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Predicting network congestion by extending betweenness centrality to interacting agents
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We present a simple model to predict network activity at the edge level by extending a known approximation
method to compute betweenness centrality with a repulsive mechanism to prevent unphysical densities. By
taking into account the strong interaction effects often observed in real phenomena, we aim to obtain an
improved measure of edge usage during rush hours as traffic congestion patterns emerge in urban networks.
In this approach, the network is iteratively populated by agents following dynamically evolving fastest paths
who are progressively attracted towards uncongested parts of the network as the global traffic volume increases.
Following the transition of the network state from empty to saturated, we study the emergence of congestion and
the progressive disruption of global connectivity due to a relatively small fraction of crowded edges. We assess
the predictive power of our model by comparing the speed distribution against a large experimental data set
for the London area with remarkable results, which also translate into a qualitative similarity of the congestion
maps. Also, percolation analysis confirms the quantitative agreement of the model with the real data for London.
We perform simulations for seven other topologically different cities to obtain the Fisher critical exponent τ

that shows no common functional dependence on the traffic level. The critical exponent γ , studied to assess the
power-law decay of spatial correlation, is found to be inversely proportional to the number of vehicles for both
real and simulated traffic. This simulation approach seems particularly fit to describe qualitative and quantitative
properties of the network loading process, culminating in peak-hour congestion, by using only topological and
geographical network features.
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I. INTRODUCTION

One of the networking metrics that have been used the most
in recent years to analyze network behavior is the betweenness
centrality (BC). This measure of relative importance among
the constituents of a network during a simultaneous peer-to-
peer linkage process originated in the study of relations among
people and abstract ideas [1], but it has been applied with
some success to transportation infrastructures such as airlines,
cargo ships, power grids, and computer networks [2–5]. It
is roughly defined as the total flow passing over each node
of a network when enumerating all origin-destination (OD)
pairs and connecting them via shortest paths. The definition
of BC is easily extended to edges by measuring edge usage
instead of nodes and we will refer to this variant throughout
the paper [6]. A major limitation of standard centrality-based
approaches is that they can often grasp only a limited picture
of a real network under stress [3,5]. This is due to the fact that
they rely on two main assumptions [7,8]: (i) Edge usage has
fixed costs and (ii) unlimited agents can share the transport
infrastructure regardless of physical capacity [9]. Between-
ness centrality and other centrality measures have been used
to predict which edges are subject to the highest traffic de-
mand, but the correlation with simulated or real traffic tends
to vanish in the high-density regime [3] and in the presence
of phenomena that are not explainable just with geographical
or topological features [4]. Edge usage obtained from BC
in fact typically mimics a low-density state of the network
that usually happens with very small (compared to network
geography) or very fast (with respect to congestion buildup
timescales) agents [5].

In this work we aim to improve upon the standard BC by
taking into account the strong interaction effects observed in
real networks, in order to obtain a better measure of edge
congestion. Our method will be developed for urban trans-
portation, using an approach that is easily transferable to
other contexts [10–13]. The limited capacity of transporta-
tion infrastructures was previously considered in Ref. [14],
which focused on the price of anarchy in urban networks,
and in Ref. [15], whose main goal was to develop an accurate
sociodemographic model to generate origin-destination pairs.
Both works implemented very simple traffic models and did
not consider the order of vehicle addition or dynamic fastest
path recalculation.

Urban networks have been widely studied in recent years
[13,16,17], in terms of both their growth over time and their
complex dynamics for different traffic levels. Network sci-
ence has considerably helped to improve our understanding
of cities and to analyze and predict the reaction of the dif-
ferent parts of the network under stress [11]. Such predictive
analyses may be performed by using models depending just
on the geographical and topological features of a city, avoid-
ing experimental traffic data, after careful validation against
observations [18,19]. Urban networks belong to the special
class of (almost) planar graphs [20,21] whose topology is con-
strained by the geographical embedding. This severely hinders
their long-range connectivity and also limits their maximum
node degree [22]. Since the study of node degree distri-
butions alone cannot be expected to significantly improve
our understanding of cities, nonlocal higher-order metrics
such as network centralities have been widely used both for
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theoretical studies and for practical applications with notable
success [1,23].

In this article (Sec. II) we present a method where agents
iteratively populate the network along dynamically evolv-
ing fastest paths. These paths are gradually pushed towards
uncongested areas of the network as global traffic volume
rises. We examine the transition of the network state from
empty to saturated, investigating the emergence of conges-
tion and the gradual disruption of global connectivity caused
by a relatively small fraction of crowded edges. Since it is
still an open question how people plan their routes when
driving in urban networks, but given that a growing frac-
tion of drivers use some form of dynamic routing help, our
moving agents will be modeled as a population of selfish
drivers [14], thus representing any mix of self-driving cars and
humans using real-time traffic information. In this context,
our results (Sec. III) that compare synthetic and real data
show remarkable improvements with respect to standard BC:
Whole network speed distributions agree quantitatively and
spatial patterns of congestion are qualitatively very similar.
The qualitative comparison is supported by an analysis of
how the spatial correlation of congestion decays with distance
(measured as the travel time on an empty network). Perco-
lation analysis also produces compatible results for critical
exponents within different traffic conditions.

II. METHODS

In real urban networks, the average travel time is of the
same order of magnitude as the typical timescale of conges-
tion buildup. The strength of the interaction among vehicles
depends on their local density and on the duration of the
network loading process during rush hour: Slower vehicles
stay on edges longer, so their occurrence probability in a given
road segment during the observation period is larger. Our ap-
proach stems directly from this fact and also takes into account
that peak-hour periods are limited in time, usually lasting
about one hour [16]. This allows estimating the cumulative
traffic seen on the roads during that finite time window. Thus,
we propose a pseudodynamical model taking into account the
contribution to traffic at a road-segment level due to each
vehicle added to the network, by updating travel times at each
step. The approach could in principle be extended to model the
congestion decay that occurs when traffic volume eventually
decreases, by removing vehicles reaching their destinations.

From the vast literature on transportation, we choose one of
the simplest models to describe vehicular behavior depending
on the edge physical properties and on the dynamical net-
work state, the single-regime Greenshields model [21,24], for
which speed starts as free flow on an empty road, decreasing
linearly to zero with maximum density. To complement the
traffic model, we impose a selfish behavior on our vehicles:
They follow the fastest path (not the shortest one) as computed
at the time of leaving their origin node.

A. Interaction model

We simulate the network evolution, as observed by travel-
ers, while the traffic increases from zero up to almost complete
gridlock, signaled by the vanishing probability of adding new

paths not containing congested edges. The traffic network is
modeled as a directed, weighted graph whose edges, identified
by e, represent road segments between adjacent intersections
(nodes) and possess three constant features: physical length
le, maximum speed v∗

e , and number of lanes ce. Nodes are
featureless.

The network traffic grows incrementally by activating one
new path π i at each simulation step i, in order to reach the
desired target value at time T (the end of the simulation).
Thus, i can be interpreted both as the current number of added
paths and as a temporal marker within the sequence of OD
pairs randomly generated for each simulation. This procedure
mimics the well-known method of approximating BC [25].
For simplicity, and to be able to compare results with respect
to the standard BC, traffic will be added uniformly to the
network. It is however straightforward to adapt our procedure
to any OD matrix.

The state of the network at each time step is defined by the
temporal occupancy factors due to all vehicles added so far to
each edge: si

e = ∑i
j=1 σ

j
e . The single-vehicle occupancy σ i

e is
defined as the ratio between the time (crudely approximated)
spent on edge e and T ,

σ i
e = min

(
T i

e

T
, 1

)
, (1)

where T i
e = le

vi
e
, with vi

e following a Greenshields linear law
[26]

vi
e = v∗

e

(
1 − ρ i−1

e

)
, (2)

where

ρ i−1
e = si−1

e L

lece
∈ [0, 1] (3)

is the normalized vehicle density at the previous step, mono-
tonically increasing with i; L is the average space occupied
by one vehicle; and the denominator represents the edge ca-
pacity. A noninteracting system, obtained in the limit L → 0,
approaches the state se as computed with the standard BC.
The approximate time to travel along π i will be the sum over
the edges Tπ i = ∑

e∈π i T i
e . The total occupancy due to a single

vehicle is
∑

e∈π i σ i
e � 1 and will only reach 1 for a path π i

with total traveling time Tπ � T .
In more detail, the state of the network is iteratively ob-

tained [si
e = f (si−1

e )], starting with unused edges (s0
e = 0 and

T 1
e = le

v∗
e
) and according to the following dynamic process.

(i) A pair of OD nodes is chosen, independently and uni-
formly at random, and the fastest path π i connecting the nodes
is computed, given the current travel times T i

e .
(ii) Starting from the origin, we assign the respective shares

of occupancy σ i induced by π i during T , to each edge e ∈ π i:

si
e = si−1

e + σ i
e. (4)

Note that, as soon as the sum along π i of the added T i
e /T

factors reaches 1 (travel time longer than the simulation),
we skip the remaining edges until the destination, to avoid
increasing by more than a unit the vehicle occupancy along
π i.

(iii) The vi+1
e and T i+1

e are updated according to Eqs. (1)
and (2), using the new ρ i

e value.
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(iv) This process is iterated until the target total traffic is
reached.

Intuitively, the occupancy factor induced by a vehicle over
an edge e is proportional to the time the vehicle is supposed
to spend on it (Te/T ), as forecast at its departure, and the sum
over the whole path will be equal to unity (certainty of finding
the vehicle within π during T ) only when Tπ � T . Since the
initial vehicles find a nearly empty network, their fastest paths
and travel times are virtually equivalent to the noninteract-
ing case. With rising traffic, however, edges fill up and the
previous fastest paths will disappear and less-used roads and
residential neighborhoods will be chosen. Some edges will
eventually reach maximum density and become congested. If
the fastest route from the origin to the destination comprises
a congested edge (i.e., the network is disconnected) we still
choose to add the initial part of the path but skip all remaining
edges from the first congested one. This allows us to model the
backward propagation of traffic jams observed at high traffic
volumes [12,27]. The order in which OD pairs are selected
for adding vehicles to the network can lead to different states;
thus multiple replicas of the system are simulated to verify
the stability of the results. Replicas differ in the subset of OD
pairs chosen, but no relevant differences in the average results
were detected just by reshuffling the same subset of ODs.

B. Spatial correlation of congestion

To estimate the degree of spatial correlation of congestion
between edges, we adapt the definition of correlation used in
modeling collective behaviors [28,29]. We define

C(t ) = 1

c0

∑
i j〈ρ∗

i ρ∗
j 〉δ(t − ti j )∑

i j δ(t − ti j )
, (5)

in which ρ∗ can assume the value 0 or 1 whether below or
above the congestion threshold, respectively; ti j represents
the fastest travel time between the two edges on the empty
network; δ is a rectangular window function selecting times
close to ti j ; and c0 is a normalization factor. Angular brackets
refer to the ensemble average over replicas, where replicas
may be independent simulations with different OD pairs or
multiple instances of real traffic states for the same time slot
and weekday. In our analysis, we will disregard the normal-
ization factor c0 since our focus is on the power-law decay
of spatial correlation, described by the γ exponent. We com-
pute our correlations as a function of travel time rather than
distance. Travel time on the empty network, in this context,
is the preferred way to estimate proximity between edges,
because Euclidean distance is known to lead to distortions, as
it disregards connectivity. Moreover, we perform correlation
analysis on raw speed values and not on their fluctuations [27],
as opposed to some previous studies [29,30].

III. RESULTS AND DISCUSSION

In order to validate our approach, we first compare the
traffic properties of a large-scale real-world data set with those
obtained from our interacting network model. We show that,
just by imposing a simplified repulsion mechanism among
vehicle paths, the agreement with real data markedly improves
with respect to the standard BC. The comparison is first

performed between speed distributions over the whole net-
work. Then, by correlating the speeds edge to edge, we
identify the simulated traffic volume V best matching the real
data at peak hours. Since speed depends on road usage (ve-
hicle density), we also compare the congestion map obtained
from BC and from our model against measured data, illustrat-
ing how the proposed method seems to be able to reproduce
realistic congestion states for high-volume traffic situations.
We also compute the spatial correlation for edge congestion
to verify whether the γ critical exponent is comparable to
previous results for different traffic levels. Since another prop-
erty characterizing the network is the cluster-size distribution
during critical percolation, which is known to follow a power
law with exponent τ , we also study its value for increasing
traffic volumes and compare it against the real traffic data set
at different hours.

A. Comparison with real-world measurements

To understand how realistic the results produced by the
present model are, we compare them against a large experi-
mental data set provided by Uber [31]. The data set provides
GPS tracks for taxi fleets in several metropolitan areas, but
only the data for the city of London was used in this work, dis-
carding the others for insufficient sampling. All road networks
were obtained from OpenStreetMap (OSM) [32] by using the
OSMNX library and downloaded in their latest state, except
in the case of London, for which we matched the period of
the recorded real traffic data set. The Uber movement data
set contains data recorded for a high fraction of the street
segments at hourly intervals for several years: We selected the
first six months of 2019 to avoid spurious effects due to the
pandemic. Speed values in the data set are always one-hour
averages from multiple vehicles since single-vehicle data are
not available due to privacy concerns. For our analyses, we
define a speed factor for every edge in the network as the
ratio between the hourly average speed and the maximum
value ever observed in that edge during the whole period.
Since speed data can be sparse especially during low traffic
(see Supplemental Material [33], Fig. S1a) and roads typi-
cally consist of several segments, we also derived a spatially
coarser data set with fewer missing values. This was done
by averaging speed on multiple edges belonging to a single
street at the same time. The use of this coarser data set will be
specified in the results. Throughout the paper, we will focus
on four specific times of the workday: peak hours 8–9 and
17–18 and off-peak hours 10–11 and 22–23. See Fig. S1b in
[33] for the slowdown behavior during the 180 days of the
data set and how workdays differ from the weekend, and how
even Sundays are distinguishable from Saturdays. In Fig. 1 we
compare the speed factor distributions over the whole network
for the selected time slots: The orange curve is associated
with the nocturnal time slot (22 h) and, as expected, it has
the highest average speed and the smallest number of edges
with slowdowns below 40% of the free flow. We choose this
value as a threshold to define congested edges. The morning
off-peak distribution (10 h, cyan) shows a considerably slower
average speed factor than the evening one and it is globally
more similar to the 8 h (blue) and 17 h (red) that are almost
indistinguishable in this respect.
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FIG. 1. Uber speed factor distributions. Shaded areas on the left
highlight congested edges.

B. Urban network selection and simulation details

To complement the comparisons with real data, we select
the vehicular transportation layer of the urban networks of
eight large cities (five in Europe, two in the U.S., and one
in China) and their surroundings from OpenStreetMap. The
cities have been selected to be representative of very different
urban structures, stemming from their different history, ge-
ographic location, and local site features. The radius of the
circle inscribed in each square region is 20 km for all cities
except for Rome and Madrid (12 and 15 km, respectively).
The number of edges of the corresponding graphs goes from
about 1.0 × 105 for Rome to about 5.5 × 105 for London. De-
tailed information concerning OSM road networks is reported
in Table S1 in [33]. The final number of added OD pairs
at the end of each simulation is V = 2.0 × 106, sufficient to
bring all cities to a deeply congested state, as shown in Fig. 3.
The computed vehicular speed on each edge is multiplied by
a small Gaussian noise ξ (μ = 1,σ = 0.1) to reproduce the
intrinsic variability of drivers. All simulations were run with
T = 3600 s.

FIG. 2. Edge-level correlation between real speed data (at 8, 10,
17, and 22 h) and simulated speed for increasing traffic volume for
London.

FIG. 3. Simulation. (a) The fraction of incomplete paths follows
a sigmoidlike curve as traffic load increases. The V ∗ is shown in
the legend for all cities. Each curve is averaged over five replicas.
(b) Fraction of edges removed at each step from city networks.
The area under each curve is the total fraction of dysfunctional
edges.

C. Percolation analysis

Being able to produce synthetic traffic with adjustable
congestion levels, we perform a critical percolation analysis
to check open questions about the fragmentation process un-
der stress: The network graph is pruned at increasing speed
thresholds to locate the phase transition exactly when the size
distribution of the resulting strongly connected subnetworks
follows a power law [34]. The critical exponent associated
with this transition is supposed to depend, in particular con-
ditions, on traffic intensity, as observed for real-world data
sets in large cities such as Beijing [35]. It is also supposed
to show metastability during rush hours [36]. The above per-
colation phase transition is not a property of high congestion
alone; it is an indicator of a change in the network behavior
visible at all traffic levels, but appearing for different speed
thresholds. Within this percolation paradigm, even some of
the free-flowing edges of an almost empty network would
be classified as dysfunctional at criticality [16,34,35]. On the
other hand, when dealing with real traffic congestion, edges
are customarily deemed dysfunctional only with road densi-
ties approaching their physical limit and diverging travel times
[11].
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FIG. 4. Speed factor distribution comparison for the real data set
(at 8 h) and the simulation (at maximum R2).

D. Model approximations

The proposed method has been developed to evaluate the
effects of adding agent interaction on the network while
keeping the model as simple as possible. The known approx-
imations are mainly due to (a) the Greenshields model being
very rough, especially for urban traffic, but its simplicity helps
the explainability of the results; (b) there being no explicit
time evolution as in cellular automata models (e.g., the Nagel-
Schreckenberg model), but a sequence of path additions in a
first come, better served approach; and (c) OD pairs being
uniformly extracted, thus preventing us from fully describing
the known switch of the average traffic direction from the
morning to the evening peak hours [13,37].

E. Comparing the interacting model, BC, and real traffic

We first consider the correlation between the speeds ob-
served in coarse-grained real traffic during the four time slots
and those produced by the simulation for increasing volumes
of traffic. We use ordinary least squares to compute the coef-
ficient of determination R2 (square of the Pearson correlation
coefficient), which quantifies the ratio of explained variance.
In Fig. 2, each correlation curve shows a clear maximum: At
8 h (blue), R2 ∼ 0.23 at about V = 0.5 × 106 vehicles after a
steep growth from lower traffic. After reaching the maximum,
the correlation slowly decays to R2 ∼ 0.2 for very high con-
gestion. For different time slots, the maximum correlation is
lower [e.g., R2 ∼ 0.2 at 10 h (cyan) and 17 h (red), while R2 ∼
0.13 at 22 h (orange)] and happens at lower traffic volumes.
During off-peak time slots R2 (red and orange) also decays
much more for high simulated traffic. These values should be
compared with the highest R2 obtained for standard BC (used
as a load predictor) and real traffic slowdown, which is of the
order of 3 × 10−2. From the same data used for the blue curve
(8 h) in Fig. 2, we extract the whole-graph distributions of the
real and synthetic speeds to show their similarity, at maximum
R2, in Fig. 4.

Figure 3(a) shows how each urban network reacts to in-
creasing levels of traffic: Most cities behave in a similar way
with respect to the fraction of “impossible” paths, i.e., the
ones between OD pairs that can be connected only including

congested edges, with a sigmoidlike curve that visualizes the
progressive network breakup. We refer to the number of ve-
hicles associated with the sigmoid center as the critical traffic
volume V ∗. Los Angeles (orange curve) appears to be more
resistant and its network breaks after adding about 0.7 × 106

vehicles, a fact due in part to the total length of its roads
and to the meshlike topology that produces a strong path
degeneration (multiple options at a similar cost). Las Vegas
(brown), on the other hand, albeit sharing a similar organiza-
tion, is much smaller and collapses together with the rest of
the European cities. Berlin, London, Las Vegas, and Madrid
are the first to fail (traffic volume V ∼ 0.35 × 106), followed
by Beijing, Rome, and Paris, resisting up to V ∼ 0.5 × 106

despite a vastly different total street length within the two
groups.

The traffic volume needed to reach maximum R2 is just
above the value necessary to split into two halves the London
network in the simulation, as visible in Fig. 3: The pink curve
has a small plateau for about V = 0.3 × 106 vehicles when
all bridges on the River Thames become congested, making
it impossible to reach the other side of the city within the
chosen T . Figure 3(b) shows the fraction of edges that become
dysfunctional at each step and highlights the fact that a very
small minority of congested edges can lead to transportation
breakdown: Beijing, Rome, and Madrid remain connected
with a total fraction (area under each curve) of defects much
larger than the other cities. Notably, the two U.S. cities with
meshlike geometry collapse with relatively fewer congested
edges. In Figs. S22 and S23 in [33] we also report detailed
graphs for all cities containing the incomplete path ratio, its
flex location, and the curve of the fraction of removed edges
at each step.

In Fig. 4 the whole-network speed distribution obtained
from our model (at maximum R2) is compared to the real
data set during the morning peak hour; it shows a remarkable
overlap between the two curves and almost identical average
values. The small superimposed peaks are remnants of the
original speed limits on uncongested roads. Figure 5 presents
a set of curves showing how the real data (at 8 h), for all
edges (speed factor, y axis), are connected to the simulated
density (ρ, x axis) at different levels of synthetic traffic: Dark
blue symbols correspond to V ∼ 0.2 × 106 vehicles, light
blue to V ∼ 0.5 × 106, cyan to V ∼ 0.7 × 106, and red to
V ∼ 2.0 × 106. They are a subset of all points shown for the
blue curve in Fig. 2. Open black squares show how poorly the
normalized standard BC correlates with the real speed data
and how our model with very low traffic (dark blue curve)
converges to BC.1

After comparing speed distributions and computing their
correlation levels, we turn to a qualitative comparison between
traffic maps, where each street edge is characterized by a
normalized quantity that can be considered a proxy for con-
gestion: (i) load computed by standard BC, (ii) speed factor

1The x-axis values refer to the center of bins of either density ρ

or standardized BC: Given a specific x value, all edges with ρ (or
standardized BC) within the interval [x − δ, x + δ] are grouped, then
their corresponding Uber speeds are averaged, and the mean value is
plotted on the diagram.
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FIG. 5. Real data set (at 8 h) speed factor dependence on simu-
lated ρ for different levels of traffic load (identified by color). Each
symbol is the average real speed factor for all edges within a ρ bin.
Simulated densities show a correlation for values up to a density of
0.5, whereas the BC is totally uncorrelated after 0.25. For reference,
the open black squares show the normalized standard BC prediction.

from the real data set, and (iii) vehicular density from the
simulations. In Fig. 6 we compare, side by side, the standard
BC, the Uber traffic speed factor during the morning rush
hour, and the vehicular density ρ of simulated traffic for the
central part of London. The standard BC [Fig. 6(a)] badly
underestimates congestion on most edges with respect to the
real network state as shown in Fig. 6(b), except for some
important arteries that are correctly identified. This behavior is
expected since BC does not take into account the interactions
and therefore it is not able to describe the progressive traffic
spillover towards secondary (but still functional) roads. Fig-
ure 6(c) shows that, in our simulations, the traffic volume that
correlates the most with the real data at 8 h is V = 0.5 × 106,
which is approximately 70% above V ∗ (see Fig. 3). Thus, for
the morning peak hour, our model [Fig. 6(c)], qualitatively

and quantitatively, far outperforms the BC at describing real
traffic patterns. The prediction quality breaks down towards
the edges of the simulated area because no transport is sim-
ulated outside of it (full map shown in Fig. S10 in [33]). We
compare the congestion maps obtained from the simulations
for all other cities, for V ∗ and at half volume 1

2V ∗, along
with the BC prediction. The simulation at 1

2V ∗ shows that
in a low interaction scenario, the BC qualitatively resembles
the results of our model, while at higher traffic levels its
pattern is only able to highlight the main roads. It is especially
enlightening to observe the results for Los Angeles and Las
Vegas, which are characterized by a meshlike topology with
a high level of shortest path degeneracy: For low congestion
a few roads attract most of the traffic, which then spills over
to the alternative routes with equivalent lengths for higher V .
The existence of these alternative paths guarantees a higher
network resilience but at the cost of exploiting residential
areas, which have been reported to already be experiencing
a growth in congestion and noise as the use of traffic-aware
automatic route planners becomes widespread among drivers
[38]. Older European cities behave differently since topology
is much more complex and stratified, and residential areas
are more protected than their U.S. counterparts by the ex-
istence of a deeper road hierarchy, able to sustain the effort
during peak hours. All these results are shown in Figs. S2– S9
in [33].

We now turn our attention to the spatial correlation of
congestion for both simulated traffic and real data. In Fig. 7
we show the spatial correlation computed by applying Eq. (5)
on congestion maps such as those depicted in Fig. 6(b) for
Uber data at four time slots, two peak hour and two off-peak
hour. It is clear that the correlation follows a power law until
the exponential tail discussed in Ref. [27] kicks in for long
distances. An interesting result is that the relevant exponent
has two regimes: γ ∼ 0.2 for peak hours and γ ∼ 0.5 for
off-peak periods. This means that congestion decreases much
faster with distance (as usual, measured in travel time on an
empty network) for lighter traffic than for heavier traffic. This
result goes partially against previous findings that detected no
difference in the γ values for different traffic levels [27,30,39].

FIG. 6. Central London congestion maps: (a) normalized standard BC, (b) real data-set inverse speed factor at 8 h, and (c) simulation traffic
density ρ at maximum R2 (with V = 0.5 × 106). Yellow is low road usage and red stands for the 95th percentile for each distribution.
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FIG. 7. London spatial correlation of congestion for all four time
slots using the Uber data. Regressions are performed on the linear
part of the curve and their γ exponents are shown in the legend for
each time slot.

Performing the same analysis on the synthetic data shows a
trend similar to the real data set as shown in Fig. 8: Steep
slopes are associated with low and medium traffic (γ ∼ 0.8
for V ∼ 0.5 × 106) and flatter profiles with highly congested
networks (γ ∼ 0.4 for V ∼ 1.5 × 106). So the simulation is
compatible with the real data for γ in similar traffic scenarios.

The same analysis was performed for all the other cities,
for which the spatial correlations show similar behavior to
what was observed for London: In most cases, γ decreases

FIG. 8. Simulation (London) of the spatial correlation of conges-
tion for increasing traffic load. Linear regressions and the associated
γ exponents are computed for the linear part of the curve and the γ

dependence on traffic level is shown in the inset.

FIG. 9. Simulation (London) of the critical speed factor qc (red)
and critical exponent τ (black) for increasing levels of traffic load.
Multiple points for the same abscissa represent different replicas.
Here τavg is the average over the whole domain for all replicas.

linearly with growing traffic except for Beijing, for which we
see an abrupt regime switch, from γ ∼ 0.4 for V ∼ 0.6 × 106

to a constant γ ∼ 0.2 for higher V . More details about the spa-
tial correlations and the associated cocongestion probabilities
are presented in Figs. S17– S21 in [33].

The last comparison between real and simulated traffic
regards percolation results. Percolation offers an insightful
picture of the weaknesses of the network when consider-
ing speeds above a certain threshold qc before reaching the
maximum capacity of the edges. On the other hand, the
study of the progressive appearance of dysfunctional edges
with increasing traffic volume (as shown in Fig. 3) only fo-
cuses on the way in which more and more paths become
impossible.

For each traffic level, both real and synthetic, we first
compute the critical speed factor qc (details on the percolation
method are given in [33]) at which the size distribution of the
graph-connected components becomes a power law. Once qc

is known, a linear regression produces the τ value. In Fig. 9
we see that τ stays almost constant over the whole range
of simulated traffic volumes and its average value is τavg =
2.09 ± 0.05, a result that agrees with the theoretical value for
isotropically directed graphs of τ ∼ 2.1 [40]. This result is
slightly above the value obtained for real traffic data: τ varies
very little for extremely different congestion states and stays
just below 2.0 as shown in Table I. The critical threshold speed
factor qc for the simulations, on the other hand, decreases from
about qc ∼ 0.8 for no congestion to qc ∼ 0.55 for a saturated
network. These values approximate well what we observe

TABLE I. Critical speeds and critical exponents for cluster size
distribution and for spatial correlation measured at four time slots for
the Uber data set for London.

Time qc τ γ

8–9 0.54 ± 0.05 1.95 ± 0.03 0.21 ± 0.05
10–11 0.58 ± 0.02 1.99 ± 0.03 0.43 ± 0.05
17–18 0.51 ± 0.02 1.96 ± 0.03 0.23 ± 0.05
22–23 0.66 ± 0.01 1.96 ± 0.02 0.63 ± 0.05
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for real traffic: qc ∼ 0.58 (0.66) for off-peak hours and qc ∼
0.54 (0.51) for peak hours, for morning (afternoon) time
slots.

The main result here is that we observe no clear τ depen-
dence on traffic volume for London, for both simulations and
real traffic; moreover, their qc trend shows good agreement.
Most of the other cities have very small τ dependence on
traffic volume and its average value agrees with the theoretical
prediction of τ ∼ 2.1 with two notable exceptions: (i) Los An-
geles starts from τ ∼ 2.15 for low traffic but rises to τ ∼ 2.2
for high V and (2) Beijing, on the other hand, has a baseline
τ ∼ 2.0 but has at least one clear peak occurring for low
to medium traffic volumes with τ ∼ 2.3 for all replicas. For
Beijing, qc confirms this anomaly with a clear dip at the same
traffic volume. This could be related to the previous results of
Ref. [35] in which a switch for τ was observed between peak
hours and off-peak time slots with values similar to ours. This
result needs further analysis, but it would be very interesting
if such a dynamical effect could be predicted just by starting
from city maps. Berlin showed another interesting behavior:
τ starts with a relatively high value of approximately 2.1 up
to V ∼ 0.5 × 106, where it clearly drops to τ ∼ 2.0 and then
stabilizes to approximately 2.05 afterward. This dip in τ is
also visible for qc and is associated with a strong increase in
replica variability. See Figs. S11–S14 in [33] for the detailed
graphs of all cities.

IV. CONCLUSION

In this work we introduced a simple model to predict
network activity at the edge level. Our method is inspired by
a known and intuitive method to approximate BC, but also
introduces a repulsive term preventing unphysical densities.
This approach leads to dynamically evolving fastest paths,
which are progressively attracted towards uncongested parts
of the network, as the total traffic volume increases. This
simulation scheme is particularly fit to describe the network
loading phase leading to peak congestion.

We extensively compared our predictions for the Greater
London area to massive measured data of real traffic speeds,
finding notable agreement in particular for speed distributions
over the whole network at specific time slots. The qualitative
accord for congestion maps is confirmed by edge-level speed
correlation. The simulations show that our model is able to
grasp important structural properties of real urban traffic, as
confirmed by a coherent trend in the spatial correlation behav-
ior of congested edges and the associated critical exponent,
with respect to traffic volume. Encouraged by these results, we
finally applied percolation analysis to real and synthetic traffic
by comparing the Fisher exponent values, at different times,
associated with network fragmentation under load, finding
very good agreement. Synthetic experiments were carried out
on a variety of different road networks for several kinds of
cities.

Despite not trying to accurately simulate vehicular traffic
in the urban context and explicitly choosing a very coarse
vehicular model, the result is a usable tool to quickly compare
different city organizations both for testing theoretical ideas
and for getting useful glimpses of the main breakup modes
of urban networks. Also note that, even though we decided
to apply our method to predict congestion patterns typical of
urban vehicular traffic, it is expected that other transport phe-
nomena involving agent competition for network resources
could be approached in a similar way. In particular, we expect
that analyses where BC has provided important insights, such
as those on power grids, the internet backbone, air travel, and
maritime cargo shipping [2–5], might benefit from our refined
approach.
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