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In the face of the stupefying complexity of the human brain, network analysis is a most useful tool that
allows one to greatly simplify the problem, typically by approximating the billions of neurons making up the
brain by means of a coarse-grained picture with a practicable number of nodes. But even such relatively small
and coarse networks, such as the human connectome with its 100–1000 nodes, may present challenges for
some computationally demanding analyses that are incapable of handling networks with more than a handful
of nodes. With such applications in mind, we set out to study the extent to which dynamical behavior and critical
phenomena in the brain may be preserved following a severe coarse-graining procedure. Thus we proceeded to
further coarse grain the human connectome by taking a modularity-based approach, the goal being to produce
a network of a relatively small number of modules. After finding that the qualitative dynamical behavior of
the coarse-grained networks reflected that of the original networks, albeit to a less pronounced extent, we then
formulated a hypothesis based on the coarse-grained networks in the context of criticality in the Wilson-Cowan
and Ising models, and we verified the hypothesis, which connected a transition value of the former with
the critical temperature of the latter, using the original networks. This preservation of dynamical and critical
behavior following a severe coarse-graining procedure, in principle, allows for the drawing of similar qualitative
conclusions by analyzing much smaller networks, which opens the door for studying the human connectome in
contexts typically regarded as computationally intractable, such as Integrated Information Theory and quantum
models of the human brain.
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I. INTRODUCTION

The sheer complexity of the human brain constitutes a
formidable obstacle to the construction of a complete theory
of its workings. Network analysis [1] serves as an exceedingly
powerful tool that breaks down the problem by modeling the
brain, with its billions of neurons, as a network comprising
a much more manageable number of nodes. In this simplified
picture, it becomes computationally feasible to conduct graph-
theoretical investigations [2–4] from which a great amount of
neuroscientific insight may be extracted.

One such example is the structural human connectome,
which is a comprehensive map of neural connections in
the brain that may be constructed at different degrees of
granularity. It typically comprises a number of nodes of
∼100, with some other atlases containing as many as a
few hundred [5]. There, each node represents a large col-
lection of neurons, such as an anatomical brain region.
The structural connectivity matrix of such a network may
be extracted from data obtained through noninvasive neu-
roimaging techniques such as diffusion tensor imaging [6–8].
Patterns of functional activity may also be observed through
functional magnetic resonance imaging (fMRI) scans, en-
abling the construction of the functional human connectome,
in which the edges between nodes represent statistical
correlations based on similarity measures between neu-
ronal components [8–10]. These functional networks may
serve as graphical representations of the dynamical patterns
that emerge spontaneously in the brain, as well as those

which manifest themselves during the performance of tasks
[11,12].

But even such relatively small and coarse networks are
intractable in the context of certain demanding approaches
where, for instance, computational costs grow exponentially
or superexponentially with the number of nodes. One such
example is the integrated information theory (IIT) of con-
sciousness, which is a framework that seeks to quantify
consciousness by introducing the quantity �, a number that
characterizes the extent to which a dynamical system gen-
erates information that is irreducible to the sum of its parts
(see Ref. [13] for a comprehensive review). IIT is often
regarded as an alternative hypothesis to the other promi-
nent theory of consciousness, global workspace theory [14].
The cost of computing � explodes combinatorially as a
function of the number of nodes, rendering the problem in-
surmountable for systems comprising more than a handful of
nodes.

Furthermore, recent years have seen a rising interest in
quantum effects in the brain [15–17] and in theories which
attempt to make connections between quantum mechanics
and consciousness [18,19]. Consequently, models of the brain
which can incorporate quantum phenomena are of ever-
growing interest. Simulations of such quantum models of the
brain on a classical computer, however, are computationally
expensive in a manner which grows exponentially with the
number of nodes. Therefore, to grapple with either of these
applications (IIT and quantum models of the brain) in the
context of the human connectome, it is essential to employ
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a coarse-graining approach to reduce the size of the human
connectome by at least an order of magnitude.

To that end we set out to identify a suitable coarse-graining
procedure. There is a number of approaches proposed in the
literature for detecting communities in networks, such as ones
based on centrality indices [20], spectral methods [21], and
modularity [22]. We employ the algorithm proposed in [23],
which, though not without its limitations (see, for instance,
Ref. [24]), is a simple and efficient algorithm to partition the
networks into communities by maximizing the modularity of
the network.

After applying this approach to the human connectome, we
investigate the extent to which the resulting coarse-grained
networks resemble the original networks. As a sanity check,
we start by verifying that the global structures of the simpli-
fied networks resemble those of the original ones. Next, we
turn our attention to models of the dynamical behavior of the
brain, and study the preservation of such behavior in going
from the large networks to the small ones.

The first model we consider is that of Wilson-Cowan
oscillators [25], a biologically motivated description of the
dynamics of neuronal populations. In the form of choice, the
model contains but one free parameter, referred to as c5, which
may be varied to control the dynamical state of the network. A
salient feature of this model is the presence of a critical point;
upon exceeding a certain value of c5, typically denoted as cT

5 ,
the system transitions from a globally inactive state into a
globally excited state in which a preponderance of oscillatory
activity manifests itself in a great number of brain regions. cT

5 ,
which may be regarded as a given brain network’s capacity for
global excitation, has been observed to vary across individual
subjects [26] and to correlate with a number of cognitive
measures [27]. It has also been demonstrated that biological
networks tend to be more easily excitable than randomized
networks, despite being less strongly connected [28].

Another popular framework that is utilized in this context
is the Ising model, by virtue of being one of the simplest
models with site-dependent binary variables and only one
parameter, i.e., the temperature of the thermal bath. In one
early study [29], it was found that brain networks derived from
the fMRI BOLD (blood-oxygen-level dependent) signals were
statistically equivalent to networks derived from the 2D Ising
model at the critical temperature. In another [30], the Ising
model was studied with variable couplings that were defined
according to the anatomical connectivity matrix, and total
information transfer was found to be maximized at the critical
temperature. Both of these investigations lend support to the
so-called critical brain hypothesis [31–33], which conjectures
that brain dynamics take place at the so-called edge of chaos,
i.e., the critical boundary between stability and disorder.

An Ising model with variable couplings between the spin
sites is often referred to as a generalized Ising model (GIM).
Such models have been the subject of a number of recent
studies that seek to model the spontaneous activity of the
brain given the underlying anatomical structure. In Ref. [34],
for instance, the couplings in the GIM were defined to be
proportional to the number of fibers connecting each pair of
brain regions, and the thermodynamics and critical properties
of this model were calculated in a Monte Carlo (MC) simula-
tion and compared to those of the 2D Ising model. Correlation

functions may also be computed by defining the notion of dis-
tance as the reciprocal of the connectivity. A similar study [35]
was performed using different sets of anatomical structural
data, including those obtained from patients with severe brain
injuries and disorders of consciousness (DOC). This enabled
the investigation of the relationship between the critical prop-
erties of the model and consciousness, and it was observed
that subjects suffering from DOC tended to exhibit higher
critical temperatures.

In this work, we evaluate the extent to which such a coarse-
graining approach preserves dynamical and critical behavior,
even after as severe an amount of coarse graining as go-
ing from 104 nodes to 10–14. We do so by applying the
Wilson-Cowan model to both the coarse-grained and original
networks, and measuring the extent to which the dynamical
and critical behavior is preserved between them. Then, after
verifying that the small networks are adequately representa-
tive of the large ones in this dynamical context, we make
connections between the transition that takes place in the in
the model of Wilson-Cowan oscillators and criticality in the
Ising model. The observed preservation of dynamical behav-
ior under coarse graining allows us to hypothesize, based on
the coarse-grained networks, a relationship between the tran-
sition value of the Wilson-Cowan model cT

5 and the critical
temperature of the Ising model Tc, thereby introducing the
former to the aforementioned association with DOC that was
previously observed for the latter (in Ref. [35]). We finally
verify that hypothesis by the aid of the original networks.

The remainder of this paper is organized as follows: in
Sec. II we describe our dynamical models and methodology
for data extraction and coarse graining. We present and dis-
cuss our results in Sec. III, and finally outline our conclusions
in Sec. IV.

II. MATERIALS AND METHODS

A. Wilson-Cowan model

We are interested in the form of the Wilson-Cowan model
used in Ref. [27] (but in the absence of an external stim-
ulation), wherein all neurological processes of interest are
assumed to be governed by the interaction between excitatory
and inhibitory cells. Furthermore, each subpopulation of such
cells at every brain region is modeled by a single variable; we
define Ei and Ii as the respective fractions of excitatory and
inhibitory cells firing per unit time in region i. Thus the model
reads

τ
dEi

dt
= −Ei(t ) + [

SEm − Ei(t )
]
SE

(
c1Ei(t ) − c2Ii(t )

+ c5

∑
j

Ji jE j
(
t − τ

i j
d

)) + σwi(t ) (1)

and

τ
dIi

dt
= −Ii(t ) + [

SIm − Ii(t )
]
SI

(
c3Ei(t ) − c4Ii(t )

+ c6

∑
j

Ji j I j
(
t − τ

i j
d

)) + σvi(t ), (2)
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where SE ,I (x) are sigmoid functions given by

SE ,I (x) = 1

1 + e−aE ,I (x−θE ,I )
− 1

1 + eaE ,I θE ,I
. (3)

SEm,Im are the maxima thereof, and the constants aE ,I and
θE ,I , respectively, determine the value and position of maxi-
mum slope. Ji j are the elements of the structural connectivity
matrices. On account of the physical distance di j between
two brain regions, there exists a communication delay τ

i j
d =

di j/vd , where vd = 10 m/s is a typical estimate of the signal
transmission velocity (see, for instance, Ref. [36]). Finally,
a normal distribution of noise of strength σ is injected into
the system by means of the functions wi(t ) and vi(t ). This
form of the model is standard in the literature [26,27,37], but
in principle the model may be generalized to incorporate, for
instance, couplings between opposing types of cells.

We utilized a second-order Runge-Kutta solver with a suf-
ficiently fine time step, such that the results were independent
of the size thereof. For each individual subject, the value of
cT

5 was estimated by simulating the model at multiple values
of c5 and observing the point at which the transition took
place.

The oscillators were always initialized in the state with
E = I = 0.1. The parameters defined above were fixed at σ =
10−5, c1 = 16, c2 = 12, c3 = 15, c4 = 3, aE = 1.3, aI = 2,
θE = 4, θI = 3.7, and τ = 8 as prescribed in the literature
[26,27]. At this choice of the parameters, the oscillators may
be found in one of three states: a low fixed point, a high
fixed point, and an oscillatory limit cycle in between [26].
A biological network typically exhibits an abrupt transition
into a globally excited state, i.e., from a state where all initial
activity rapidly dwindles down to the lower fixed point, to one
where a substantial proportion of oscillators are activated into
the limit cycle or the high fixed point. Such a transition may
be accomplished by ramping up the global coupling parameter
c5, and crossing a critical value thereof, at which the state
of the system abruptly changes, as illustrated in Fig. 1. The
transition value, typically referred to as cT

5 , will henceforth be
referred to as simply c5 for ease of notation. As mentioned
above, this value is unique for each subject for a given choice
of parameters and initial conditions [38].

B. Generalized Ising model

We consider a system comprising N lattice sites, each
with spin si = ±1 along the z direction. In the absence of an
external magnetic field, the energy of a configuration s = {si}
is given by the pairwise interaction

H (s) = −
∑
i< j

Ji jsis j, (4)

where the sum runs over all pairs of particles. This system
is more general than the Ising model, in the sense that (1)
the sum is not restricted to nearest neighbors, and (2) the
coupling strength Ji j of the interaction between two lattice
sites is arbitrarily nonuniform. Thus it is referred to as the
generalized Ising model.

Clearly, the physics of this model at any given temperature
is completely determined by the coupling strength matrix J.
which may be chosen to describe an arbitrary model for the

FIG. 1. Example of the Wilson-Cowan transition: the dynamics
of the proportion of excitatory cells firing per unit time, for a certain
brain network, at c5 = 12.7 (a) and c5 = 12.8 (b). Each line corre-
sponds to a brain region.

interaction between an arbitrary number of spin sites in an
arbitrary number of dimensions.

As alluded to above, the GIM may serve as a dynamical
model of the human brain through the following mapping:
each spin site represents a brain region, and the corresponding
value of si represents the value of a binary variable associated
with that brain region, such as the BOLD signal. The coupling
strength matrix Ji j is mapped onto the structural connectome
by, for instance, being made proportional to the number of
fibers connecting two regions.

We perform simulations of the system described by Eq. (4),
at each temperature, by means of the Metropolis Monte Carlo
algorithm [39] that is the same regardless of the value of J.
The details of the simulation are standard; we start from a
random spin configuration, and sample new configurations
with a probability proportional to the corresponding Boltz-
mann weight, exp[−E ({si})/T ]. First, a sufficient number of
MC steps is performed to ensure convergence towards ther-
modynamic equilibrium (a single MC step is defined to be a
number of iterations such that, on average, each of the spin
sites is subject to one flipping attempt). Once that is achieved,
thermal expectation values of the quantities of interest are
computed as statistical averages over configurations separated
by an appropriate number of MC steps. The magnetization,
for instance, is given by

m = 1

N

N∑
i=1

si, (5)
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FIG. 2. Example of the magnetic susceptibility as a function of
temperature for a given network of Ising spins. The critical temper-
ature is estimated by locating the peak (black dashed line). Bars
correspond to statistical errors, which may be used to infer the
uncertainty on the critical temperature by identifying the range of
temperature at which the statistical errors overlap with the maximum.

and the magnetic susceptibility, defined as ∂m
∂h |h→0, is given by

χ = N

T
(〈m2〉 − 〈m〉2) (6)

and the specific heat by

C = N

T 2
(〈e2〉 − 〈e〉2), (7)

where e = E/N , the total energy of the system per particle.
One may study the phase transition by simulating the system
at different temperatures, plotting those quantities therea-
gainst, and inferring the critical temperature by identifying the
peak in the magnetic susceptibility (see Fig. 2). Naturally, the
caveats here are (1) that the smaller the network, the more
prominent the finite-size effects and (2) the existence of other
methods to estimate the critical temperature.

C. Structural data and measures

We constrained the dynamical models outlined in
Secs. II A and II B by a set of undirected structural con-
nectivity matrices extracted from imaging data, which we
obtained from the 1200 subject cohort of the Human Con-
nectome Project (HCP), a database containing neural data
for thousands of subjects, of which we selected a sample for
our calculations. On no particular basis did we choose from
among the 1200 subjects; we merely selected the first subjects
on the list, about whom no information was provided besides
age and gender. Both preprocessed T1-weighted structural
images and 3T dMRI images were used in our computational
fiber-tracking method. Python DIPY and NiBabel libraries
were utilized to perform the streamline calculations using a
constrained spherical deconvolution model and probabilistic
fibre tracking functions, which are built in the libraries.

Each structural connectivity network emerging from this
procedure belongs to an individual subject and comprises 104
nodes, each node corresponding to a cortical or subcortical
brain structure. A full list of those brain structures may be
found in Table I in the Appendix. The networks were then
normalized by dividing the strength of each connection by
the sum of the volumes of its two nodes, as in earlier studies
[26,27].

As our first measure of global structure we calculate the
global efficiency [40], which measures the extent to which
a graph is well connected by computing the average inverse
shortest distance between pairs of vertices. The expression
reads

Eglob = 1

N (N − 1)

∑
i �= j

1

si j
, (8)

where N is the number of nodes, and si j is the shortest distance
between nodes i and j (not to be confused with the physical
distance di j). We also compute the characteristic path length
[40], which is another (roughly antiproportional) way of char-
acterizing the well-connectedness of a graph, previously used
[28] in the context of the Wilson-Cowan model [41]. It is
computed as the average path length between all possible pairs
of vertices:

L = 1

N (N − 1)

∑
i, j∈N,i �= j

si j . (9)

D. Coarse-graining algorithm

We employed a coarse-graining algorithm based on the
method prescribed in [23] for detecting communities in net-
works. The goal is to partition a given network into the set
of communities that maximizes the quantity known as the
modularity, which quantifies the strength of the connections
within communities relative to the strength of the connections
between communities. In the cases of a weighted network with
a connectivity matrix J, this may be written as

Q = 1

2m

∑
i, j

[
Ji j − did j

2m

]
δ(ci, c j), (10)

where di is the degree centrality of node i, defined as di =∑N
i=1 Ji j ; ci is the community to which node i belongs; δ(u, v)

is a Kronecker delta, equaling 1 if u = v and 0 otherwise; and
m = 1

2

∑
i j Ji j .

The algorithm comprises a series of passes, each pass
consisting of two phases. Phase one begins in a maximum
entropy configuration with each node assigned to its own
community, such that the number of communities is equal to
the number of nodes. Next, each neighboring node j of node
i is considered, and we compute the gain in modularity on
account of moving node i into the community containing node
j. Node i is subsequently removed from the community to
which it originally belonged, and placed into the community
for which the gain in modularity is maximum (provided that
gain is positive). All nodes in the network are subjected to this
process sequentially and repeatedly, until the modularity may
no longer be increased by any such moves, thereby reaching a
local maximum and concluding phase one.

To evaluate the change in modularity arising from the mov-
ing of an isolated node i into a community C, we make use
of the computationally efficient expression given in Ref. [23],
namely,

	Q =
[


in + ki,in

2m
−

(

tot + ki

2m

)2
]

−
[


in

2m
−

(

tot

2m

)2

−
(

ki

2m

)2
]
, (11)
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where 
in is the sum of the weights within C, 
tot is the sum
of the weights incident to nodes in C, and ki,in is the sum of
the weights from i to nodes in C.

Phase two of the algorithm is concerned with the con-
struction of a new network whose nodes are the communities
obtained in phase one. In this new network, the link connect-
ing two nodes is obtained by summing up the weights of the
links between the the two communities which the two nodes
represent. This obviously gives rise to self-loops, which may
either be represented as self-interactions or ignored altogether.
For the purposes of this work, we do not incorporate self-
interactions, as the original networks did not contain anything
of the sort. It is important to note that the weights of the
nonself-loop links are not renormalized at any step of the
algorithm. We also compute the distances between nodes in
the new network. Now that the nodes are no longer strictly
correspondent to anatomical brain regions, a new definition of
the distance is in order; we define the distance between two
communities as the weighted mean of the distances between
the nodes therein.

We arrive at the partitioning which maximizes the modu-
larity by iterating the passes of the algorithm until no more
increases to the modularity may be achieved.

III. RESULTS AND DISCUSSION

The outcome of applying the procedure outlined in
Sec. II D to the networks described in Sec. II C is a reduction
of any given 104-node network to one comprising 10–14
nodes, depending on the subject. One such network and its
corresponding coarse-grained network are visualized in Fig. 3.
Each number corresponds to a brain region as given by the
list in Table I. The most prominent brain regions, as reported
by the centrality analyses conducted in Ref. [42], include the
brainstem (10), and both sides of the superiorfrontal cortex
(63 and 97) and thalamus (4 and 21), all of which regions are
highlighted in orange.

We now investigate the degree to which these small net-
works are representative of the original networks from which
they emerged. Henceforth, we attach to all variables relat-
ing to the maximally coarse-grained networks the superscript
“cg,” e.g., T cg

c is the critical temperature of the coarse-grained
networks.

We begin by looking at global structure. We computed the
global efficiency, as defined in Sec. II C, for each subject’s
network and the corresponding maximally coarse-grained net-
work. The result of this computation is presented in Fig. 4,
which shows a fairly strong (r2 = 0.879) correlation between
the global efficiencies of both types of network. This is an
encouraging result, as it indicates that the original networks of
104 nodes are fairly well represented by the networks of 10–
14 nodes which emerged from our coarse-graining procedure.

Emboldened by this finding, we turn our attention to dy-
namical behavior. We start by asking the question of whether
we may arrive at similar conclusions to those of Ref. [28], in
which the full-sized networks were studied, by instead looking
at the coarse-grained networks. We do so by implementing the
Wilson-Cowan model on our small networks.

The first relationship we expect to see, based on the results
of Ref. [28], is a positive correlation between the transition

FIG. 3. Visualization of the relationship between one brain net-
work (top) and its coarse-grained counterpart (bottom). Numbers
correspond to brain regions in accordance with the list given in
Table I in the Appendix. The darkness of a given edge is proportional
to its weight. The area of a given node in the coarse-grained network
is proportional to the number of brain regions it contains. Highlighted
numbers in the coarse-grained network correspond to the most salient
brain regions according to Ref. [42].

value and the corresponding characteristic path length. This is
an observation that the more well-connected a biological net-
work is, the more global excitable it tends to be. Figure 5 (top)
shows the result of this investigation, which clearly assures us
that this behavior is enjoyed by the coarse-grained networks
as it is by the original ones. Here we note that c5, being a
measure of global excitation, is influenced substantially by
weaker connections in the network, which are preserved in
the coarse-graining procedure. It is possible that this property
of c5 enhances the extent to which the coarse-grained network
resembles the original ones.

We also see in Fig. 5 (bottom) a substantial positive cor-
relation r2 = 0.859 between the the transition value for the
small networks and the large ones, further validating the sim-
ilarity between the two types of networks.

It must be emphasized here that the strong degree to which
the coarse-grained networks are representative of the origi-
nal networks is contingent on performing the coarse-graining
procedure in the form prescribed in Sec. II D. We have exper-
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FIG. 4. Global efficiency of the coarse-grained networks ob-
tained vs the global efficiency of the corresponding original
networks. Each dot represents a different subject. The red line is a
least-squares fit with r2 = 0.786.

imented with some deviations from that prescription, which
have invariably degraded the extent to which the behavior of
the coarse-grained networks represented that of the original
ones. For instance, this representation was slightly diminished
when we tried taking the connectivity between modules to
be the average of edge weights rather than their sum, as we
show in Fig. 10 in the Appendix. The representation was
also greatly diminished when we attempted to normalize the
weights of the nonself-loop links in the intermediate steps of
the algorithm (to wit by dividing the weights of the links by
the weight of the greatest link among them after each pass of
the algorithm); the correlation between ccg

5 and c5 was com-
pletely lost, as well as that between the Ecg

glob and Eglob. This
breakdown suggests that the normalizing at intermediate steps
leads to the erasure of important information as to the weights

FIG. 5. Transition value of c5 for the coarse-grained networks
against the (top) corresponding characteristic path length (r2 =
0.828) and (bottom) transition value of c5 for the corresponding
original network (r2 = 0.859).

FIG. 6. Transition value of c5 for the coarse-grained networks
against the corresponding characteristic path length, for both bio-
logical networks [blue (empty)] and shuffled networks [red (filled)].
Symbol shapes corresponds to individual subjects.

of the intermodule links with respect to the original networks.
Indeed, when the prescription outlined above is adhered to, the
behavior is consistent across multiple coarse-graining scales,
as shown in Fig. 11 in the Appendix.

The second conclusion drawn in Ref. [28] is that random-
ized networks tend to be less globally excitable (i.e., higher
value of c5) than biological ones, despite being more well con-
nected (lower characteristic path length). This phenomenon
is also observed for coarse-grained networks networks, albeit
substantially less pronounced, as indicated in Fig. 6. We can
clearly see that the red line (shuffled networks, generated by
shuffling pairwise connectivities while preserving their dis-

FIG. 7. Ising critical temperature as a function of global effi-
ciency, for the coarse-grained networks (r2 = 0.930) (top), and the
correlation between the critical temperatures in the full and coarse-
grained pictures (r2 = 0.917) (bottom).
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tribution, similar in spirit to a configuration model; see, for
instance, Ref. [43]) invariably lies above the blue line (bio-
logical networks of the same subjects), but by a significantly
smaller amount compared to the case of the original networks,
as may be seen in Ref. [28]. This suggests that by studying
the coarse-grained networks in lieu of the full-sized ones, one
may derive qualitatively similar conclusions, but might fail to
observe the full quantitative extent thereof. It may be argued
that the red line is closer to the blue line in the coarse-grained
networks, compared to the original ones, on account of the
smaller effect of shuffling in smaller networks with respect to
larger ones.

At this stage, it’s clear that the reduced networks produced
from the coarse-graining procedure retain not only significant
structural properties, but also a good deal of dynamical be-
havior. Thus we proceed to investigate the Ising model for the
coarse-grained system, in the hopes that the conclusions we
draw represent reality nearly as much as those directly drawn
from the human connectome itself.

We begin by computing the Ising critical temperature, as
described in Sec. II B for a variety of coarse-grained networks,
and investigating how it varies with the global efficiency in-
troduced in Sec. II C. The advantage of simulating the Ising
model on such small systems is that the simulations are rapid
and efficient, and so the statistical errors of the thermal ex-
pectation values may be shrunk arbitrarily, allowing for an
arbitrarily precise estimation of the critical temperature. The
result of this is displayed in Fig. 7 (top), which shows a
strong positive correlation (r2 = 0.930), indicating that well-
connected networks possess higher critical temperatures. As
a sanity check, we compare the coarse-grained critical tem-
peratures with those computed for the original networks in
Fig. 7 (bottom), in order to verify that there is indeed a
strong correlation, notwithstanding the size of the uncertain-
ties on the critical temperature; they are inferred from the
magnetic susceptibility data by estimating the range in which
the peak is expected to lie in light of the statistical errors.
In the case of the original networks, those statistical errors
are substantial, they being the product of rather ponderous
simulations in which the accumulation of statistics takes a
long time.

Now that we have established that the behavior of the
coarse-grained networks is fairly well representative of the
original ones, we are poised to use the coarse-grained net-
works to connect the two dynamical models and the two
different senses of criticality therein. In Fig. 8 we plot the
Ising critical temperature for the coarse-grained networks,
T cg

c , against the Wilson-Cowan transition value, ccg
5 . We

clearly see a negative correlation between the two quantities,
which is consistent with the findings presented in both Figs. 5
and 7, taken together with the fact that the characteristic path
length and the global efficiency are opposing measures. The
inverse relationship between Tc and c5 illustrated in Fig. 8
suggests that highly excitable brain networks (i.e., with low
values of cT

5 , denoted as c5), which is a property enjoyed by
biological networks relative to randomized ones [28], tend
to possess higher critical temperatures. This is a surprising
result when considered with reference to one of the findings

FIG. 8. Ising critical temperature as a function of the Wilson-
Cowan transition value, for the coarse-grained networks (r2 =
0.918).

of Ref. [35], namely, the association of a high Ising critical
temperature with the presence of a disorder of consciousness.
Naively, one might have expected randomized networks to
exhibit behavior closer to DOC networks than to healthy ones,
but here we have a set of observations that seem to suggest
that when it comes to a network’s global excitability, shuffled
networks possess the least, followed by biological networks
(which observation may be directly seen in Fig. 6 and is pre-
sented and discussed in more detail in Ref. [28]), followed by
the most excitable networks of all: DOC networks (which may
be inferred from Fig. 8 in conjunction with the association of
high Tc with DOC reported in Ref. [35]).

Finally, we may validate this conclusion drawn from the
simplified networks, provided we are prepared to contend with
the sluggishness of the Ising simulations on the unsimplified
networks, and with substantial uncertainties arising from sub-
stantial statistical errors. The results, shown in Fig. 9, are
certainly encouraging; the relationship between the Ising criti-
cal temperature and the Wilson-Cowan transition value bears a
good deal of resemblance to the coarse-grained case, notwith-
standing the disparity in the sizes of the uncertainties. This
lends further credence to the belief that the coarse-graining
procedure yields networks that are both significantly simpler
to work with and adequately representative of the original
networks, and that one may ascribe considerable validity to
hypotheses developed based on the coarse-grained networks.

FIG. 9. Ising critical temperature a function of the Wilson-
Cowan transition value for the original networks (r2 = 0.682).
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IV. CONCLUSIONS

We investigated the preservation of dynamical and critical
behavior in human connectome networks subject to an ex-
treme degree of coarse graining. Inspired by the idea that the
human connectome itself is indeed a coarse-grained picture,
we set out to effect further coarse graining in an effort to
render the networks small enough for analyses of exceeding
computational cost. To that end, we employed a modulariza-
tion approach that allowed us to reduce the 104-node networks
to networks comprising but 10–14 nodes.

These coarse-grained networks were found to be ad-
equately representative of the original networks in both
structural and dynamical contexts, provided that the coarse-
graining procedure is carried out in a certain form. Encour-
aged by this, we used the small networks to formulate a hy-
pothesis concerning the relationship between two dynamical
models: Wilson-Cowan and Ising. Finally, we used the unsim-
plified networks to verify our hypothesis, which suggests that
such a coarse-graining approach is viable even with such a de-
gree of severity, which emboldens us to pursue further appli-
cations for which a severe coarse-graining is difficult to avoid.

Such applications include Integrated Information Theory
and theories of the quantum brain, where the computational
complexity is exponential or superexponential in the num-
ber of nodes. The human connectome in its traditional form
typically comprises 100–1000 nodes, which is far too large
a number for any such applications. Fortunately, our find-
ings here indicate that conclusions concerning dynamical and
critical behavior, drawn based on such highly coarse-grained
networks, may be valid enough, which provides a path to more
explicit analyses in the aforementioned contexts.

The data used in this project were provided by the Human
Connectome Project (HCP; Principal Investigators: Bruce
Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden,
MD). HCP funding was provided by the National Institute
of Dental and Craniofacial Research (NIDCR), the National
Institute of Mental Health (NIMH), and the National Institute
of Neurological Disorders and Stroke (NINDS). HCP data
are disseminated by the Laboratory of Neuro Imaging at the
University of Southern California. Structural and diffusion
MRI images from the HCP, as well as lists of extracted struc-
tures, bvals, and bvecs, were all used to process the data in
our Python program. All subjects are part of the “WU-Minn
HCP Data–1200 Subjects” data set. A complete list of subject
names is available upon request.

All scripts used to generate the connectomes are available
on our GitHub repository [44].
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TABLE I. Full list of the 104 brain structures.

ID Structure

1 Left-Lateral-Ventricle
2 Left-Inf-Lat-Vent
3 Left-Cerebellum-Cortex
4 Left-Thalamus-Proper
5 Left-Caudate
6 Left-Putamen
7 Left-Pallidum
8 3rd-Ventricle
9 4th-Ventricle
10 Brain-Stem
11 Left-Hippocampus
12 Left-Amygdala
13 CSF
14 Left-Accumbens-area
15 Left-VentralDC
16 Left-vessel
17 Left-choroid-plexus
18 Right-Lateral-Ventricle
19 Right-Inf-Lat-Vent
20 Right-Cerebellum-Cortex
21 Right-Thalamus-Proper
22 Right-Caudate
23 Right-Putamen
24 Right-Pallidum
25 Right-Hippocampus
26 Right-Amygdala
27 Right-Accumbens-area
28 Right-VentralDC
29 Right-vessel
30 Right-choroid-plexus
31 Optic-Chiasm
32 CC_Posterior
33 CC_Mid_Posterior
34 CC_Central
35 CC_Mid_Anterior
36 CC_Anterior
37 ctx-lh-bankssts
38 ctx-lh-caudalanteriorcingulate
39 ctx-lh-caudalmiddlefrontal
40 ctx-lh-cuneus
41 ctx-lh-entorhinal
42 ctx-lh-fusiform
43 ctx-lh-inferiorparietal
44 ctx-lh-inferiortemporal
45 ctx-lh-isthmuscingulate
46 ctx-lh-lateraloccipital
47 ctx-lh-lateralorbitofrontal
48 ctx-lh-lingual
49 ctx-lh-medialorbitofrontal
50 ctx-lh-middletemporal
51 ctx-lh-parahippocampal
52 ctx-lh-paracentral
53 ctx-lh-parsopercularis
54 ctx-lh-parsorbitalis
55 ctx-lh-parstriangularis
56 ctx-lh-pericalcarine
57 ctx-lh-postcentral
58 ctx-lh-posteriorcingulate
59 ctx-lh-precentral
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TABLE I. (Continued.)

ID Structure

60 ctx-lh-precuneus
61 ctx-lh-rostralanteriorcingulate
62 ctx-lh-rostralmiddlefrontal
63 ctx-lh-superiorfrontal
64 ctx-lh-superiorparietal
65 ctx-lh-superiortemporal
66 ctx-lh-supramarginal
67 ctx-lh-frontalpole
68 ctx-lh-temporalpole
69 ctx-lh-transversetemporal
70 ctx-lh-insula
71 ctx-rh-bankssts
72 ctx-rh-caudalanteriorcingulate
73 ctx-rh-caudalmiddlefrontal
74 ctx-rh-cuneus
75 ctx-rh-entorhinal
76 ctx-rh-fusiform
77 ctx-rh-inferiorparietal
78 ctx-rh-inferiortemporal
79 ctx-rh-isthmuscingulate
80 ctx-rh-lateraloccipital
81 ctx-rh-lateralorbitofrontal
82 ctx-rh-lingual
83 ctx-rh-medialorbitofrontal
84 ctx-rh-middletemporal
85 ctx-rh-parahippocampal
86 ctx-rh-paracentral
87 ctx-rh-parsopercularis
88 ctx-rh-parsorbitalis
89 ctx-rh-parstriangularis
90 ctx-rh-pericalcarine
91 ctx-rh-postcentral
92 ctx-rh-posteriorcingulate
93 ctx-rh-precentral
94 ctx-rh-precuneus
95 ctx-rh-rostralanteriorcingulate
96 ctx-rh-rostralmiddlefrontal
97 ctx-rh-superiorfrontal
98 ctx-rh-superiorparietal
99 ctx-rh-superiortemporal
100 ctx-rh-supramarginal
101 ctx-rh-frontalpole
102 ctx-rh-temporalpole
103 ctx-rh-transversetemporal
104 ctx-rh-insula

APPENDIX

1. List of brain regions

Table I gives a list of the 104 brain structures.

2. Supplemental figures

a. Coarse graining with averaged connectivity

Figure 10 presents the Wilson-Cowan results for simplified
networks that are a product of a slightly different coarse-
graining procedure; the weights of the links between two

FIG. 10. The same as Fig. 5, but intercommunity connectivity is
defined by taking the average of node weights rather than the sum.
Errors are smaller than symbol sizes. r2 = 0.854 and r2 = 0.662.

communities is defined as the average (rather than the sum) of
the weights of the links connecting the nodes constituting the
two communities. This results in a worsening of the correla-
tions, which suggests that using the sum of weights is the more
conducive method to our goal of producing coarse-grained

FIG. 11. The same as Fig. 5, but for intermediately coarse-
grained networks. Errors are smaller than symbol sizes. r2 = 0.970
and r2 = 0.939.
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networks that are adequately representative of the original
ones.

b. Intermediate coarse graining

Finally, we conducted the same analysis for coarse-grained
networks of intermediate sizes, computed using the same al-
gorithm but terminated before the maximum of modularity is
attained. The results are clearly unchanged in this third scale,
as may be observed in Fig. 11, which is perhaps unsurprising,
but it serves as a sanity check.

c. Shuffled Ising networks

Finally, we computed the Ising critical temperature for
the shuffled coarse-grained networks and compared the re-
sults with one instance of shuffled coarse-grained networks
in Fig. 12, in a similar spirit to the analysis in Fig. 6. It’s
clear that the phenomenon in Fig. 6, where shuffled networks
invariably lie above the biological ones, isn’t present in the

FIG. 12. Same as Fig. 7 (top) but comparing to one instance of
shuffled networks (red).

Ising case, which suggests that such behavior is unique to
global excitability.
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