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This work analyzes bifurcation delay and front propagation in the one-dimensional real Ginzburg-Landau
equation with periodic boundary conditions on isotropically growing or shrinking domains. First, we obtain
closed-form expressions for the delay of primary bifurcations on a growing domain and show that the additional
domain growth before the appearance of a pattern is independent of the growth time scale. We also quantify
primary bifurcation delay on a shrinking domain; in contrast with a growing domain, the time scale of domain
compression is reflected in the additional compression before the pattern decays. For secondary bifurcations such
as the Eckhaus instability, we obtain a lower bound on the delay of phase slips due to a time-dependent domain.
We also construct a heuristic model to classify regimes with arrested phase slips, i.e., phase slips that fail to
develop. Then, we study how propagating fronts are influenced by a time-dependent domain. We identify three
types of pulled fronts: homogeneous, pattern spreading, and Eckhaus fronts. By following the linear dynamics,
we derive expressions for the velocity and profile of homogeneous fronts on a time-dependent domain. We also
derive the natural “asymptotic” velocity and front profile and show that these deviate from predictions based
on the marginal stability criterion familiar from fixed domain theory. This difference arises because the time
dependence of the domain lifts the degeneracy of the spatial eigenvalues associated with speed selection and rep-
resents a fundamental distinction from the fixed domain theory that we verify using direct numerical simulations.
The effect of a growing domain on pattern spreading and Eckhaus front velocities is inspected qualitatively and
found to be similar to that of homogeneous fronts. These more complex fronts can also experience delayed onset.
Lastly, we show that dilution—an effect present when the order parameter is conserved—increases bifurcation
delay and amplifies changes in the homogeneous front velocity on time-dependent domains. The study provides
general insight into the effects of domain growth on pattern onset, pattern transitions, and front propagation in
systems across different scientific fields.
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I. INTRODUCTION

Pattern formation on a time-dependent domain arises in
many systems across biology and physics [1–4]. Key exam-
ples include the expanding crown in the drop-splash problem
[5], structure formation in an expanding universe [6], and a
variety of reaction-diffusion problems on growing domains
[2,3,7–13]. Other problems, ranging from quantum mechanics
[14,15] to control theory [16], have also been studied on time-
dependent domains. For a review of such problems, see [4].

When the domain size becomes time dependent, new phe-
nomena emerge in the dynamic pattern formation process.
For example, the stability of pattern states can change but
on a time-dependent domain these changes occur at stronger
forcing than that predicted by quasistatic changes in the do-
main size—a phenomenon referred to as bifurcation delay
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[17]. A better understanding of bifurcation delay can provide
additional physical insights into climate tipping points [18],
oscillator networks [19–22], neuron firing [23], and many
other applications [24–30]. Bifurcation delay in systems de-
scribed by nonautonomous ordinary differential equations has
been extensively studied [31–39], but similar phenomena in
spatially extended systems described by partial differential
equations are much less understood [4,40,41] and no explicit
formulas are available outside of the adiabatic regime.

The phenomenon of front propagation, i.e., the motion of
an interface between stable and unstable states or between
two different stable states, is also of interest. The simplest
example of a front occurs when a stable, spatially homoge-
neous state propagates into an unstable homogeneous state.
Fronts of this type generally travel with a velocity that can be
computed from linearized dynamics alone, although nonlin-
earities can amplify the propagation speed [42]. Fronts arise in
many systems in fluid, chemical, and biological environments
such as vortex fronts in Taylor-Couette flow [43], pearling
instabilities of lipid bilayers [44], and healing of epidermal
wounds [45]. For a review of the theory and applications of
fronts on a fixed domain, see [42]. Front propagation gains
additional complexity on time-varying domains or in systems
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with evolving parameters [46–49]. It is currently unclear how
a time-dependent domain affects front propagation.

In conserved systems, bifurcation delay and front propa-
gation are affected by the presence of a conserved quantity.
As the domain expands, the concentration of this quantity
is reduced, yielding a local growth-dependent effect known
as dilution. A shrinking domain has the opposite effect of
increasing the concentration. For one-dimensional isotropic
domain growth, the effect of dilution can be transformed into
a stabilizing time-dependent bifurcation parameter [41].

To understand the properties of these phenomena on a
time-dependent domain, we study the one-dimensional (1D)
real Ginzburg-Landau equation (RGLE) model. The RGLE
captures many of the phenomenological properties of pattern
formation with minimal complexity. Furthermore, the RGLE
provides a quantitative description of amplitude modulation
of more complex patterns near the onset of instability, such
as those found in Rayleigh-Bénard convection and Taylor-
Couette flow [24,50–53]. The dynamics of the RGLE on a
fixed domain are well understood [4,53–60]. However, ex-
isting theory is often not generalizable to a time-dependent
domain which incorporates nonautonomous effects on an ar-
bitrary time scale.

The RGLE on a time-dependent domain was previously
studied in [4,40], focusing on slowly changing domains rel-
ative to the intrinsic time scale. In this work, an expression
for the bifurcation delay of a phase slip under slow domain
changes was derived based on a time-dependent diffusion
equation for the spatial phase [40]. A local theory for phase
slips was also developed based on the regularity properties of
parabolic partial differential equations (PDEs) to show how
a growing (shrinking) domain increases (decreases) the time
to phase slip [4]. This work also showed that the nonlinear
evolution of the Eckhaus instability can be described with a
nonlinear porous-medium type equation [40].

The present work analyzes bifurcation delay and front
propagation in the RGLE on isotropically growing or shrink-
ing domains but relaxes the assumption of slow time variation
through both theoretical analysis and extensive direct nu-
merical simulations. Additional phenomena arise in models
with an intrinsic wave number such as those motivated by
apical growth [61]. First, we obtain explicit formulas for the
bifurcation delay of primary bifurcations in both growing
and shrinking domains of varying time scales. For secondary
bifurcation delay, we construct an energy bound on perturba-
tions on a shrinking domain and classify regimes containing
arrested phase slips, or phase slips that fail to develop due to
restabilization on a growing domain. Next, we identify several
types of fronts in the RGLE and explain how their dynam-
ics change on a time-dependent domain. For homogeneous
fronts, we derive a linear spreading velocity and a natural
“asymptotic” velocity which compares well with direct nu-
merical simulations. We also analyze the time evolution of the
nonlinear front profile and its connection to the front velocity.
Lastly, we show how dilution increases bifurcation delay and
amplifies changes in homogeneous front velocity.

In Sec. II, we formulate the RGLE on a time-dependent
domain. In Secs. III and IV, we analyze the effect of a time-
dependent domain on bifurcation delay and front propagation,
respectively. In Sec. V, we explain the role of dilution. In

Sec. VI, we summarize our results and suggest directions for
future study.

II. REAL GINZBURG-LANDAU EQUATION
ON A TIME-DEPENDENT DOMAIN

We consider a complex amplitude A described by the 1D
RGLE on an isotropically growing domain x ∈ [0,�L(t )]
with periodic boundary conditions:

At + L̇(t )

L(t )
xAx︸ ︷︷ ︸

advection

= μA + Axx − |A|2A. (1)

Here, subscripts denote partial derivatives and overdots de-
note total time derivatives, while L(t ) is the dimensionless
growth parameter; we prescribe L(0) = 1 so that � is the
initial domain size. The RGLE is the lowest-order model that
retains phase invariance A �→ A eiφ for arbitrary phase φ and
separate parity symmetries A �→ A and x �→ −x present in
many physical systems [60]. If we treat the RGLE as a model
pattern-forming equation in its own right, we may impose
the additional requirement that

∫ �L(t )
0 A(x, t )dx must be con-

served by the left hand side, leading to

At + L̇(t )

L(t )
xAx + L̇(t )

L(t )
A︸ ︷︷ ︸

dilution

= μA + Axx − |A|2A. (2)

Existing analytical techniques and numerical methods for
PDEs require a fixed domain. Therefore, we use the change
of variable ξ = x/L to obtain

At + L̇(t )

L(t )
A = μA + 1

L(t )2
Aξξ − |A|2A, (3)

where ξ ∈ [0,�] is the (Lagrangian) fixed-domain spatial
coordinate. Note that the advection term is eliminated in this
frame; see Appendix A. To isolate the effect of dilution, we
initially neglect the dilution term in (3) and study the equation

At = μA + 1

L(t )2
Aξξ − |A|2A. (4)

This is the relevant regime when treating the RGLE as an
amplitude equation for pattern-forming systems. The dilution
term is reintroduced in Sec. V once this simpler system is
analyzed.

The RGLE possesses several classes of stationary states
summarized in the bifurcation diagram in Fig. 1 for L = 1
and � = 2π . These states are defined up to a constant phase
shift arising from translation invariance and the use of periodic
boundary conditions. The supercritical bifurcations along the
trivial branch A = 0 are referred to as primary bifurcations
and these generate pattern states. The restabilizing subcritical
bifurcations along the pattern branches are referred to as sec-
ondary bifurcations and these are responsible for the presence
of unstable mixed mode solutions.

To relate the properties of Eq. (4) to the time-independent
problem, it is often useful to freeze the time dependence of
L(t ) and treat it as a bifurcation parameter of the system:

At = μA + 1

L2
Aξξ − |A|2A. (5)
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FIG. 1. Bifurcation diagram showing ||A||2 vs μ for Eq. (4) with periodic boundary conditions, � = 2π and L = 1, where ||A||2 =√
1
�

∫ �

0 |A|2 dx is the (normalized) L2 norm. Solid lines represent unstable (thin) and stable (thick) stationary states. Filled circles denote
primary bifurcations at μ = Q2 for each wave number Q and open circles denote secondary bifurcations at μ = 3Q2 − 1

2 k2 for each integer
k ∈ (0, 2Q). In the insets (a), (b), and (c), we show sample profiles for the three key stationary states: solid, dashed, and dotted lines denote
|A|, ReA, and ImA, respectively, and the y ticks denote zero. The homogeneous state (a) is given by A = √

μ. The phase-winding pattern states

(b) have the form A =
√

μ − Q2eiQx . The mixed modes (c) determine the basin of attraction of the pattern states. The corresponding locations
of each inset profile in the bifurcation diagram are marked with diamonds.

This allows us to obtain the bifurcation diagram of the RGLE
with respect to L as shown in Fig. 2 for fixed μ = 3. As a
system parameter, the domain size L behaves similarly to μ:
pattern states become more stable as L increases. However,
this is a quasistatic view and does not capture all time-
dependent effects of L(t ).

III. BIFURCATION DELAY

A. Primary bifurcation delay

Under quasistatic variation of L, supercritical primary bi-
furcations from the trivial state to pattern states of wave
number Q and amplitude

√
μ − Q2/L2 occur at L = Q/

√
μ

as shown in Fig. 2. On a growing domain, the onset of these
pattern states can be delayed beyond the primary bifurcation.
Conversely, on a shrinking domain, pattern states can exhibit
delayed decay. We aim to explicitly measure these delay ef-
fects for given L(t ) of arbitrary time scale.

1. Growing domain

Starting from the pattern state A(ξ, t ) = a(t )eiQξ , with a ∈
R and Q ∈ Z+, we can use (4) to obtain an evolution equa-
tion for the amplitude:

ȧ = μ̃(t )a − a3, (6)

where

μ̃(t ) ≡ μ − Q2

L(t )2
. (7)

We restrict our attention to monotonically increasing L(t ). If
μ > Q2, then the pattern state exists at t = 0 and remains in
existence for all t . For domain growth in which L(t ) → ∞
as t → ∞, we see a(t ) → √

μ regardless of the value of Q.
If μ < Q2, then the trivial state A = 0 is initially stable with
respect to wave number Q perturbations, but an increasing
L(t ) can destabilize the trivial state at later times. To see this,
we suppose μ is not too small, L(t ) increases sufficiently
fast, and a(0) � 1, so that the time for which μ̃(t ) ∼ a2 is
negligible. We may then linearize (6) about the trivial state to
obtain

ȧ = μ̃(t )a, (8)

and so

a(t ) = a(0) exp

(∫ t

0
μ̃(t ′) dt ′

)
. (9)

According to (7), μ̃(0) < 0 and ˙̃μ(t ) > 0 for all t . As a
result, for a domain that grows sufficiently large, we define
the turnaround time t∗ > 0 such that μ̃(t∗) = 0. This denotes
the time at which the system crosses the primary bifurcation.
However, the system does not realize this bifurcation immedi-
ately. We define the exit time texit > t∗ such that a(texit ) = a(0).
This denotes the time when the perturbation exits its initial
neighborhood. We can find texit by solving

f (texit ) ≡
∫ texit

0
μ̃(t ′) dt ′ = 0, (10)
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FIG. 2. Bifurcation diagram showing ||A||2 vs L for μ = 3. Solution stability and bifurcation types are denoted as in Fig. 1. The primary
bifurcations occur at L = Q/

√
μ, Q ∈ Z+, and secondary bifurcations occur at L =

√
(3Q2 − 1

2 k2)/μ for each k ∈ (0, 2Q) with k ∈ Z+. The
trajectory for a Q = 2 state on a growing domain L(t ) = e0.2t is shown in blue with an upward arrow and the trajectory for a Q = 1 state on a
shrinking domain L(t ) = e−0.2t is displayed in red with a downward arrow. The shaded region denotes the neighborhood around the trivial state
for which delay is calculated; diamonds represent Lexit (blue, right) and Lenter (red, left) for the growing and shrinking domain, respectively. In
the inset, the square denotes the turnaround point L∗. The additional domain growth Ldelay denotes bifurcation delay.

where f (t ) is the entrance-exit function. We can also find the
domain sizes at the corresponding times, denoted by L∗ and
Lexit. Finally, we define

tdelay ≡ texit − t∗ (11)

to be the delay time, or the extra time it takes for the perturba-
tion to leave a neighborhood around the trivial state. We also
define Ldelay ≡ Lexit − L∗ to be the extra domain growth dur-
ing the delay period. We refer to Fig. 2 (inset) for a graphical
depiction of this delay.

For an exponentially growing domain L(t ) = eσ t , σ > 0,
we obtain

t∗ = 1

σ
ln

Q√
μ

, (12a)

L∗ = Q√
μ

, (12b)

texit = 1

2σ

[
W0

(
−Q2

μ
e−Q2/μ

)
+ Q2

μ

]
, (12c)

Lexit = exp

{
1

2

[
W0

(
−Q2

μ
e−Q2/μ

)
+ Q2

μ

]}
, (12d)

tdelay = 1

2σ

[
W0

(
−Q2

μ
e−Q2/μ

)
+ Q2

μ
− ln

Q2

μ

]
, (12e)

Ldelay = exp

{
1

2

[
W0

(
−Q2

μ
e−Q2/μ

)
+ Q2

μ

]}
− Q√

μ
,

(12f)

where W0(z) is the principal branch of the Lambert-W func-
tion with integral representation [62]

W0(z) ≡ 1

π

∫ π

0
ln

(
1 + z

sin t

t
et cot t

)
dt . (13)

A larger σ results in a smaller tdelay as shown in (12e). Addi-
tionally, Lexit in (12d) and Ldelay in (12f) are independent of
the growth rate σ .

In fact, the property that Lexit and Ldelay are independent of
the growth time scale holds for all types of monotonic domain
growth. Applying (10), we see that Lexit solves∫ Lexit

0

(
μ − Q2

L2

)
1

L̇
dL = 0. (14)

For L̃(t ) = L(σ t ), σ > 0, we have ˙̃L(t ) = σ L̇(σ t ), and (14)
yields∫ Lexit

0

(
μ − Q2

L̃2

)
1
˙̃L

dL̃ = 1

σ

∫ Lexit

0

(
μ − Q2

L2

)
1

L̇
dL = 0.

(15)

Thus Lexit (and, therefore, Ldelay) is independent of the growth
time scale.

2. Shrinking domain

On a shrinking domain, we consider the problem in which
the system begins in a pattern state where μ > Q2 but
decays to the trivial state as L(t ) monotonically decreases. We
are then interested in the entrance time into a neighborhood
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around the trivial state; see the red line trajectory in Fig. 2.
Specifically, we pick ε > 0 and define tenter such that

a(tenter ) = ε. (16)

Additionally, we redefine the delay time and corresponding
domain delay as

tdelay ≡ tenter − t∗, (17a)

Ldelay ≡ L∗ − Lenter. (17b)

We interpret Ldelay as additional domain compression due to
bifurcation delay.

Unlike the case of the growing domain, we cannot lin-
earize the problem since the initial amplitude need not be
small. Additionally, the amplitude, described by (6), de-
parts from the time-independent pattern branch as the system
approaches the primary bifurcation. Instead, as outlined in
Appendix B, we obtain a general solution to (6). For the expo-
nentially shrinking domain L(t ) = eσ t with σ < 0, the closed
form is

a(t ) =
[

exp
(
2μt + Q2

σ
(e−2σ t − 1)

)
− 1

σ
exp

(−Q2

σ

)(− σ
Q2

)−μ/σ
�

(−μ

σ
,−Q2

σ
,−Q2

σ
e−2σ t

) + a−2
0

]1/2

, (18)

where �(s, t0, t1) is the generalized incomplete gamma func-
tion and a0 = a(0). Using this expression, we can understand
how the rate of domain compression σ affects the delay.
We fix values for μ, Q, and ε and compute the delay
time tdelay and associated domain compression Ldelay over a
range of σ by computing implicit solutions to (18). This
is shown in Fig. 3. We see that, as the domain shrinks
faster, the delay time decreases while the domain compression
increases.

B. Secondary bifurcation delay: Eckhaus instability
and phase slip generation

When a pattern state is perturbed, the system may transi-
tion into a more stable state via a phase slip that occurs when

0

7

t d
e
la

y

0.0 0.5 1.0 1.5 2.0
0.0

0.5

L
d
e
la

y

FIG. 3. On an exponentially shrinking domain L(t ) = eσ t , where
σ < 0, as the domain shrinks faster, the delay time tdelay decreases
(top) but the length contraction Ldelay increases (bottom). The delay
is calculated by comparing (18) to the quasistatic case. Here, μ =
3, Q = 1, and ε = 0.0001, where ε is the size of the neighborhood
around the trivial state used for the delay calculation [see (16) and
Fig. 2].

the pattern amplitude reaches zero at a point in the domain
and the system deletes (or injects) a wavelength at that point.
An example of this transition is depicted in Fig. 4.

For a given value of μ, each wave number Q pattern state
is only unstable to modes Q ± k for select values of k ∈ Z+
and secondary bifurcations along the pattern branch stabilize
the pattern state with respect to different values of k. On a
fixed periodic domain, a perturbation of the pattern state by
one of the unstable modes necessarily leads to a phase slip
[59], although its location depends on the initial perturbation
profile. In nonperiodic systems, however, such as those with
Robin boundary conditions, there is in general a preferred
phase slip location determined by the shape of the dominant
unstable mode [63].

On a time-dependent domain, the onset of phase slips can
be delayed. Phase slips can also be prevented altogether—we
call these arrested phase slips. We aim to measure phase
slip delay and classify the regimes in which phase slips are
arrested.

t = 9.0 t = 9.7

t = 9.9 t = 12.0

FIG. 4. Unstable Q = 2 mode undergoes a phase slip leading to
a stable Q = 1 mode. The numerical simulation is run with � = 2π ,
L = 1, μ = 9 and an initial perturbation A′ = 0.01eix of the base
state A = √

5e2ix .
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1. Fixed domain

To determine the stability properties of the pattern states,
we let

A(ξ, t ) = AQ(ξ ) + A′(ξ, t ), (19)

where

AQ(ξ ) =
√

μ − Q2

L2
eiQξ (20)

is the stationary wave number Q pattern state and A′(ξ, t ) is a
small perturbation. We write

A′(ξ, t ) = ak+(t )ei(Q+k)ξ + ak−(t )ei(Q−k)ξ , (21)

where k ∈ Z+ and ak+(t ), ak−(t ) ∈ C. Linearizing (4) about
the base state AQ and inserting (21), the evolution of this two-
mode perturbation is given by(

ȧk+
ȧk−

)
= M

(
ak+
ak−

)
, (22)

where

M =
(

μ − (Q+k)2

L2 − 2a2 −a2

−a2 μ − (Q−k)2

L2 − 2a2

)
(23)

and a =
√

μ − Q2/L2 is the amplitude of the base pattern
state. The eigenvalues are

λk± = −
(

μ − Q2

L2

)
− k2

L2
±

√(
μ − Q2

L2

)2

+
(

2Qk

L2

)2

.

(24)

The fast eigenvalue λk− is always negative and governs the
initial transient towards the eigenspace of the slow eigen-
value λk+. For L = 1, the secondary bifurcations occur at
μ = 3Q2 − 1

2 k2 when λk+ = 0. These bifurcations are sub-
critical and generate unstable mixed mode states. The Eckhaus
instability occurs at k = 1 when the pattern state becomes
stable with respect to all small perturbations of wave number
Q ± k.

2. Shrinking domain

The secondary bifurcations stabilize unstable pattern
states. A shrinking domain pushes a stable pattern state into
the unstable regime. To a first approximation, we can study
this transition via linearization about the pattern state as
the perturbation amplitude is small near this transition. On
the other hand, a growing domain requires the retention of
the cubic nonlinearity because the deviation from the pattern
state of interest is large. Thus we first analyze the simpler case
of the shrinking domain.

We recognize, however, that linearization may not be suf-
ficient to fully characterize the delay on a shrinking domain
even for small-amplitude perturbations. As described in [64]
for a slowly varying parameter, spatiotemporal resonances can
excite modes more quickly than anticipated by linear analysis
alone and these resonances can change the dominant mode
of the perturbation and reduce the delay time of the Eckhaus
instability.

Suppose the system starts in a stable wave number Q state
with respect to k, i.e., μ > 3Q2 − 1

2 k2. The equation that
governs the evolution of the two-mode perturbation is now
nonautonomous: (

ȧk+
ȧk−

)
= M(t )

(
ak+
ak−

)
, (25)

where

M(t ) =
(

μ − (Q+k)2

L(t )2 − 2a(t )2 −a(t )2

−a(t )2 μ − (Q−k)2

L(t )2 − 2a(t )2

)
(26)

and a(t ) is the time-dependent amplitude of the base pattern
state that evolves by (6). The time-frozen eigenvalues of M(t )
are given by

λ±(t ) =μ − Q2

L(t )2
− 2a(t )2 − k2

L(t )2
±

√
a(t )4 +

(
2Qk

L(t )2

)2

.

(27)

However, since the eigenspaces of λ±(t ) are time dependent,
we cannot measure the bifurcation delay solely by examining
the projection along the eigenspace of λ+(t ) and the problem
must be treated as the nonautonomous problem it is. In fact,
there exist nonautonomous systems with exponentially grow-
ing solutions even when Re[λ±(t )] < 0 for all t > 0 [65].

To treat (25) as a nonautonomous problem, we apply an
energy bound on the growth of a perturbation given by the
maximum eigenvalue of M(t ) + M∗(t ) [66]. Since M(t ) is
real and symmetric, we need only consider the least-stable
time-frozen eigenvalue λ+(t ). If we take the squared norm

r(t ) ≡ a2
k+ + a2

k−, (28)

then we can bound r(t ) by

r(t ) � r(0) exp

(
2

∫ t

0
λ+(τ ) dτ

)
. (29)

We can use this result to obtain a minimum delay time using
the same techniques as outlined in the previous subsection.
For some perturbations, the numerically computed r(t ) is very
close to the upper bound (29). In other cases, r(t ) is much
lower than the upper bound and results in a longer delay time
as measured by the diamond symbols in Fig. 5. However, the
upper bound is respected by any initial condition, as supported
by the rapid contraction simulations shown in Fig. 5.

3. Growing domain

In the RGLE on a growing domain the passage across
an Eckhaus bifurcation from the unstable to the stable side
presents a challenge since we need to consider the basin of
attraction of the pattern states. Figure 6 demonstrates this in
a dramatic way. For some L(t ), phase slips will develop even
if the system crosses the Eckhaus instability. For other L(t ),
phase slips are arrested—the system falls into the basin of
attraction of the original pattern state. Thus, for a growing
domain, we are not only concerned with the delay of a phase
slip but also whether a phase slip develops at all.
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FIG. 5. Squared norm of different k = 1 perturbations with
arctan[|ak+(0)/ak−(0)|] = {−π/4, 0, π/4, π/2} (solid, decreasing
opacity) of a Q = 2 pattern state from simulations with L(t ) = e−2t

and μ = 14. The norms are bounded from above by (29) (dashed).

Here, we outline a model for characterizing arrested phase
slips on a time-dependent domain. For simplicity, we restrict
our attention to the transition between the Q = 1 pattern state
and the Q = 0 homogeneous state with � = 2π . Without loss
of generality, we can also force the (developing) phase slip to
occur at ξ = �/2 = π , i.e., in the domain center.

To physically motivate this model, we note that the
Eckhaus instability is a phase instability and the onset of a
phase slip is characterized by a wave number diffusion equa-
tion with a negative diffusion coefficient [60]. The amplitude
is slaved to the phase; once the wave number compression
is large enough, the amplitude reaches zero and a phase slip
occurs. In the Eckhaus-stable regime, the mixed modes are the
unstable states that resemble a developing phase slip (see the
mixed mode profile in Fig. 1). As L(t ) increases, the system
becomes more Eckhaus stable and the mixed modes become
more compressed. This suggests that we can use the wave
number compression of the mixed modes to approximate the
basin of attraction of an Eckhaus-stable pattern state. States
which are more compressed than the relevant mixed mode fall
outside the basin of attraction.

To measure the wave number compression at the location
of the phase slip, we use the phase slip core width �ξ . To
define this quantity, we write the profile in its amplitude-phase
representation

A(ξ, t ) = a(ξ, t )eiφ(ξ,t ). (30)

For the phase of the Q = 1 pattern, φ(ξ = 0) = 0 and
φ(ξ = �) = 2π . The phase slip occurs where φ = π . Fol-
lowing the approach of [67], the core width �ξ is defined
to be the spatial distance between φ = π/2 and φ = 3π/2,
i.e., �φ = π around the developing phase slip (see Fig. 7).
As �ξ decreases, the profile becomes more compressed. Once
�ξ = 0, a phase slip occurs. On a fixed domain, �ξ scales as
(tslip − t )1/2, where tslip is the time of the phase slip [67].

To parametrize the basin of attraction, we compute the core
width of each steady mixed mode at each L for a fixed μ, de-
noted as the critical core width �ξcr(L). These are computed
using pde2path, a Matlab package for numerical continuation
and bifurcation analysis in systems of PDEs [68,69]. The

spatial direction is discretized using the Fourier collocation
method [70] following the implementation in [71–74] and we
use N = 2048 for the number of grid points. Figure 8 shows
the interpolated pde2path results used to construct �ξcr(L)
over L for μ = 2. As expected, as L increases, �ξcr decreases.
Thus, on a growing domain, the number of states that fall
within the basin of attraction grows over time.

We construct the model as follows: given a perturbed Q =
1 pattern state for some growing L(t ), we track the core width
�ξ (t ) over time. If a state falls within the basin of attraction
at one time, then the state remains within the basin of attrac-
tion thereafter—this is an arrested phase slip. Specifically, if
�ξ (t ) > �ξcr(L(t )) at some time t > t∗, then the phase slip
is arrested; if �ξ (t ) < �ξcr(L(t )) for all time, then the phase
slip develops.

We test this core width model with direct numerical sim-
ulations (DNS) of (4) using Dedalus, a Python library that
uses spectral methods to solve differential equations [75].
We use a RK222 time-stepping scheme with a Fourier basis
with N = 1024. The linear terms are treated implicitly, but
the time-dependent domain requires that the diffusion term
is treated explicitly and a smaller time step is required for
numerical stability.

As shown in Fig. 9, we perform DNS with slow ex-
ponential growth L(t ) = e0.1t and fast sigmoidal growth
L(t ) = 1.93 + 0.93 tanh[5(t−2.59)]. For exponential growth,
the model exhibits remarkable accuracy for many randomly
chosen perturbations. Evidently, the mixed mode core width
acts as a useful criterion for determining whether phase slips
are arrested.

However, examining Fig. 9(d), we find that this model is
not perfect for fast sigmoidal domain growth, as a phase slip
occurs even though the evolution (d) crosses �ξcr. We find
that the model is too lenient in classifying arrested phase slips
because it does not account for transient effects due to changes
in domain size. These transient effects cause additional com-
pression beyond what is anticipated by the model. In practice,
the range of perturbations for which this model fails is quite
small, as demonstrated by the near-identical initial conditions
shown in the bottom left panel of Fig. 9.

IV. FRONTS

Front propagation into unstable states arises from localized
perturbations in spatially extended systems. Fronts generally
have a well-defined asymptotic velocity and profile. Pulled
fronts approach a spreading velocity determined by the lin-
ear dynamics ahead of the front, in contrast with pushed
fronts that move faster than the linear spreading velocity
due to nonlinear effects [42]. The profile at the leading
edge of the front is intimately connected to the selected
velocity.

In Fig. 10, we identify three types of pulled fronts in
the RGLE that correspond to the following three types of
bifurcations.

(1) Homogeneous fronts arise when the stable homoge-
neous state propagates into the unstable trivial state due to the
supercritical bifurcation at μ = 0.
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FIG. 6. A phase slip is arrested with L(t ) = 1.95 + 0.95 tanh[5(t − 2.59)] (blue, top) but develops with L(t ) = 1.85 + 0.85
tanh[5(t − 2.59)] (red, bottom). The phase slip time is indicated by a solid red point. Both states are initialized with a Q = 1 pattern state
AQ(ξ ) defined by (20) and the same perturbation A′ = 0.25eiξ .

(2) Pattern-spreading fronts arise when a pattern state
propagates into the unstable trivial state due to the primary
bifurcations at μ = Q2.

(3) Eckhaus fronts arise when a stable pattern state prop-
agates into an unstable pattern state due to the Eckhaus
instability at μ = 3Q2 − 1

2 .
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FIG. 7. Phase slip core width �ξ for a Q = 1 profile, defined
to be the spatial width around a phase slip in which there is an
accumulation of �φ = π phase. Top: |A|, ReA, and ImA. Bottom:
phase φ.

Previous studies of pulled fronts in one dimension have
mostly focused on their universal properties: the selected
velocity and leading edge profile of pulled fronts are inde-
pendent of the tracking height, specific nonlinearities, and
initial conditions, provided the initial conditions are suffi-
ciently steep [42]. The asymptotic velocity is approached from
below at a slow algebraic rate O(t−1), while the asymptotic
profile is approached at a rate O(t−2) [42]. The selected
asymptotic front is the marginally stable uniformly prop-
agating solution—this is known as the marginal stability
criterion [42].
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FIG. 8. Critical core width �ξcr of the Q = 1 mixed mode as a
function of L when μ = 2, obtained by an interpolation of points
obtained from numerical continuation in L.
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FIG. 9. The core width model classifies which regimes on a growing domain result in arrested phase slips between Q = 1 and Q = 0
by comparing the core width of the profile �ξ at each time to the critical core width �ξcr of the mixed mode. If �ξ > �ξcr at some time,
then the phase slip is arrested while �ξ = 0 indicates the presence of a phase slip. Left: the core width �ξ over time for various initial
conditions (solid) and the critical core width �ξcr (dashed). Right: space-time plots of ReA for the selected profiles (colors), with the core
width �ξ overlaid (dotted). Top: slowly growing domain with L(t ) = e0.1t . The core width model works very well for 50 random finite-
amplitude perturbations (gray lines). A phase slip (a) and arrested phase slip (b) are shown. Bottom: rapidly growing domain with L(t ) =
1.93 + 0.93 tanh[5(t − 2.59)]. Here the model is less successful. A phase slip (c) and arrested phase slip (e) are shown. The profile (d) reveals
the limitations of this model, where �ξ > �ξcr at some time but the phase slip occurs nonetheless.

However, on a time-dependent domain, it is unclear
whether the asymptotic velocity and profile are meaningful
at all—long-time asymptotic behavior cannot be described
for general time-dependent domains. We cannot immediately
determine the velocity and profile using the machinery of
[42], which relies on long-time asymptotics. Therefore, we
develop the theory from first principles to see which aspects
of the fixed-domain theory must be adjusted. In Fig. 11, we

give an overview of the homogeneous, pattern-spreading, and
Eckhaus fronts in the RGLE on a time-dependent domain. In
the subsections that follow, we analyze each front type in more
detail. We primarily focus on homogeneous fronts because
they are the most analytically tractable and most thoroughly
analyzed in the literature [42]. We make brief remarks about
the effect of a growing domain on pattern-spreading and Eck-
haus fronts at the end of this section.
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FIG. 10. Time evolution of |A| (solid) and ReA (dashed) of the different front types in the RGLE on a fixed domain � = 20π . Values of μ

are varied to emphasize qualitative features on the same spatial scale. Homogeneous fronts (left) are generated by the supercritical bifurcation at
μ = 0. Pattern-spreading fronts (middle) are generated by primary bifurcations with Q �= 1. Eckhaus fronts (right) are generated by secondary
Eckhaus instability between two different pattern states. For visual clarity, the imaginary part is not shown.

A. Homogeneous fronts

On a fixed domain, homogeneous or uniform fronts can
be shifted into a comoving frame with time-independent be-
havior far from the front. If we take A to be real, the RGLE
is equivalent to the 1D Allen-Cahn equation or the Fisher-
Kolmogorov-Petrovsky-Piskunov (F-KPP) equation with a
cubic nonlinearity. Homogeneous fronts in these equations are
the prototypical examples of pulled fronts and have been ex-
tensively studied on a fixed domain [42,76,77]. However, on a
time-dependent domain, we do not expect a stationary profile
for any choice of a comoving frame and the profile will evolve
over time.

1. Linear analysis

Because the asymptotic velocity of a pulled front is en-
tirely determined by the linear dynamics, we first analyze the
linearization about the trivial state

At = μA + 1

L(t )2
Aξξ . (31)

Without loss of generality, we take A to be real. For simplicity,
we perform this analysis on an infinite domain with a delta
function initial condition and track the position of the point

A = C. That is, we solve

C = A(ξC (t ), t ) (32)

for ξC (t ). There are two such points (see Fig. 10); we focus
on the right flank without loss of generality. From here, we
can obtain the velocity ξ̇C (t ) and the profile A(ξC (t ), t ). We
characterize the profile by the steepness, or spatial decay rate,
of its leading exponential tail.

We first ignore time-dependent effects and obtain the
asymptotic velocity and profile at each time from fixed-
domain analysis. As shown in Appendix C, the time-frozen
asymptotic velocity and steepness of the front are

v∗(t ) = 2
√

μ

L(t )
, (33)

λ∗(t ) = √
μL(t ). (34)

These values may also be obtained from the marginal stability
criterion [42]. It is not immediately clear if these expressions
remain meaningful in the presence of time dependence.

We may also solve (31) directly using the disper-
sion relation ω(k, t ) obtained by inserting A = exp[ikξ −
i
∫ t

0 ω(k, t ′)dt ′] into (31):

ω(k, t ) = i

(
μ − k2

L(t )2

)
. (35)
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FIG. 11. Space-time plots of ReA for homogeneous (left), pattern-spreading (middle), and Eckhaus (right) fronts on a fixed domain (top)
and exponentially growing domain L(t ) = eσ t (bottom) with � = 20π . The values of μ and σ are varied to emphasize qualitative features
across the different types of fronts while retaining the same spatial and temporal scale. In all cases, the front slows down on the growing
domain. For the homogeneous front, the initial condition is a narrow Gaussian. For the pattern-spreading front, the initial condition is a pattern
modulated by a narrow Gaussian. The pattern is initially outside of the existence band at t = 0 on the growing domain; therefore, front
propagation is delayed. For the Eckhaus front, the initial condition is an Eckhaus-unstable pattern with a narrow Gaussian perturbation. On the
growing domain the resulting phase slips occur less frequently and eventually stop, resulting in a phase-melting state.

Thus the time-evolved profile of an initial condition with
Fourier transform Ã(k, 0) is given by

A(ξ, t ) = 1

2π

∫ ∞

−∞
Ã(k, 0) exp

(
ikξ − i

∫ t

0
ω(k, t ′)dt ′

)
dk.

(36)
For A(ξ, 0) = δ(ξ ) the exact solution is

A(ξ, t ) = 1√
4πh(t )

exp

(
μt − ξ 2

4h(t )

)
, (37)

where

h(t ) ≡
∫ t

0

1

L(t ′)2
dt ′. (38)

On a fixed domain, it is natural to move into a comoving
frame with the asymptotic velocity (33) because this clears
the growth term μt in (37) so that the amplitude neither grows
nor decays exponentially. On a time-dependent domain, an
immediate generalization is the time-frozen asymptotic frame

ζ = ξ −
∫ t

0
v∗(t ′)dt ′ = ξ − 2

√
μg(t ), (39)

where

g(t ) ≡
∫ t

0

1

L(t ′)
dt ′. (40)

However, the profile (37) in this frame becomes

A(ζ , t ) = 1√
4πh(t )

exp

[
−ζ

√
μg(t )

h(t )
− ζ 2

4h(t )

+ μ

(
t − g(t )2

h(t )

)]
, (41)

with a growth term that does not vanish because g(t )2/h(t ) �=
t except when L is constant.

Instead, to clear the exponential growth in the comoving
frame, we shift into the frame

z = ξ − 2
√

μth(t ) (42)

to obtain the profile

A(z, t ) = 1√
4πh(t )

exp

[
−z

√
μt

h(t )
− z2

4h(t )

]
. (43)

This is a much more natural frame—the exponential growth
at z = 0 vanishes and the profile depends only on h(t ), the
integrated diffusion coefficient, and not g(t ), the integrated
square root of the diffusion coefficient.

Using (42) and (43), we define the natural asymptotic
velocity

v∗∗(t ) = d

dt
[2

√
μth(t )]

=
√

μ

th(t )

(
h(t ) + t

L(t )2

)
(44)

and the natural asymptotic steepness

λ∗∗(t ) =
√

μt

h(t )
. (45)

These are different from the time-frozen asymptotic values
(33) and (34). The natural asymptotic steepness λ∗∗(t ) is phys-
ically meaningful: it represents a balance between the growth
μt and diffusion h(t ). Note that v∗∗ = v∗ and λ∗∗ = λ∗ on a
fixed domain.
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FIG. 12. Homogeneous front propagation in the RGLE with μ = 1 at times t = 5, 15, 25, 35 with various L(t ). Top: constant domain with
L(t ) = 1. Middle: exponentially shrinking domain with L(t ) = e−0.02t . Bottom: exponentially growing domain with L(t ) = e0.06t . The black
(solid, thick) lines are the nonlinear fronts computed with DNS. The blue (solid, medium) lines are the linear fronts calculated analytically
from (37). The gray (dashed, thin) lines are the time-frozen asymptotic fronts. The red (dashed, medium) lines are the natural asymptotic
fronts. In DNS, a delta function initial condition is approximated by a Gaussian 1√

2πs2 exp[−(ξ − �/2)2/2s2] with standard deviation s = 0.1.
This is narrow enough to model a delta function but wide enough to avoid numerical issues with finite differences. To allow fronts to propagate
for long times without reaching the boundary, we select � = 100π . This figure can be compared with Fig. 12 in [42].

We solve (32) using (43) to obtain the linear position and
velocity

ξC (t ) = 2[h(t )(μt − ln[C
√

4πh(t )])]1/2, (46)

ξ̇C (t ) =
1

L(t )2 [μt − ln[C
√

4πh(t )]] + μh(t ) − 1
2L(t )2

{h(t )[μt − ln(C
√

4πh(t ))]}1/2
. (47)

Equations (46) and (47) are exact and valid for all times given
a delta function initial condition. As expected, the velocity
depends on the tracking point C, even at long times, because
the changing steepness of the profile adds an amplitude-
dependent “rotation” effect. On a constant domain, we recover
the expected O(t−1) approach to (33) from (47) as t → ∞ for
all C.

Finally, we compare these linear analysis results with the
nonlinear results obtained from DNS. These DNS are run us-
ing a second-order central finite-difference scheme and RK4
time-marching scheme with μ = 1, � = 100π , N = 65536,
and dt = 10−5, where N is the number of grid points and dt
is the time step. This fine spatial discretization is necessary to
precisely measure the nonlinear front velocity.

To explain the analysis shown in Figs. 12–14, we first
summarize the definitions we use as follows.

(i) The nonlinear front is obtained from DNS. The non-
linear velocity and nonlinear profile are the true, physical
quantities—we use the other named velocities and profiles
defined below for comparison.

(ii) The linear front is obtained by solving the linearized
equation (31) with a delta function initial condition. The lin-
ear velocity (47) and linear profile (43) are exact results.

(iii) The time-frozen asymptotic front is obtained from
the general fixed-domain theory of fronts as described in
Appendix C. It is characterized by the time-frozen asymptotic
velocity v∗(t ) (33) and time-frozen asymptotic steepness λ∗(t )
(34). The steepness describes the leading edge of the full
time-frozen asymptotic profile which we compute below.

(iv) The natural asymptotic front is obtained by clearing
the exponential growth term. It is characterized by the nat-
ural asymptotic velocity v∗∗(t ) (44) and natural asymptotic
steepness λ∗∗(t ) (45). We also compute the natural asymptotic
profile below. On a fixed domain, in which the time-frozen
and natural fronts are the same, we use the general terms
asymptotic front, asymptotic velocity, asymptotic steepness,
and asymptotic profile.

In Fig. 12, we plot the propagating linear and nonlin-
ear fronts in space for a fixed domain with L(t ) = 1, an
exponentially growing domain with L(t ) = e0.06t , and an ex-
ponentially shrinking domain with L(t ) = e−0.02t . We also
plot the time-frozen and natural asymptotic fronts; we com-
pute these asymptotic profiles below. On the fixed domain,
the linear front recedes from the asymptotic front. This is
the expected logarithmic shift due to the O(t−1) approach
to the asymptotic velocity [42]. The nonlinear front recedes
more than the linear front; this can be derived via asymptotic
matching [76]. For the shrinking domain, we observe a similar
recession of the nonlinear front. However, in this case, the
nonlinear front recedes faster as time goes on. We observe the
opposite behavior on the growing domain.

In Fig. 13, we plot the linear, nonlinear, time-frozen
asymptotic, and natural asymptotic front positions and veloc-
ities for these same regimes with tracking height C = 0.5. On
the constant domain, both the linear and nonlinear velocities
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FIG. 13. Velocities of the homogeneous fronts in Fig. 12 with C = 0.5. The black (solid, thick) lines denote the nonlinear position ξC (t )
and velocity ξ̇C (t ) obtained from DNS. The blue (solid, medium) lines denote the linear position (46) and velocity (47) calculated analytically.
The gray (dashed, thin) lines denote the time-frozen asymptotic position and velocity (33). The red (dashed, medium) lines denote the natural
asymptotic position and velocity (44). This figure can be compared with Fig. 5 in [76]. On the fixed domain, both the linear and nonlinear
velocities approach the constant v∗∗ = 2. In the shrinking domain, the nonlinear velocity deviates from the asymptotic and linear velocities as
time increases. In the growing domain, the linear and nonlinear velocities overshoot the asymptotic velocities.

approach the asymptotic velocity v∗∗ = 2. On the shrinking
domain, the front velocities increase. At a basic level, this re-
sult is evident in the Eulerian (lab) frame: the front speed stays
roughly constant while the distance between points decreases.
Thus it takes less time for the front to travel between two
points. Likewise, on a growing domain, the distance between
points increases in the Eulerian frame, so the front velocities
decrease in the Lagrangian frame.

However, the detailed behavior of the nonlinear front
velocity is rather complex. On the shrinking domain, the
nonlinear front velocity departs from both the linear velocity
(47) and the natural asymptotic velocity (44) at large times.
On the growing domain, the nonlinear front moves faster
than the natural asymptotic front (44) after around t = 5. We
would not expect any overshoot of the asymptotic velocity
starting from steep initial conditions on a fixed domain: this
is a new phenomenon. In addition, the linear and nonlinear
velocities track the natural asymptotic velocity instead of
the time-frozen asymptotic velocity. This confirms that the
natural asymptotic frame is the appropriate comoving frame,
suggesting that the marginal stability criterion breaks down on
a time-dependent domain.

2. Nonlinear analysis

The asymptotic velocity of a homogeneous front in the
nonlinear equation (4) is the same as the asymptotic velocity
in the linear equation (31) because homogeneous fronts are
pulled fronts. However, this does not mean that the non-
linear velocity matches the linear velocity (47), since, on a
time-dependent domain, the asymptotic velocities need not
describe the actual velocities. In fact, we saw above that, even
in the fixed-domain case, the nonlinear front has a slower
relaxation to the asymptotic velocity compared to the linear
front.

To explain the nonlinear behavior, we consider the relation-
ship between front velocity and profile. The key idea is the
following: a time-dependent domain changes the front profile,
and changes in the profile steepness at the leading edge cause
changes in the front velocity.

On a fixed domain, if the initial conditions are steeper
than the asymptotic steepness (45), then the asymptotic ve-
locity will be approached from below. The velocity will never
exceed v∗∗ and the steepness will never drop below λ∗∗. How-
ever, if the initial conditions are less steep, then the asymptotic
velocity and steepness are not useful values. Instead, the front
will propagate with a velocity v > v∗∗ and maintain its shal-
low exponential tail [42].

On a shrinking domain, λ∗∗(t ) is a decreasing function.
Thus, because we start with a delta function initial condition,
the front will always remain steeper than the asymptotic steep-
ness, so the asymptotic values remain valid. On a growing
domain, λ∗∗(t ) is an increasing function. Thus the profile may
be steep enough at t = 0, but at a later time, the profile may
be shallower than the asymptotic steepness. In this case, the
asymptotic values are no longer valid and the front can move
faster than v∗∗(t ).

The above argument only holds for the linear velocity and
the linear and nonlinear profiles do not necessarily match.
To confirm that v∗∗(t ) is also associated with the nonlinear
profile, we move into the natural asymptotic frame given by
(42) to obtain

At = μA + 1

L(t )2
Azz − A3 + v∗∗(t )Az. (48)

For a fixed time t , we seek steady solutions to (48). This
amounts to solving a boundary-value problem with boundary
conditions of A(z → −∞) = √

μ and A(z → ∞) = 0 with
phase condition A(z = 0) = C. We split (48) into a first-order
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FIG. 14. Profiles of the homogeneous fronts depicted in Fig. 12, where μ = 1. In each time snapshot, the top subplot displays overlapping
nonlinear (black, solid, thick), linear (blue, solid, medium), time-frozen asymptotic (gray, dashed, thin), and natural asymptotic (red, dashed,
medium) profiles intersecting at C = 0.5. The bottom subplot shows the phase plane in the variables (u, w) for stationary states in the natural
asymptotic frame (42) with some trajectories plotted as described by (49). The two fixed points (0,0) (stable, filled) and (1,0) (unstable, empty)
and their eigenspaces are shown. The fixed domain has a degenerate eigenspace for the (0,0) fixed point which arises due to a double root.
This is the well-known marginal stability property of the asymptotic nonlinear profile [42]. However, on a time-dependent domain, (0,0) loses
its double root and becomes a generic stable node. In the growing domain, the time-frozen asymptotic profile, which tracks the degenerate
state for all time, begins to deviate strongly from the other profiles. This is a further confirmation that v∗∗(t ) is the natural asymptotic velocity,
not v∗(t ). Note that, for the growing domain, the scales of the plots are different. This figure can be compared with Fig. 4 in [76] and Fig. 9
in [42].
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system by writing u = A and w = Az:

uz = w,

wz = L(t )2[−v∗∗(t )w − (μu − u3)]. (49)

There are two fixed points at (0,0) and (
√

μ, 0) which are
stable and unstable, respectively. The front solution is the
heteroclinic orbit connecting the two fixed points, since this is
the only solution that satisfies the boundary conditions. These
heteroclinic profiles propagating with the natural asymptotic
speed are shown in Fig. 12. We can also obtain the time-frozen
asymptotic profiles by moving into the frame associated with
v∗(t ). The heteroclinic profiles in this frame are also shown
in Fig. 12. In Fig. 14, we overlap the linear, nonlinear, time-
frozen asymptotic, and natural asymptotic profiles at C = 0.5
at various times for the different L(t ). We also plot the phase
plane for (49) at each time with the two fixed points and their
linearized eigenspaces. On top of this, we plot the trajectories
of the nonlinear profile, time-frozen asymptotic profile, and
natural asymptotic profile. From here, we can explain the non-
linear velocities shown in Fig. 13. On the shrinking domain,
the nonlinear profile remains steeper than the natural asymp-
totic profile at all times, which explains why the nonlinear
velocity remains below the natural asymptotic velocity. On
the growing domain, the nonlinear profile is less steep than
the natural asymptotic profile at long times, so the nonlinear
velocity is larger than the natural asymptotic velocity.

This analysis also demonstrates how the marginal stability
criterion breaks down on a time-dependent domain. Note how,
for the fixed domain, the linear profile does not line up closely
with the nonlinear and natural asymptotic profiles. This is be-
cause, in this regime, the linearization at (0,0) gives a double
root with a degenerate eigenspace, so the asymptotic profile
behaves like

A(z) ∼ z e−λ∗∗z (z → ∞). (50)

This differs from the pure e−λ∗∗z exponential tail from the lin-
ear analysis but is precisely what is prescribed by the marginal
stability criterion. However, this degeneracy holds only in the
fixed domain case. On a time-dependent domain, (0,0) is a
generic stable node in the natural asymptotic frame. It does not
have a repeated spatial eigenvalue, so the natural asymptotic
profile is not the marginally stable profile.

B. Pattern-spreading fronts

Pattern-forming fronts propagating into a trivial state are
well studied in a variety of systems [42]. For the RGLE,
velocity and stability analyses were conducted in [78] for
a fixed domain. In fact, these fronts are somewhat artificial
in nature. Because wavelength injection cannot occur in the
absence of phase slips, the initial condition prescribes the
maximum number of wavelengths [78]. If we restrict our
attention to localized perturbations (specifically, perturbations
with compact support), then these can only prescribe a finite
number of initial wavelengths and thus a pattern-spreading
front can only propagate for a finite time and distance. The
homogeneous front eventually takes hold and the analysis of
the previous subsection then applies.

Figure 11 compares the resulting wave number evolution
on a growing domain with that on a fixed domain. A growing
domain has two qualitative effects on the front dynamics.
First, the curved envelope in Fig. 11(d) indicates a decreasing
velocity over time; this is very similar to the homogeneous
front in Fig. 11(b). Second, by comparing the correspond-
ing wavelengths between panels (c) and (d), we see that
the local wavelength in the growing domain is larger than
that on the fixed domain. This is unexpected since a slower
spreading speed reduces wavelength stretching, leading to the
expectation that, in the absence of phase slips, the observed
wavelength will be smaller. Evidently, this effect competes
with the preference for long wavelengths in this problem,
which are permitted to develop in the presence of slower
spreading speeds, and the growth of the domain gradually
changes the competition between these two effects.

Owing to primary bifurcation delay, the propagation of
the pattern-spreading front does not begin until the domain
grows large enough for the local wave number to fall within
the existence band. Thus, even though the rather simple delay
analysis of (6) does not appear to highlight any spatiotemporal
features, it plays an important role in the timing of front
propagation.

C. Eckhaus fronts

As described in Sec. III, an Eckhaus-unstable pattern state
can undergo one or more phase slips to evolve into a stable
pattern state with fewer wavelengths. If the initial perturba-
tion is sufficiently localized, a propagating front of repeated
phase slips can form (Fig. 10). Some fronts of this type
are constructed in [56] but are not necessarily temporally
stable or realized from localized initial conditions. Unlike
the front types discussed so far, here the front invades an
unstable state that is nontrivial and nonhomogeneous, al-
though homogeneity can be recovered by transforming (4)
into an amplitude-wave number representation. Remarkably,
to high numerical accuracy, Eckhaus fronts travel at the linear
spreading velocity even though phase slips are a nonlinear
phenomenon [79].

In general, a moving front deposits a nonzero wave num-
ber. This wave number is selected dynamically and the
resulting state may or may not be stable. In the present
problem we saw that the homogeneous front deposits a zero
wave number state, but this is no longer the case for Eck-
haus fronts (Fig. 10). Close to the Eckhaus boundary, wave
number selection is described by the Cahn-Hilliard equation
and no phase slips take place [80,81]. However, farther into
the unstable regime, phase slips start to occur and determine
the deposited wave number [79]. These phase slips occur
either irregularly or periodically behind the moving front that
continues to move with the speed predicted by the marginal
stability prescription. Since the dynamics of phase slips are
modified on a time-dependent domain, as described in the
first part of this paper, we may expect that time dependence
will likewise affect both the Cahn-Hilliard regime and the
transition to and subsequent behavior of the phase slip regime.
On a time-dependent domain the former is described by the
phase equation (equivalently an equation for the wave number
k ≡ φx) derived in [40], regularized by a fourth order linear
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FIG. 15. Eckhaus front velocities for Q = 1 and Q = 2 initial
states. The solid lines are obtained from calculations in Appendix D
and solid points denote measured velocities from DNS. In (a), the
velocity is obtained for various μ with the constant domain L = 1. In
(b), the velocity is obtained for various values of L with fixed μ = 3.
This is a quasistatic analysis and on these small domains does not
reveal any time-dependent behavior arising from domain growth.

term kxxxx. While a study of this equation is beyond the scope
of this paper, we focus here on the initial wave number selec-
tion process by an Eckhaus front on a time-dependent domain.

For this purpose we first look at the quasistatic analysis. In
Fig. 15(a), we plot the linear spreading velocity as a function
of μ for L = 1 with initial wave numbers Q = 1 and Q = 2.
The full derivation can be found in Appendix D. We also add
DNS data confirming the theoretical result. We see that, for
larger μ, the Eckhaus front velocity is smaller. In Fig. 15(b),
we plot the velocity as a function of L for μ = 3. As expected,
L plays a similar stabilizing role as μ: a larger domain size
also results in a decrease in the front velocity.

Using DNS, we are able to extract some time-dependent
behavior beyond the quasistatic regime. On an exponentially
growing domain, we find that the Eckhaus fronts slow down
as expected; compare (e) and (f) in Fig. 11. Once the domain
grows to an Eckhaus-stable size, phase slips no longer occur
and the front halts. The system then enters a phase-melting
state in which two different stable wave numbers temporarily
coexist. The subsequent melting into a state with a uniform
wave number is described in [82], but we do not yet know
how these states evolve on a time-dependent domain. We
also do not yet understand how the time-dependent Eckhaus
front velocity may deviate from that shown in Fig. 15(b).

Additionally, we expect delayed front propagation when
crossing the Eckhaus instability but this topic is also beyond
the scope of this paper.

V. DILUTION

Dilution plays an important role in the changing stability
of solutions on a time-dependent domain. Examining Figs. 1
and 2, we see (i) for a fixed L, increasing μ makes the trivial
state less stable and the pattern states more stable and (ii) for
a fixed μ, increasing L makes the trivial state less stable and
the pattern states more stable.

Thus μ and L play similar roles in the stability of pattern
solutions. If L(t ) is growing, then in the undiluted regime (4),
we expect the pattern states to become more stable. However,
including dilution as in (3) changes the growth rate coeffi-
cient:

μ �→ μ − L̇(t )

L(t )
. (51)

Thus dilution acts to decrease μ when the domain is growing,
making the pattern states less stable. The reverse applies in the
case of a shrinking domain. Thus dilution resists the changing
stability of solutions due to time dependence of the domain.

Consequently, we expect that dilution increases the delay
time. We show this for a growing domain across a primary
bifurcation. Suppose μ < Q2 and L̇ > 0. From the definition
of the original turnaround time t∗, we have

μ − Q2

L(t∗)2
= 0. (52)

With dilution present

μ − L̇(t∗)

L(t∗)
− Q2

L(t∗)2
< 0, (53)

since L̇ > 0. Thus the turnaround time with dilution occurs
later than that without dilution. Additionally, the exit time texit

is a root of the original entrance-exit function:

f (texit ) ≡
∫ texit

0

(
μ − Q2

L(t ′)2

)
dt ′ = 0. (54)

The new entrance-exit function gives

fdilut(texit ) = f (texit ) −
∫ texit

0

L̇(t ′)
L(t ′)

dt ′ < 0. (55)

Thus, as expected, the exit time in the dilution regime also
occurs later than that without dilution. Figure 16 compares
the delay with dilution to that without dilution for the primary
bifurcation, confirming this result. Furthermore, for any given
μ, if we take L(t ) = eμt , then the bifurcation never takes place
since the source term is eliminated by the dilution effect.

Dilution plays a different role for homogeneous fronts.
If we modify the linear analysis in Eq. (44) to include the
dilution term, we obtain the natural asymptotic velocity

v∗∗
dilut(t ) = 2

√
M(t )h(t ), (56)

where

M(t ) ≡ μt −
∫ t

0

L̇(t ′)
L(t ′)

dt ′. (57)
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FIG. 16. Dilution increases primary bifurcation delay. The sys-
tem with dilution (dotted) has a larger turnaround size L∗ and exit size
Lexit than that without (solid). Both systems are initialized with the
same initial condition and employ the same exponentially growing
size, L(t ) = e0.02t , the same as the inset of Fig. 2.

Recall that, in the undiluted regime, the natural asymptotic
velocity v∗∗(t ) decreases on a growing domain and increases
on a shrinking domain. With dilution, M(t ) is smaller for
growing domains and larger for shrinking domains compared
to its undiluted counterpart μt . Thus dilution amplifies the
effect of a time-dependent domain on the asymptotic speed.
As demonstrated in Fig. 17, this result holds for exponential
domains (constant L̇/L) in the fully nonlinear regime.

Except for exponentially growing domains, extension of
the nonlinear analysis to include dilution is not straightfor-
ward because the amplitude of the homogeneous solution
becomes time dependent. Thus we can no longer seek sta-
tionary solutions in a comoving frame. Although we generally
expect the dynamics behind a pulled front to play a minimal
role in its velocity [42], a more comprehensive analysis is
necessary to verify this claim for time-dependent domains.

0

1
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L(t) = e−0.02t

160 180 200 220 240 260

ξ
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1
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L(t) = e0.06t

FIG. 17. Propagating homogeneous fronts in the RGLE with di-
lution (dotted) and without dilution (solid) obtained from DNS. In the
exponentially shrinking domain (top), the velocity increases faster
when dilution is included. The reverse applies to the exponentially
growing domain (bottom). The final amplitude behind the front also
changes.

VI. DISCUSSION

We extended previous work on bifurcation delay in the
RGLE [4,40] with analyses of the primary bifurcations for
both growing and shrinking domains of length L(t ) with ex-
act solutions and closed-form expressions. We also analyzed
secondary bifurcation delay in detail. For the shrinking do-
main, we constructed an upper bound on the perturbation
amplitude using an energy-based method to find a minimum
delay time. For the growing domain, in which the nonlinear,
infinite-dimensional dynamics must be retained, we outlined
a heuristic model based on the core width of a phase slip
to characterize the time-dependent basin of attraction of pat-
tern states and validated this model with DNS. We used this
model to classify arrested phase slips, which occur when the
time scale of the domain growth competes with the Eckhaus
instability.

We also gave a detailed linear analysis of homogeneous
front propagation into an unstable trivial state on an arbitrary
time-dependent domain starting from a delta-function initial
condition. Our approach led to a new insight into what deter-
mines the front velocity. We defined the natural asymptotic
velocity and showed that in a time-dependent domain the
velocity is no longer determined by the classical marginal
stability criterion for pulled fronts, i.e. the degeneracy of the
spatial eigenvalues of the trivial state breaks in the natural
asymptotic frame. Our predictions for the nonlinear profile
in this frame were corroborated by DNS of the RGLE. We
also briefly examined DNS of pattern-spreading and Eckhaus
fronts on an exponentially growing domain.

Lastly, we saw how dilution resists stability changes in
a time-dependent domain, causing longer bifurcation delay
compared to the undiluted regime. On the other hand, dilu-
tion amplifies the effect of a time-dependent domain on the
velocity of homogeneous fronts.

Many aspects of bifurcation delay remain to be explored.
A more complete study and explanation of transient behavior
would improve the accuracy of phase slip delays and arrests
predicted in this paper. This is not well explored because
transients are unimportant in the fixed-domain RGLE: as long
as perturbations are sufficiently small, all trajectories through
a phase slip are determined by a one-dimensional eigenspace.
Additionally, more complex domain time dependence remains
to be studied. For example, oscillatory domain growth was not
considered in this paper, although variants of the Ginzburg-
Landau equation have been analyzed with a time-periodic
parameter [83]. Amplitude- and frequency-dependent shifts
of the Eckhaus instability and mixed mode branches are ex-
pected, but this has not been considered in this paper. The
effects of noise and imperfection terms are also of great in-
terest [17].

Additional work remains to fully understand front dynam-
ics in nonautonomous systems of this kind. A larger body of
numerical results is required for a complete catalog of the
possible dynamics. Front velocities are notoriously difficult
to measure in numerical simulations [76,84]. More precise
and accurate numerical measurements of front velocities in
a wider range of examples would verify our current under-
standing and perhaps identify new, unexpected behaviors.
Theoretical progress is also needed to verify and explain
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the nonlinear front speeds and profiles obtained from DNS.
Generalizing beyond a delta function initial condition on an
infinite domain would enable better comparisons with the
universal properties described in [42]. Of course, we desire
a reliable theory for the pattern-spreading and Eckhaus fronts
as well. Developing a general theory for front propagation in
nonautonomous partial differential equations would make a
wide class of systems accessible to theory [46,47].

We are also interested in the effect of a time-dependent
domain on the local dynamics of phase slips since these occur
generically in growing patterns [63]. As described in Sec. III,
the phase slip core width has an algebraic scaling law as the
phase slip is approached [67]. It is unclear how this scaling
behavior changes with domain growth.

This study illuminates countless possibilities for studying
bifurcation delay and front propagation in more sophisticated
models such as the complex Swift-Hohenberg equation [80]
and the Ginzburg-Landau equation with complex coefficients
[85] on a time-dependent domain. These models include ad-
ditional phenomena which have not been explored in detail
on time-dependent domains, such as coarsening, spatially lo-
calized structures, traveling waves, and naturally occurring
pattern-forming fronts. We also look towards bridging the gap
between these models and observed phenomena in physical
and biological realizations of patterns on time-dependent do-
mains [4]. Quantitative predictions of bifurcation delay times
and front propagation speeds in experiments would demon-
strate the efficacy of this theory.
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APPENDIX A: RGLE WITH A CONSERVATION LAW

The 1D real Ginzburg-Landau equation on a fixed
domain is

At = μA + Axx − |A|2A, (A1)

where A is a complex variable and x ∈ [0,�].
If A is a conserved quantity, we cannot use a regular time

derivative when switching to a time-dependent domain �t .
Instead, by the Reynolds transport theorem in one spatial
dimension, we have

d

dt

∫
�t

A dV =
∫

�t

(At + uAx + uxA) dV, (A2)

where u is some velocity determined by the growing domain.
This takes into account the fact that material elements change
size.

We now restrict to isotropic growth in which u = L̇
L x.

Using the modified time derivative found in (A2), the full
time-dependent RGLE becomes

At + L̇(t )

L(t )
xAx︸ ︷︷ ︸

advection

+ L̇(t )

L(t )
A︸ ︷︷ ︸

dilution

= μA + Axx − |A|2A, (A3)

where x ∈ [0,�L(t )]. The second term represents advection
and the third term represents dilution.

Note that (A3) describes the RGLE in the Eulerian (lab)
frame, where the first two terms together equal the material
derivative of A. Thus, when we change to the Lagrangian
frame, we expect the material derivative to become a normal
time derivative because the effect of advection is built into the
Lagrangian frame. To show this, let

A(x, t ) = Ã(ξ (x, t ), t ), (A4)

where Ã is the amplitude in the Lagrangian frame and ξ ∈
[0,�] is the Lagrangian coordinate, i.e., ξ (x, t ) = x

L(t ) . Then,

At = Ãt + Ãξ

dξ

dt
(A5a)

= Ãt + Ãξ

d

dt

(
x

L(t )

)
(A5b)

= Ãt + Ãξ

(
− L̇(t )

L(t )2
x

)
(A5c)

= Ãt − L̇(t )

L(t )
ξ Ãξ . (A5d)

Next, the advection term becomes

L̇(t )

L(t )
xAx = L̇(t )

L(t )

x

L(t )
[L(t )Ax] (A6a)

= L̇(t )

L(t )
ξ Ãξ . (A6b)

Thus, as expected, the advection term drops out and the La-
grangian description of the RGLE becomes

Ãt + L̇(t )

L(t )
Ã = μÃ + 1

L(t )2
Ãξξ − |Ã|2Ã. (A7)

We drop the tildes to obtain (3).

APPENDIX B: PATTERN AMPLITUDE
ON A SHRINKING DOMAIN

Here, we find the general solution to

ȧ = μ̃(t )a − a3, (B1)

where a � 0. This is a Bernoulli-type equation which can be
solved using the substitution v = a−2 to obtain the explicit
solution

a(t ) =
[

exp
(
2

∫ t
0 μ̃(t ′)dt ′)

2
∫ t

0 exp
(
2

∫ t ′
0 μ̃(t ′′)dt ′′)dt ′ + a−2

0

]1/2

, (B2)

where a(0) = a0.
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For an exponentially shrinking domain with L(t ) = eσ t ,
σ < 0,

μ̃(t ) = μ − Q2

L(t )2
= μ − Q2e−2σ t . (B3)

To find the integral in the denominator, we observe∫ t

0
exp

(
2

∫ t ′

0
μ̃(t ′′) dt ′′

)
dt ′ = e−Q2/σ

∫ t

0
e2μt ′

e(Q2/σ )e2σ t ′
dt ′.

(B4)

Now let a = 2μ, b = −Q2/σ , and c = −2σ . With the substi-
tution v = bect ′

, we obtain∫ t

0
eat ′

e−be−ct ′
dt ′ = 1

c

(
1

b

)a/c

�

(
a

c
, b, bect

)
, (B5)

where

�(s, t0, t1) =
∫ t1

t0

t s−1e−t dt (B6)

is the incomplete generalized gamma function. Substituting
for a, b, and c, we obtain∫ t

0
exp

(
2

∫ t ′

0
μ̃(t ′′)dt ′′

)
dt ′

= − 1

2σ

(
− σ

Q2

)−μ/σ

�

(
−μ

σ
,−Q2

σ
,−Q2

σ
e−2σ t

)
. (B7)

With this result Eq. (B2) gives (18).

APPENDIX C: HOMOGENEOUS FRONT VELOCITY

We derive here the asymptotic velocity and steepness of a
homogeneous front on a domain with fixed length L. There
are many ways to do this; here, we use the general technique
outlined in [42]. First, we obtain the dispersion relation

ω(k) = i

(
μ − k2

L2

)
. (C1)

Now suppose we move into a comoving frame with velocity
v∗. Our goal is to determine which value for v∗ allows the am-
plitude to neither grow nor decay. We determine this velocity
by considering a complex wave number k∗ such that

d[ω(k) − v∗k]

dk

∣∣∣∣
k∗

= 0. (C2)

This k∗ is a saddle point in the complex plane that, in the long-
time limit, provides the dominant contribution to the inverse
Fourier transform needed to determine the physical amplitude.
We also require that in this frame the amplitude neither grows
nor decays:

Imω(k∗) − v∗Imk∗ = 0. (C3)

Putting (C2) and (C3) together, we get

v∗ = dω(k)

dk

∣∣∣∣
k∗

= Imω(k∗)

Imk∗ . (C4)

Let k∗ = k∗
r + ik∗

i , where kr, ki ∈ R. Then, substituting (C1)
into (C4), we obtain

v∗ = 2k∗
i

L2
− 2k∗

r

L2
i = 1

k∗
i

(
μ − (k∗

r )2 − (k∗
i )2

L2

)
. (C5)

Separating into real and imaginary parts, we find that k∗ =
i
√

μL and hence that

v∗ = 2
√

μ

L
. (C6)

The front steepness is given by

λ∗ = Imk∗ = √
μL. (C7)

APPENDIX D: ECKHAUS FRONT VELOCITY

We now derive the linear spreading velocity for Eckhaus
fronts on a domain with fixed length L [79]. Since these fronts
propagate into an Eckhaus-unstable pattern, it is natural to
write the amplitude-phase representation of A as

A(ξ, t ) = a(ξ, t )eiφ(ξ,t ). (D1)

Then, defining the wave number q(ξ, t ) ≡ φξ (ξ, t ), we can
rewrite the RGLE as

at =
(

μ − q2

L2

)
a + 1

L2
aξξ − a3, (D2a)

qt = 1

L2

∂

∂ξ

(
qξ + 2q

∂ ln a

∂ξ

)
. (D2b)

The initial pattern state with uniform wave number q0 = Q
and amplitude a0 =

√
μ − Q2/L2 corresponds to a fixed point

of the ξ -independent equations.
The derivation of the Eckhaus front linear spreading veloc-

ity now follows similarly to the homogeneous case. Consider
a = a0 + a′ and q = q0 + q′. After linearizing, we use the
relations a′ = a1(k)eikξ−iωt and q′ = q1(k)eikξ−iωt to find the
dispersion relation:⎛

⎝−2a2
0 − k2

L2 + iω − 2Qa0
L2

− 2Qk2

a0L2 − k2

L2 + iω

⎞
⎠(

a1(k)

q1(k)

)
= 0. (D3)

There are two branches of this relation,

ω±(k) = i

[
−a2

0 − k2

L2
±

√
a4

0 + 4Q2k2

L4

]
. (D4)

Taking the positive root ω+(k), we seek a velocity where

v∗ = dω+(k)

dk

∣∣∣∣
k∗

= Imω+(k∗)

Imk∗ . (D5)

We can solve this equation implicitly for a fixed Q while
varying either μ or L to obtain Fig. 15.
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