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There are various research topics such as stochastic resonance, coherent resonance, and neuroavalanche in
excitable systems under external noises. We perform numerical simulation of coupled noisy FitzHugh-Nagumo
equations on the square lattice. Excitation waves are generated most efficiently at an intermediate noise strength.
The cluster size distributions obey a power-law-like distribution at a certain parameter range. However, we
consider that this is not a self-organized critical phenomenon, partly because the exponent of the power law
is not constant. We have studied the propagation of excitation waves in the coupled noisy FitzHugh-Nagumo
equations with a one-dimensional pacemaker region and found that there is a phase-transition-like phenomenon
from the short-range propagation to the whole-system propagation by changing the noise strength T . The power-
law distribution is observed most clearly near the phase transition of the propagation of excitation waves in the
coupled noisy FitzHugh-Nagumo equations without the one-dimensional pacemaker.
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I. INTRODUCTION

Neural networks are composed of a lot of neurons. If
there is no external input, the neuron is in a stationary state;
however, it is excited and emits a spiking output if the in-
put is beyond a threshold. From the viewpoint of nonlinear
dynamics, the neuron is an excitable system. The Hodgkin-
Huxley equation is a typical nonlinear equation that describes
the spiking of a giant axon of squid [1]. The FitzHugh-
Nagumo equation is a simple model equation that exhibits
a similar spiking phenomenon [2,3]. Various nonlinear phe-
nomena such as chaos and the suppression of spiking by
high-frequency stimulation were studied by many authors
[4–6]. Noise effects for excitable systems were also studied
by many authors [7,8]. Rather coherent oscillation induced by
noise is called coherence resonance [9]. The response is maxi-
mized at a suitable noise strength, if a periodic driving force is
added to the noisy excitable systems. It is called stochastic res-
onance, which was originally found in bistable systems [10].
In globally coupled noisy excitable systems, there is a phase
transition from the stationary state to the oscillatory state
[11–13]. Coherent resonance was also studied in one- and
two-dimensional arrays of nonidentical excitable units with
a strong coupling constant driven by additive noises, in which
phase coherence was observed at intermediate noise strength
[14]. Noise-induced wave propagations were studied in one-
and two-dimensional excitable systems [15,16]. Power-law
distributions of spatiotemporal clusters were reported in some
noise-driven excitable systems [17,18]. The avalanches of
neural activities and the power-law distributions were reported
in slices of rat cortex [19]. The exponent of the power law was
evaluated as −1.5. Furthermore, a power law was reported in
the electrical activity in human electroencephalography [20].
Several authors consider that the power-law distributions are
related to the self-organized criticality. Various theoretical

models have been proposed for the self-organized criticality
[21–24].

In this paper, we numerically study the noise-induced ex-
citation waves in coupled noisy FitzHugh-Nagumo equations.
The nucleation of excitation waves and their propagation are
reproduced in our system. We use a type of local order pa-
rameter to reduce the fluctuations. We find a power-law-like
distribution for the spatiotemporal clusters of the local order
parameter in a certain parameter range. We further study the
wave propagation sent out from a linear pacemaker region;
and find a transition from the short-range propagation to the
long-range propagation. Near the critical line of the phase
transition, the power-law distributions appear most clearly.
We consider that the power-law behavior is related to the
phase transition of the stochastic propagation of excitation
waves.

II. COUPLED NOISY FITZHUGH-NAGUMO
EQUATIONS ON A SQUARE LATTICE

We study a two-dimensional system on a square lattice
expressed as

dui, j

dt
= ui, j (ui, j + a)(1 − ui, j ) − vi, j + I

+ K
∑

j

(ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j )

+ ξi, j (t ),

dvi, j

dt
= ε(ui, j − bvi, j ),

i = 1, 2, . . . , L, j = 1, 2, . . . , L, (1)

where K is the coupling constant and set to be 0.5 in this
paper. The other parameters a, b, and ε are set to a = 0.02,
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FIG. 1. (a) Order parameter S as a function of T at I = −0.135 in a system of L × L = 100 × 100. (b) S as a function of T at I = −0.15
in a system of 100 × 100. (c) S as a function of T at I = −0.15 in a system of 200 × 200.

b = 1, and ε = 0.002. I is the input to the system, and ξi, j

denotes the Gaussian white noise satisfying 〈ξi, j (t )ξi′, j′ (t ′)〉 =
2T δi,i′δ j, j′δ(t − t ′). In case of T = 0, each elemental system
is oscillatory for I > −0.00872, but it becomes excitable for
I < −0.00872 [6]. In the excitable system, u takes a resting
state if there are no additional external input and noise. For a
sufficiently small |I|, u takes a constant value us � I/(1 − a)
at the resting state. When each element is excited, u goes to
around one. We call each element at the (i, j) site excited if
ui, j goes over a criterion value uc = 0.5, since 0.5 is close
to an average value of the stationary value I/(1 − a) and the
peak value around one. We define a local order parameter
si, j as si, j takes one only if ui, j > 0.5, ui+1, j > 0.5, ui−1, j >

0.5, ui, j+1 > 0.5, ui, j−1 > 0.5, and si, j = 0, if at least one of
the five values of u is smaller than 0.5. The order parameter
S is the average value of si, j , that is, S = (1/L2)

∑
i, j si, j . If

ui, j > 0.5 for all i and j, the order parameter S = 1. Fig-
ures 1(a) and 1(b) are the temporal average of S as a function
of T at (a) I = −0.135 and I = −0.15. The system size
is L × L = 100 × 100. The no-flux boundary conditions are
used at i = 1, i = L, j = 1, and j = L. Figure 1(c) is the
temporal average of S as a function of T at I = −0.15 for
the system size 200 × 200. A similar peak structure is ob-
served even at the larger system. The order parameter takes a
maximum at an intermediate range of noise strength. This is a
kind of coherent resonance in coupled excitable systems. If we
use another simpler local order parameter s′

i, j where s′
i, j = 1

only if ui, j > 0.5, a similar peak structure is observed for S′ =∑
i, j s′

i, j ; however, S′ does not take a one-hump structure but
increases with T for larger T . Hereafter, we use the local order
parameter si, j . The peak value of S is smaller and the width is
narrower at I = −0.15 compared to the case of I = −0.135.
Figure 2 shows a parameter range where the temporal average
of S takes a value larger than 0.001 in the parameter space
(T, I ) calculated in a system of 100 × 100.

Figure 3 shows the spatiotemporal patterns of lattice points
satisfying ui, j > 0.5 at j = L/2, at (a) T = 0.0254, and (b)
T = 0.0390 for I = −0.135. At T = 0.0254, a spot of ex-
cited sites appears by thermal noises, the excitation wave
propagates to almost the entire system, and disappears at the
boundaries. The nucleation occurs at any position, but the
nucleation frequency is higher at the boundaries, especially at
the four corners. Under the periodic boundary conditions, the

nucleation probability is the same for the whole region, how-
ever, the nucleated one-dimensional waves do not disappear
and continue to propagate if the noise strength is sufficiently
weak. We therefore adopt the no-flux boundary conditions
in this paper. At T = 0.0390, the generation of excitation
waves occurs more frequently by the thermal noises, but the
excitation waves disappear owing to the stronger noises before
they reach the boundaries.

Figures 4(a), 4(b), and 4(c) show three snapshots of lattice
points satisfying ui, j > 0.5 at (a) t = 5850, (b) t = 5855, and
(c) t = 5870 at T = 0.0390 for I = −0.135. An excited spot
appears near i = 62 and j = 90 at t = 5850, and it expands
in the surrounding. If there are no noises, a ringlike wave
would propagate to the entire system. However, the ringlike
wave breaks in pieces and disappears by the noises as shown
in Fig. 4(c). The noises have an effect to break the excitation
wave.

Figure 5(a) is the time evolution of S at T = 0.0254 for
I = −0.135. The peak amplitudes have a similar magnitude
because the noise-induced excitation propagates almost to
the entire system as shown in Fig. 3(a). Figures 5(b) and
5(c) are time evolutions of S at (b) T = 0.0352 and (c)

FIG. 2. Parameter range where the temporal average of S takes a
value larger than 0.001 in the parameter space (T, I ) calculated in a
system of 100 × 100.
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FIG. 3. Time evolutions of lattice points satisfying ui, j > 0.5 at j = L/2, at (a) T = 0.0254, and (b) T = 0.0390 for I = −0.135. At the
black dot positions, ui, j takes a value larger than 0.5.

T = 0.0547 for I = −0.15. Intermittent time evolutions are
observed at T = 0.0352 and 0.0547. The peak amplitudes
become smaller with T . Figures 6(a) and 6(b) show the
probability distributions of the cluster size C at T = 0.0371
and I = −0.15 for system size (a) L × L = 100 × 100 and
(b) 200 × 200 at T = 0.0371 in a double-logarithmic scale.
Here, spatiotemporal clusters are constructed using the local
order parameter si, j,n observed at discrete times t = 5n (n is
an integer). [The velocity of a single pulse is around 0.2 and
the width is around ten as shown later in Fig. 9(a) when the
noise is absent. The time interval �t = 5 is a time scale for
the single pulse to propagate by one lattice interval]. That
is, the site (i, j, n) on the three-dimensional lattice and the
neighboring site (i′, j′, n′) of the (i, j, n) site are connected if
si, j,n = 1 and si′, j′,n′ = 1. A spatiotemporal cluster is defined
as a set of locally connected lattice points. The cluster size C
is defined as the total number of lattice points included in one
cluster. The two probability distributions for 100 × 100 and
200 × 200 have a similar form. The probability distribution
can be approximated at a power-law distribution, although it is
slightly curved downward. Figure 6(c) shows the cluster size
distribution in which s′

i, j is used for the local order parameter

instead of si, j to investigate the influence on the choice of the
local order parameter. If the local order parameter s′ is used,
many small clusters of excited sites of s′ = 1 are generated
and the probability distribution takes a higher value for small
C. However, the probability distribution can be approximated
at a power-law distribution for C > 10. We consider that the
probability distribution does not depend on the choice of the
local order parameter for large C. Hereafter, we use si, j to
calculate the probability distribution.

Figure 7(a) shows the cumulative distributions Q(C) =∫ ∞
C P(C′)dC′ of the cluster size at T = 0.0254, 0.0371, and

0.0742 for I = −0.15. The power-law behavior is seen in a
finite range of T at the three parameter values but the ex-
ponent is different for the three parameters. For example, a
power-law-like behavior of exponent 1.20 ± 0.002 is seen for
20 < C < 10 000 at T = 0.0254. The exponent is evaluated
as 1.71 ± 0.006 for 50 < C < 500 at T = 0.0371, and 2.95 ±
0.04 for 5 < C < 50 at T = 0.0742. We do not consider that
this is a self-organized critical phenomenon partly because
the exponent is not constant. The exponent is uniquely deter-
mined in most models of self-organized criticality, such as the
sand-pile model by Bak, Tang, and Wiesenfeld [21] and the

FIG. 4. Three snapshots of the regions of ui, j > 0.5 at (a) t = 5850, (b) t = 5855, and (c) t = 5870 at T = 0.0390 for I = −0.135.
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FIG. 5. Time evolutions of S at (a) T = 0.0254 and I = −0.135, (b) T = 0.0352 and I = −0.15, and (c) T = 0.0547 and I = −0.15.

self-organized depinning transition model [25,26], although
there are some models such as the Olami-Feder-Christensen
model [27] in which the exponent changes with the sys-
tem parameter. The cumulative distribution is slightly curved
upward for 1000 < C < 10 000 at T = 0.0254, which repre-
sents the excitation waves expanding to the entire system. At
T = 0.0742, the cumulative distribution is curved downward,
since the excitation waves decay quickly. At T = 0.0371, the
cumulative distribution is slightly curved downward, although
various sizes of excited waves appear at this parameter. Fig-
ure 7(b) shows the average cluster size < C > as a function
of T for I = −0.15. The average cluster size decreases with
T because the excitation waves disappear more quickly for
larger T .

III. WAVE PROPAGATION IN TWO-DIMENSIONAL
COUPLED NOISY FITZHUGH-NAGUMO EQUATIONS

WITH A ONE-DIMENSIONAL PACEMAKER

The dynamical behaviors of the two-dimensional coupled
noisy FitzHugh-Nagumo equations are determined by the
nucleation of excitation waves and their decay during propa-
gation. Both the nucleation and decay are caused by the noise
effects. The probability of the nucleation is expected to follow
the Arrhenius law and the probability decreases rapidly as

exp(−�E/T ) near T = 0, and there is no critical point. On
the other hand, there is a possibility of phase transition for
the propagation of excitation waves on the square lattice. That
is, the excitation wave decays soon after the nucleation for
large T , but the excitation waves survive long and reach the
boundary below a critical value of T . On the one-dimensional
lattice, the excitation wave disappears once the propagation is
blocked at a lattice site by the noise, however, the excitation
wave can propagate on the square lattice by the excitation
from the neighboring sites even if the excitation wave is
blocked at a site by the noise.

To make the transition clearer, a source region of excitation
waves is set for 1 � j � 5. That is, we use a modified model
equation,

dui, j

dt
= ui, j (ui, j + a)(1 − ui, j ) − vi, j

+ K
∑

j

(ui+1, j + ui−1, j + ui, j+1 + ui. j−1 − 4ui, j )

+ ξi, j (t ) + Ii, j,

dvi, j

dt
= ε(ui, j − bvi, j ),

i = 1, 2, . . . , Lx j = 1, 2, . . . , Ly, (2)

FIG. 6. Probability distribution of the cluster size C at T = 0.0371 and I = −0.15 for system size (a) L × L = 100 × 100 and (b) 200 ×
200 at T = 0.0371 in a double-logarithmic scale. (c) Probability distribution of the cluster size C of s′ at T = 0.0371 and I = −0.15 for system
size L × L = 100 × 100.
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FIG. 7. (a) Cumulative distribution function Q(C) = ∫ ∞
C P(C′)dC′ of the cluster size C at T = 0.0254, 0.0371, and 0.0742 for I = −0.15.

(b) Average cluster size < C > as a function of T for I = −0.15.

where Ii, j = I0 = 0.015 and Ti, j = 0 for 1 � j � 5 and Ii, j =
I, and Ti, j = T for the other lattice points. The system size
is assumed to be Lx × Ly = 50 × 300. The periodic boundary
conditions are adopted at i = 1 and i = Lx. The excitation
waves are periodically generated from the pacemaker region
and the propagation dynamics of the excitation waves can be
observed clearly. In other words, we don’t need to consider
the nucleation process of the excitation waves. Figure 8 shows
the five snapshots of lattice points of si, j = 1 at t = 6000,
6200, 6400, 6600, and 6800 at I = −0.15 and T = 0.0293.
Excitation waves are generated at 1 � j � 5 and propagate
toward j = Ly. One-dimensional excitation waves propagate
in the y direction. The excitation waves fluctuate, break up,
and decay owing to the noise effect. The excitation wave in
Fig. 8 disappeared near j = 220 at t = 7200. Figures 9(a),
(b), and (c) plot the lattice point j where si, j takes one at
least at one lattice point (i, j) at (a) T = 0.0215, (b) T =
0.0293, and (c) T = 0.0371 for I = −0.15. At T = 0.0215,
all the excitation waves propagate in the j direction and reach
the boundary j = Ly. At T = 0.0371, the excitation waves

FIG. 8. Propagation of excitation waves at I = −0.15 for T =
0.0293 by Eq. (2). Five snapshots of lattice points satisfying si, j = 1
at t = 6000, 6200, 6400, 6600, and 6800 are plotted.

propagate in the j direction but decay at 20 < j < 60. At
T = 0.0293, the propagation length changes for each period.
There is a phase transition from the short-range propagation to
the whole-system propagation by changing the noise strength
T . The transition is analogous to the directed percolation [28].
There is a phase transition from a nonpercolating state to a
percolating state in the directed percolation. In the percolating
state, there is an infinitely large mutually connected spatio-
temporal cluster. The essential difference from the directed
percolation is that there is no absorbing state in our system.
Figure 10(a) shows the average value of j for the lattice points
satisfying si, j = 1 as a function of T for I = −0.15. The
average value takes a value close to Ly/2 for sufficiently small
T because all lattice points are excited. The average value de-
creases rapidly near T = 0.03. We evaluated the critical value
as Tc = 0.0298 for I = −0.15, in that only one excitation
wave reaches j = Ly for 0 < t < 20 000. The critical value
Tc increases with I . Figure 10(b) shows the critical values Tc

for several I’s in the parameter space of T and I . The critical
line is located inside the parameter range of noised-induced
wave propagation shown in Fig. 2. On the left of the critical
line, the nucleation of excitation waves is rare, however, the
excitation waves survive for a long time. On the right of
the critical line, excitation waves are frequently generated,
however, the excitation waves decay quickly. Near the critical
line, various sizes of excitation waves are generated, and the
size distribution is expected to obey a power law more clearly.

IV. CRITICAL STATES AND THE FEEDBACK
CONTROL OF THE CRITICAL STATES

We have performed numerical simulations of Eq. (1) again
near the critical line of the propagation of excitation waves.
Figures 11(a) and 11(b) show the size distributions at (a)
T = 0.0298 and I = −0.15, and (b) T = 0.0342 and I =
−0.14. A power-law-like behavior is observed for S > 30.
The exponent is approximated by the least-square method at
2.13 ± 0.02 for T = 0.0298 and I = −0.15, and 2.15 ± 0.02
for T = 0.0345 and I = −0.14. Figure 11(c) shows the size
distribution for a larger system of 300 × 300 at T = 0.0298
and I = −0.15. The exponent is evaluated as 1.85 ± 0.04,
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FIG. 9. Propagation of excitation waves at (a) T = 0.0215, (b) T = 0.0293, and (c) T = 0.0371 for I = −0.15. The j coordinate of the
excited lattice points (i, j) is plotted at time t = 5n (n: integer).

FIG. 10. (a) Average value of j for the lattice points satisfying si, j = 1 as a function of T for I = −0.15. (b) The critical line of the
propagation of the excited wave in the parameter space of (T, I ).

FIG. 11. Cluster size distributions at (a) T = 0.0298, I = −0.15 and (b) T = 0.0342, I = −0.14. The dashed lines denote the power law
of exponent −2.1. (c) Cluster size distributions at (a) T = 0.0298, I = −0.15 in a larger system of 300 × 300. The dashed line denotes the
power law of exponent −1.85.
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FIG. 12. (a) Time evolutions of I (t ) by Eq. (3) at T = 0.0361, S0 = 0.01767 (solid line) and T = 0.0293, S0 = 0.00635 (dashed line) for
ε ′ = 0.0001. (b) Cluster size distribution at T = 0.0293, S0 = 0.00635, and ε ′ = 0.0001. The dashed lines denote the power law of exponent
−2.1.

although the temporal range is smaller by 1/5 than the case
of system size 100 × 100 owing to the limit of memory. In
an even larger system of 500 × 500, the exponent could not
be evaluated because of the lack of memory to store the
spatiotemporal cluster. The precise evaluation of the exponent
is left to future study.

Finally, we show a few numerical simulations to obtain the
critical state by the feedback control. The model equation is

dui, j

dt
= ui, j (ui, j + a)(1 − ui, j ) − vi, j

+ K
∑

j

(ui+1, j + ui−1, j + ui, j+1 + ui. j−1 − 4ui, j )

+ ξi, j (t ) + I (t ),

dvi, j

dt
= ε(ui, j − bvi, j ),

i = 1, 2, . . . L, j = 1, 2, . . . , L,

dI

dt
= ε′(S0 − S(t )), (3)

where S0 is the target value of the order parameter S. In this
model, the input I (t ) is controlled by the feedback term as the
order parameter is close to the target value S0.

Figure 12(a) shows the time evolutions of I (t ) at T =
0.0361, S0 = 0.01767 (solid line), and T = 0.0293, S0 =
0.00635 (dashed line) for ε′ = 0.0001. The system size is
100 × 100. The parameters S0’s were chosen as S0 = 0.02767
for T = 0.0361 and S0 = 0.01767 for T = 0.0293, which are
the values of the order parameter S shown in Figs. 1(a) and
1(b) at the critical parameters Ic shown in Fig. 10(b) for the
two values of T . The initial value of I (t ) is I (0) = −0.11.
Figure 12(a) shows that I (t ) is fluctuating near the critical
value Ic after an initial transient time. Figure 12(b) shows
the cluster size distribution in a double-logarithmic scale ob-
tained by Eq. (3) for 30 000 < t < 150 000 at T = 0.0293,
S0 = 0.00635, and ε′ = 0.0001. The exponent of the power-
law fitting is 2.13 ± 0.025. A nearly critical state is realized

by Eq. (3) owing to the feedback control. There are vari-
ous theories that the brains are working near a critical state
[19,22,24,29,30]. Our model equation is a quite simple one,
but there is a possibility that the nearly critical state is re-
alized by some feedback control methods. We would like to
investigate a more plausible feedback model in the future.

V. SUMMARY

We have performed a numerical simulation of coupled
noisy FitzHugh-Nagumo equations on a square lattice. We
have confirmed that excitation waves are generated most
efficiently at an intermediate range of noise strength. The
cluster size distributions obey a power-law-like distribution at
a certain parameter range. However, we consider that this is
not a self-organized critical phenomenon, partly because the
exponent of the power law is not constant. We have studied
the propagation of the excitation waves in the coupled noisy
FitzHugh-Nagumo equations with a one-dimensional pace-
maker region. We have found that there is a transition from
the short-range propagation to the whole-system propagation
by changing the noise strength T . This phase-transition-like
phenomenon is the main finding of this paper. We have
checked that the power-law distribution is observed most
clearly near the phase transition points of the propagation
of excitation waves in the coupled noisy FitzHugh-Nagumo
equations without the one-dimensional pacemaker. We in-
terpret that the power-law-like behavior is related to this
phase transition of the stochastic propagation of excitation
waves. We have evaluated the exponent of the power-law
distribution for some system sizes. However, the precise eval-
uation of the exponent of the power-law distribution and the
theoretical analysis are left to the future study. We have fur-
ther performed numerical simulations of the coupled noisy
FitzHugh-Nagumo equations with a feedback control term
and showed that a nearly critical state can be realized by the
feedback control.
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