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Master stability functions of networks of Izhikevich neurons
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Synchronization has attracted interest in many areas where the systems under study can be described by
complex networks. Among such areas is neuroscience, where it is hypothesized that synchronization plays a role
in many functions and dysfunctions of the brain. We study the linear stability of synchronized states in networks
of Izhikevich neurons using master stability functions (MSFs), and to accomplish that, we exploit the formalism
of saltation matrices. Such a tool allows us to calculate the Lyapunov exponents of the MSF properly since the
Izhikevich model displays a discontinuity within its spikes. We consider both electrical and chemical couplings
as well as global and cluster synchronized states. The MSF calculations are compared with a measure of the
synchronization error for simulated networks. We give special attention to the case of electric and chemical
coupling, where a riddled basin of attraction makes the synchronized solution more sensitive to perturbations.
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I. INTRODUCTION

Neurons are the building blocks of the brain. These struc-
tures can display a rich variety of dynamics depending on their
type and the inputs that it receives from other neurons [1]. Al-
though many features of neurons remain unclear, models are
capable of reproducing their observed dynamics. The seminal
work of Hodgkin and Huxley (HH) introduced a neuron model
based on the giant axon of the squid [2]. Being biophysically
accurate, this model became a standard for ODE-based neuron
models. Naturally, the collective dynamics of neurons are also
of interest, and unfortunately, networks of complex models
like the HH can be difficult to deal with, both analytically
and computationally. With this in mind, Izhikevich proposed
a neuron model that combines biological features of complex
models, like that of HH, with computational efficiency [3].

Due to these characteristics, the Izhikevich model has
been implemented in the study of networks of spiking neu-
rons, including large-scale models [4,5]. Such models can
be used to deepen our understanding of how the interplay
between synaptic and neuronal processes produces collec-
tive behaviors. Of great interest is the emergence of rhythms
and synchronization of neural activity, as it suggests that the
high-dimensional dynamics of neuronal networks can col-
lapse into low-dimensional oscillatory modes [6]. Although
rhythmic activity and synchronization are often associated
with brain pathologies like Parkinson’s disease and epilepsy
[7,8], evidence suggests that these two mechanics are involved
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in information processing, memory formation, and cognition
[9–11].

Since the mathematical description of synchronization is
well established in nonlinear dynamics, it can be applied to
many natural phenomena, including neural activity. A central
question regarding synchronization theory is whether a syn-
chronized state is stable or not. Among the many contributions
to this topic over the last decades, here we focus on the master
stability function (MSF) formalism [12]. The main result of
such a formalism is a diagonalized variational equation, which
allows us to calculate the Lyapunov exponents associated
with perturbations transverse to the synchronized manifold.
In the original work, it was made possible by assuming that
the system can be locally linearized around the synchronized
solution, as well as a diagonalizable coupling matrix. For-
tunately, this formalism has been extended to a variety of
cases including nearly identical systems, nondiagonalizable,
and multilayer networks [13–15]. Moreover, the stability of
partial synchronization, which includes cluster synchronized
and chimera states, has also been studied in the context of
MSFs [16–19].

In this paper, we apply the MSF formalism to study the
linear stability of synchronized states in networks of Izhike-
vich neurons. Both global and cluster synchronization patterns
are considered. To surmount the difficulties that the discon-
tinuities of the Izhikevich model present to calculate the
associated Lyapunov exponents, we use the saltation matrices
formalism. First, we consider the case of global synchroniza-
tion in networks with electrical coupling, followed by the
case with chemical coupling and then with both coupling
schemes. For each case, we study how the stability of the
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synchronized state depends on the coupling strength. We
verify that the MSF formalism is effective for probing the
threshold for synchronization, except for the last case, where
the outcome of the system depends on its initial conditions.
This can be the case when the system under study has a
riddled basin of attraction. Instead of having well defined
boundaries, the basins of attraction of the system are in-
termingled in a complex way [20]. As a result, the system
evolves towards a nonsynchronized solution even with initial
conditions in the neighborhood of the synchronization state
[21].

II. MSF APPLIED TO IZHIKEVICH MODEL

The Izhikevich model (IM) is a two-dimensional neuronal
model, celebrated for its biophysical accuracy and its capacity
of displaying many spiking patterns without losing computa-
tional efficiency. Letting x = [x, y]T , the model consists of a
system of differential equations [3]

ẋ = F(x) =
[

0.04x2 + 5x + 140 − y + I
a(bx − y)

]
(1)

with the after-spike reset given by

if x > 30 mV, then

{
x → c
y → y + d

. (2)

The variables x and y represent the membrane potential and
a membrane recovery variable, respectively. a is associated
with the timescale of y, while b describes the sensibility of
x to subthreshold oscillations of y. The parameters c and d
are related to the after-spike dynamics of the variables x and
y. The parameter I takes into account synaptic currents or
injected dc currents [3]. For all calculations, we used a = 0.2,
b = 2, c = −56, d = −16, and I = −99; with this choice of
parameters, the IM displays chaotic dynamics, as discussed in
Nobukawa et al. [22]. As in [3], the variables x and y and all
the parameters of the model are dimensionless.

The Izhikevich model can be seen as a hybrid model, a
continuous-time evolution process interfaced with a logical
process, in this case, the resetting function when x crosses
the threshold. These discontinuities interfere with the usual
straightforward methods [23–25] to compute the Lyapunov
exponents of such a system.

Following Bizarri et al. [26] we resort to saltation matrices,
which allow us to calculate the Lyapunov exponents associ-
ated with the MSFs of networks of Izhikevich neurons. In this
framework, these matrices are used as correction factors at
the instants of the discontinuities due to the resetting function,
yielding the correct Lyapunov exponents.

Between spikes the dynamics of the Izhikevich is smooth,
and for a small perturbation δx we have

δẋ = DF
∣∣
xδx, (3)

where DF|x is the Jacobian matrix applied to F evaluated
at x. If a spike occurs, the after-spike reset (2) induces a
discontinuity in the flow such that DF|x− �= DF|x+ , where −
and + indicate the before and after of the reset. Then the
perturbation δx+ after the reset event is given by

δx+ = S(DF|x−δx−), (4)

which allows us to write
˙δx+ = DF|x+δx+, (5)

where S is the saltation matrix, which for Izhikevich neurons
is given by

S =

⎡
⎢⎢⎢⎣

ẋ+

ẋ− 0

ẏ+ − ẏ−

ẋ− 1

⎤
⎥⎥⎥⎦. (6)

The complete derivation of the procedure can be found at
[26,27].

Throughout this study, we numerically solve Eq. (1) with a
backward differentiation formula, which yields a variable in-
tegration step, with a maximal step of dt = 0.001. The initial
conditions for the simulations, unless stated differently, were
picked from a normal distribution centered at a fixed point of
Eq. (1) in the case of no coupling, (−56.25,−112.5), with a
standard deviation equal to 1.

A. Electrical coupling

First, we study the effect of electrical coupling, which
represents electrical synapses between nodes [28]. Consider a
network with N nodes, where the isolated dynamics of each
node is given by Eq. (1). An adjacency matrix A indicates
whether node i is connected diffusively to node j. If the nodes
are coupled through their first variable, the dynamics of each
node is modified by

Wi = −ge

N∑
j=1

Ai j (x
j − xi ), (7)

where ge is the coupling conductance (strength) and Ai j is an
element of the adjacency matrix. Note that in this case, the
coupling can be written as a function of the Laplacian matrix
of the network, given by L = D − A where D is the degree
matrix defined by Dii =∑ j Ai j , then Wi = ge

∑N
j=1 Li jx j .

If we define x = [x1, . . . , xN ]T , where xi = [xi, yi]T , and
F(x) = [F(x1), . . . , F(xN )]T , we can write the dynamical sys-
tem of the network as

ẋ = F(x) − ge(L ⊗ G)x, (8)

where ⊗ is the Kronecker product and

G =
[

1 0
0 0

]
(9)

is the matrix encoding the coupling scheme. The synchro-
nization manifold xs is defined by the N − 1 constraints x1 =
x2 = · · · = xN , and since the Laplacian matrix is a zero row-
sum matrix, (L ⊗ G)xs = 0, we have ẋs = F(xs). The linear
stability of the synchronized solution can be investigated with
the MSF of Eq. (8),

η̇k = [DF|xs − geγkDG|xs ]ηk, (10)

where γk is the kth eigenvalue of L. Thus, the analysis is
decomposed in eigenmodes, one being parallel to the syn-
chronization manifold γ0 and the others transverse to it. We
are interested in the Lyapunov exponents of transverse modes,
which tell us whether or not perturbations to the synchronized
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FIG. 1. Maximum Lyapunov exponent transversal to the syn-
chronization manifold for electrically coupled Izhikevich neurons as
a function of geγ .

solution will decay. Equation (10) was first derived by Pecora
and Carroll [12] for undirected networks (A = AT ), but since
then it has been extended to a broad range of networks and
synchronization patterns [13–19]. We highlight that at the
event of a spike, the synchronized solution xs encounters a
discontinuity, and therefore at this point, we need to apply the
saltation matrix (6).

The maximum Lyapunov exponent (MLE) of Eq. (10) is
presented in Fig. 1. The expanded inset shows that �max

becomes negative for geγ � 0.267. To check our results, we
simulate a network of N = 4 nodes, as depicted in Fig. 2. In
such a case, the Laplacian matrix is

L =

⎡
⎢⎢⎣

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

⎤
⎥⎥⎦ (11)

with eigenvalues 0, 2, 2, and 4. The smallest eigenvalue γ1 =
0 is associated with the synchronized manifold, and the other
two are transverse to it. The degeneracy in the eigenval-
ues affects the stability of the clusters associated with them,
meaning that the clusters associated with γi = 2 will become
linearly stable for the same value of the coupling strength.
Putting together that the MLE is negative for geγ > 0.2670,
and that 2 is the smallest eigenvalue associated with the trans-
verse mode, we conclude that for ge > 0.133 the synchronized
solution is stable.

Figure 3 depicts the synchronization error, which is com-
puted as

∑N
j |x̄ − x j | where x̄ is the average state for the

1

2

3

4

FIG. 2. Undirected network with N = 4 nodes, which is used
to exemplify the stability of complete synchronization for identical
Izhikevich neurons.

FIG. 3. Synchronization error for a network of N = 4 Izhikevich
neurons with electrical coupling. It goes to zero at ge ≈ 0.133, in
conformity with the MSF. The solid line represents the average
of 100 simulations, the shaded area represents the first and third
quartiles, and the gray dashes represent the maximum and minimum
values.

nodes in the networks. We notice a good agreement with the
result given by the MSF analysis.

B. Chemical coupling

We now study the synchronization of an Izhikevich net-
work with chemical synaptic coupling between nodes. The
chemical synapses that node i receives from every other node
j are modeled by the sigmoidal function Bi [29]

Bi = gc(xi − vs)
N∑

j=1

Ai jζ (x j ), (12)

where vs is the reversal potential, ζ (x) = {1 + exp[−ε(x −
θ )]}−1, ε defines the slope of the sigmoidal function, and θ

is the synaptic firing threshold. Throughout this study we set
vs = 0, ε = 7, and θ = 0. This set of parameters allows the
chemical synapses to be both excitatory and inhibitory, since
vs lies inside the range of oscillation of the action potential
xi. This is the case for some classes of neurons, as discussed
in [30,31].

Note that this coupling term cannot be written as a function
of the Laplacian matrix; instead we can write it in terms of the
adjacency matrix. To obtain an equation analogous to (8), we
introduce a few objects, which are defined in the Appendix A,
together with the complete derivation of the equation for the
dynamics of the network with chemical coupling, which is
given by

ẋ = F(x) − gcT(x)[(A ⊗ C)(x)]. (13)

The synchronized solution, x1 = x2 = · · · = xN , derived in
the Appendix A from Eq. (A15) to (A19), takes the form

ẋs = F(xs) − gcknT(xs)C(xs), (14)

and it exists only if the number of links kn is the same for all
nodes [32]. Following the Pecora-Carroll analysis, we obtain
the MSF for this case, and after we diagonalize A we have

η̇ = {[IN ⊗ (DF|xs − gcknDH|xs K(xs))] − gc	
A

⊗ T(xs)DC|xs}η. (15)

044213-3



RAUL P. ARISTIDES AND HILDA A. CERDEIRA PHYSICAL REVIEW E 109, 044213 (2024)

FIG. 4. Maximum Lyapunov exponent transversal to the syn-
chronization manifold (γ4 = −2) for N = 4 for chemically coupled
Izhikevich neurons.

The complete derivation of this equation, which is analogous
to Eq. (10), is given in Appendix A and was first derived by
Checco et al. [32]. As an example, we consider the network
of N = 4 nodes, depicted in Fig. 2, with an adjacency matrix
given by

A =

⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦. (16)

The adjacency matrix Eq. (16) has an eigenvalue γ1 = 2
associated with the synchronized solution, since its associated
eigenvector is proportional to the unit vector. Hence we need
to calculate the MLE for the remaining eigenvalues {0, 0,−2}.
Unlike Eq. (10), in Eq. (15) we cannot study it as a function
of gc	

A, which would give us an insight into all the possible
combinations of networks and coupling strengths. This is so
because of the presence of the term gckn, which is the row-
sum of the matrix A. Figure 4 shows the MLE of Eq. (15)
for γ4 = −2, which is positive for the range studied. Our
calculation for the synchronization error in Fig. 5 shows good
agreement with the MLE; i.e., we verified that the network
does not synchronize with chemical coupling.

FIG. 5. Synchronization error for a network of N = 4 Izhikevich
neurons with chemical coupling. As expected from the MSF analysis,
the system does not synchronize. The solid line represents the aver-
age of 100 simulations, the shaded area represents the first and third
quartiles, and the gray dashes represent the maximum and minimum
values.
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FIG. 6. Maximum Lyapunov exponent transversal to the syn-
chronization manifold for N = 4 Izhikevich neurons with electrical
and chemical coupling.

C. Chemical and electrical coupling

Finally, we study the effect of both electrical and chemical
coupling on synchronization. In this case the evolution of the
network is given by

ẋ = F(x) − geL ⊗ G(x) − gcT(x)(A ⊗ C)x. (17)

For the sake of simplicity, we consider that both interactions
depend on the same diagonalizable adjacency matrix, i.e., L =
D − A, and that every node has the same number of neighbors
kn, meaning that A is a regular matrix. Combining the results
of previous sections, we write the variational equation for the
perturbations to the synchronized state as

δẋ = {[IN ⊗ (DF|xs − gcknDH|xs K(xs))] − geL ⊗ DG|xs

− gcA ⊗ T(xs)DC|xs}δx. (18)

Since L and A commute, we can diagonalize both simultane-
ously, yielding

η̇ = {[IN ⊗ (DF|xs − gcknDH|xs K(xs))]

− [ge	
L ⊗ DG|xs − gc	

A ⊗ T(xs)DC|xs ]}η, (19)

where 	L and 	A are diagonal matrices with eigenvalues of L
and A, respectively, as entries.

Once again we take a network of N = 4 neurons, with
electrical and chemical coupling given by g = ge = gc and
represented by the adjacency matrix (16). Thus, the eigen-
values associated with transverse modes are {γ A} = {0, 0, 2}
from the adjacency matrix and {γ L} = {2, 2, 4}, from the
Laplacian matrix. We calculate the MLE of Eq. (19) as a
function of g, and as shown in Fig. 6, the global synchroniza-
tion pattern becomes linearly stable for g ≈ 0.13. To confirm
this result we calculate the synchronization error over 200
simulations, which is shown in Fig. 7, and find that it does
not go to zero when the MLE becomes negative.

We notice that the synchronization error vanishes only
around g ≈ 0.16, and for values below that, the system can
either synchronize or not. To better understand these results,
we calculate the synchronization error for different initial
conditions, for g = 0.155. While the y variables are set to
−101.5, we partitioned the network into two distinct clusters
according to their x variables, namely, x1 = x3 and x2 = x4.
The range of x variables spans from 1 to −1, resulting in initial
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FIG. 7. Synchronization error for N = 4 with electrical and
chemical coupling. The solid line represents the average of 200
simulations, the shaded area represents the first and third quartiles,
and the gray dashes represent the maximum and minimum values.

conditions x variables that are either orthogonal, represented
as ±[1,−1, 1,−1], or parallel to the synchronized manifold,
denoted as ±[1, 1, 1, 1]. The value y = −101.5 corresponds
to an approximate value for y in the range of x we selected.

As we see in Fig. 8(a) for g = 0.155, depending on the
initial conditions, the system can end up in different solutions,
a characteristic of multistable systems [33]. Moreover, the
different solutions are intertwined in a complex way. This
type of basin of attraction is often called a riddled basin and
can be the cause for the divergence between the MLE and
the synchronization error results [21]. Figure 8(b) shows an
inset of Fig. 8(a), where we see that synchronized solutions
are intertwined with nonsynchronized in a similar way as in
Fig. 8(a) even though the domain is reduced.

Besides that, it is usually assumed that the presence of
riddled basins of attraction is related to the MLE approaching
zero from below, as discussed in [34,35]. A similar result,
where the system fails to exhibit synchronization when the
MLE approaches zeros from above. was reported by [21] but
the presence of the riddled basin was not investigated.

To better understand the basin of attraction, we calculate
the uncertainty exponent α, which as defined in [36,37] mea-

FIG. 9. The fraction of pairs of initial conditions that converge
to different asymptotic solutions, f , as a function of the distance
between initial condition ε [Eq. (20)]. For g = 0.1555, the slope
of the line that best fits the points yields an uncertainty exponent
α = 0.005.

sures how small perturbations to initial conditions affect the
final state of the system. To do so, we pick M = 1000 pairs
of initial conditions with g = 0.155, iterating each to its final
state. Each pair is separated by a distance d , i.e., x − x′ = d .
We then compare the final states of each initial condition to
verify if there are pairs that end up in different states and
therefore are uncertain. The fraction of the phase space that
is uncertain obeys

f (ε) = εα (20)

with α < 1. We record that the uncertainty exponent is related
to the dimension of the phase space D as α = D − δ, where δ

is the (capacity) dimension of the basin boundary [37].
We found an uncertainty exponent equal to α ≈ 0.005, as

shown in Fig. 9. As a result, even for extraordinarily small
perturbations to the synchronized state, a fraction of them
can grow and desynchronize the system. Moreover, using the
α = D − δ, we find that the dimension of the basin boundary,
δ ≈ 7.995, is close to the dimension of the state space. In
conclusion, the obtained uncertainty exponent of α ≈ 0.005
suggests the presence of a riddled basin of attraction [33,38].
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FIG. 8. Riddled basin of attraction in (x1, x2 ) plane for g = 0.155, calculated with 10.24×104 initial conditions in (a) x1, x2 ∈ [1, −1]
and (b) x1, x2 ∈ [0.01, −0.01], while x3 = x1, x4 = x2, and y variables are set to yi = −101.5. Solutions that reach a final state with a
synchronization error Err >0.05 are marked as white dots; otherwise, they are marked as black.
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III. IZHIKEVICH MODEL: CLUSTER
SYNCHRONIZATION

A. Electrical coupling

As mentioned in the first section, the electrical coupling
can be written in terms of the Laplacian matrix. In this case
the variational equation concerning the linear stability around
the cluster synchronized state (CSS) is given by [16]

δẋ =
[

M∑
m=1

(Em ⊗ DF|sm − ge(LEm ⊗ DG|sm ))

]
δx, (21)

where M is the number of clusters and Em is an N×N diagonal
indicator matrix for each cluster such that Em

ii = 1 if i belongs
to cluster m, and it is equal to zero otherwise. If we consider a
CSS with M clusters, the dynamical evolution of such state is
given by [17,18]

ẋ = (Z ⊗ Iq)ṡ, where (22)

ṡ = F(s) − ge(Lπ ⊗ Iq)G(s) (23)

and Z is the N×M indicator matrix which encodes the cluster
state configuration Z : Zi j = 1 if node i is part of cluster Cj

and Zi j = 0 otherwise. Iq is an q×q identity matrix, where q
is the dimension of the isolated dynamical system, q = 2 in
our case. The state of each cluster is encoded in the M×q-
dimensional vector s. If the quotient network Laplacian Lπ

satisfies the condition [39]

LZ = ZLπ , (24)

where Lπ = (ZT )−1ZT LZ = Z+LZ and Z+ is the left Moore-
Penrose of pseudoinverse Z [40,41], then the partition
encoded by Z is said to be an equitable external partition
(EEP) [39]. In this case, the network is divided into M clusters
in such way that the number of connections from nodes in
a cluster Ci to nodes in a cluster Cj depends only on i, j
with i �= j. The quotient network dynamics is a coarse-grained
version of the original network, where each cluster becomes a
node and the weights between these nodes are the out-degrees
between clusters in the original network [18,42].

Again, we start our example with a network of Izhikevich
neurons coupled through electrical synapses. Consider a net-
work with the following Laplacian matrix:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 1 0 0 0 0
1 2 0 1 0 0 0 0
0 0 1 1 0 0 0 0
1 1 1 5 1 1 0 0
0 0 0 1 3 0 1 1
0 0 0 1 0 3 1 1
0 0 0 0 1 1 3 1
0 0 0 0 1 1 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

FIG. 10. Undirected network with N = 8 nodes, which is used to
exemplify the stability of cluster synchronization, where the clusters
are indicated with colors.

and a CSS with indicator matrix Z given by five clusters (three
with two units, and two with one unit each:

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

One can verify that this choice of L and Z satisfies (24) and
therefore this cluster configuration is an EEP. A representation
of such network is given in Fig. 10, where nodes of the same
color represent a cluster. Putting this together, Eq. (23) reads

[ẋ]T = [ṡ1, ṡ1, ṡ3, ṡ4, ṡ5, ṡ5, ṡ7, ṡ7]T . (27)

After block diagonalizing the variational equation (21), we
investigated the linear stability of the CSS with the following
equation:

η̇ =
[∑

m

Qm ⊗ DF
∣∣
sm − ge	

LQm ⊗ DG
∣∣
sm

]
η, (28)

where Qm = V −1EmV is a block diagonal matrix and 	L =
V −1LV is a diagonal matrix filled with eigenvalues of L. The
orthogonal matrix that block diagonalizes both Em and L can
be found using group theory [17], external equitable partitions
(EEPs) [18], and simultaneous block diagonalization (SBD)
[19] approaches, resulting in the decoupling between modes
within the cluster synchronized manifold and transverse to it.

To check if all transverse modes are damped, we calcu-
lated the maximum Lyapunov exponent of Eq. (28), which is
given in Fig. 11 as a function of ge. Figures 12 shows the
synchronization error of the cluster synchronization state as
a function of ge. The error is computed as 〈|xi(t ) − xi

m(t )|〉,
where we take an average both in time and over the neurons
i in a cluster m. xi

m is the average state for the neurons in the
cluster to which node i belongs.

Figures 11 and 12 show excellent agreement between the
stability analysis and the synchronization error: the MLE
associated with the transverse modes goes negative around
ge ≈ 0.073, and the synchronization error vanishes around the
same value.
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FIG. 11. Maximum Lyapunov exponent transversal to the syn-
chronization manifold for N = 8 Izhikevich neurons with electrical
coupling under cluster synchronization.

B. Chemical coupling

We now extend the linear stability study of cluster syn-
chronized states to networks with chemical coupling, which
is mediated by the adjacency matrix of the network. Consider
a network with N nodes and adjacency matrix A: given a
CSS with M clusters encoded by an indicator matrix Z , the
coarse-grained dynamics can be written as

ẋ = (Z ⊗ Iq)ṡ, where (29)

ṡ = F(s) + geT(s)(Aπ ⊗ C)(s). (30)

If the adjacency matrix of the quotient network is given by
Aπ = Z+AZ , its diagonal entries correspond to self-loops in
the quotient network whenever we have connections between
nodes in the same cluster, and the partition encoded by Z is
an external partition (EP). For EPs the number of connections
from nodes in a cluster Ci to nodes in a cluster Cj depends
only on i, j [18].

The variational equation of Eq. (29) is

δẋ =
{

M∑
m=1

[Em ⊗ (DF|sm − gcPRm)]

−
[

M∑
m=1

(EmA ⊗ T(sm))

(
M∑

m=1

Em ⊗ DK|sm

)]}
δx,

(31)

FIG. 12. Synchronization error for Izhikevich model with elec-
trical coupling and cluster synchronization. The gray lines represent
maximum and minimum errors, the shaded regions represent the first
and third quartiles, and the circles the average over 100 simulations.

FIG. 13. Maximum Lyapunov exponent transversal to the syn-
chronization manifold for N = 8 Izhikevich neurons with chemical
coupling and cluster synchronization.

and after block diagonalizing Eq. (31), we obtain

η̇ =
{

M∑
m=1

Qm ⊗ [DF|sm − gcGRm]

− (Qm	A ⊗ T(sm)

(
M∑

m=1

Qm ⊗ DK|sm

)}
η, (32)

where we defined

G =
[

1 0
0 0

]
and Rm =

M∑
n=1

Aπ
mnζ (xn). (33)

With these equations in hand, we now consider the network
of the previous subsection, depicted in Fig. 10, and the same
indicator matrix Z [Eq. (26)], with chemical coupling between
neurons. In this case the adjacency matrix is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0
0 0 0 1 0 0 1 1
0 0 0 1 0 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

Unlike the case with electrical coupling, here the CSS is
not stable, as seen in Fig. 13, where the maximum Lyapunov
exponent is positive in the range of gc considered. This anal-
ysis is supported by the synchronization error of this case
(Fig. 14), which is greater than 0 in the range of gc studied.

C. Electrical and chemical coupling

In the case where the network admits both electrical and
chemical coupling, the dynamics of the CSS is governed by

ẋ =(Z ⊗ Iq)ṡ, where (35)

ṡ = F(s) − gcT(s)(Aπ ⊗ C)(s) − ge(Lπ ⊗ Iq)G(s), (36)

where Z is the indicator matrix of the CSS state, Aπ and Lπ

are the quotient adjacency and Laplacian matrices, and for the
sake of simplicity we take gc = ge = g. Putting together the
results of the later subsections, the MSF of a given CSS state
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FIG. 14. Synchronization error for Izhikevich model with chem-
ical coupling, andcluster synchronization. The gray lines represent
maximum and minimum errors, the shaded regions represent the first
and third quartiles, and the circles the average over 100 simulations.

can be written as

η̇ =
{

M∑
m=1

Qm ⊗ [DF|xm − gcGRm]

− gc

[
M∑

m=1

Qm	A ⊗ T(xm)

(
M∑

m=1

Qm ⊗ DK|xm

]

− ge

M∑
m=1

	LQm ⊗ DH|xm

}
η. (37)

We proceed with the analysis of the network in Fig. 10,
with indicator matrix (26). The MLE of Eq. (37) is shown
in Fig. 15, where we notice that the introduction of electrical
coupling in the network seems to induce the CSS, since the
MLE becomes negative for g > 0.102.

The synchronization error is shown in Fig. 16, where the
dotted line represents the median over 100 simulations and the
shaded area is the limit between the first and third quartiles,
and the gray lines represent the upper and lower limits of the
errors. Although the lower bound of the synchronization error
goes to zero around g ≈ 0.125, we see that on average the
system does not reach the synchronized solution. While the
initial conditions are similar to the ones used in Fig. 12, the

FIG. 15. Maximum Lyapunov exponent transversal to the syn-
chronization manifold for N = 8 Izhikevich neurons with chemical
and electric coupling and cluster synchronization.

FIG. 16. Synchronization error as a function of g for Izhikevich
model with electrical and chemical coupling. The gray lines repre-
sent maximum and minimum errors, the shaded regions represent
the first and third quartiles, and the circles the average over 100
simulations.

introduction of chemical coupling results in a distinct outcome
concerning the agreement between the MSF and synchroniza-
tion error. This sensibility to perturbations is characteristic
of multistable systems [33], and as discussed in [21], a rid-
dled basin of attraction can be the cause for such behavior,
which in turn may be a consequence of the discontinuity of
the differential equation. A thorough understanding of this
phenomenon needs intense research, which is outside the
scope of this work.

To verify that, we consider adding a disturbance in only
one direction transverse to the synchronized solution, which
means perturbing only one cluster. For example, if we take
the solution

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s1

s3

s4

s5

s5

s7

s7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and add p⊥ = α

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

−1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗
[

1
1

]
, (38)

where α is a constant used to control the magnitude of the
perturbation p⊥, we are pulling the first cluster out of syn-
chronicity. Figure 17(a) shows how the synchronization error
is sensible to initial conditions for g = 0.155. For simplicity,
we differentiate synchronized solutions from nonsynchro-
nized solutions by setting a threshold at Err = 0.05, which are
represented by white and black dots, respectively. To calculate
Err, we consider initial conditions slightly perturbed as in
Eq. (38). The initial conditions for x(5,6) = [x(5,6), y(5,6)]T vary
from [1,1] to [−1,−1], which is equivalent to α varying from
1 to −1 in Eq. (38). Along the diagonal x5 = x6 the system is
always synchronized. In the off-diagonal region, we have both
synchronized and nonsynchronized solutions. As in Fig. 8, we
see that the basin is riddled with these two kinds of solutions.
The same calculation is depicted in Fig. 17(b), illustrating the
riddle basin for g = 0.195. As anticipated from Fig. 16, the
increased number of black dots signifies a higher proportion
of points ending up in the synchronized basin.
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FIG. 17. Riddled basin of attraction in (x5, x6) plane for g = 0.155. Panel (a) is calculated with 10.24×104 initial conditions in
x5, x6 ∈ [1, −1] and y(5,6) = −101.5. The other nodes are initiated at x(1,2) = [−59, −111]T , x3 = [−60,−110]T , x4 = [−58, −108]T ,
x(7,8) = [−58, −109]T . (b) The same as (a) for g = 0.195. We differentiate synchronized solutions from nonsynchronized solutions by setting
a threshold at Err = 0.05, which are represented by white and black dots, respectively.

The solutions found in Fig. 17 are shown in Fig. 18. The
solution in Fig. 18(a) yields a synchronization error greater
than the one in Fig. 18(b). We notice that in both cases,
there are finite windows of time where the system goes off
synchronization; however, the solution in Fig. 18(a) seems
to display more and longer windows. This type of inter-
mittence is similar to the one discussed in [43], and it is
found only in the perturbed cluster formed by nodes 5 and
6; the remaining clusters stay synchronized throughout the
simulation.

To confirm the basin riddling, we compute the uncertainty
exponent α. Again we take a pair of initial conditions x, x′

such that the distance between the two is ε = |x − x′| and
verify if the initial conditions are uncertain or not. For each
distance ε, we simulate 1000 pairs of initial conditions and
save the uncertain fraction f (ε). The result is plotted in
Fig. 19, where the fitted line indicates an uncertainty exponent
equal to α ≈ 0.007, and thus the basin dimension is equal to
d ≈ 15.993.

IV. CONCLUSIONS

We have calculated the MSF of networks of Izhikevich
neurons, considering global and cluster synchronized states
with electrical and chemical coupling schemes. To do so,
we combined the MSF formalism with the use of saltation
matrices, which allow the calculation of Lyapunov exponents
of systems with discontinuities such as the Izhikevich model.
For the networks studied, we found that the synchronization
error exhibits a nice agreement with the MSF analysis when
only one type of coupling is considered. Moreover, the addi-
tion of electrical coupling to a network with only chemical
coupling induces synchronization for both global and cluster-
synchronized states. However, the presence of both coupling
schemes yielded a riddled basin of attraction. Due to this,
even in the range where the MSF is negative and with nearly
identical initial conditions concerning the CSS, the system can
end up in a nonsynchronized state.

This mismatch between the results expected by the MSF
and the real output of the network reinforces that having a

FIG. 18. Time series of the x variable from nodes 5 (solid red) and 6 (dashed black) for different initial conditions, both with g = 0.155.
(a) Incomplete synchronization Err ≈1.91, (b) Err ≈ 0.50.
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FIG. 19. The fraction of pairs of initial conditions that converge
to different asymptotic solutions, f , as a function of the distance
between initial condition ε [Eq. (20)]. For g = 0.1555, the slope
of the line that best fits the points yields an uncertainty exponent
α = 0.007.

negative MLE for the synchronized state is necessary but not
sufficient.

It will be interesting, for future work, to study not only
networks with more elements but also the stability of synchro-
nized solutions if we consider nonidentical neurons and the
presence of noise in the network. It would also be appealing to
investigate why the riddled basins displayed by these systems
appear as the MLE approaches zero from above, and not from
below as is usually reported in the literature.
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APPENDIX: DERIVATION OF MSF FOR
THE CHEMICAL COUPLING

Starting from Eq. (12) we define the 2×2 matrices

H =
[

h 0
0 0

]
and C =

[
ζ 0
0 0

]
, (A1)

where h and ζ are nonlinear operators

hx = h(x) = x − vs, (A2)

ζx = ζ (x) = {1 + exp[−ε(x − θ )]}−1, (A3)

and an operator Dg, that returns a diagonal matrix whose
elements are the components of the vector on which it acts.
For example, for x,

Dg(x) = Dg

⎡
⎢⎢⎢⎢⎣

x1

y1

...

xN

yN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x1 0 ... 0 0
0 y1 ... 0 0
...

...
. . .

...
...

0 0 ... xN 0
0 0 ... 0 yN

⎤
⎥⎥⎥⎥⎦, (A4)

where in this notation Dg(x) reads Dg acts on x. We can write
the vector encoding the synaptic coupling of a network of N
nodes as

Dg[(IN ⊗ H)(x)](A ⊗ C)(x). (A5)

Moreover, it is convenient to introduce the matrices

T = Dg(IN ⊗ H), (A6)

K = Dg(IN ⊗ C). (A7)

With this notation, the dynamics of a network coupled
through chemical synapses reads

ẋ = F(x) − gcTx[(A ⊗ C)(x)]. (A8)

For example, if N = 1,

Tx = Dg
[(

I1 ⊗
[

h 0
0 0

])[
x1

y1

]]

= Dg
[

h(x1)
0

]

=
[

x1 − vs 0
0 0

]
. (A9)

If we consider a network with N = 2 neurons and an adja-
cency matrix given by

A =
[

0 1
1 0

]
, (A10)

the coupling term reads

Tx = Dg
([

1 0
0 1

]
⊗
[

h 0
0 0

])⎡⎢⎢⎣
x1

y1

x2

y2

⎤
⎥⎥⎦

= Dg

⎡
⎢⎢⎣

h 0 0 0
0 0 0 0
0 0 h 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

y1

x2

y2

⎤
⎥⎥⎦,

Tx = Dg

⎡
⎢⎢⎣

h(x1)
0

h(x2)
0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

h(x1) 0 0 0
0 0 0 0
0 0 h(x2) 0
0 0 0 0

⎤
⎥⎥⎦ (A11)

times

(A ⊗ C)(x) =

⎡
⎢⎢⎣

0 0 ζ 0
0 0 0 0
ζ 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

y1

x2

y2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

ζ (x2)
0

ζ (x1)
0

⎤
⎥⎥⎦, (A12)
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yielding

T(x)[(A ⊗ C)(x)] =

⎡
⎢⎢⎣

h(x1) 0 0 0
0 0 0 0
0 0 h(x2) 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ζ (x2)
0

ζ (x1)
0

⎤
⎥⎥⎦,

(A13)

T(x)[(A ⊗ C)(x)] =

⎡
⎢⎢⎣

h(x1)ζ (x2)
0

h(x2)ζ (x1)
0

⎤
⎥⎥⎦. (A14)

Following the Pecora-Carroll analysis, the MSF can be obtained via the variational equation for δxi = xi − xs. So, first, we
derive the synchronized solution xs, where xi = x j , ∀ i, j. If we take an adjacency matrix equal to Eq. (16), we have

ẋs = F(xs) − gcT(xs)[(A ⊗ C)(xs)], (A15)

and the second term reads

Dg

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦⊗

[
h 0
0 0

]⎞⎟⎟⎠
⎡
⎢⎢⎢⎢⎣

xs

ys

...

xs

ys

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦⊗

[
ζ 0
0 0

]⎞⎟⎟⎠
⎡
⎢⎢⎢⎢⎣

xs

ys

...

xs

ys

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (A16)

which after application of Dg becomes

gc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(xs) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 h(xs) 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 h(xs) 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 h(xs) 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝
⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦⊗

[
ζ 0
0 0

]
⎡
⎢⎢⎢⎢⎣

xs

ys

...

xs

ys

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠. (A17)

Simplifying we obtain

gc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(xs) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 h(xs) 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 h(xs) 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 h(xs) 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ (xs) + ζ (xs)
0

ζ (xs) + ζ (xs)
0

ζ (xs) + ζ (xs)
0

ζ (xs) + ζ (xs)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A18)

which is simply

gcknT(xs)C(xs), (A19)

where in this case the number of links that each node has is kn = 2. Now we linearize xi around the synchronized state xs

xi ≈ F(xs) + DF|xsδxi − gcD

[
T(xi )

∑
j

ai jC(x j )

]
δxk, (A20)
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where k = (i, j) depending on whether the Jacobian matrix D acts on a function of xi or x j . Evaluating the last term yields

D[T(xi )
∑

j

ai jC(x j )]δxk = D

[
h(xi )

∑
j ai jζ (x j )

0

]
δxk (A21)

=
[

∂h(xi )
∂xi

∑
j ai jζ (x j ) 0

0 0

]
δxi +

[
h(xi )

∑
j ai j

∂ζ (x j )
∂xi 0

0 0

]
δx j (A22)

=
[

∂h(xi )
∂xi knζ (x j ) 0

0 0

]∣∣∣∣∣
xs

δxi +
[

h(xi )
∑

j ai j
∂ζ (x j )

∂xi 0

0 0

]∣∣∣∣∣
xs

δx j, (A23)

which is

gcknDH|xs K(xs)δxi − gcT(xs)
∑

j

ai jDC|xsδx j . (A24)

Then we can write δxi as

δxi = DF|xs − gcknDH|xs K(xs)δxi − gcT(xs)
∑

j

ai jDC|xsδx j, (A25)

and finally, we write δx = [δx1, . . . , δxN ]T as

δẋ = {[IN ⊗ (DF|xs − gcknDH|xs K(xs))] − gcA ⊗ T(xs)DC|xs}δẋ. (A26)

The diagonalization of A leads to the desired block-diagonalized variational equation:

η̇ = {[IN ⊗ (DF|xs − gcknDH|xs K(xs))] − gc	 ⊗ T(xs)DC|xs}η. (A27)
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