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Multiple resonance in coupled Duffing oscillators and nonlinear normal modes
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The resonance of N linearly coupled damped Duffing oscillators with a constant frequency sinusoidal driving
force acting on the first oscillator is studied analytically by calculating the fixed points of the corresponding
dynamical system and numerically using a fourth-order multivariate Runge-Kutta method. For a chain with
N oscillators, we establish a general recursion scheme in the form of a system of equations that relates the
amplitudes of the oscillators and the driving frequency, capable of describing resonance curves. We consider in
detail the case of an oscillator chain with N = 2 for high values of the driving amplitude and stiffness, and find
hysteretical unstable regions in the resonance curves. In this unstable driving frequency regime, analysis of the
time series reveals the presence of nonlinear normal modes visible as beating quasiperiodic oscillations.
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I. INTRODUCTION

Linear dynamics started as a branch of physics that stud-
ied problems such as planetary motion, but with the need to
describe more complex systems, e.g., Newton’s three-body
problem, this field evolved to an interdisciplinary subject that
incorporates more sophisticated concepts, such as nonlinear
oscillations, fractals, turbulence, and chaos [1]. Most of these
concepts are tied to differential equations and techniques
to obtain information about the system from them, such as
Poincaré maps, bifurcation diagrams, phase space portraits,
Lyapunov exponents, etc. [1–3]. One popular example that
exhibits a broad variety of dynamical behaviors is the Duffing
equation, which describes an oscillator with a cubic nonlin-
earity related to the stiffness of the system [4,5]. Nonlinear
oscillations can be characterized with the aid of the Duffing
equation, describing a plethora of oscillating systems in nature
and allowing practical applications, such as in metamateri-
als [6,7], pure-electron plasmas [8], turbomachinery blades
[9], magnetically driven oscillations [10], micromechanical
devices [11], vibrations in carbon nanotubes [12], nonlinear
vibration energy harvesting [13], signal detection [14], and
oscillations in beams and nanobeams [15,16]. In particular,
coupled oscillators under the influence of injection and energy
dissipation produce complex dynamics that resemble the be-
havior of flexible structures with local stiffness nonlinearities
[17], such as synchronization, spatiotemporal intermittency,
defects and/or phase turbulence, defect-mediated turbulence,
chimera states, and others [18,19].

The characterization and identification of nonlinear
systems is still a new field in development. Techniques like
nonlinear system identification (NSI) and reduced order mod-
eling (ROM) have been proposed [20,21], however, they could
be limited for some applications [17]. One way to interpret
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a wide class of nonlinear dynamical phenomena is through
the analysis of its nonlinear normal modes (NNMs) [22,23].
NNMs are described with different approaches defining
them as an extension of linear normal modes (LNMs) through
limiting phase trajectories, modal lines, or invariant manifolds
in the phase space [6,9,12,22,24–28]. In this work we will
follow the definition of NNMs provided by Haller et al. [24],
where a NNM is defined as a set filled with small-amplitude
recurrent motions such as a fixed point, a periodic orbit, or
the closure of a quasiperiodic orbit. Unlike when a system is
near resonance with LNMs, under NNMs the motion is not
necessarily synchronous but still periodic or quasiperiodic.

We study a chain of N linearly coupled damped Duffing
oscillators with a sinusoidal driving force acting on the first
oscillator through analytical and numerical methods. This sys-
tem resembles the oscillation of a cantilever beam by adding
a nonlinear stiffness element [17]. Also, it has been imple-
mented by an analog electronic circuit simulation when N =
2, obtaining resonance curves that follow the theory prediction
[29]. We develop an analytical general solution for this system
based on a recursion formula obtained from solving the fixed
point equations. In addition, we explore the effects of large
values of stiffness and amplitudes in the resonance curves
of a chain of two oscillators which produces hysteresis and
significant distortions in the second peak of resonance of both
oscillators.

For N = 2 oscillators, we identify NNMs in the form of
quasi-periodic beating responses in the time series at forc-
ing frequencies corresponding to the hysteretic regions of
the resonance curve. Notably, even with just two linearly
coupled Duffing oscillators, the obtained NNMs’ behavior
in the amplitude time series is similar to what has already
been reported and characterized for a linear cantilever beam
attached to ground through a strongly nonlinear stiffness at
its free boundary [17], premixed flames [30], and a ring
of Duffing oscillators [31], which show strongly nonlinear
beats that resemble our results. In this work, we focus on
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describing NNMs of the beating response by analyzing the
structure in the Fourier spectrum of the time series, where
we have identified a closure of a multifrequency response that
follows Eq. (8).

This report is divided into two fundamental parts: the
calculation of the resonance curves (Secs. II and III) and
the consequent study of the beating response related to
NNMs (Sec. IV) analyzing the time series, Poincaré maps,
phase space (xi, ẋi), and the configuration space (xi, x j) [1].
The last three tools are widely used in the study of tra-
jectories of orbiting objects such as asteroids, planets, and
spacecraft [32–34].

II. ANALYTICAL STUDY OF N LINEARLY COUPLED
DUFFING OSCILLATORS

The Duffing equation follows the same structure as the
harmonic oscillator adding a cubic term multiplied by a non-
linear coefficient γ , generally related to the system’s stiffness
[5]. By including an external sinusoidal driving force F at
a fixed frequency �, a damping term ζ , and with a natural
frequency of the underlying linear oscillator ω2

0, the Duffing
equation takes the form

ẍ + ζ ẋ + ω2
0x + γ x3 = F cos �t . (1)

This system is generalized to N linearly coupled oscillators by
including a linear coupling term δ, and by applying a driving
force only to the first oscillator, resulting in the following
system of equations

ẍ1 + ζ ẋ1 + ω2
0x1 + γ x3

1 + δ(x1 − x2) = F cos �t

ẍ2 + ζ ẋ2 + ω2
0x2 + γ x3

2 + δ(x2 − x1)

+ δ(x2 − x3) = 0

...

ẍi + ζ ẋi + ω2
0xi + γ x3

i + δ(xi − xi−1)

+ δ(xi − xi+1) = 0

...

ẍN + ζ ẋN + ω2
0xN + γ x3

N + δ(xN − xN−1) = 0 (2)

For two oscillators the set of equations reduces to

ẍ1 + ζ ẋ1 + ω2
0x1 + γ x3

1 + δ(x1 − x2) = F cos �t

ẍ2 + ζ ẋ2 + ω2
0x2 + γ x3

2 + δ(x2 − x1) = 0. (3)

Then, by applying perturbation theory at multiple timescales
in the long-time stationary regime [5,28,35], we use a solution
of the form xi(t ) = Ai(t ) cos[�t − θi(t )], allowing to define
the following dynamical system

Ȧ1 = −ζA1

2
+ δA2

2�
sin(θ1 − θ2) + F

2�
sin θ1

Ȧ2 = −ζA2

2
− δA1

2�
sin(θ1 − θ2). (4)

The solution of this system at fixed points gives its
resonance curves. But it can also be solved numerically,
allowing us to observe the system’s behavior through phase
portraits, Poincaré maps, configuration space projections,

and time series with their corresponding Fourier transforms
[1]. From Eq. (4) a relation between amplitudes Ai and the
forcing frequency � is obtained with the use of the fixed-point
equations (Ȧ1 = Ȧ2 = 0):

A2
1

(
ζ 2�2 + u2

1

) + A2
2(δ2 + 2ζ 2�2) − 2A2

2u1u2 = F 2

A2
2

(
u2

2 + ζ 2�2
) − δ2A2

1 = 0, (5)

where ui ≡ ω2
0 − �2 + δ + 3

4γ A2
i [29]. In the next section,

an algebraic procedure to solve this system of equations is
thoroughly described.

In an analogous way, the system of three, four, and five
oscillators is solved, which gives the sets of Eqs. (B1), (B2),
and (B3) respectively in Appendix B. These sets of equa-
tions follow a pattern that allows us to establish a recursion
formula that serves as an analytical solution to N–coupled
oscillators that relates the amplitudes of the oscillators with
the forcing frequency as the following system of equations

N∑
i=k+2

A2
i [2ζ 2�2 + (−1)i−k2ukui] − δ2A2

k−1 + A2
k

(
ζ 2�2 + u2

k

)
+ A2

k+1(δ2 + 2ζ 2�2 − 2ukuk+1) = 0, (6)

where k = 1, · · · , N is an index that corresponds to the num-
ber of the equation in the system, A2

0 = F 2/δ2, and Ai = 0
when i > N .

Solving these equations is not an easy task, since they are
in the form of a high-order polynomial, i.e., for a chain of
two oscillators they result in a ninth-order polynomial, for
three oscillators in a twenty-seventh order polynomial, etc.
Therefore, numerical methods are needed to complement this
analytical approach. For a chain of two oscillators, the set
of Eqs. (5), could be solved with numerical methods such
as the multivariate Newton-Raphson (NR) [36], or the eigen-
value decomposition method [37]. However, for more than
two oscillators, the intrinsic instabilities of the method cause
it to diverge. This limitation could be overcome by applying a
suitable numerical method to find the root of high-order poly-
nomials, but such a study is outside the scope of this report.

III. RESONANCE CURVES OF TWO LINEARLY
COUPLED DUFFING OSCILLATORS

In this section, we study in detail the behavior of the res-
onance curves for a chain of two oscillators as a function of
driving frequency, strength, stiffness, and damping. This has
previously been studied [29] by applying the NR method to
Eqs. (5). In that work, the authors considered the resonance
curves for small/intermediate values of stiffness γ and driving
force strength F , which are too small to observe large distor-
tions in the second resonance peak. In contrast, here we focus
on large values of γ and F , and discover large, previously
missed distortions. Interestingly, such distorted unstable re-
gions are related to a beating response associated with NNMs,
as shown in the following section.

To solve Eqs. (5) for the oscillators’ amplitudes Ai as
a function of the other parameters, we first find A1 as a
function of A2 from the second equation in Eqs. (5). Then,
we substitute it in the first equation, which gives an explicit
ninth-order polynomial in A2. Details on this calculation and
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FIG. 1. Appearance of hysteresis. Resonance curves of the first
oscillator with amplitude Q1 and fixed parameters ω2

0 = 1, ζ = 0.1,
δ = 1. (a) Varying γ and � at fixed F = 0.1. (b) Varying F and � at
fixed γ = 0.1.

the polynomial coefficients are shown in Appendix A. This
allows us to use the eigenvalue decomposition method to find
the roots of this polynomial, i.e., A2, and subsequently, obtain
A1 from the second equation. Then, we introduce scaled
variables Qi ≡ Ai/F .

Thus, having obtained the oscillators’ scaled amplitudes as
a function of system parameters, we now plot the resonance
curves in Figs. 1 and 2, which show the amplitude of the
corresponding oscillator Qi as a function of the stiffness γ

and driving frequency � at fixed driving force strength F in
panel (a), and as a function of the driving force strength F and
driving frequency � at fixed stiffness γ in panel (b). As γ and
F increase [in panel (a) and (b), respectively] we observe the
appearance of hysteresis in the resonance curves, i.e., regions
with multiple solutions for Qi. The presence of multivalued
regions implies the existence of multiple root solutions to the
polynomial equation that has to be properly taken into account
in the chosen numerical method, as explained in Appendix C.

In Figs. 1 and 2 there are two peaks associated with
resonances, as observed in the case of two coupled linear

FIG. 2. Appearance of hysteresis. Resonance curves of the sec-
ond oscillator with amplitude Q2 and fixed parameters ω2

0 = 1, ζ =
0.1, δ = 1. (a) Varying γ and � at fixed F = 0.1. (b) Varying F and
� at fixed γ = 0.1.

oscillators, but here with the characteristic hysteretic bending
known to occur for the Duffing oscillator [5]. For low values
of stiffness γ at fixed F = 0.1 these curves have previously
been obtained in Ref. [29]. However, when F and γ increase,
more complex structures than just the bending of the peaks
appear. For large values of γ we observe in Q1 a fold bifur-
cation [15], which indicates a stability change for the periodic
solutions resulting from the system’s hardening behavior [38].
Fold bifurcations are characteristic of nonlinear systems; in
particular, they relate to NNMs and quasiperiodic solutions of
the system [6,15,28,38]. In these hysteresis regions, there is
the coexistence of stable and unstable points in the system,
detailed in Fig. 9 of Appendix C.

We compare the resonance curves of this analytic approach
with solving the differential Eqs. (3) numerically, where hys-
teresis also arises, as pictured in Fig. 10 of Appendix D. To
solve this system numerically we implement a fourth-order
vectorial Runge-Kutta method (RK4) [39]. As these numer-
ical calculations also present hysteresis in some regions of
the resonance peaks, we solve the differential equations by
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both increasing and decreasing continuously �, which gives
different results in the hysteretic region of the resonance peaks
due to their sensitivity to the initial conditions.

In general, the theoretical and numerical resonance curves
show good agreement. Still, in multivalued regions some am-
plitude values cannot be obtained by the chosen numerical
approach, demonstrating the benefit of using the recursion
relation along with the eigenvalue decomposition method.
These hysteretic regions are of great interest, especially
around the second resonance peak, where the system exhibits
a quasiperiodic beating-oscillation response to perturbations
which we analyze next.

IV. BEATING OSCILLATIONS AND NONLINEAR
NORMAL MODES IN A CHAIN OF TWO OSCILLATORS

Next, we study the response of the system to amplitude per-
turbations in the unstable region around the second resonance
peak. We find a stationary quasiperiodic beating oscillation
in the time series of the oscillator coordinates. We analyze
these patterns in the time domain, and in terms of their Fourier
spectrum.

We demonstrate that they correspond to NNMs in the
following definition [24]: For a general mechanical system
described by x = (q, q̇), and the equations of motion

ẋ = Ax + f0(x) + ε f1(x,�t ; ε),

f0(x) = O(|x2|); 0 � ε � 1, (7)

a NNM is defined as the closure of a multifrequency solution

x(t ) =
∞∑

|m|=1

xmei〈m,�〉t , m ∈ N f , � ∈ R f (8)

of the nonlinear system in Eq. (7), where f ∈ N is the number
of frequencies, the vector m is a multi-index of non-negative
integers, and xm ∈ Cn are the complex Fourier amplitudes
of the real solution x(t ) with respect to frequencies in the
frequency vector � = (�1, . . . , � f ).

In addition, we inspect the correspondent phase-space and
Poincaré maps, which are suitable techniques to characterize
quasiperiodic oscillations [40].

A. Time series and Fourier spectra

For large values of stiffness γ at characteristic driving
frequencies � in the unstable region of the second resonance
peak, the system oscillates showing quasiperiodic beating re-
sponses in the position-time series that are sensitive to the
initial conditions. This sensitivity is particularly pronounced
for initial conditions with amplitudes slightly larger than the
resonance curve’s amplitudes. Figure 3 shows the position (xi)
time series of both oscillators and the corresponding Fourier
spectrum for different large values of γ . This quasiperiodic
beating is associated with NNMs and it is similar to what
has been already characterized for a linear cantilever beam
attached to ground through a strongly nonlinear stiffness at
its free boundary [17]. We confirm the presence of NNMs
by calculating the Fourier transform of the time series, which
shows clusters of frequencies that are described by Eq. (8).
This means that these clusters are related to a closure of a

FIG. 3. Beat response in the system’s time series, and clusters
of frequencies in Fourier space. Time series (left) and Fourier trans-
form (right). Parameters: ω2

0 = 1, ζ = 0.1, δ = 1, F = 0.1; initial
conditions: x1,2(0) = 0.3, ẋ1,2(0) = 0. Frequencies: � = 1.97 (γ =
20), � = 2 (γ = 30), � = 2.1 (γ = 50, 60) from top to bottom
row. The line lin-log (see text) has been scaled by a 2 factor to
emphasize the correspondence between slopes.

multifrequency solution of the system, following the already
stated definition of NNMs [24]. Figure 3 focuses on only one
cluster of frequencies, but the Fourier spectrum can have more
than one cluster of frequencies which amplitudes decrease by
an order of magnitude or more from cluster to cluster when ω

increases, as portrayed in Fig. 4. Although secondary clusters
have a significantly smaller amplitude, they still contribute to
the time series, thus, these beating responses are associated
with a single NNM or a combination of several NNMs.

Now, we consider in greater detail a specific characteristic
value of stiffness γ , i.e., γ = 30, which is above the transition
from stable resonance to unstable hysteretic resonance, shown
in the second row of Fig. 3. The right panel shows a cluster
of Fourier amplitude peaks that decay exponentially from a
central peak, highlighted with green points. Performing an
exponential fit to these points gives the lin-log line shown in
Fig. 3, which has the form

x̂max ∼ exp[− ln(8)(ωmax − �)],

where ωmax − � 	 0.0125 k, k = 0, 1, · · · , 12 (R2 ≈ 0.99).
This exponential decay of the Fourier components suggests

the following (approximate) expression for the time series as
an expansion around the main maximum (k = 0)

x = a−N ei(�−N ν)t + · · · + a−2ei(�−2ν)t

+ a−1ei(�−ν)t + ei�t + a−1ei(�+ν)t

+ a−2ei(�+2ν)t + · · · + a−N ei(�+N ν)t , (9)
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FIG. 4. Multiple clusters of frequencies in Fourier space. De-
tailed Fourier spectrum of time series shown for γ = 30 over a wider
range of frequencies ω (c.f. Fig. 3). A main cluster of frequencies
is identified for ω ∼ 2, and two secondary clusters as ω increases
around ω ∼ 6 and ω ∼ 10. The amplitude of each cluster reduces
about an order of magnitude as ω increases from cluster to cluster.

where N is the number of subsequent peaks from one side of
the central maximum in the cluster.

Thus, the oscillations of the system can be written as

x =Re[ei�t (a−N e−N iνt + · · · + a−2e−2iνt + a−1e−iνt

+ 1 + a−1eiνt + a−2e2νt + · · · + aN e−N iνt )], (10)

x = cos(�t )

[
1 + 2

N∑
k=1

a−k cos(kνt )

]
. (11)

The series in Eq. (11) is an approximation of the numerical
complex-beat result taking into account just the first cluster of
frequencies, e.g., the clusters in the Fourier spectrum shown
in Fig. 3. This expression reproduces the beating responses
seen in the full time series arising from clusters of frequencies
as we demonstrate in Fig. 5. There, we compare two different

FIG. 5. Approximation of beating NNMs. Theoretical time series
(left) and Fourier transform (right) obtained from Eq. (11). Parame-
ters: N = 2, ν = 0.02, a = 10 in black and N = 12, ν = 0.0125,
a = 8 in red.

values of N . When N = 12 (in red) the Fourier spectrum has
a cluster of twenty-five frequency peaks, and by following
Eq. (8) the system has dimension f = 12. Similarly, when
N = 2 (in black) the system has a smaller cluster with three
peaks with dimension f = 3. The time series of these two
examples show how the envelope of the beat increases in
frequency as N increases.

B. Phase space and Poincaré maps

Here we explore the characteristics of the system that
emerge from the study of its Poincaré maps, phase space
(xi, ẋi), and the configuration space (xi, x j) when it is beating
with NNMs.

The two-dimensional (2D) phase space is one good exam-
ple of them, which is commonly used to describe the states of
the system. When γ = 30 we can predict that the first oscil-
lator in our chain will behave similarly to a single forced and
damped Duffing oscillator by looking at their 2D phase space,
which both show a similar limit cycle [5], portrayed in Fig. 11
of Appendix E. However, we obtain more information about
the system by looking at three-dimensional (3D) projections
of the phase space. Figure 6 shows two 3D projections of
the phase space using the same parameters as in Fig. 3 when
γ = 30 for both oscillators, shown in panels (a) and (b). Both
panels present a similar behavior, they show a folded tori,
which is characteristic of quasiperiodic trajectories. When a
system presents quasiperiodic oscillations, its characteristic
frequencies are incommensurate to each other, causing the
phase trajectory to return close but never to the exact same
point, thus, evolving along the surface of an invariant torus
[30]. Specifically, these tori families are associated with quasi-
halo and Lissajous orbits [33,34]. The unaligned lines arise
from the transient response of the system. Poincaré maps
are a useful tool when dealing with long or high-dimensional
phase space trajectories, i.e., they focus on the behavior of
the system at specific moments in time without needing to
track the full trajectory of the system [1]. Figure 7 displays
the Poincaré section of the time series in Fig. 3 for γ = 30, it
shows a curve that self-intersects, which represents the folding
of the tori previously shown in Fig. 6. We also note that the
sections in Fig. 7 resemble the attractors obtained in a chain
of two damped and forced Duffing oscillators with different
potentials [26]. This is another feature of quasiperiodic orbits,
which are usually represented by single or multiple closed
curves [30] that represent cross-sections of the toroidal attrac-
tors [33,41]. The sparse points represent the transient response
of the system.

Another way to observe the system’s behavior is through
2D and 3D projections of the configuration space, where the
trajectories of each oscillator are compared. Configuration
spaces are popular for predicting the orbits of space objects
[32] because they map the position of each object to another.
Figure 8 shows a 2D projection of the configuration space of
both oscillators. The black lines correspond to the vertical
projection of any of the tori in Fig. 6, while the different
strips correspond to representative Poincaré sections of the
positions with different initial points t0. This configuration
space follows the same parameters as in Fig. 6. It shows how
the amplitude of the oscillators relate to each other, and it
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FIG. 6. Quasiperiodic trajectories folded tori. 3D projections of
the phase-space coordinates for the same parameters as the time
series shown in Fig. 3 for γ = 30, (a) including the velocity of
the first oscillator (ẋ1), and (b) including the velocity of the second
oscillator (ẋ2).

is just another way to display the system’s dynamics. For
example, a vertical line at x1 = 0 will show all the possible
amplitudes of the second oscillator when the first one is at the
position of equilibrium. Another analogous example happens
for a horizontal line at x2 = 0.

V. CONCLUSIONS

In this work we considered a paradigmatic nonlinear
dynamical system in the form of a chain of N linearly

FIG. 7. Poincaré section displaying closed curves. Poincaré map
corresponding to results in Fig. 3 for γ = 30. These self-intersecting
patterns represent the folding of the tori in phase space.

coupled damped Duffing oscillators with a periodic driving
force acting on the first oscillator, using two complemen-
tary approaches, e.g., time-series analysis and phase-space
portraits.

Using an analytical approach we found algebraic equa-
tions that give a general solution of the N oscillator chain,
which allow us to obtain the resonance curves of the system.

FIG. 8. Configuration space, 2D projection of any of the folded
tori in Fig. 6. The strips correspond to Poincaré sections for the same
variables taken with different initial points.
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However, this approach presents a numerical challenge that
still needs to be solved, as it requires obtaining the roots of
polynomials of an order that rapidly increases with the number
of oscillators N .

We then studied in detail the case of two oscillators for
large values of stiffness γ and driving force amplitude F .
We first analyzed the resulting resonance curves: As γ or F
increased, the resonance curves showed large deformations
on the second resonance peak and a bending (Duffing-type)
on the first resonance peak. Both peaks presented hysteresis
when approached with numerical methods.

While studying these resonance curves, specifically the
unstable region close to the second resonant peak, the sys-
tem presented nonlinear beating responses in the stationary
regime for different large values of γ . Our analysis demon-
strates the presence of NNMs by inspecting the Fourier
spectrum of the nonlinear beating responses in the time se-
ries, where we identified clusters of frequencies that relate
directly with quasiperiodic NNMs [24]. We characterized
these clusters and chose one as a sample (γ = 30) to apply
the NNMs definition and successfully reproduced a beating
response.

Besides inspecting the system’s time series, quasiperiodic
oscillations can be described by the system’s phase space
and Poincaré map. We calculated the phase space of the
beating response, which showed folded toroidal structures
which are characteristic of quasiperiodic oscillations. Also,
we inspected the Poincaré maps which showed closed curves
that are another characteristic of quasiperiodic oscillations
and represent cross-sections of the folded tori. We conclude
that by increasing the nonlinearity of the system, i.e., for
large stiffness (γ ) values, this system can produce beating
quasiperiodic oscillations, which are characteristic of NNMs.
Nonbeating responses in phase space will just have plane-limit
cycles (periodic oscillations), but not nonplanar structures.
This shows that beating oscillations related to NNMs can
also be described by their quasiperiodicity through tradi-
tional techniques such as by inspecting the phase space and
Poincaré maps.

Remarkably, all these complex features of the dynamics
already appear for just two coupled oscillators, demonstrating
the richness of nonlinear coupled systems. Our work points to
some open questions for future investigation: Do the observed
beating response and NNMs relate to the number of oscillators
in the chain? And if they are related, how does the number of
oscillators affect the response of the system in the unstable
region of their resonance curves? Once this relation has been
established, the problem of several discrete coupled Duffing
oscillators and their approximation to a continuum would be
an interesting problem to explore that might help model one-
dimensional stiff systems like a cable or a bar.
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APPENDIX A: AMPLITUDE CALCULATION
FOR TWO OSCILLATORS

Using the second equation in Eqs. (5) of the main
manuscript, we establish a relation between the amplitudes of
both oscillators:

A1 = A2
u2

2 + ζ 2�2

δ2
. (A1)

By substituting this expression in the first equation of Eqs. (5),
and recalling that ui ≡ ω2

0 − �2 + δ + 3
4γ A2

i , we find a poly-
nomial equation of the form

9∑
i=0

piA
i
2 = 0, (A2)

with the following coefficients pi:

p9 = b1a2
1,

p8 = 2b1a1a2 + b2a2
1,

p7 = b1
(
2a1a3 + a2

2

) + 2b2a1a2 + b3a2
1,

p6 = b1(2a1a0 + 2a2a3) + b2
(
2a1a3 + a2

2

) + 2b3a1a2,

p5 = b1
(
2a2a0 + a2

3

) + b2(2a1a0 + 2a2a3)

+ b3
(
2a1a3 + a2

2

) − 3
2γ a1,

p4 = 2b1a3a0 + b2
(
2a2a0 + a2

3

)
+ b3(2a1a0 + 2a2a3) − 3

2γ a2 − 2a0a1,

p3 = b1
(
a2

0 + ζ 2(�2) + 2b2a3a0

+ b3
(
2a2a0 + a2

3

) − 3
2γ a3 − 2a0a2,

p2 = b2
(
a2

0 + ζ 2�2
) + 2b3a3a0 − 3

2γ a0 − 2a0a3,

p1 = b3
(
a2

0 + ζ 2�2
) + 2ζ 2�2 + δ2 − 2a2

0,

p0 = −F 2,

where the supporting constants ai and bi are

a0 = ω2
0 − �2 + δ,

a1 = 27γ 3

64δ2
,

a2 = 9γ 2a0

8δ2
,

a3 = 3γ a2
0 + 3γ ζ 2�2

4δ2
,

b1 = 9γ 2

16δ2
,

b2 = 3γ a0

2δ2
,

b3 = ζ 2�2 + a2
0

δ2
.
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APPENDIX B: AMPLITUDE-FREQUENCY SYSTEM
OF EQUATIONS FOR THREE, FOUR,

AND FIVE OSCILLATORS

Analogously as we obtained the system of Eqs. (5) in the
main manuscript, we apply the perturbation theory at multiple
timescales in the long-time stationary regime to obtain fixed
points of the dynamical system that results in the system of
Eqs. (B1), (B2), and (B3) which relate amplitudes and forc-
ing frequencies for chains of three, four, and five oscillators
respectively.

− F 2 + A2
1

(
ζ 2�2 + u2

1

) + A2
2(δ2 + 2ζ 2�2 − 2u2u1)

+ A2
3(2ζ 2�2 + 2u3u1) = 0

− δ2A2
1 + A2

2

(
ζ 2�2 + u2

2

) + A2
3(2ζ 2�2 − 2u3u2 + δ2) = 0

A2
3

(
ζ 2�2 + u2

3

) − δ2A2
2 = 0. (B1)

− F 2 + A2
1

(
ζ 2�2 + u2

1

) + A2
2(δ2 + 2ζ 2�2 − 2u1u2)

+ A2
3(2ζ 2�2 + 2u1u3) + A2

4(2ζ 2�2 + 2u1u4) = 0

− δ2A2
1 + A2

2

(
ζ 2�2 + u2

2

) + A2
3(δ2 + 2ζ 2�2 − 2u2u3)

+ A2
4(2ζ 2�2 + 2u2u4) = 0

− δ2A2
2 + A2

3

(
ζ 2�2 + u2

3

) + A2
4(δ2 + 2ζ 2�2 − 2u3u4) = 0

− δ2A2
3 + A2

4

(
d2�2 + u2

4

) = 0. (B2)

− F 2 + A2
1

(
ζ 2�2 + u2

1

) + A2
2(δ2 + 2ζ 2�2 − 2u1u2)

+ A2
3(2ζ 2�2 + 2u1u3) + A2

4(2ζ 2�2 + 2u1u4)

+ A2
5(2ζ 2�2 + 2u1u5) = 0

− δ2A2
1 + A2

2

(
ζ 2�2 + u2

2

) + A2
3(δ2 + 2ζ 2�2 − 2u2u3)

+ A2
4(2ζ 2�2 + 2u2u4) + A2

5(2ζ 2�2 − 2u2u5) = 0

− δ2A2
2 + A2

3

(
ζ 2�2 + u2

3

) + A2
4(δ2 + 2ζ 2�2 − 2u3u4)

+ A2
5(2ζ 2�2 + 2u1u5) = 0

− δ2A2
3 + A2

4

(
ζ 2�2 + u2

4

) + A2
5(δ2 + 2ζ 2�2 − 2u4u5) = 0

− δ2A2
4 + A2

5

(
ζ 2�2 + u2

5

) = 0. (B3)

As we increase N from 2 to 5, these sets of equations follow a
pattern that allows us to establish a general recursion formula
capable of reproducing all of these sets of equations. This
formula is presented in Eq. (6) and discussed in the main
work.

APPENDIX C: STABILITY IN THE RESONANCE CURVES

The stability in the hysteretical regions is an interesting
characteristic of the system. By solving the Eqs. (5) using
the eigenvalue decomposition method we find all the root
solutions of the polynomial. Then, we identify stable and
unstable regions by studying the system’s eigenvalues in each
region [1]. The solid lines in Fig. 9 represent the solution of
the polynomial using the eigenvalue decomposition method;
the black lines show the stable roots while the red lines show
the unstable roots.

FIG. 9. Theoretical resonance curves for both oscillators’ ampli-
tudes (Ai), comparing the NR (markers) and eigenvalue decomposi-
tion (solid line) methods. The first oscillator is on top. Parameters
used: ω2

0 = 1, ζ = 0.1, δ = 1, γ = 20 and F = 0.1. The forward
and backward labels refer to applying the NR method increasing and
decreasing � respectively.

The limitation of some numerical methods such as the NR
method arises in unstable regions. For example, in Fig. 9
we employ the NR method either by increasing (forward,
white square markers) or decreasing (backward, green dia-
mond markers) the driving frequency �. We notice jumps
up or down at different curve points, but the NR method
always avoids unstable branches following the closest stable
amplitude accordingly.

APPENDIX D: COMPARISON BETWEEN ANALYTICAL
AND NUMERICAL RESONANCE CURVES

Here we contrast the numerical and theoretical resonance
curves for N = 2 oscillators, obtaining Fig. 10. The theoret-
ical results follow Eqs. (5) as explained in Sec. III of the
main work. We employ a fourth-order vectorial Runge-Kutta
method (RK4) for the numerical results. Since this differential
equation solver method only gives one result at a time, we
decided to apply it while increasing and decreasing the value
of � to confirm the presence of hysteresis. Although the
numerical results do not explore all the unstable regions that
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FIG. 10. Comparison between the numerical and theoretical
resonance curves for both oscillators’ scaled amplitudes Qi. The
first oscillator is on top. Parameters used: ω2

0 = 1, ζ = 0.1, δ =
1, γ = 30 and F = 0.1. The forward and backward labels re-
fer to applying the RK4 method increasing and decreasing �

respectively.

FIG. 11. Phase space (x1, ẋ1) of the first oscillator related to
Fig. 3 in the main manuscript for γ = 30.

the theoretical approach predicts, they still present hysteresis
(red vs blue markers).

APPENDIX E: 2D PHASE–SPACE OF A CHAIN
OF TWO OSCILLATORS

Phase-space portraits are another classic tool to represent
the behavior of dynamical systems, allowing us to observe
equilibrium points, limit cycles, chaos, etc. Figure 11 is an
example of a phase portrait of the first oscillator in a chain of
N = 2 oscillators at large stiffness values (γ = 30). We ob-
serve curves that, unlike periodic orbits, do not repeat exactly
over time, indicating the repetitive nature of the quasiperiodic
oscillations of the system. This also tells that the system has
multiple characteristic frequencies (as shown in Figs. 3 and 4)
but does not form a simple repeating pattern. This limit cycle
resembles the patterns obtained for a single Duffing oscillator
[5]. Also, the trajectories in Fig. 11 represent a side projection
of the folded tori displayed in Fig. 6(a).
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