We have performed simulations for different interlayer
coupling strengths K , allowing us to determine how critical
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(a)

(b)

(c)

FIG. 8. In the case of coupled paradise and two-clique states,
the system shows two transitions: synchronization of layers starting
at Ts and transition to disorder starting at To and ending at addi-
tional characteristic temperature Tm. (a) Mean link polarization of
50 independent simulations over a range of temperatures for N = 50
nodes and a coupling strength K = 25, with one layer starting in
the paradise state (red pluses) and the second layer starting in the
two-clique state (yellow crosses). (b) Corresponding mean intralayer
energy (red pluses and yellow crosses) and interlayer energy (black
circles). (c) Intralayer and interlayer energies for a duplex network
starting in a disordered state, showing that spontaneous order appears
at any temperature below Td .

FIG. 9. When paradise and two-clique states synchronize, it re-
sults most often in a paradise state x(1) ≈ 1 but two-clique states
x(1) < 1 are also a possible outcome. The graph shows the distri-
bution of mean link polarization after paradise and two-clique states
synchronize at the temperature T where Ts < T < Td .

temperatures Td and Ts as well as characteristic temperatures
To and Tm depend on model parameters. These results have
been aggregated into the phase diagram for two-layered sys-
tem, found in Sec. V D.

Note that when the system results in a disordered state, it
is still partially synchronized due to the interlayer Ising in-
teractions. This is equivalent to paramagnetic partial ordering
due to the external field, which in this case is the impact of the
other layer. In effect, the interlayer energy E (K ) in Fig. 8 only
asymptotically approaches zero with increasing temperature,
unlike intralayer energy related to internal layer ordering.

An interesting observation during synchronization is how
the link polarization of the two layers evolves over time.
Figure 10 displays examples of time trajectories of mean link
polarization during relaxation processes. The two layers, ini-
tially in a paradise state and a two-clique state with same-size
cliques, synchronize to one of the three possible matching or-
der states: paradise, a two-clique state with same-size cliques,
or a two-clique state with cliques of different sizes (see also
Fig. 10).

B. Coupling between different two-clique states

When considering the state where two layers are each
in a two-clique state, the overlap between layers may vary
between 1 (matching order) and 1/2 (mismatched order). If
the cliques match, then the behavior is very similar to the
paradise-paradise initial condition, except the mean link po-
larization is not 1, but depends on the relative sizes of the
cliques, down to approximately 0 for cliques of the same size.
The critical temperature of transition to disorder is also the
same Tc as for the matching paradise state.

If the two-clique states in layers are mismatched, with over-
lap close to 1/2, then the behavior closely resembles that of
the mismatched order of paradise and the two-clique situation
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(a) (b) (c)

FIG. 10. The final state of the synchronization between two mismatched layers is partially random due to thermal fluctuations. Example
trajectories are shown for the synchronization scenario between paradise (red solid line) and two-clique (blue dashed line) layers for N = 50,
K = 25, and T = 20. The synchronized state can be (a) a two-clique state similar to the initial condition of the second layer, (b) a paradise
state, or (c) a two-clique state of different sizes, matching neither of the two initial layer states. Each shown scenario is a result of independent
agent-based simulation under the same initial conditions and parameters.

described in the preceding section. Just as before, there are
two critical temperatures, that is, synchronization at Ts and the
appearance of disorder at Td , as well as the same characteristic
temperatures To above which the system may end up disor-
dered and Tm above which it always falls into disorder instead
of synchronizing, as shown in Fig. 11. The exact values of the
temperatures Ts, To, and Tm may differ, since they are specific
to a state, while Td and Tc are specifically related to disordered
and matching order states and thus are fixed and depend only
on model parameters.

If the two-clique states are partially matching, then the
behavior is qualitatively the same, but values of Ts, To, and Tm

depend on the overlap o between layers. In the limit of overlap
o → 1, temperature Ts → 0 and To, Tm → Tc.

(a) (b)

(c) (d)

FIG. 11. The behavior of the system of two partially matching
[(a) and (c)] and mismatched [(b) and (d)] layers in two-clique states
for N = 50 and K = 25 closely resembles the mismatched order of
paradise and two-clique layers seen in Fig. 8. (a) and (b) Variation
of mean link polarization for two orthogonal two-clique layers over
temperature for 50 independent simulations. (c) and (d) Correspond-
ing variation of mean intralayer (red pluses and yellow crosses) and
interlayer (black circles) energies over temperature.

C. Triplex network with mismatched layer pairs

In the case in which the network contains three or more lay-
ers, the possible states of the system increase in number. Here
we consider a triplex network with one layer in the paradise
state and the remaining two layers in two-clique states, which
are either matching with o = 0 or mismatched with mutual
overlap o = 13/25 (the same as in the preceding section). The
first situation creates two matching layers that are mismatched
with the third. The second situation corresponds to every layer
being mismatched with the other two. The behavior of the
system is similar to the case of a duplex network but features
a few important differences.

The most prominent difference is that the two considered
situations show different synchronization temperatures T (PCC)

s

and T (PCC′ )
s ; each state has its own specific synchronization

temperature, as can be seen in Fig. 12, showing the sim-
ulation results. This is not surprising, as in the case of a
state with two matching layers these layers are more stable
and exert a stronger, coherent influence on the third, mis-
matched layer, resulting in a lower temperature T (PCC)

s when
the synchronization happens. In the case when all layers are
mutually mismatched, there is no coherent impact on any
single layer, so their own individual configurations can persist
up to a higher transition temperature T (PCC′ )

s . The second
detail is how the character of the transition differs between
these two situations. The mutually mismatched layer state
features symmetry, which means that the transition is similar
to the two-layer mismatched state case. None of the layers are
stronger, leading to states with varying sizes of the cliques,
which may not match any of the initial layers, although it
happens less often than in a duplex network. This means that
as the number of layers increases, the number of different
possible states, and thus state-specific temperatures Ts, To, and
Tm, increases as well.

D. Phase diagram

Evidence shown in previous sections as well as additional
results obtained for a range of parameter K allow us to draw
an experimental phase diagram for the system as well as
determine possible system states, when they are stable and
when they are not, as well as what transitions can occur
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(a) (b)

(c) (d)

FIG. 12. In a triplex network, there are two classes of states:
(a) and (c) two matching layers and a third mismatched (PCC) and
(b) and (d) all three mutually mismatched layers (PCC′). These two
state classes show different synchronization temperatures Ts. (a) and
(b) Mean polarization (blue squares, red pluses, and yellow crosses)
of each of the three layers. (c) and (d) Intralayer energies (blue
squares, red pluses, and yellow crosses) as well as interlayer energy
(green up triangles, teal down triangles, and black circles) tied to
each pair of layers for N = 50 and K = 10. The PCC state consists
of the paradise state in one layer and matching two-clique states in
the other two; the PCC′ state consists of the paradise state in one
layer and mismatched two-clique states in the other two.

between them. Figure 13 shows the phase diagram for vary-
ing temperature and coupling strength between layers. The
diagram contains five main parameter regions. In the blue
area below Ts any system can exist in either a matching or
a mismatched order state. In the green area between Ts and
Td the system may exist only in a matching order state. In the
yellow area between Td and Tc the system may exist in either
a matching order or a disordered state. In the red region above
Tc the system may exist only in a disordered state. Finally, in
the white region between Td and Ts all of the states, that is,
mismatched order, matching order, and disorder, are possible.
It is very important to note that while the boundaries set by
Td and Tc, which correspond to the lower bound of disorder
and upper bound of matching order, are fixed, the boundary
set by To is not. Depending on the exact overlap o between
mismatched layers, the temperature may vary. If considering
a partially matching order state, the qualitative behavior is
the same, with temperature Ts varying with overlap o, down
to Ts = 0 for actually matching layers. The two additional
characteristic temperatures To and Tm are temperatures above
which a system starting in a specific state may become disor-
dered and above which a system always becomes disordered.
Similar to Ts, these two characteristic temperatures are also
related to a specific initial state and thus depend on the overlap
o between layers in the initial state. In Fig. 13 the boundaries
shown are for an initial mismatched order state consisting of
one layer in the paradise state and one layer in a two-clique
state. The characteristic temperatures To and Tm increase with
overlap, both reaching Tc at overlap o = 1 where the layers

FIG. 13. Phase diagram of the duplex system featuring multista-
bility. The five colored areas are blue (below Ts), a region where both
mismatched and matching order states are stable; green (between
Ts and Td ), a region where only the matching order state is stable;
yellow (between Td and Tc), a region where both matching order and
disordered states are stable; red (above Tc), a region where only the
disordered state is stable; and white (between Td and Ts), a region
where mismatched order, matching order, and disordered states are
all stable. The boundaries Td and Tc are fixed, but Ts, To, and Tm

vary for different states. The results were obtained from agent-based
simulations for N = 50 and A = B = 1 with 50 realizations.

are in fact matching. The temperature To here, depicted for
a mismatched order state, overlaps with Td if the coupling
strength K between layers is strong enough, meaning that the
system may become disordered as soon as the disordered state
becomes a stable possibility, but if the coupling strength is
lower, then mismatched order can only become disordered at
higher temperature To > Td .

While the phase diagram in Fig. 13 shows what states
are stable under what parameter values, it does not tell us
anything about the transitions between them. To understand
possible transitions and to better describe characteristic tem-
peratures To and Tm, let us look at a fixed K and show the
stable states depending on the temperature, as depicted in
Fig. 14. Figure 14 shows schematically what states are stable
at what temperatures. At low temperatures, both mismatched
and matching order states are stable, with intralayer ordering
including either a two-clique state or paradise. The partially
matching states behave just like mismatched ones and are
included in the category but feature transitions at temperatures
that depend on the state, most importantly on the overlap o
between layers. Temperature Ts is the upper bound for the
stability of mismatched order, temperature Td is the lower
bound for the stability of disorder, and temperature Tc is the
upper bound for the stability of the matching order state. If
the temperature of an already existing matching order state
increases above Tc, the system transits into disorder, as de-
picted with a solid gray arrow in the figure. Similarly, if the
temperature for an existing disordered state is lowered below
Td , it transits into a matching order state (also depicted as
a solid gray arrow). It is worth noting that the probability
that a self-organized matching order state will be a paradise
is vanishingly small for larger systems, so the transition in
practice is always to a state of matching layers in two-clique
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FIG. 14. The Heider balance dynamics on a duplex network is
multistable, with different states possible depending on the temper-
ature. Gray boxes show a range of temperatures where a given state
is stable for a fixed K value, with gray arrows showing possible
transitions between these states. Five characteristic temperatures can
be distinguished: synchronization at Ts, the appearance of disorder
at Td , the lower limit of transitions to disorder To, the upper limit of
transitions to matching order Tm, and the disappearance of order at Tc.
Note that the figure is schematic and does not depict actual values for
better clarity. The temperature values Ts depend on the exact states
they correspond to, since partially matching states with lower overlap
have lower temperatures Ts. Characteristic temperatures To and Tm

depend on the initial state and its overlap between the layers, since
higher overlap means higher temperature values, up to Tc for o = 1.

states. If the temperature of a system in a mismatched order
state is raised above Ts, the transition that happens depends on
the new temperature. For T ∈ (Ts, To), it will always become
a matching order. For T ∈ (To, Tm), it may become either a
matching order or disorder. Finally, for T > Tm, the result will
always be a disorder, despite matching order being a stable
state up until Tc > Tm. This means that for T ∈ (Tm, Tc), while
it is possible for an already existing matching order to persist,
thermal fluctuations are too large for such a state to appear
from a mismatched order. Note that this summary only cov-
ers a duplex network with A(1) = A(2). If Heider interaction
strengths of layers can be different, the situation may become
much more complex.

VI. CONCLUSION

In this paper we explored phase transitions of a multi-
stable thermalized agent system on a multiplex network, with
Heider balance intralayer dynamics and Ising interlayer cou-
pling. The system displays several interesting transitions (see
Fig. 14). The possible system states include (i) the matching
order state, where each layer has the same low-energy ordered
state, i.e., the two-clique state or paradise; (ii) the mismatched
order state, where each layer is internally ordered but the
configuration in each layer is different, resulting in higher in-
terlayer interaction energy (an example of such a state would
be a paradise state in one layer and a two-clique state in the
second); (iii) the partially matching order state, where each
layer is internally ordered into a two-clique state but the split
into the cliques only partially match across layers; and (iv) the
disordered state, dominated by thermal noise.

We identified three critical temperatures (see Fig. 14).
(i) Above critical temperature Tc, no ordered states are

stable. This temperature applies to any number of layers and
depends on model and system parameters only. We have cal-

culated a mean-field prediction for Tc for two or more layers.
This estimation is in good agreement with numerical results
for a two-layered system but is only a rough estimation for
systems with more layers. For a system of L layers, the tem-
perature Tc saturates with the strength of positive interlayer
coupling, up to (Tc)L = L(Tc)L=1, which has been both pre-
dicted by the analytical approach and observed in simulation
results. While the mean-field approach only considers fluctua-
tions around the paradise state, numerical results indicate that
a state of matching two-clique layers also loses stability above
the same Tc.

(ii) At critical temperature Ts, mismatched or partially
matching order states exist. This temperature corresponds to a
specific state of the system and its value depends on how mis-
matched the two-clique states in both layers are. Mismatched
order and partial matching order states are only stable below
this temperature Ts < Tc. Above Ts thermal fluctuations allow
the system to relax from a higher-energy mismatched order
state to a matching order state with a lower energy, similar to
the freezing by heating phenomenon [34,35]. If the tempera-
ture is high enough, thermal noise may force the system into a
high-entropy disordered state instead. For systems with more
than two layers, the number of possible states increases, such
as two matching and one mismatched layer or three mutually
mismatched layers for L = 3 total layers. Since each state may
feature its own Tc value, there may be multiple different crit-
ical temperatures without even considering a semicontinuous
spectrum of partial matching between different layers.

(iii) Below critical temperature Td , the system orders spon-
taneously. A disordered system at T < Td spontaneously
orders, forming a two-clique matching order state. There is
a vanishingly small probability for a larger system to order
into a mismatched order state (if T < Ts) or for the matching
order state to be a paradise, which can be considered a special
case of a two-clique state with one clique being of size zero.

In addition, there are two characteristic temperatures To

and Tm, which correspond to points at which an initially
mismatched or partially matching order state starts behaving
differently. Temperature To is a lower bound for transition to
a disordered state, and for an initial mismatched order state
and high enough interlayer coupling K it has the same value
as Td . For small K , a disordered state may appear only at
To > Td . Temperature Tm is an upper bound for the transition
from a mismatched or partially matching order to a matching
order state. Above Tm the transition from mismatched order
or partially matching order state will always be towards a
disordered state.

Note that all the critical temperatures Ts, Td , and Tc, as
well as the characteristic temperatures To and Tm, depend on
model and system parameters, in particular on network size N ,
intralayer interaction strength A, and interlayer coupling K . In
addition, as stated before, critical temperature Ts and charac-
teristic temperatures To and Tm are determined for a specific
mismatched or a partially matching order state and therefore
there are many such temperatures for a given system. The
temperature Tc has been predicted analytically (Sec. III) and it
is in reasonably good agreement with numerical simulations,
but other characteristic temperatures have been identified only
through numerical simulations. This is mainly due to these
temperatures involving the system layers in two-clique states,
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which are outside of the scope of our analytical approach. As
a result, any characteristic temperatures involving two-clique
states cannot be predicted using our approach. The critical
temperatures for the stability of disorder (Td ) and for the sta-
bility of order (Tc) are analogous to the critical temperatures
observed in [33].
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APPENDIX: CRITICAL TEMPERATURE CALCULATIONS FOR A DUPLEX NETWORK

The probabilities of the states �xi j having energy E (�xi j ) described in Eq. (6) are, according to the canonical ensemble (2),

P(�xi j ) = exp
{−AM

T

[
x(1)

i j (x(1) )2 + x(2)
i j (x(2) )2]} exp

( − K
T x(1)

i j x(2)
i j

)
∑

�xmn
exp

{−AM
T

[
x(1)

mn (x(1) )2 + x(2)
mn (x(2) )2]} exp

( − K
T x(1)

mnx(2)
mn

) , (A1)

where M = N − 2 is the number of triads the link i j is part of. Then the expected value 〈�xi j〉 [Eq. (4)] will be

〈�xi j〉 =
∑
�xi j

exp
{−AM

T

[
x(1)

i j (x(1) )2 + x(2)
i j (x(2) )2]} exp

( − K
T x(1)

i j x(2)
i j

)
∑

�xmn
exp

{−AM
T

[
x(1)

mn (x(1) )2 + x(2)
mn (x(2) )2]} exp

( − K
T x(1)

mnx(2)
mn

) �xi j . (A2)

Let us note that �xi j has only four possible values �xi j ∈ {(−1,−1), (−1, 1), (1,−1), (1, 1)}, so both sums in the equation have a
limited number of terms. Then Eq. (A2) becomes

〈�xi j〉 =
exp

(
2K
T

)(
exp

{
AM
T [(x(1) )2 + (x(2) )2]

}
− exp

{
−AM

T [(x(1) )2 + (x(2) )2]
})

+
(

exp
{

AM
T (−1)α[(x(2) )2 − (x(1) )2]

}
− exp

{
−AM

T (−1)α[(x(2) )2 − (x(1) )2]
})

exp
(

2K
T

)(
exp

{
AM
T [(x(1) )2 + (x(2) )2]

}
+ exp

{
−AM

T [(x(1) )2 + (x(2) )2]
})

+
(

exp
{

AM
T (−1)α[(x(2) )2 − (x(1) )2]

}
+ exp

{
−AM

T [(x(2) )2 − (x(1) )2]
}) .

(A3)

Following mean-field methodology, we assume that the 〈�xi j〉 calculated above is the same as the mean-field variable �x through
which the mean field is expressed and the above vector equation can be simplified into a set of self-consistent equations for �x,

x(1) = f1(x(1), x(2) ), x(2) = f2(x(1), x(2) ), (A4)

where the right-hand sides can be expressed by

fα (x(1), x(2) ) = e2d sinh
{
a
[
(x(1) )2+(x(2) )2]}+ sinh

{
a(−1)α

[
(x(2) )2−(x(1) )2]}

e2d cosh
{
a
[
(x(1) )2 + (x(2) )2]} + cosh

{
a
[
(x(1) )2 − (x(2) )2]} , (A5)

with a = AM
T and d = K

AM . Note that the equations for both
components differ only in the sign of the second hyperbolic
sine function, expressed here as (−1)α .

The set of self-consistent equations above can be consid-
ered a map for the purposes of stability analysis, to determine
whether a solution (fixed point) is actually stable and therefore
a valid stable state of the system it describes. The Jacobian for
the mean-field map [expressed also by Eq. (9)] is

J =
⎡
⎣

∂ f1

∂x(1)
∂ f1

∂x(2)

∂ f2

∂x(1)
∂ f2

∂x(2)

⎤
⎦, (A6)

with the derivatives equaling

∂ f1

∂x(1)
= 4ax(1)e2d

{
cosh(2d ) + cosh

[
2a(x(2) )2]}

D
,

∂ f1

∂x(2)
= 2ax(2)(e4d − 1)

D
,

∂ f2

∂x(1)
= 2ax(1)(e4d − 1)

D
,

∂ f2

∂x(2)
= 4ax(2)e2d

{
cosh(2d ) + cosh

[
2a(x(1) )2]}

D
, (A7)

where

D = (
e2d cosh

{
a
[
(x(1) )

2 + (x(2) )
2]}

+ cosh
{
a
[
(x(1) )

2 − (x(2) )
2]})2

. (A8)

Since the two-dimensional maps are symmetric, to simplify
calculations we consider x(1) = x(2) ≡ x. The fixed point of
the mean-field map then becomes

x = sinh(2ax2)

cosh(2ax2) + e−2d
, (A9)

which in the limit of d → 0 (no interactions) reduces to a
single-layered network, as Eq. (9 a) in [33], and for d → +∞
also reduces to the same equation but with the interaction
constant 2a instead of a. The eigenvalues of the Jacobian

044306-13



MOHANDAS, SUCHECKI, AND HOŁYST PHYSICAL REVIEW E 109, 044306 (2024)

FIG. 15. Equation (A11) has three solutions for the auxiliary
variable z that depend only on relative interlayer coupling strength
D. Out of them, only the solution z > 1 (blue top line) is physically
meaningful and corresponds to a positive critical temperature Tc.

matrix J given by Eq. (A7) are

λ+,− = 4ax[cosh(2ax2) + e±2d ]

{ed [cosh(2ax2) + e−2d ]}2
, (A10)

where λ+ corresponds to the larger of the two eigenvalues.
The critical temperature Tc/AM and xc can be obtained from
a pair of transcendental algebraic relations that describe the
fixed point (A9) and criticality condition for the eigenvalue
λ+ = 1 [see Eq. (A10)]. Multiplying Eq. (A9) by the inverse
of Eq. (A10) with λ+ = 1 allows us to combine the left-hand
x from (A9) and the 4ax term from (A10) into a single term
4ax2, which means that unknown x only appears as ax2.
Defining a new variable z ≡ eax2

and as well as D ≡ ed , we

can write a single equation for z,

8 ln z = (z4 − 1)(z4D2 + 2z2 + D2)

z2(z4 + 2z2D2 + 1)
. (A11)

This equation has three solutions in general, but only a single
relevant solution with z > 1. The solution, dependent on D
only, is shown in Fig. 15. One can numerically calculate the
largest solution z for a fixed value of d . Putting ax2 = ln z into
Eq. (A9) gives us the link polarization xc at the critical point

xc = D2(z4 − 1)

D2(z4 + 1) + 2z2
(A12)

and having that, rearranging the definition of z gives us the
inverse of a at the critical point

Tc

AM
= x2

ln z
. (A13)

To understand how the saturation critical temperature relates
to a number of layers, we need to define Eq. (A13) at d ≡
D → +∞ and at d = 0,

Tc

AM

∣∣∣∣
d→+∞

= 1

ln(z∞)

(
z4
∞ − 1

z4∞ + 1

)2

, (A14)

Tc

AM

∣∣∣∣
d=0

= 1

ln(z0)

(
z4

0 − 1

z4
0 + 1 + 2z2

0

)2

. (A15)

Substituting the values of z∞ = 2.97 and z0 = 8.823 obtained
numerically from (A11), the saturation critical temperature is

Tc|d→+∞
Tc|d=0

= 1.165 16 . . .

0.582 58 . . .
= 2 (A16)

or

Tc|d→+∞ ≈ 2Tc|d=0. (A17)
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