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Effect of constraint relaxation on the minimum vertex cover problem in random graphs

Aki Dote 1,2 and Koji Hukushima 1,3

1Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
2Fujitsu Limited. 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan

3Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

(Received 22 November 2023; accepted 5 March 2024; published 5 April 2024)

A statistical-mechanical study of the effect of constraint relaxation on the minimum vertex cover problem in
Erdős-Rényi random graphs is presented. Using a penalty-method formulation for constraint relaxation, typical
properties of solutions, including infeasible solutions that violate the constraints, are analyzed by means of
the replica method and cavity method. The problem involves a competition between reducing the number of
vertices to be covered and satisfying the edge constraints. The analysis under the replica-symmetric (RS) ansatz
clarifies that the competition leads to degeneracies in the vertex and edge states, which determine the quantitative
properties of the system, such as the cover and penalty ratios. A precise analysis of these effects improves the
accuracy of RS approximation for the minimum cover ratio in the replica symmetry-breaking (RSB) region.
Furthermore, the analysis based on the RS cavity method indicates that the RS/RSB boundary of the ground
states with respect to the mean degree of the graphs is expanded, and the critical temperature is lowered by
constraint relaxation.
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I. INTRODUCTION

Combinatorial optimization problems play an important
role in academic fields such as mathematics, physics, and
chemistry, in that several problems in each field can be re-
duced to optimization problems. In industrial fields such as
manufacturing, logistics, and finance, real-world problems
are often formulated as optimization problems. There is an
increasing demand for efficient tools to solve these problems.
On an algorithmic view, several physics-inspired optimization
algorithms, such as simulated annealing [1] and quantum an-
nealing [2,3], have emerged. Simultaneously, from a hardware
perspective, triggered by the development of the quantum an-
nealer [4], several Ising machines based on different physical
phenomena have been developed in the last decade [5–9].
These developments have significantly expanded the method-
ologies and scope of combinatorial optimization.

The constrained combinatorial optimization problems dis-
cussed in this study aim at finding a combination of discrete
values that minimizes or maximizes a cost function among
feasible solutions, that is, a set of values satisfying given
constraints. Typical problems include the traveling salesper-
son problem (TSP), minimum vertex cover (MVC) problem,
and knapsack problem. Certain types of problems, such
as the TSP, can allow efficient exploration of optimal or
near-optimal solutions among the feasible solutions by appro-
priately considering their structured constraints. However, it
is challenging to systematically generate feasible solutions to
problems with arbitrary constraints. Particularly, in industrial
applications, where problems often combine multiple con-
straints, it is difficult to search only for feasible solutions
depending on the structure of each problem instance. The dif-
ficulties associated with constraints become more pronounced
when utilizing dedicated hardware such as quantum and

classical Ising machines. Although these machines are power-
ful, they are limited in their ability to directly address intricate
constraints, except for some specific types [9,10].

A well-established method to address such constrained
combinatorial optimization problems is the penalty method
[11,12]. This method constructs an energy function by adding
non-negative constraint functions as a penalty to the cost
function to be minimized. Then feasible solutions are obtained
by finding the lowest energy state of this energy function. To
ensure that the lowest energy state satisfies the constraints, the
penalty coefficients of the constraints should be sufficiently
large. It is known that smaller penalty coefficients can prac-
tically lead to faster solutions for combinatorial optimization
problems [11]. However, determining an appropriate penalty
coefficient in advance for any given problem instance remains
a challenging task. Therefore, adaptive penalty functions [13]
and other heuristic methods have been introduced to dynami-
cally adjust penalty coefficients. These adjustments are highly
problem-dependent, and there is a lack of theoretical analyses.

The theoretical analysis of combinatorial optimization
problems using statistical mechanics originates from the ap-
plication of methods of statistical physics for random systems
to the computational complexity theory [14]. Particularly,
statistical-mechanical ideas have proven invaluable for ana-
lyzing the typical-case behavior of the randomized problems
[15,16]. In this context, intriguing insights have emerged
from the analysis of the boundary between problem instances
that satisfy or violate constraints [17,18]. These boundaries
often highlight the transition in computational complexity
changes from polynomial time to exponential time [19,20],
and the region where approximate algorithms yield exact
optimal solutions [21,22]. These results are closely related
to phase-transition phenomena and provide a deeper under-
standing of the structure of the problems [17–27]. It should
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be emphasized that, with a few exceptions [15], previous
statistical-mechanical analyses have focused either on combi-
natorial optimization problems restricted to feasible solutions
or on constraint-satisfaction problems without cost functions.
Constrained optimization problems, particularly those with
relaxed constraints such as the penalty method, have not been
extensively analyzed.

The purpose of this study is to explore the implications of
constant relaxation in the penalty method by using statistical
mechanics analysis. We focus on the MVC problem, exten-
sively studied in statistical mechanics and recognized as one
of the most fundamental NP-hard problems [28]. Specifically,
our work extends previous studies of the MVC problems
on Erdős-Rényi (ER) random graphs [29], analyzing ground
states with replica methods [23] and finite-temperature prop-
erties using the cavity method [26]. It should be noted that
the MVC problem is equivalent to the maximum independent
set problem and the maximum clique problem, which have
broad practical applications. These problems have also been
studied from a statistical mechanics perspective in the context
of random graphs [30,31]. In contrast to the previous studies,
our approach considers systems with infeasible solutions that
do not satisfy all constraints under finite constraint strength
and includes previous studies as a limit with infinite constraint
strength. By analyzing replica-symmetric (RS) solutions, we
obtain conditions for obtaining feasible solutions in the low-
temperature limit. This analysis also reveals the competing
structures of the cost function and constraint strength in
the lowest-energy states under infeasible conditions. Further-
more, through a stability analysis of the RS solution and
cavity-method analysis, we determine the transition temper-
ature Tc of the replica symmetry breaking (RSB), and this
temperature decreases as the constraint strength is decreased.
Finally, numerical experiments demonstrate indications of
RSB at finite temperatures and the lack of self-averaging
properties.

The paper is organized as follows. In Sec. II we define
the statistical mechanical model of MVC with the penalty
method and conduct a finite temperatures analysis using the
replica method. Next, Sec. III provides a detailed analysis
of the ground-state properties of the system, particularly, the
infeasible solutions that arise when the constraints are relaxed.
In Sec. IV we analyze the stability of the self-consistent equa-
tions for the RS solutions. In Sec. V we further explore the
stability of the RS solutions at finite temperatures, particu-
larly their constraint dependence, by using the cavity method.
In Sec. VI the stability analysis described in the previous
section is verified, and the behavior of the system, which is
not fully understood by the analysis of the RS solution, is
investigated by Markov chain Monte Carlo (MCMC) sim-
ulations. Finally, conclusions are presented in Sec. VII. In
the Appendixes, we present derivations of some mathematical
formulations, population dynamics methods, and their behav-
ior at low temperatures.

II. MODEL AND STATISTICAL
MECHANICAL FORMULATION

This section provides an overview of the statistical-
mechanics analysis based on the replica method for the MVC

problem, as discussed in Refs. [19,23]. We explore its ex-
tension to problems with relaxed constraints and discuss the
resulting properties.

A. MVC problem

Given an undirected graph G(V, E ) with N vertices V and
edges E , MVC describes the problem of finding the minimum
subset of the vertices Vc ⊂ V that covers the graph G, where
“cover” means that at least one of the two vertices connected
by each edge belongs to Vc.

Let xi = 1 with i ∈ {1, 2, . . . , N} denote that the ith vertex
is covered and xi = 0 denote that the ith vertex is uncov-
ered. The adjacency matrix of a graph G is denoted by c,
and the matrix element ci j is given by 1 if the edge (i j) is
connected and 0 otherwise. This problem can be formulated
as a constrained combinatorial optimization problem for x =
(x1, . . . , xN ) with

minimize: M(x) =
N∑

i=1

xi,

s.t.: V (x; G) =
∑
(i j)

ci j (1 − xi )(1 − x j ) = 0, (1)

where M(x) and V (x; G) are called the cost function and the
penalty function, respectively. The penalty function V (x; G)
represents the constraints for a given graph G. An assignment
x that satisfies the constraint conditions is called a feasible
solution, and one that does not satisfy is called an infeasible
solution. With this formulation, the infeasible solution is char-
acterized by V (x; G) > 0.

Generally, there are two main approaches to solving
constrained combinatorial optimization problems. One is to
restrict the search for the optimal solution to feasible solutions
only. This approach is efficient when feasible solutions can be
generated systematically without missing any feasible solu-
tions. However, this approach is applicable only to a specific
class of established problems. The other is to search for the
optimal solutions, including infeasible solutions. This is less
efficient for problems to which the former method can be
applied, but can be applied to any problem for which it is
difficult to find feasible solutions.

To analyze the typical properties of MVC problems, in-
cluding infeasible solutions, we focus on a formulation based
on the penalty method, which is one of the simplest methods
of the latter. The energy function incorporating the constraints
into the penalty function is defined as

E (x; G) = μM(x) + γV (x; G), (2)

where μ is a parameter with dimensions of energy, and γ is a
positive penalty coefficient that determines the strength of the
constraint. Without loss of generality, μ is used as the unit of
the energy hereafter with μ = 1. For sufficiently large γ , the
solution x that minimizes E (x; G) satisfies the constraint and
is then the optimum solution to the problem of Eq. (1). The
search process in the limit of γ → ∞ realizes only feasible
solutions that completely satisfy V (x; G) = 0. It has been
suggested that the value of γ should be as small as possible
in order to obtain a solution in a short time [11]. However,
it is generally difficult to determine the appropriate value of
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γ in advance. Therefore, heuristic methods of dynamically
changing γ and methods of finding the optimal γ value have
been proposed to find a solution efficiently [12]. One example
is the adaptive penalty function, which dynamically controls
γ and efficiently searches for feasible solutions by moving the
state back and forth between feasible and infeasible regions.
As a concrete example, an optimization method using the
tabu search with multiple penalty functions is described in
Ref. [13].

In the case of MVC, the condition for the minimum-energy
solutions to satisfy the constraints is γ > 1 [10]. This is in-
tuitively obvious: when γ = 1, reducing the cover subset by
one and violating the constraint by one make exactly the same
energy contribution. Thus, by setting the value of γ > 1, the
minimum-energy solution satisfies the constraint and gives a
minimum cover subset. Note that the energy for γ = 1 is equal
to the minimum coverage. If γ is dynamically changed during
the search process, it should eventually return to γ > 1, and
we discuss the possibility of utilizing γ < 1 in the path during
the search. For this purpose, it is necessary to clarify the
nature of the finite γ region, including γ = 1, which extends
the previous statistical-mechanical study of MVC at “finite
temperatures” with γ = ∞ [23].

B. Statistical mechanics of combinatorial
optimization problems with constraints

When analyzing combinatorial optimization problems
using statistical mechanics, we introduce a probability distri-
bution that follows the solution x, referred to as the “state”
in the physical terminology below. First, the function to be
minimized is considered to be the energy, and the equilibrium
distribution of the state x at the inverse temperature β is
assumed to be the canonical distribution. In the context of
statistical mechanics, the low-temperature limit, β → ∞, is
generally considered to obtain the optimal solution as the
ground state of the system.

Using the energy function of Eq. (2), the partition function
of MVC for given G is defined as

Z (β, γ ; G) =
∑

x

e−β[μM(x)+γV (x;G)], (3)

where the sum is taken for all states of x ∈ {0, 1}N , in-
cluding feasible and infeasible states. In previous studies
[15,16,18,23,25,26,32] the state x was restricted to only fea-
sible states. Assuming μM(x) as the energy function, the
partition function is given by

Z (β; G) =
∑

x

e−βμM(x)δ(V (x; G), 0), (4)

where δ is the Kronecker delta function that restricts the sum
considering only feasible states. By taking the limit γ → ∞
with β > 0, the partition function of Eq. (3) is reduced to
that of Eq. (4). It should be noted that for β = 0, the sum
in Eq. (3) takes all states with equal weight, whereas that in
Eq. (4) takes only the feasible states. Thus, the entropy in the
high-temperature limit is different for the two systems.

As described above, we discuss here the system defined by
Eq. (3). Then the free energy density f is expressed as

−β f (β, γ ; G) = 1

N
ln Z (β, γ ; G). (5)

Using the free energy density, thermal averages at inverse
temperature β of the energy density ε, the cover ratio ρ,
which is the density of xi = 1, and penalty ratio ν are obtained
respectively as

ε(β, γ ; G) =
〈

E

N

〉
= ∂β f

∂β
, (6)

ρ(β, γ ; G) =
〈

M

N

〉
= ∂ f

∂μ
, (7)

ν(β, γ ; G) =
〈

V

N

〉
= ∂ f

∂γ
, (8)

where 〈· · · 〉 denotes the thermal average. From Eq. (2), it is
obvious that ε = ρ + γ ν. Note that ν is also a nonincreasing
function of γ , just as ε is a nonincreasing function of β.

Taking β → ∞ yields the minimum energy density, and
when ν = 0, the minimum cover ratio is obtained as ε = ρ,
which is the solution of MVC. As discussed below in this
section, when γ � 1, since ν is positive even at β → ∞,
ε is the minimum energy, but ρ is not the minimum cover
ratio. One of the main purposes of this study is to analyze the
behavior of the system for finite γ .

C. Random graph and replica trick

It is challenging to calculate the partition function or free
energy for any given graph instance G for large N . If the
typical properties of ensembles of instances of this problem,
rather than the individual graph instances, are to be deter-
mined, the statistical mechanics of random systems can be
used by introducing a random-graph ensemble controlled by
a few parameters. Here we consider the ER random graph
[29] as an ensemble of random instances in which the matrix
elements of the adjacency matrix are given by the probability
distribution defined as

P(c) =
∏
(i j)

[
c

N
δ(ci j, 1) +

(
1 − c

N

)
δ(ci j, 0)

]
. (9)

This random graph is a sparse graph with mean degree c,
and when N is sufficiently large, the distribution of degrees
follows the Poisson distribution, P(k) = e−cck/k!.

The average for the graph ensemble of the free-energy
density in the thermodynamic limit is expressed as

[ f ]G = − lim
N→∞

1

βN
[ln Z (β, γ ; G)]G, (10)

where [· · · ]G denotes the graph average for P(c). From the
averaged free-energy density, typical expected values of the
cover and penalty ratios can be calculated. To take the graph
average, we use the well-known replica trick [33] represented
by

[ln Z]G = lim
n→0

1

n
ln [Zn]G. (11)

This is a mathematically correct identity at the limit of the
real number n. Assuming n to be an integer, the replica trick
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first calculates the partition function of an n-replicated system,
which is relatively easy to compute, and then takes the limit
of n → 0 through analytic continuation.

The replicated partition function of MVC for n replicas
with graph averaging reads

[Zn]G =
∑
{x(α)}

e−βμ
∑

α M(x(α) )[e−βγ
∑

α V (x(α) )]G

=
∑
{�xi}

e−βμ
∑

i
�1·�xi e−βγ

∑
i, j V (�xi,�x j ), (12)

where the sum of the replica index α is taken from 1 to n,
�xi = (x(1)

i , . . . , x(n)
i ) is a replica vector for the ith vertex, and

an interaction term between replicas is given by

V (�xi, �x j ) = c

2N
(1 − e−βγ (�1−�xi )·(�1−�x j ) ). (13)

To proceed with the calculation, we employ the order param-
eter introduced by Monasson [18], defined as

C(�ξ ) = 1

N

∑
i

n∏
α=1

δ
(
ξ (α), x(α)

i

)
. (14)

This is a distribution function with 2n elements that represents
the fraction of N replica vectors {�xi} that coincide with �ξ ,
satisfying the normalization condition

∑
�ξ C(�ξ ) = 1.

By summing over {�xi} in Eq. (12), the averaged free-energy
density [ f ]G is obtained as

−β[ f ]G = lim
n→0

1

n
max

C(�ξ );
∑

�ξ C(�ξ )=1
g({C(�ξ )}), (15)

where g, sometimes called free-entropy density [34], is given
by

g({C(�ξ )}) = −
∑

�ξ
C(�ξ ) ln C(�ξ ) − βμ

∑
�ξ

C(�ξ )�1 · �ξ

− c

2

∑
�ξ, �ξ ′

C(�ξ )C( �ξ ′){1 − exp[−βγ (�1 − �ξ )

· (�1 − �ξ ′)]}. (16)

Taking the limit γ → ∞, this expression is reduced to the
free-energy density of the previous study [23]. Generally, the
extremum condition for {C(�ξ )} is given by 2n saddle-point
equations, ∂g({C(�ξ )})/∂C(�ξ ) = 0 for ∀�ξ ∈ {0, 1}n.

D. RS solution

In this study, we assume that under the RS ansatz, the
solution of the saddle-point equations is invariant with respect
to the permutation of the replica index. The order parameter
is replaced by the n + 1 RS order parameter CRS(y = ∑

α ξα ),
which can be written in terms of the one-body distribution
function p(h) as

CRS

(∑
α

ξα

)
=
∫

dhp(h)
exp(−βh

∑
α ξα )

(1 + e−βh)n
. (17)

From the normalization condition of CRS, p(h) is also normal-
ized and can be regarded as a probability distribution function

of an effective field h acting on n independent bits ξα at
inverse temperature βμ.

Substituting Eq. (17) into the saddle point equations and
taking the replica limit n → 0, we obtain the self-consistent
equation for p(h) as

p(h) = e−c
∞∑

l=0

cl

l!

∫ l∏
i=1

dhi p(hi )δ

⎛
⎝h − 1 +

l∑
j=1

K (h j ; β, γ )

⎞
⎠,

(18)

where the dependence of β and γ appears explicitly only in
K (h; β, γ ) given by

K (h; β, γ ) = 1

β
log

1 + e−βh

e−βγ + e−βh
. (19)

See Appendix A 1 for details. This expression includes the
result of the previous study [23] in the limit of γ → ∞, which
corresponds to the case of feasible states only. Note that since
K (h; β, γ ) � 0 for positive β and γ , the support of p(h) is
restricted to h � 1, that is, p(h) = 0 for h > 1. The right-hand
side of the self-consistent equation contains a delta function,
and particularly, the l = 0 term contributes directly as a sum.
Therefore, p(h) is not an analytical function, which makes
using general functional expansion methods challenging. To
find numerical solutions to the self-consistent equation, the
method of population dynamics [35] is generally used, in
which p(h) is approximated by its sample set {hi} and solved
iteratively. See Appendix B 1 for details.

The physical quantities averaged with respect to the graph
ensemble are given using p(h) under the RS ansatz. The cover
and penalty ratios are derived directly from the saddle point of
Eq. (16). See Appendix A 2 for details. As a result, the cover
ratio is given by

ρ(β, γ ) =
∫

dhp(h)
e−βh

1 + e−βh
, (20)

where the factor in the integral represents the probability that
a vertex is covered under the effective field h. This expression
is identical to the result in the previous study [23], but p(h)
depends on γ , not only on β. Similarly, the penalty ratio is
given by

ν(β, γ ) = c

2

∫
dh dh′ p(h)p(h′)

× e−βγ

e−βγ + e−βh + e−βh′ + e−β(h+h′ ) , (21)

where the factor in the integral is interpreted as the probabil-
ity that neither of two vertices, ξ and ξ ′, are covered when
their effective energies are represented by hξ + h′ξ ′ + γ (1 −
ξ )(1 − ξ ′). The energy density is obtained by the sum of these
terms as ε(β, γ ) = ρ(β, γ ) + γ ν(β, γ ). We also see that the
penalty ratio disappears at γ → ∞.

Figure 1 shows the β dependence of ε and ρ for γ = 2.0,
1.1 and 0.9 at mean degree c = 2.0. The numerical results
are calculated by the population-dynamics method with 105

populations, and the statistical errors are as large as the width
of each curve. As a property that should be satisfied in equi-
librium, the energy density is a monotonically decreasing
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FIG. 1. Inverse-temperature β dependence of the energy density
ε and the cover ratio ρ for γ = 2.0, 1.1, and 0.9 for c = 2.0. For
γ > 1 (solid lines), both ε and ρ are asymptotically converged to the
minimum cover ratio for large β, but for γ < 1 (dashed), ε and ρ

are converged to lower values. These calculations were obtained by
the method of population dynamics with 105 populations, where the
errors are within the width of lines.

function of β, while ρ and ν are not monotonically decreasing
functions, as can be seen in Fig. 1. For example, for γ = 1.1,
as β is increased, ρ is initially smaller than the minimum
cover ratio before converging to the minimum cover ratio.
This implies that β should be larger to obtain the minimum
cover ratio compared to the case with a larger γ , that is, γ =
2.0. This is because the structure of excited states consisting
of infeasible states depends on γ , and the number of low-lying
excited states increases for smaller γ . When the system is
restricted to only feasible states, the cover ratio decreases
monotonically as ε and ρ coincide, and this nonmonotonic
behavior, due to the constraint relaxation, is eliminated. For
γ < 1, that is, γ = 0.9, ε and ρ converge to values lower than
the minimum cover ratio.

The γ dependence of ε and ρ with c = 2.0 at low temper-
atures of β = 10 and 100 is shown in Fig. 2. For γ greater
than 1.5, ε and ρ are close to the minimum cover ratio at low
temperatures. By contrast, in the 0 < γ � 1 region, the cover
ratio changes abruptly in a staircase-like manner near rational
numbers of γ , such as 1, 1/2, and 1/3, and the mean energy,
which is the sum of ρ and ν, changes slowly with respect to
γ , depending on β. This is a consequence of the exchange of
cost and penalty contributions at the above points of γ , which
will be discussed in detail as a ground-state property in the
next section.

III. GROUND-STATE PROPERTIES

This section discusses the properties of the low-
temperature limit, that is, the ground state of MVC. First,
we construct the solution of the self-consistent equation for
general γ including γ � 1, and show that γ > 1 is a condition
for obtaining feasible solutions as the ground states, consistent
with previous studies [23,26]. We then explore the behavior
of the system in the infeasible region of γ � 1, which is im-
portant for understanding some techniques for finding optimal

FIG. 2. Penalty-coefficient γ dependence of the energy density
ε and the cover ratio ρ for β = 10 (solid and dashed lines) and
100 (dashed and two-dotted lines) at mean degree c = 2.0. The
simulation conditions of the population dynamics are the same as
in Fig. 1. Since a large amount of data was taken in the area with
finely varying curves, markers are not displayed for visibility.

solutions via infeasible states, such as the method of adaptive
penalty function [12,13].

A. Saddle-point solution p(h) with finite γ

In the self-consistent equation of Eq. (18), only K (h; β, γ )
of Eq. (19) depends explicitly on β and γ , and p(h) depends
on them through K (h; β, γ ). Taking the limit β → ∞ leads to

K (h; ∞, γ ) =

⎧⎪⎨
⎪⎩

γ (γ � h),
h (0 < h < γ ),
0 (h � 0).

(22)

Note that the support for p(h) is h � 1; when γ � 1,
K (h; ∞, γ ) for h � 1 does not depend on γ , and therefore,
p(h) also does not depend on γ , including γ → ∞. Thus,
p(h) in the low-temperature limit for γ � 1 is equivalent
to that at γ = ∞. Additionally, we will show later that the
penalty ratio is zero for γ > 1. Therefore, any result obtained
in the low-temperature limit for γ > 1 is exactly the same as
in the previous study [23], which restricted the system to the
feasible states.

To find solutions to the saddle-point equation for p(h) in
the low-temperature limit, the previous study assumes that the
only possible values of h taken in p(h) are integers of h � 1
[23]. This “integer ansatz” has been reported in other com-
binatorial optimization problems [32,36]. We notice that this
ansatz can at least be justified numerically from an analysis
of the time evolution of population dynamics, and based on
this, we can construct irrational and rational ansatz that can be
applied to the infeasible region. See Appendix B 2 for details.

For 0 < γ � 1, the possible values of h in p(h) are re-
stricted to the sum of any integer and an integer multiple of
γ that is less than or equal to 1. Formally, the solution can be
described as

p(h) =
∑

l,l ′∈Z,l ′+γ l�0

rl,l ′δ(h − 1 + l + γ l ′), (23)
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where rl,l ′ is a positive weight and normalized as
∑

l,l ′ ri,i′ =
1. If γ is an irrational number, it is difficult to find a spe-
cific formula for rl,l ′ that satisfies the saddle-point equation,
and the numerical approximation of p(h) is obtained using
population-dynamics methods. Moreover, if γ is a rational
number with m as the denominator, p(h) can be simplified to

p(h) =
∞∑

l=0

rl,mδ

(
h − 1 + l

m

)
. (24)

Particularly, for γ = 1/m with m = 1, 2, . . . , the coefficients
rl,m can be written as

rl,m = Rl
m

l!
e−Rm , (25)

where Rm, depending on c, is a real solution of the equation

RmeRm = c

(
1 + Rm + R2

m

2!
+ · · · + Rm−1

m

(m − 1)!

)
. (26)

This formula is obtained by substituting Eq. (24) into Eq. (18)
and solving the simultaneous equations for r′

l,ms. Note that for
m = 1, that is, γ = 1, the solution p(h) is exactly the same as
that for γ > 1 in the previous study [23]. Specifically, Eq. (24)
represents the integer ansatz, and the formula reduces to the
definition of Lambert’s W function [37], R1(c)eR1(c) = c, and
rl,1 = W (c)l+1/cl!.

Intuitively, these ansatzes can be considered a consequence
of the discrete nature of the effective field distribution p(h) in
the low-temperature limit. For instance, for γ > 1, the energy
gap from the ground state induced by a one-bit flip is deter-
mined by the number of uncovered vertices adjacent to each
vertex, and the integer ansatz can be regarded as a property
of the effective field of this discrete structure. In the case of
γ � 1, each vertex in the ground state can either satisfy or
violate the constraint, and the energy gap takes various values
composed of integers and integer multiples of γ as shown
in Eq. (23). This intuitive understanding is consistent with
the interpretation of the cover ratio and violation ratio in the
low-temperature limit, as discussed in the next section.

B. Non-backbone and undetermined constraints

Generally, there are multiple optimal solutions for a single
instance G of MCV. Following Ref. [23], vertices that are
commonly covered or uncovered by all solutions in common
are both called “backbone.” By contrast, vertices other than
the backbone are called “nonbackbone,” which are covered
or uncovered by each optimal solution. From the definition
of p(h) in Eq. (17), the coefficients of p(h) for h < 0 in the
ground state at β → ∞ can be interpreted as the fraction
of covered backbone and that for h > 0 as the fraction of
uncovered backbone. Moreover, that for h = 0 is considered
to be the fraction of nonbackbone [23].

The cover ratio ρ and penalty ratio ν in the low-
temperature limit are obtained by taking β → ∞ in Eq. (20)
and (21), respectively. The low-temperature limit of p(h) can
be calculated by Eq. (18) and (22) with the ansatz above.
Naively, ρ and ν in these expressions are expected to be
obtained by the integral of the product of the low-temperature
limit of p(h) and each factor in Eq. (20) and (21), respectively.

The factor for the cover ratio in Eq. (20) reads

lim
β→∞

1

1 + eβh
=
⎧⎨
⎩

0 (0 < h),
1/2 (h = 0),
1 (h < 0).

(27)

This factor is constant for each interval of h, and the contribu-
tion of p(h) to the cover ratio can be interpreted according
to the previous study [23] as follows. The contribution of
the fraction of covered backbones p(h) to the cover ratio
is 1 when h < 0. Moreover, the fraction of nonbackbones,
p(0), contributes 1/2 to the cover ratio, which assumes that
the nonbackbone vertices are independently covered with a
probability of 1/2 in the ground states. As a result, when
γ � 1, the cover ratio is independent of γ , and obtained as

ρ(∞, γ � 1) = 1

2
r1,1 +

∞∑
l=2

rl,1 = 1 − W (c)

c
− 1

2

W 2(c)

c
,

(28)

which coincides with the well-known minimum cover ratio,
xc(c) = ρ(∞, γ > 1), under the RS assumption [23]. This
result can be modified by considering a correction field, which
will be discussed in the next subsection.

Similarly, the factor of the penalty ratio in Eq. (21) in the
low-temperature limit yields

lim
β→∞

1

1 + e−β(h−γ ) + e−β(h′−γ ) + e−β(h+h′−γ )

=

⎧⎪⎪⎨
⎪⎪⎩

1 (h, h′ > γ ),
1/2 (h = γ , h′ > γ or h ↔ h′),
1/3 (h = h′ = γ ),
0 (h < γ or h′ < γ ).

(29)

The meaning of this factor is examined in detail below. When
both h and h′ are greater than γ and the contribution is 1, the
edge corresponds to a violated edge where both vertices on
the edge are not covered in all ground states. When at least
one of h and h′ is smaller than γ and the contribution is 0,
it corresponds to an edge for which the constraint is always
satisfied, that is, at least one of the vertices on the edge is
covered. In other words, edges with h < γ and h′ > γ can be
interpreted as each vertex on the edge being covered or uncov-
ered, respectively. By contrast, the vertices with h = γ can be
considered to be connected edges for which constraint satis-
faction is undetermined. Since the contribution of Eq. (29) to
the integral in Eq. (21) is 0 for γ > 1, the above interpretation
is possible only when 0 � γ � 1.

The value of ν is positive only if γ � 1. For example, when
γ = 1, from the term h = h′ = γ in Eqs. (21) and (29), the
penalty ratio yields

ν(∞, 1) = c

2

1

3
r2

0,1 = W 2(c)

6c
. (30)

This result is inconsistent with the discussion of the penalty
function in Sec. II A and numerically obtained ε at suffi-
ciently low temperature, for example, β = 100, as shown in
Fig. 2. Since the feasible and infeasible ground states coex-
ist just at γ = 1, their ground energy must be equal to the
ground energy of γ > 1, and the numerical results approx-
imate a smooth continuous function at γ = 1. However, in
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the above analytical calculation, ε(∞, 1) = xc(c) + ν(∞, 1)
and ε(∞, γ > 1) = xc(c), which is discontinuous at γ = 1.
The correction term to the effective field discussed in the next
section also resolves the issue of this energy discontinuity.

C. Correction field for undetermined vertices and edges

A correction field called the “evanescent part” of the effec-
tive field h has been introduced to calculate the contribution to
entropy from the undetermined vertices of the ground states
[23,26,32,36]. It is shown in the following that this correction
field affects not only the entropy but also the energy density
in MCV, particularly making the energy density continuous
in the low-temperature limit and eliminating the discontinuity
mentioned above.

The numerical observations by the population-dynamics
method for β � 1 show that p(h) has a non-negligible finite
width around each multiple sharp peak. Let {h′} be the set
of these peak positions, for example, h′ = 1, 1 − 1/m, 1 −
2/m, . . . for γ = 1/m. Then the distribution of the effective
field can be represented as the product of each delta peak and
its surrounding distribution ρh′ (h̃), expressed as

p(h, h̃) =
∑
{h′}

rh′δ(h − h′)ρh′ (h̃), (31)

where each ρh′ (h̃) is assumed to be normalized in the β → 0
limit. The one-variable distribution p(h) can be reproduced by
integrating over h̃ with a delta-function kernel as

p(h) =
∫

dh′ dh̃ δ

(
h − h′ − h̃

β

)
p(h′, h̃). (32)

Substituting Eq. (32) into Eq. (18) and taking the limit of β →
∞ with fixed γ , the self-consistent equation for p(h, h̃) reads

p(h, h̃) = e−c
∞∑

l=0

cl

l!

∫ l∏
i=1

dhi dh̃i p(hi, h̃i )

× δ

⎛
⎝h − 1 +

l∑
j=1

K (h j ; ∞, γ )

⎞
⎠

× δ

⎛
⎝h̃ +

l∑
j=1

K̃ (h̃ j | h j )

⎞
⎠, (33)

where the first delta function is the same as that of Eq. (18)
with K in Eq. (22). Thus, the coefficients rh′ of Eq. (31) are
the same as those of p(h). The update functions K̃ (h̃ | h) in
the second delta function as a function h̃ conditional on h is
given by

K̃ (h̃ | h) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (γ < h),
− log(1 + e−h̃) (h = γ ),
h̃ (0 < h < γ ),
log(1 + eh̃) (h = 0),
0 (h < 0).

(34)

When γ > 1, the solution p(h, h̃) of the self-consistent equa-
tion of Eq. (33) is mathematically equivalent to that in the
previous studies [23,26]. See Appendix C for detailed calcu-
lations. The modified self-consistent equation is solved with

the population-dynamics method on two sets of variables. See
Appendix B 1 for details.

To obtain an expression for the cover ratio with the correc-
tion fields, substituting Eq. (32) into Eq. (20) and taking the
limit of β → ∞ yield the factor of the cover ratio as

lim
β→∞

1

1 + eβh+h̃
=

⎧⎪⎨
⎪⎩

0 (h > 0),
1/(1 + eh̃) (h = 0),
1 (h < 1).

(35)

It is worth noting that the correction field only affects the
nonbackbone term with h = 0 and shifts its weight from 1/2
in Eq. (27) which is the probability of nonbackbone vertices
covered without a correction field. In fact, the cover ratio for
γ � 1 in Eq. (28) is modified to

ρ̃(∞, γ � 1) = 1 − W (c)

c
+ W 2(c)

c

(∫
dh̃

ρ0(h̃)

1 + eh̃
− 1

)
.

(36)

The integral for h̃ in this formula is the probability of the
nonbackbone being covered, which equals 1/2 in the case of
ρ0(h̃) = ρ0(−h̃), resulting in identical coefficients in Eq. (28)
without correction. Note that ρ0(h̃) depends implicitly on γ

through Eq. (34) and converges to a different distribution
in the low-temperature limit of γ = 1 and γ > 1. Thus, the
cover ratio ρ̃(∞, 1) at γ = 1 is different from that of γ > 1.
Here the minimum cover ratio modified by the correction
field, which depends on the mean degree c, is denoted by
x̃c(c) = ρ̃(∞, γ > 1).

For the penalty ratio, the correction field affects only the
h = γ term, which is the contribution from the vertices of
edges for which constraint satisfaction is not determined.
Since the constraints must be satisfied at all edges, the penalty
ratio is 0 for γ > 1, but the penalty ratio at γ = 1 is positive
to modify from Eq. (30) to

ν̃(∞, 1) = W 2(c)

2c

∫
dh̃ dh̃′ ρ1(h̃)ρ1(h̃′)

1 + e−h̃ + e−h̃′ . (37)

See also Appendix C for the derivation. Although it could
not be shown analytically, we observed numerically that
ρ̃(∞, 1) + ν̃(∞, 1) = x̃c(c) holds in a wide range of c, that is,
the ground-state energy density is equal for γ = 1 and γ > 1,
and there is no energy discontinuity.

Figure 3 shows the γ dependence of ε, ρ, and ν in
the low-temperature limit for c = 2.0, obtained by solving
the modified self-consistent equation, Eq. (33), using the
population-dynamics method with 105 population. The energy
density ε increases monotonically and continuously with γ

from 0 to the minimum cover ratio x̃c(c). The cover ratio ρ

increases monotonically from 0 to x̃c(c), and the penalty ratio
ν decreases monotonically from c/2 to 0. In contrast to ε, the
values of ρ and ν show jumps at γ = 1, 1/2, 1/3, . . . . Similar
discontinuities are also observed at γ = 3/4, 2/3, etc., but
with smaller amounts of jumps.

This discontinuity in ρ and ν can be explained by the
energy function of the penalty method in Eq. (2). As discussed
before, the condition for the coexistence of feasible and in-
feasible states is γ = 1. The feasible minimum-cover states
are preferred at γ = 1 + δ with infinitesimal positive δ. The
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FIG. 3. γ dependence of the cover ratio ρ, penalty ratio ν and
energy density ε in the low-temperature limit at mean degree c = 2.0.
The simulation conditions of population dynamics are the same as in
Fig. 1, and the markers are not displayed for visibility.

infeasible states where a vertex is uncovered and the violation
is increased by 1 are preferred at γ = 1 − δ. The amount of
jumps is expected to be proportional to the fraction of such
violated vertices.

A similar situation is observed at other rational γ . Since
there is no contribution from connected covered vertices, at
γ = 1/m, the amount of jump, which is the contribution of the
fraction of a single covered vertex connected to m uncovered
vertices, is large. The jump is small for the other γ values that
require multiple covered vertices to be involved, such as 3/4
or 2/3. Since any combination of vertices and edges can exist
in the thermodynamic limit, ρ and ν can be discontinuous at
γ of all rational numbers, resulting in a devil’s staircase-like
structure. While not shown here, it should be noted that nu-
merical experiments using a generated instance also observed
these significant jumps in ρ and ν at 1/m.

The correction field discussed here also provides a small
but significant correction to the cover ratio of the RS ansatz.
The c dependence of the minimum cover ratio is shown in
Fig. 4, as well as the previous results obtained by the Monte
Carlo method [23]. It is shown that the correction term in the
effective field introduced slightly improves the approximation
accuracy of the RS solution. The inset of Fig. 4 shows the
probability of a nonbackbone vertex being covered. The con-
tribution of the correction term completely disappears in the
RS region of c < e, and is truly larger than 1/2 for c > e.
Although our correction term is still under the RS assumption,
it is interesting to note that the effect of the correction term
appears only in the RSB region.

Another notable observation is that as c is increased, x̃c(c)
approaches the lower bound obtained by the combinatorial
analysis [38]. The bound is given by xl (c) < xc(c) < 1 −
ln c/c for c � 1, where the lower bound xl (c) is the solu-
tion of xl (c) ln xl (c) + [1 − xl (c)] ln[1 − xl (c)] + (c/2)[1 −
xl (c)]2 = 0. In Fig. 5 the original RS estimation, xc(c),
violates the lower bound for c � 20.7, but the modified es-
timation, x̃c(c), is truly greater than the lower bound within
statistical error and appears asymptotically coincide with the
bound for sufficiently large c.

FIG. 4. c dependence of the minimum cover ratios, xc(c) and
x̃c(c) without and with the correction field (solid and dashed lines),
respectively. Small circles denote the Monte Carlo result obtained by
[23]. The vertical dotted line denotes the known RS/RSB boundary
of c = e. The inset shows c dependence of the probability of non-
backbone vertices being covered, which is 1/2 without the correction
field.

IV. STABILITY ANALYSIS
OF SELF-CONSISTENT EQUATION

In this section, we consider the self-consistent equation for
p(h) as an iterative equation and discuss the linear stability
of its solution p(h). This analysis corresponds to deter-
mining convergence conditions when solving the iterative
equation using the population dynamics method. In the first
part of this section, we examine stability boundaries in the
low-temperature limit that can be analytically analyzed. In
the latter part, we explore the stability at finite tempera-
tures, demonstrating that these boundaries coincide with the
conditions for p(h) to appear as an oscillatory solution. Fur-
thermore, we analyze the effect of damping, a method to
suppress oscillatory solutions, using the approach here.

The self-consistent equation for p(h) in Eq. (18) is the
functional equation for p(h) with K (h; β, γ ) as the parameter
function. With the functional operator PSC on the right-hand

FIG. 5. c dependence of the minimum cover ratios, xc(c) and
x̃c(c) without and with correction field (solid and dashed lines),
respectively. Dotted lines denote upper and lower bounds in [38].
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side of Eq. (18), the functional equation is expressed as

p(h) = PSC[p(h)]. (38)

One would naively assume that local stability is required for
the equation to be solvable by a forward iterative method, one
of the methods for solving the self-consistent equation. Sup-
pose p(h) is a solution to this equation and δp(h) is a variation
around the solution p(h); the normalization condition of p(h)
imposes on δp(h) the condition

∫
dhδp(h) = 0. Substituting

this into Eq. (18) and considering up to the first-order varia-
tion, the equation reads

δp(h) = c
∫

dh′ p[h + K (h′; β, γ )]δp(h′). (39)

Note that the derivation does not depend on the specific form
of p(h) and K (h; β, γ ), but only on the factor of the Poisson
distribution in Eq. (18), thus this equation can be applied to
other combinatorial problems defined on ER random graphs.
Suppose the right-hand side of Eq. (39) is the linear integral
operator P̂, then δp(h) is an eigenfunction of P̂, that satisfies
the equation

δp(h) = cP̂[δp(h)]. (40)

Since p[h + K (h′)] is a stochastic kernel, it follows that
the largest eigenvalue of P̂ is 1, and the absolute values of
other eigenvalues are less than 1. The eigenfunctions belong-
ing to eigenvalues less than 1 are orthogonal to the constant
function, that is, their integral over h is zero. Let the eigen-
values of P̂ be in descending order of absolute value, that is,
1 = |λ0| > |λ1| � · · · , and let the corresponding eigenfunc-
tions be v0(h), v1(h), . . ., which satisfy P̂vi(h) = λivi(h) and∫

dhvi(h) = 0 for i � 1. Thus, any variational δp0(h) can be
expanded by the eigenfunctions of P̂ except v0(h), as

δp(h) =
∞∑

i=1

aivi(h), (41)

where ai is the expansion coefficient. Then the local stability
condition for the solution is that the second eigenvalue of P̂
satisfies

c|λ1| < 1. (42)

It is expected that when this condition is satisfied, the solution
p(h) of the self-consistent equation is solved by the iterative
method.

A. Zero temperature limit

Here we discuss the cases γ > 1 and γ = 1/m in the low-
temperature limit by analytically obtaining the eigenvalues.
For γ � 1, p(h) at β = ∞ consists of the sum of delta func-
tions with peaks at integers h = 1 − l for all natural numbers
l; thus Eq. (40) is an eigenvalue equation of the infinite order
matrix with the coefficients rl = rl,1, which can be given
analytically. Let Pl be the first (l + 1) × (l + 1) submatrix of

FIG. 6. Stability bound for the self-consistent equation of
Eq. (18) in the low-temperature limit as a function of mean degree
c, above which the stability condition is satisfied. The dashed line is
the limit of the RS solution that can be valid for γ → ∞ [26], which
will be discussed in the next section.

the infinite matrix P̂, then it is given by

Pl =

⎛
⎜⎜⎜⎜⎝

0 r0 r0 · · · r0

r0 r1 r1 · · · r1

r1 r2 r2 · · · r2
...

...
...

. . .
...

rl−1 rl rl · · · rl

⎞
⎟⎟⎟⎟⎠. (43)

Assuming
∑∞

l rl = 1 and rl → 0 when l → ∞, the eigen-
values of P̂ are λ = 1,−r0 and 0 in decreasing order of the
absolute value, with the eigenvalues 0 degenerating to infinity.
The convergence condition is cr0 = W (c) < 1, resulting in
the well-known stability limit of the RS solution at the low-
temperature limit, c = e [23].

For γ = 1/m, the corresponding matrix Pl,m is also defined
from Eq. (24) as

Pl,m =

⎛
⎜⎜⎝

0 · · · 0 r0,m · · · r0,m

r0,m · · · r0,m r1,m · · · r1,m
...

...
...

...

rl−1,m · · · rl−1,m rl,m · · · rl,m

⎞
⎟⎟⎠, (44)

where the first m columns of the l + 1 square matrix
are shifted down by one. The eigenvalues for l → ∞ are
given by

λ = 1,−rm−1,m, 0, (45)

in decreasing order of absolute value. The condition for p(h)
to converge is crm−1 < 1, and we can find the maximum value
of c at which p(h) converges for any γ = 1/m.

It is also possible to determine the eigenvalues of the matrix
P̂ for any rational number γ < 1 by estimating the matrix
elements using the population dynamics method. Figure 6
shows the stability bounds of 1/γ for each value of c in the
low-temperature limit evaluated by the population dynamics
method with 105 populations. When the system is restricted
to the feasible state at 1/γ = 0, the stable region coincides
with the RS stable region, c < e [23], and this bound does
not change in the range 1/γ < 1. When the constraint of the
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FIG. 7. Stability bounds for the self-consistent equation (18)
without damping at finite β and mean degree c. The dashed line is the
stability bound of the RS solution at γ → ∞ obtained by the cavity
method [26].

system is relaxed to the infeasible region for 1/γ > 1, the
stability bound for p(h) is extended to c > e. This bound is
asymptotically consistent with the instability conditions of the
RS solution discussed in the next section and is expected to
indicate the correct phase boundary.

B. Finite temperature and damping

For finite β, the integral equation, Eq. (39) can be ap-
proximately solved by using the Fredholm method [39].
Specifically, the integral equation can be reduced to an
eigenvalue problem by obtaining p(h) using the population
dynamics method and discretizing the integral with respect to
h into the appropriate interval �h. Eventually, the eigenvalues
of Eq. (39) are obtained by numerically extrapolating the limit
of �h → 0 and the stability bound, Eq. (42), is evaluated from
the second eigenvalue.

Figure 7 shows the stability bounds in the plane of β and
c, for the case γ → ∞, which restricts the system to the
feasible states, and for the cases γ = 2.0 and 1.1. Decreasing
γ reduces the region where the iterative equations are stable,
but all bounds converge to c = e in the low-temperature limit.

In fact, this bound is in good agreement with the bound
where an oscillating solution appears when solved for the
population dynamics method, indicating that this analysis cor-
rectly leads to the stability bound for the iterative method.
When c|λ1| > 1, the amplitude of δp(h) grows exponentially
with the number of iterations, but the distribution eventually
oscillates between the two distributions because of the neg-
ative eigenvalue. However, as shown in Fig. 7, the boundary
obtained by this method is different from the local stability
bounds for γ → ∞ in the cavity method, as discussed in
the next section. Since no physical singularities are observed
around this boundary, it is considered to be only a numerical
technical problem not related to physical phenomena such as
phase transitions.

A method called damping is a heuristic often used to
avoid oscillatory solutions in iterative methods such as popu-
lation dynamics. The update equation in the damping with the

parameter r is expressed as

PSC[p0(h); r] = (1 − r)p0(h) + rPSC[p0(h)]. (46)

This shows the stability condition is modified to
mini�1 |1 − r + rcλi| < 1. Our numerical observation
indicates that λ1 may be negative for any β and γ , in
which case the convergence region can be expanded to
some extent. In this sense, the stability conditions that
depend explicitly on the parameter r should not be related
to any physical phenomenon. By contrast, the fact that only
the zero-temperature limit is consistent with the RS/RSB
transition may have some intrinsic meaning.

V. STABILITY ANALYSIS USING THE CAVITY METHOD

In the previous section, we discussed the stability of the
self-consistent equations, but its stability condition could
not reproduce the phase transition boundary derived in the
previous study [26] in the case of γ = ∞, except for the
low-temperature limit. To study the phase transition of this
system, including the case where γ is finite, we use the cavity
method of the system with the penalty function in this section.
More specifically, we follow the method in Refs. [26,32] to
investigate the stability limit of the RS solution by the diver-
gence of the spin-glass susceptibility.

A. Replica symmetric cavity method

In this subsection we derive the belief propagation (BP)
equation for MVC with the penalty function using the cav-
ity method as outlined in Ref. [35]. Given a graph G(V, E ),
consider a “cavity” graph defined by removing one edge from
the graph G. Let Pj→i(x j ) be the probability of variable x j

at vertex j after removing the edge j → i, and ∂ j \ i be the
set of vertices adjacent to vertex j excluding i. Assuming
that the correlation between xk and xk′ on different vertices
k, k′ ∈ ∂ j \ i is negligible, that is, G is locally a tree, the
probabilities Pk→ j (xk ) follow the BP equation expressed as

Pj→i(x j ) = 1

Zj→i
φ j (x j )

∏
k∈∂ j\i

∑
xk

ψ jk (x j, xk )Pk→ j (xk ),

where φi(xi ) = e−βxi and ψi j (xi, x j ) = exp[−βγ (1 − xi )(1 −
x j )] are the weights of vertex i and edge (i j) ∈ E , respectively,
and Zj→i is a normalization constant. Defining the cavity field
h j→i as e−βh j→i = Pj→i(1)/Pj→i(0), the BP equation using the
cavity field for MVC with the penalty function reads

h j→i = 1 −
∑

k∈∂ j\i

K (hk→ j ; β, γ ), (47)

where K (h; β, γ ) is the same as that in Eq. (19). The limit
γ → ∞ yields an expression equivalent to previous studies
where the system is restricted to the feasible states [25,26].

Equation (47) is a recursive equation on a given G. The RS
approximation in the cavity method requires that each cavity
field is independently and identically distributed according to
the probability distribution p(h) for the cavity field. Assuming
that G is an instance of the ER random graph with mean de-
gree c given by Eq. (9), for N → ∞, the recursive equation of
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p(h) reads

p(h) = e−c
∞∑

k=1

kck

ck!

∫ k−1∏
i=1

dhi p(hi ) δ

⎛
⎝h − 1 +

k−1∑
j=1

K (h j )

⎞
⎠,

(48)

where e−ckck/ck! is the edge-perspective degree distribution
of the ER random graph and represents the distribution that
|∂ j| follows when an edge j → i is randomly chosen. Substi-
tuting k − 1 as l , this equation coincides with Eq. (18), that is,
the self-consistent equation of the effective field distribution
in the replica method.

B. Divergence of the spin-glass susceptibility

Following Refs. [26,32], we detect the boundary where
the RS solution fails at finite temperature β and constraint
strength γ via the divergence of the spin-glass susceptibility.
The spin-glass susceptibility of MVC is defined as

χSG = 42

N

∑
i �= j

〈xix j〉2
c, (49)

where 〈xix j〉c is the connected correlation function between
xi and x j . Decomposing this sum by the shortest distance d
between the two connected vertices i and j, we get

χSG = 42

N

N∑
i=1

N∑
d=1

|i(d )|∑
j∈i(d )

〈xix j〉2
c, (50)

where i(d ) is the set of all vertices connected by the shortest
path with d edges from the vertex i.

Assuming that the graph G is regarded as a local tree, the
fluctuation-dissipation theorem [32] leads to the correlation
function between x0 and xd as

〈x0xd〉2
c ∝

d−1∏
k=1

∣∣∣∣∂hk→k+1

∂hk−1→k

∣∣∣∣
2

=
d−1∏
k=1

∣∣∣∣∂K (hk−1→k )

∂hk−1→k

∣∣∣∣
2

, (51)

where the index k denotes the vertices along the shortest path
from x0 to xd , taken from 1 to d − 1. The second equality
follows from Eq. (47). It is challenging to evaluate χSG di-
rectly, except in special cases. Instead, we define � j→i as the
contribution of the overall shortest paths up to the length N to
each end of the tree (leaf), with edge j → i as the root to the
right-hand side of Eq. (51). This quantity has the same order
of χSG for N and satisfies the following recursive equation:

� j→i =
∑

k∈∂ j\i

∣∣∣∣∂K (hk→ j ; β, γ )

∂hk→ j

∣∣∣∣
2

�k→ j, (52)

where {h j→i} follows the recursive equation of Eq. (47) and
the solution can be obtained simultaneously in an iterative
manner.

Applying the RS approximation to MVCs on the ER ran-
dom graph leads to a recursive equation for the bivariate
distribution, p(h,�), similar to Eq. (33). It should be noted
that although the correlation among the individual edges can

FIG. 8. Mean-degree c dependence of the divergence tempera-
ture Tc of χSG for several γ , obtained by the population dynamics
methods. Numerical errors are similar to the width of curves, and
markers are omitted for visibility.

be ignored by the RS approximation, p(h,�) is a simultane-
ous distribution, and each sample in the population dynamics
method must be treated as a paired variable. See Appendix B 1
for details on the computational method. The average value of
� with respect to the population exceeds 1 after a sufficiently
large number of iterations, meaning that χSG diverges [26]. In
our numerical experiments, after the initial burn-in period, the
maximum or mean value of � shows either a monotonically
increasing or decreasing trend as the number of iterations
progresses. This trend allows us to detect the divergence of
χSG.

Figure 8 shows the c dependence of the transition temper-
ature Tc at which χSG diverges at some γ values. This result is
consistent with the previous study [26] in the limit of γ → ∞.
When decreasing γ from infinity, the phase boundary shifts
towards the low-temperature side. Additionally, Tc shows a
peak as a function of c, and reducing the constraints results in
this peak shifting towards larger c values. Focusing on T = 0,
the phase boundary is c = e independent of γ in the range
γ > 1, but it shifts to the range c > e for γ < 1. These results
are consistent with the stability analysis of the self-consistent
equation, as shown in Fig. 6.

Figure 9 shows the γ dependence of Tc for c = 5 and 15.
When the value of γ is higher than 2, the transition temper-
ature Tc is approximately equal to that at γ → ∞, and Tc

decreases monotonically with decreasing γ . Eventually, for
a finite value of γ , Tc converges to zero. This value is ap-
proximately 0.21 for c = 5 and 0.058 for c = 15. In the limit
γ = 0, the system is equivalent to an independent Ising spin
system under a uniform magnetic field, and the RS solution is
always stable at any temperature.

VI. MCMC RESULTS

In this section we perform MCMC calculations for a finite-
size MVC to verify the results assuming the RS discussed
above to explore phenomena not captured by the RS analysis.
The critical temperature Tc is estimated using finite-size scal-
ing analysis, and the results are compared with those obtained
using the cavity method described in the preceding section.
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FIG. 9. γ dependence of the divergence temperature Tc of χSG

for c = 5.0 (cross marker) and 15 (plus). The vertical line represents
the boundary between the feasible and infeasible regions at T = 0.
Numerical errors are within the width of the curves.

Furthermore, the RS approximation of the MVC is expected
to fail at the transition temperatures, Tc. Previous numerical
studies have revealed that the ground states of the MVC can
be divided into different clusters [40], and we investigate the
connection to it from finite temperatures.

A. Numerical method and observables

For the numerical experiments, we use the exchange Monte
Carlo method (parallel tempering) [41], which is effective
for sampling from a state space separated into numerous
subspaces. In this method, R independent copies (replicas)
of MVC defined on the same instance G undergo MCMC
simulations independently at different inverse temperatures,
such as β1 < β2 < · · · < βR. The variables for each replica
are updated using the single-bit-flip Metropolis algorithm
[42], and N local trials are called one Monte Carlo step
(MCS). The number of replicas is set to R = 60, and the
highest and lowest temperatures are set to β1 = 0.1 and βR =
10, respectively. The temperature interval is adjusted so that
the product �β〈�E〉 of the temperature and energy differ-
ence between adjacent replicas is constant. Then temperature
swaps are executed every 1MCS between these replicas during
MCMC simulations. While the correlation between samples
in MCMC methods is a factor that reduces statistical accuracy,
the longest correlation timescale in this method is considered
to be the round-trip time τRT, which is the time for one replica
to travel both the highest and the lowest temperatures and
return to the original temperature [41]. For the calculations
in this study, the sampling intervals were set to exceed τRT/R.
The round-trip time depends on γ , and c particularly tends
to increase with increasing γ . The specific value of the sam-
pling interval was then at least 150 MCS, and sometimes
greater than 600 MCS when N was large. We also generated
500–100 ER graphs for each size of N = 64, 128, 256, 512,
and 1024 to evaluate random graph averages.

The overlap distribution for a fixed graph G is defined as

PG(q) = 〈δ(q − qab)〉, (53)

FIG. 10. Finite-size scaling plots of the spin-glass susceptibil-
ity at γ → ∞ (left) and γ = 0.505 (right) for ER random graph
with mean degree c = 15. The left and right plots are obtained
with Tc = 0.275 and 0.219, and with critical exponents as (x, y) =
(1.06(2), 2.19(4)) and (0.61(4), 2.20(5)), respectively.

where qab is the overlap between two states x(a) and x(b),
defined as

qab = 1

N

N∑
i=1

(
1 − 2x(a)

i

)(
1 − 2x(b)

i

)
. (54)

The overlap takes 1 for x(a) = x(b) and −1 for x(a) = 1 − x(b),
and is related to the Hamming distance density to dab

H =∑
i(x

(a)
i − x(a)

i )2/N = (1 − qab)/2. In the numerical experi-
ment, we run two independent simulations and calculate qab

from two states at the same β after a burn-in period to obtain
PG(q) as the histogram over time. The overlap distribution is
defined as the random-graph average of PG(q), given by

P(q) = [PG(q)]G. (55)

In the case of RS, this distribution is expected to be Gaussian
in finite-size systems and the delta function, which is a trivial
distribution, for an infinite system. However, in the region of
RSB, it is expected to be nontrivial, that is, deviating from the
delta-function-type distribution [43]. The spin-glass suscepti-
bility is obtained by the second moment of this distribution
multiplied by N .

B. Finite-size scaling analysis of spin-glass susceptibility

First, we performed a finite-size scaling analysis of χSG

obtained by the MCMC methods near the critical temperature
βc to examine the consistency of the transition temperature
estimated by the cavity method. In the finite-size scaling anal-
ysis, we assume that the scaling function can be expressed
near Tc as

χSG(N, T ) = Nx/y f [(T − Tc)N1/y], (56)

where f is the scaling function, x is the critical exponent
of χSG, and y is the critical exponent with respect to the
correlation size of the system.

Figure 10 shows the finite-size scaling plots with γ = ∞
and 0.505 for c = 15, where the transition temperatures Tc =
0.275 and 0.219, respectively, are estimated by the cavity
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FIG. 11. Graph-averaged overlap distribution P(q) at several βs
for N = 512 with mean degree c = 15 and γ = 1.1. P(q) is ordered
by β from left to right, β = 0.1, 0.28, 0.62, 1.29, 2.37, and 3.06
below βc = 3.89, and 3.98, 5.64, and 10.0 above βc. The results are
averaged over 200 random graphs, and the error bars evaluated by
the bootstrap method are plotted only at β = 10 for visibility.

method. The scaling parameters x and y are estimated using
a kernel method based on Gaussian process regression [44]
under fixed transition temperature. Data with sizes ranging
from N = 64 to 1024 are well-fitted to the scaling plot near
the transition temperature even when γ and c are changed,
indicating that the transition temperature of the cavity method
is consistent with the MCMC results. The estimated expo-
nents for the correlation size are y = 2.19(4) for γ = ∞ and
2.20(5) for γ = 0.505 at c = 15. The values of y are similar
for different γ and c, but the value of x varies considerably.
It is naively expected that the MVC on the sparse graph
belongs to the mean-field universality class, but we cannot
conclude this definitely from the present results. The univer-
sality class, including dynamic behavior, will be discussed
elsewhere.

C. Overlap distribution

Next, we examine the distribution of overlap P(q) in finite-
size systems to discuss signs of RSB. Suppose we consider
the low-temperature limit as an extreme case for MVC. In
the region of RS, the ground state consists of at most one
backbone and many nonbackbone vertices. The overlap distri-
bution P(q) has a single peak near the density of the backbone
and is broadened by the nonbackbone contribution. In the
RSB region of c > e, it has been shown experimentally that
the ground states can be decomposed into multiple clusters
separated by a Hamming distance greater than 2 [40]. If we
define “backbone” and “nonbackbone” for each decomposed
cluster, P(q) will have multiple peaks caused by the overlap
between different “backbones” and peaks caused by overlap
within the same “backbone.”

Here the behavior of P(q) is discussed, focusing on the
case c = 15 and γ = 1.1, where the critical temperature βc =
3.89. The β dependence of P(q) for N = 512 is shown in
Fig. 11. It can be seen that the distribution follows a Gaussian
distribution at a sufficiently high temperature, and below the
transition temperature, the distribution has a large peak and a

(a) (b)

(c) (d)

FIG. 12. System-size N dependence of the graph-averaged over-
lap distributions P(q) for mean degree c = 15 and γ = 1.1.
Temperatures are at (a) β = 1.05, (b) 3.06, (c) 3.98, and (d) 10.0, and
(c) and (d) are above the inverse transition temperature βc = 3.89.
The average of the random graphs is taken at approximately 200.

tail with a small overlap. The N dependence of P(q) at four
different temperatures above and below βc is also shown in
Fig. 12. As can be seen, below βc, P(q) approaches a Gaus-
sian distribution as N increases, while above βc, it converges
to each distribution significantly different from a Gaussian
distribution. This is considered to be a sign of RSB at finite
temperature. Figure 12(d) shows that P(q) at β = 10, well
below the transition temperature, has a long tail that does not
tend to disappear even when N is increased. This temperature
is sufficiently low for the probability of occurrence of the
ground state to be large. The strong peak just below q = 1.0 in
P(q) is considered to be an overlap between states belonging
to the same cluster as discussed above, and the long tail
starting from q ≈ 0.25 is a result of an overlap between states
belonging to different clusters.

One of the interesting properties resulting from RSB in
the mean-field theory of spin glasses is the lack of self-
averaging. In the context of optimization problems, this means
that fluctuations caused by instances remain significantly in
the thermodynamic limit. To examine the self-averaging prop-
erty, the distribution PG(q) of two different randomly chosen
graphs G and G′ is plotted together with the graph-averaged
P(q) in Fig. 13. At a sufficiently high temperature in Fig. 13(a)
β = 1.05, the two PG(q) almost coincide with P(q), indicat-
ing that the self-averaging property is satisfied. However, at
lower temperatures, as shown in Figs. 13(c) and 13(d), their
PG(q) have different distributions, suggesting a lack of self-
averaging. Particularly, for β = 10.0, besides a strong peak
near q = 1, each PG(q) has two or three isolated small peaks at
different positions. This result is consistent with the previous
study [40], which shows that the optimal solutions of MVC
consist of a small number of clusters. This suggests that the
structures of the clusters differ significantly for each individ-
ual graph and that the long tail in P(q) is the superposition of
the overlaps of these small isolated peaks. Even in Fig. 13(b),
which is slightly higher than the transition temperature, PG(q)
does not coincide with P(q), but this is due to the finite-size
effect, and we expect self-averaging to hold for N → ∞.
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(a) (b)

(c) (d)

FIG. 13. Graph-averaged overlap distribution P(q) (solid line)
and PG(q) for two sample graph instances (dashed and dotted lines)
for N = 512 with mean degree c = 15 and γ = 1.1. Temperatures
are at (a) β = 1.05, (b) 3.06, (c) 3.98, and (d) 10.0. Temperatures in
(c) and (d) are above the inverse transition temperature βc = 3.89.

VII. CONCLUSION

In this study, we formulate MVC with the penalty method
to account for both feasible and infeasible solutions. We con-
duct a statistical-mechanical analysis of typical properties of
MVC on ER random graphs with the aim of investigating the
effect of constraint relaxation on constrained combinatorial
optimization problems. Using the replica method under the
assumption of replica symmetry, the condition for obtaining
feasible solutions in the low-temperature limit is naturally
derived, and the complex structure of the ground states in in-
feasible conditions is revealed. This structure is determined by
the balance between the cost and penalty terms to the energy
function and requires a careful treatment of the undetermined
constraints as well as the nonbackbone vertices discussed in
the previous study. As a byproduct of this analysis, it was
found that correctly incorporating their effects further im-
proves the accuracy of the RS approximation of the minimum
cover ratio in the RSB region, which no longer breaks the
combinatorial lower bound known previously. Although not
addressed in this paper, there are several efforts to improve
the accuracy of the approximation using the 1-RSB solution
[26], and their relationship to our RS analysis will need to be
investigated in the future.

In the low-temperature limit, the effective field distribu-
tions exhibit a discrete nature, such as the integer and rational
ansatz, which can be understood as the result of competing
cost and penalty functions in the ground state. This is in-
tuitively due to the discrete number of adjacent variables.
Such an interpretation may be universally applicable to the
ground states of other combinatorial optimization problems.
For example, the integer ansatz, often studied in MVC and
other literature, is typical for problems with unit penalty coef-
ficients. When dealing with arbitrary coefficients, the effective
field can take nonzero values only in the linear combination
of these coefficients. In the constraint violation region, the
penalty function displays a staircase-like structure and, im-
portantly, behaves as a nonincreasing function with respect
to the penalty coefficients. This feature is expected to be

prevalent in constrained combinatorial optimization problems.
Understanding this structure might lead to the development of
more sophisticated adaptive penalty function methods.

The RS/RSB phase boundary in the penalty method of
MVC was also obtained from the stability analysis of the RS
solution and the divergence of the spin-glass susceptibility
χSG using the cavity method. We find that the constraint
relaxation leads to a decrease of the critical temperature Tc

and an extension of the stability limit of the RS solution in
the low-temperature limit. These analytical results are also
justified by calculations of χSG via the MCMC method and
its finite-size scaling analysis. Combined with the results from
the MCMC method, the individual properties of each instance
do not appear to be pronounced at higher temperatures, where
the RS solution becomes stable. In other words, the equilib-
rium states are expected to be easy to reach, and the fact that
the constraint relaxation shifts its phase boundary to lower
temperatures means that such an easy-to-reach region is ex-
tended. In this sense, the constraint relaxation is effective in
solving optimization problems. By contrast, the penalty region
where the transition temperature is remarkably lowered is also
the region where infeasible solutions are more pronounced,
and the trade-off relationship can be understood in terms of
this phase diagram.

Analyzing the effect of constraint relaxation on the solution
time of combinatorial optimization problems is an interesting
ultimate goal of our research. The penalty strength γ is a
parameter that can be tuned when solving the problem, and
we hope that our results will help to improve methods such as
the exchange Monte Carlo and adaptive penalty methods, as
well as to develop new algorithms.
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APPENDIX A: REPLICA SYMMETRIC CALCULATION
OF MVC WITH PENALTY TERM

Here we present the derivation of the self-consistent equa-
tion in Eq. (18) for the effective-field distribution and the
formulas of the cover and penalty ratios under replica sym-
metric ansatz.

1. Derivation of self-consistent equation for p(h) of Eq. (18)

The formal free-energy density g({C(�ξ )}) with the order
parameter C(�ξ ) is given by Eq. (16), and the purpose of this
subsection is to derive the self-consistent equation for the
distribution of the effective field p(h), Eq. (18), under the RS
ansatz. The self-consistent equation of C(�ξ ) is obtained by
differentiating Eq. (16) as

C(�ξ ) = exp

{
− 1 + ζ − βμ�1 · �ξ − c

∑
�ξ ′

C( �ξ ′)

× [1 − exp(−βγ (�1 − �ξ ) · (�1 − �ξ ′))]

}
, ∀�ξ, (A1)

044304-14



EFFECT OF CONSTRAINT RELAXATION ON THE … PHYSICAL REVIEW E 109, 044304 (2024)

where ζ is the Lagrange multiplier to impose the normal-
ization condition,

∑
�ξ C(�ξ ) = 1. The formulation is approxi-

mately identical to that in the previous study [23], and the only
difference is the last term in the exponential term of Eq. (A1)
due to the penalty function. Using the order parameter CRS

under the RS ansatz given by Eq. (17), this exponential term
can be calculated as

∑
�ξ ′

CRS

(∑
α

ξ ′(α)

)
(1 − e−βγ (�1−�ξ )·(�1− �ξ ′ ) )

= 1 −
∫

dhp(h)

(1 + e−βμh)n

∑
�ξ ′

∏
α

e−μhξ ′(α)−βγ (1−ξ (α) )(1−ξ ′(α) )

= 1 −
∫

dhp(h)

(
1 + e−βμh

e−βγ + e−βμh

)∑
α ξ (α)−n

.

Substituting Eq. (17) into both sides of Eq. (A1), we obtain∫
dhp(h)

exp(−βμh
∑

α ξα )

(1 + e−βμh)n

= exp

[
− c − 1 + ζ − βμ

∑
α

ξ (α)

+ c
∫

dhp(h)

(
1 + e−βμh

e−βγ + e−βμh

)∑
α ξ (α)−n

]
. (A2)

Furthermore, putting y = ∑
α ξ (α) and taking the replica limit

of n → 0, we obtain∫
dhp(h)e−βμhy = e−c−βμy

∞∑
l=0

cl

l!

∫
p(h1) dh1 · · · p(hl ) dhl

× exp

[
y

l∑
i=1

log

(
1 + e−βμhi

e−βγ + e−βμhi

)]
,

where the Lagrange multiplier is eliminated by explicitly im-
posing the normalization condition. When this equation is
regarded as a Laplace transform, the self-consistent equa-
tion of p(h) is derived as Eq. (18) by the inverse Laplace
transform.

2. Derivation of Eqs. (20) and (21)
for RS expression of the cover and penalty ratios

As shown in Eqs. (7) and (8), the cover ratio ρ and the
penalty ratio ν are derived from the free entropy function of
Eq. (16), which are given by

ρ(β, γ ) = lim
n→0

1

n

∑
�ξ

Ĉ(�ξ )�1 · �ξ, (A3)

ν(β, γ ) = lim
n→0

1

n

c

2

∑
�ξ,�ξ ′

Ĉ(�ξ )Ĉ(�ξ ′)

× (�1 − �ξ ) · (�1 − �ξ ′)e−βγ (�1−�ξ )·(�1−�ξ ′ ), (A4)

respectively. Substituting Eq. (17) into Eq. (A3), the RS cover
ratio ρ is obtained as Eq. (20)

Under the RS ansatz, the right-hand side of Eq. (A4) can
also be calculated explicitly. The right-hand side before taking
the replica limit, denoted by νn, is expressed as

νn = c

2

∑
�ξ,�ξ ′

∫
dh dh′ p(h)p(h′)

e−βh
∑

α ξ (α)
e−βh′ ∑

α ξ ′(α)

(1 + e−βh)n(1 + e−βh′ )n

×
∑
α′

(1 − ξ (α′ ) )(1 − ξ ′(α′ ) )
∏
α

e−βγ (1−ξ (α) )(1−ξ ′(α) )

= c

2

∫
dh dh′ p(h)p(h′)

(1 + e−βh)n(1 + e−βh′ )n

× ne−βγ (e−βγ + e−βh + e−βh′ + e−β(h+h′ ) )n−1,

where the sum of �ξ and �ξ ′ is calculated. Finally, taking a
replica limit, the RS penalty ratio of Eq. (21) is derived.

APPENDIX B: POPULATION DYNAMICS METHOD AND
ITS TIME EVOLUTION AT ZERO TEMPERATURE

In this Appendix we describe the population dynam-
ics method for numerically solving the self-consistent or
recursive equations and then discuss its solution in the low-
temperature limit.

1. Population dynamics method

The population dynamics method [35] is an iterative solu-
tion method to find the solution of Eq. (18) by approximating
the distribution p(h) by the sample set {hi}. The procedure is
shown in Algorithm 1.

ALGORITHM 1. Population dynamics for p(h).

Require: c, β, γ ; Npop, Nitr

Initialization: Pprev = {hi}Npop
i=1 , Pnew ← Pprev

for itr = 1 to Nitr do
for i = 1 to Npop do

l ∼ Poisson(c)
draw l indices {i j}l

j=1 ∈ {1, . . . , Npop}
update h′

i in Pnew as: h′
i ← 1 −∑l

j=1 K (hi j ; β, γ )
end for
Pprev ← Pnew

end for
return Pnew

An arbitrary sample set {hi} may be used as the initial
distribution for Pprev and Pnew. At each iteration in the inner
for-loop, l is drawn from the Poisson distribution with mean
c, P(l ) = e−ccl/l!, then, l samples are drawn from Pprev ran-
domly. A new sample h′

i is calculated by the equation in the
delta function in Eq. (18). Repeating this procedure for the
number of samples Npop generates a new distribution Pnew,
which then replaces an old distribution Pprev.

The above iteration ensures that {hi} converges to the so-
lution p(h) in the limit Npop → ∞ [35]. In this pseudocode,
the number of iterations is given by Nitr , and its convergence
can be confirmed using a metric such as Kolmogorov-Smirnov
distance [45] between Pprev and Pnew.

As discussed in Sec. IV B, the distribution of hi can os-
cillate depending on the values of c, β, and γ . To mitigate
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this, a method known as damping is employed, where only a
fraction of {hi}, denoted as 0 < r < 1, is updated. Specifically,
when generating the next Pnew in the inner for-loop, only rNpop

samples are updated.
When applying the population dynamics method to a dis-

tribution such as p(h, h̃) in Eq. (33) or p(h,�) in Sec. V B, it
is important to update two variables simultaneously. Specif-
ically, in the case of p(h, h̃), new h′

i and h̃′
i are generated

using l identical samples h js drawn from Pprev, as shown in
Algorithm 2.

ALGORITHM 2. Population dynamics for p(h, h̃).

Require: c, β, γ ; Npop, Nitr

Initialization: Pprev = {(hi, h̃i )}Npop
i=1 , Pnew ← Pprev

for itr = 1 to Nitr do
for i ∈ 1 : Npop do

l ∼ Poisson(c)
draw l indices {i j}l

j=1 ∈ {1, . . . , Npop}
update h′

i in Pnew as: h′
i ← 1 −∑l

j=1 K (hi j )
update h̃′

i in Pnew as: h̃′
i ← ∑l

j=1 K̃ (h̃i j |hi j )
end for
Pprev ← Pnew

end for
return Pnew

2. Derivation of integer ansatz and irrational
and rational ansatzes at zero temperature

Here we show the validity of ansatzes for p(h) in low-
temperature limit in terms of the time evolution of the
population dynamics method. First, the integer ansatz for
γ � 1 is discussed in detail. Then the irrational and rational
ansatz for 0 < γ < 1 can be explained in the same manner as
for the integer ansatz.

A new sample is generated as h′
i = 1 −∑l

j=1 K (h; ∞, γ )
which represents a mapping from l samples {hj} to a sample
h′

i. The function K (h; ∞, γ ) reads

K (h; ∞, γ ) =
⎧⎨
⎩

γ (γ � h),
h (0 < h < γ ),
0 (h � 0).

(B1)

For γ > 0, any h j < 0 does not contributes to new sample h′
i.

We examine the integer ansatz in the case of γ � 1. First,
when l = 0 or the sample {h j} are all less than zero, h′

i = 1 is
generated. Second, when only one of l samples {hj} with l �
1 is larger than zero, h′

i ← 1 − h j . The mapping function for
l = 1 is shown in Fig. 14. Furthermore, considering the case
when two or more h′

js are larger than zero, h′
i = 1 −∑

j h j .
Therefore, any h′

i > 0 is given by 1 −∑
j h j with 0 � h j � 1.

The above process can be summarized as consisting of three
flows: (a) a looping flow within the range of 0 � h j � 1, (b)
an outflow process from the sum of 0 � h j � 1 to h′

i < 0, and
(c) a process of generating h′

i = 1 from multiple h j < 0 or
nothing (l = 0). Since samples in the range 0 < hj < 1 are
derived only from the prepared initial distribution, this popu-
lation decreases by the outflow process described in (b), and
eventually disappears after a sufficient number of iterations.

FIG. 14. Dynamical mappings for the population dynamics at
the low-temperature limit in the feasible region. The (blue) thick
line represents the mapping, h′ = 1 − K (h), for l = 1, and the (red)
horizontal and vertical lines represent the paths that h′

i is generated
from {hj}. The cycles shown by the dotted lines eventually disappear
because their population is not supplied by other hj , and then values
other than hj = 0 and 1 disappear in the range 0 � h � 1.

As a result, in the population dynamics of β → ∞, only 0
and 1 remain in the range of 0 � h j � 1, and therefore, {h′

i}
can take only integer values less than 1.

Note that when the damping in the population update is
performed, there may remain real-valued samples hi even after
long iterations, but they should always disappear as no new
population is supplied, and it is recommended to use only
integers or 0 for the initial value for β → ∞.

The irrational ansatz in Eq (23) for 0 < γ < 1 is slightly
complicated. The mapping function shown in Fig. 15 allows
many samples to be gathered into the looplike flow consisting
of h j ∈ {1 − γ , γ , 1}. Since only the values generated from
the above three values survive, the only possible values for h′

i
are the sum of an integer and an integer multiple of γ , that
is, {hi | hi = 1 − l − γ l ′ � 1, l, l ′ ∈ Z}. When γ is a rational
number, it can also be observed that the rational ansatz in

FIG. 15. Dynamical mappings for the population dynamics at
the low-temperature limit in the infeasible region. There exists a
stable cycle of γ ↔ 1 − γ whose population is provided from other
h′

js. Then there are innumerable secondary h′
i derived from their

sums. Any value other than h = 1 − l − l ′γ , l, l ′ ∈ Z eventually
vanishes for the same reason as the dotted cycles in Fig. 14.
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Eq. (24) holds, because the sum of an integer and a rational
number is a rational number.

APPENDIX C: DERIVATION OF THE SELF-CONSISTENT
EQUATION WITH CORRELATION FIELD

EQUATIONS (32) AND (33)

In this Appendix, we provide a supplementary explanation
of the treatment of the effective field distribution with a cor-
rection field. In Sec. III C we introduced fluctuations around
a delta-function distribution in the effective-field distribution
p(h) at sufficiently low temperatures in Eq. (31), and we
assume that the width of these fluctuations scales with tem-
perature and p(h) at β � 1 can be described by

p(h, h̃/β ) =
∑
{h′}

rh′δ(h − h′)ρh′ (h̃/β ), (C1)

where the distribution ρh′ representing the fluctuations is nor-
malized for any h′ as

∫
dh̃/βρh′ (h̃/β ) = 1. The original p(h)

is reduced by marginalizing p(h, h̃/β ) to

p(h) =
∫

dh′ dh̃

β
δ

(
h − h′ − h̃

β

)
p(h′, h̃/β ). (C2)

This equation is equivalent to Eq. (32). Plugging this into
Eq. (18), we obtain

p(h, h̃/β ) = e−c
∞∑

l=0

cl

l!

∫ l∏
i=1

dhi
dh̃i

β
p(hi, h̃i/β )

× δ

⎛
⎝h + h̃

β
− 1 +

l∑
j=1

K (h j + h̃ j

β
)

⎞
⎠.

Expanding K (h) assuming β � 1 and leaving up to the
O(1/β ) term, the delta-function term reads

δ

⎡
⎣h − 1 +

l∑
j=1

K (h; ∞, γ ) + 1

β

⎛
⎝h̃ +

l∑
j=1

K̃ (h̃ | h)

⎞
⎠
⎤
⎦,

(C3)

where K (h; ∞, γ ) is the same as Eq. (22). The update func-
tion for h̃ depending on the positions {h} of each peak is
shown in Eq. (34). For the above delta function to make a
nontrivial contribution to any β � 1, each O(β0) and O(1/β )
term must be zero. Therefore, using the normalization con-
dition

∫
(dh̃/β )ρh′ (h̃/β ) = 1 and the property of the delta

function, δ(βx) = δ(x)/|β|, we can divide the delta func-
tions into a product and remove β ′s from Eq. (C3). Finally,
the self-consistent equation for p(h, h̃) can be derived as
Eq. (33), which can be regarded as a joint of the self-consistent
equation with respect to h, Eq. (18), and the self-consistent
equation for h̃ conditioned on h. Since the h part of Eq. (18)
is independent of h̃, the h dependence of the solution is the
same as that without the correction field h̃. Therefore, it is
justified to rescale Eqs. (31) and (32) as Eqs. (C1) and (C2),
respectively.

The cover and penalty ratios are straightforward to be
calculated by just plugging Eq. (32) into Eqs. (20) and (21),
respectively. The low-temperature limit of the factor of the
cover ratio is shown in Eq. (35). The factor of the penalty ratio
in Eq. (21) in the low-temperature limit is also evaluated as

lim
β→∞

1

1 + e−β(h−γ )−h̃ + e−β(h′−γ )−h̃′ + e−β(h+h′−γ )−h̃−h̃′

=

⎧⎪⎪⎨
⎪⎪⎩

1 (h, h′ > γ ),
1/(1 + e−h̃) (h = γ , h′ > γ or h ↔ h′),
1/(1 + e−h̃ + e−h̃′

) (h = h′ = γ ),
0 (h < γ or h′ < γ ).

(C4)

This yields the penalty ratio at γ = 1 in Eq. (37).
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