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Order, chaos, and dimensionality transition in a system of swarmalators
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Similarly to sperm, where individuals self-organize in space while also striving for coherence in their tail
swinging, several natural and engineered systems exhibit the emergence of swarming and synchronization. The
arising and interplay of these phenomena have been captured by collectives of hypothetical particles named
swarmalators, each possessing a position and a phase whose dynamics are affected reciprocally and also by
the space-phase states of their neighbors. In this work, we introduce a solvable model of swarmalators able to
move in two-dimensional spaces. We show that several static and active collective states can emerge and derive
necessary conditions for each to show up as the model parameters are varied. These conditions elucidate, in
some cases, the displaying of multistability among states. Notably, in the active regime, the system exhibits
hyperchaos, maintaining spatial correlation under certain conditions and breaking it under others on what we
interpret as a dimensionality transition.
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I. INTRODUCTION

Swarming and synchronization are emergent phenomena
observed in various natural systems. Swarming, more notice-
able due to its occurrence in physical space, is evidenced in
groups of fishes, birds, insects, bacteria, among others [1–9].
Synchronization, sometimes less apparent due to its nature,
is observed in both living and nonliving systems, including
groups of humans, frogs, heart cells, and neurons, among
others [10–16]. From a theoretical standpoint, both phenom-
ena have been extensively studied using distinct frameworks
based on well-known models named after Kuramoto [17],
Stuart-Landau [18], Couzin [19], and Vicsek [20]. In these
models, single particles are represented by their positions or
by periodic internal degrees of freedom dubbed phases. Then,
individuals’ spatial self-organization gives rise to swarming
and, in case of phase coherence, to synchronization.

Despite the success in studying swarming and synchro-
nization independently, a significant step up has taken place
recently, influencing both fields. A singular type of particles,
named swarmalators, have been introduced in Ref. [21] such
that, collectively, these can synchronize and swarm as their
spatial and phase dynamics interplay. Several systems where
individuals’ phases influence their positions and vice versa
have been spotted in nature. These include magnetic quincke
rollers [22], sperm [23–25], starfish embryos [26], tree frogs
[27], nematodes [28,29], and more [30–35].

The swarmalators model, introduced in Ref. [21], is de-
fined by the equations

�̇pi = �εi + 1

N

N∑
j=1

[Iα ( �p ji )F (θ ji ) − Iρ ( �p ji )],

θ̇i = ωi + 1

N

N∑
j=1

Hα (θ ji )G( �p ji ), (1)
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where �pi and θi represent the position and the phase of
the ith swarmalator, respectively. Each individual is affected
by intrinsic spatial and angular velocities (�εi, ωi ) and by
the coupling with other individuals, determined by attraction
(Iα, Hα ), repulsion (Iρ ), and influence (F, G) functions. We
use �pji and θ ji as compact representations of ( �p j − �pi) and
(�θ j − �θi), respectively. It was shown, in the same work, that
computing a two-dimensional (2D) instance of the model
would lead to the emergence of several static and active states,
each with unique features. Afterwards, various modifications
of this 2D model were introduced, analyzing effects produced
by an external stimulus [36], chirality of the particles [37],
and different interactions [38–40], among others [41–46]. One
drawback shared by most of these studies, however, is that
despite their numeric findings, analytic results are very limited
given the complexity of the model.

The starting point of the work we present here is the 1D
swarmalators model, also known as the “ring model,” intro-
duced in Ref. [47]. Following the same terminology as in
Eqs. (1), the 1D model is defined by

ẋi = 1

N

N∑
j=1

Iα (x ji )F (θ ji ),

θ̇i = 1

N

N∑
j=1

Hα (θ ji )G(x ji ), (2)

where attraction and influence functions are chosen to be sines
and cosines, respectively, weighted by scalar coupling con-
stants, and (xi, θi ) ∈ (S1,S1). Individuals are assumed to be
identical, so intrinsic velocities are not considered. Thus, the
dynamics of the system are defined by a couple of Kuramoto-
like equations. In these, the independent synchronization of
positions and phases, promoted by the sines is strengthened
by the interplay induced by the cosines. Given the simplic-
ity in handling periodic functions, this version of the 1D
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swarmalators model is analytically tractable. Taking advan-
tage of this, several solvable variations have been presented
afterwards, with a focus on analyzing the effects generated
by nonidentical swarmalators [48], distributed couplings [49],
and other factors [50–52]. One drawback of the 1D swarmala-
tors model in its “bare” form [Eq. (2)] is that its structure
prevents the emergence of active states, where (ẋi, θ̇i �= 0), in
contrast with the 2D instance of Eq. (1), where active states
emerge even for identical particles. To observe such states in
the 1D framework, the solutions found so far involved adding
frustration [51], external stimuli [52], considering nonidenti-
cal individuals [48], or by splitting the population and mixing
coupling signs [50].

Here we introduce a 2D swarmalators model that shares
features with the ones described in Eqs. (1) and (2), lever-
aging their advantages and overcoming their drawbacks: The
particles are able to move in a 2π -periodic 2D space, and
the model is tractable analytically. We show that the model
presents several static and active states, some of them similar
to ones found in previous studies and some of them new.
The active states, moreover, are part of a chaotic regime
which, under certain conditions, generates a dimensionality
transition.

We outline the general form of our model in Sec. II,
along with the specific equations used in this work. Next, in
Sec. III, we present the static and active states that emerge
through numerical computations of the model. On the in-
tuition gained from the numerical results, in Sec. IV, we
show the main results concerning the stability of the static
states. In Sec. V, we present the conditions where the system
shows chaotic behaviors and the dimensionality transition. In
Sec. VI, we summarize static and active states constructing
diagrams showing their stable regions. We conclude this work
by discussing our findings and future research suggestions in
Sec. VII.

II. THE MODEL

We aim to exploit the solvability of the 1D model intro-
duced in Ref. [47], in a 2D setup. However, before we describe
our generalization, we find it useful to comment on the limita-
tions that arise when trying to recover the dynamics in Eqs. (1)
from Eqs. (2). First, and most evident, the 1D model lacks
an explicit repulsive component. This drawback hinders the
emergence of states that rely on the different scales of attrac-
tion and repulsion forces. For instance, the 1D model cannot
generate active states, where the particles keep moving after a
transient. Even if an additional position coordinate yi is con-
sidered, defined to be symmetric with xi, the Kuramoto-like
feature, as defined in Ref. [47], would lead to the synchroniza-
tion in each axis, collapsing the system to static analogs of the
1D states. Moreover, the attraction and repulsion functions in
Eqs. (1) depend on the spatial distances between the particles
�p ji. For example, the 2D instance presented in Ref. [21] use a
power law in p ji as repulsion function, generating collective
states where particles distribute radially. Extensions of the
ring model to 2D must, therefore, include explicit dependence
of repulsive interactions on particle’s positions.

For our 2D setup, we define the position of the ith swar-
malator as �pi = (xi, yi ) but use the distances in each axis, xi j

and yi j , independently in the dynamical equations, as using
the modulus pi j would undermine the reduction of complexity
that we are looking for. The coupling between x and y is
done through the phases θi, included in the functions Fα and
Fρ that affect attraction Iα and repulsion Iρ , respectively. The
phase dynamics, on the other hand, are defined by their mutual
interaction H and by the interplay of both spatial coordinates
G. In its general form the model is described by

ẋi = ui + 1

N

N∑
j=1

[Iα (x ji )Fα (θ ji ) − Iρ (x ji )Fρ (θ ji )],

ẏi = υi + 1

N

N∑
j=1

[Iα (y ji )Fα (θ ji ) − Iρ (y ji )Fρ (θ ji )],

θ̇i = ωi + 1

N

N∑
j=1

Hα (θ ji )G(x ji, y ji ).

For the specific model we study here, we consider that
(xi, yi, θi ) ∈ (S1,S1,S1), and individuals are assumed to be
identical, so (ui, υi, ωi ) = 0. Following Ref. [47], we choose
combinations of sines and cosines for all functions, weighted
by coupling constants J± and K ′. This makes the problem
amenable to analytical treatment but introduces repulsion in
a weak sense:

ẋi = 1

N

N∑
j=1

{J− sin(x ji ) cos(θ ji ) − J+[1 − cos(x ji )] sin(θ ji )},

ẏi = 1

N

N∑
j=1

{J− sin(y ji ) cos(θ ji ) − J+[1 − cos(y ji )] sin(θ ji )},

θ̇i = K ′

N

N∑
j=1

sin(θ ji )[2 + cos(2x ji ) + cos(2y ji )]. (3)

In this form, J− is the weight of the Kurmamoto-like attrac-
tive interaction, which is enhanced by phase synchronization.
J+, on the other hand, is the weight of the weak repulsion
term, whose sign depends on the difference of phases. It is
weak because it disappears when particles are on top of each
other, allowing for full synchronization in x, y, and θ . When
phases are synchronized, θi j = 0, the equations for xi and yi

reduce to independent Kuramoto dynamics. Similarly, when
xi j = yi j = 0, the equation for θi follows the Kuramoto model.
Repulsion and attraction terms in each direction depend only
on the distances in that direction. This is the key feature that
allows for simplifications in the analytical treatment while still
supporting active states.

As a final step, for an easier understanding of the sys-
tem, we rewrite J± = (JA ± JR)/2 and K ′ = K/2. These new
parameters do not alter the structure shown in Eqs. (3) but
facilitate manipulating attraction and repulsion scales, af-
fected respectively by JA and JR. Thus, the expanded model
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FIG. 1. Snapshots of the [(a) and (d)] point synchronous, [(b) and (e)] distributed synchronous, and [(c) and (f)] distributed asynchronous
states after a transient. The panels show the spatial distribution of the particles (top row) and the respective correlation scatter plots (bottom
row). The parameters (K, JA, JR ) are set as (1, 1, 0.5) for the state in (a) and (d), (1, 0.5, 1) for the state in (b) and (e), and (0,−0.5, 0.5) for
the state in (c) and (f). See movies S1, S2, and S3 in the Supplemental Material [53].

is given by

ẋi = 1

N

N∑
j=1

JA

2
{sin(x ji ) cos(θ ji ) − [1 − cos(x ji )] sin(θ ji )} − JR

2
{sin(x ji ) cos(θ ji ) + [1 − cos(x ji )] sin(θ ji )},

ẏi = 1

N

N∑
j=1

JA

2
{sin(y ji ) cos(θ ji ) − [1 − cos(y ji )] sin(θ ji )} − JR

2
{sin(y ji ) cos(θ ji ) + [1 − cos(y ji )] sin(θ ji )},

θ̇i = K

N

N∑
j=1

sin(θ ji )

{
1 + 1

2
[cos(2x ji ) + cos(2y ji )]

}
. (4)

Notice that, in this form, the terms proportional to JR in the
equation for ẋi include a truly repulsive interaction, − sin(x ji ),
and half of the weakly repulsive term, −[1 − cos(x ji )] (and
similarly for ẏi). The terms in JA, however, include the attrac-
tive part sin(x ji ) but also the other half of the weakly repulsive
term. By considering this expanded 2D model, we can derive
the original ring model under intuitive convenient conditions
(see Appendix A).

III. NUMERICAL SIMULATIONS

Simulations performed for the model described in Eqs. (4)
show the emergence of states that gather features of several
states observed in instances of Eqs. (1) and (2). Additionally,
we observe active states that, despite the similarity with states
presented in previous works, show interesting properties. All
these states are presented in Figs. 1–3, where the computations
were performed for a population of N = 500 swarmalators
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FIG. 2. Snapshots of the static phase-wave states after a transient. The panels show the spatial distribution of the particles (top row) and the
respective correlation scatter plots (bottom row). The (a) and (d), (b) and (e), and (e) and (f) pairs correspond to different types of correlation
among the xi, yi, and θi states. The parameters (K, JA, JR ) are set as (0, 0, −0.8) for the state in (a) and (d), (0, 0.8, 0) for the state in [(b) and
(e)], and (0, 1, −1) for the state in (c) and (f). See movies S4, S5, and S6 in the Supplemental Material [53].

and different values of JA, JR, and K . The particles start po-
sitioned uniformly in a 2π -length cube in the (x, y, θ ) space,
and their states evolve along 105 time steps. From Fig. 1
to Fig. 3, each shows the particles distributed in the (x, y)
space colored according to their phases (top rows) and their
respective distributions in the (x, y, θ ) space (bottom rows).

In Figs. 1(a) and 1(d), we present the point synchronous
state, which shows the phase synchronization of particles
and their convergence to a fixed point in the (x, y) space.
Once these reach a (x0, y0, θ0) state, they remain steady. A
similar state emerges on the 1D model [47], where parti-
cles converge to a fixed position on the ring. In our model,
the emergence of this state requires phase synchronization
(K > 0) and also (JA, JR > 0). Moreover, attraction must be
stronger than repulsion, JA > JR, so that particles, which start
distributed across the (x, y) space, can collapse to a fixed
position. For JR > JA the particles converge to the distributed
synchronous state shown in Figs. 1(b) and 1(e). In this state,
particles synchronize (as K > 0) but they remain distributed
in the (x, y) space given that now repulsion is stronger than
attraction. This state shows a first approach to spatial states
generated by instances of Eqs. (1), where particles tend to

distribute radially [21,36,38]. Finally, in Figs. 1(c) and 1(f),
we show the distributed asynchronous state. In this, the in-
dividuals keep their initial phases frozen (K = 0), and the
repulsion between them is strong enough to keep the particles
distributed uniformly in the (x, y) space. Similar states can
also be observed emerging in the 1D model [47,49], where
particles remain asynchronized while distributed along the
ring and in 2D and 3D instances of Eqs. (1), where the spatial
distribution is radial [21,38].

Panels in Fig. 2 show three types of static phase-wave
state. First, Figs. 2(a) and 2(d) show that individuals’ positions
(xi, yi ) are positively correlated and that phases θi are also
positively correlated to these positions. Second, Figs. 2(b)
and 2(e) show that individuals’ positions (xi, yi ) are positively
correlated but that phases θi are negatively correlated to xi and
therefore yi. Third, Figs. 2(c) and 2(f) show that individuals’
positions (xi, yi ) are negatively correlated and that phases θi

are positively correlated to xi only. Each of these states shows
similarities with states found in previous work. The static
phase-wave state in 1D shows the emergence of correlations
between particles’ positions and phases [47], and in 2D, the
correlation emerges between the polar angle that describes
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FIG. 3. Snapshots of the [(a) and (d)] swirling, [(b) and (e)] butterfly, and [(c) and (f)] bouncing states after 105 time steps. The panels show
the spatial distribution of the particles (top row) and the respective correlation scatter plots (bottom row). The arrows represent the motion of
the particles. The parameters (K, JA, JR ) are set as (−1, 0, −0.5) for the state in (a) and (d), (−1, −0.5, −0.5) for the state in (b) and (e), and
(−1,−1, −0.5) for the state in (c) and (f). See movies S7, S8, and S9 in the Supplemental Material [53].

the radial position of each particle and its respective phase
[21]. A remarkable feature in our model, furthermore, is that,
independent of the type of correlation, it features the concept
of “like attracts like” introduced in Ref. [21]: Despite indi-
viduals’ phases being frozen (K = 0), they end up grouping
in space with similar phases individuals. For simplicity, in
the following sections, we will refer to each type of static
phase-wave state as summarized in Table I. An additional
observation is that Figs. 2(c) and 2(f) show a small curvature
in the correlation that reminds us of the buckled phase-wave
state introduced in Ref. [47].

TABLE I. Classification of the static phase-wave states according
to the type of correlation between individuals’ positions and phases.

Type of correlation

State Positive Negative

Static phase wave I xi, yi, θi

Static phase wave II xi, yi xi, θi

Static phase wave III xi, θi xi, yi

In Fig. 3, we show instances of the most noteworthy states
of this work: the active ones. We call these “instances,” since
all of them are part of a chaotic regime that we explore in
more detail in the following sections. The first one, presented
in Figs. 3(a) and 3(d), shows that after a transient, there is an
apparent correlation among xi, yi, and θi similar to the ones
presented for the static phase-wave states in Fig. 2. How-
ever, individuals move, and despite the positive correlation
between xi and yi, shown in Fig. 3(a), individuals’ positions
and phases generate unsteady irregular annular shapes, as
noted in Fig. 3(d). These swirls remind us of the ones formed
by nonconformist individuals in Ref. [50], so we name our
state after it. We refer to the second instance of active state,
shown in Figs. 3(b) and 3(e), as butterfly state. In this state,
particles move while positions xi and yi keep linearly corre-
lated. Furthermore, the population of particles continuously
alternates between splitting into two clusters and merging
back to a single one. Similarly to the swirling state, individu-
als’ positions and phases are not correlated. Furthermore, the
shape generated by these, as shown in Fig. 3(e), reminds us
of the well-known Lorenz attractor projected in 2D. Finally,
the bouncing state, depicted in Figs. 3(c) and 3(f), shows
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similarities with the butterfly state in terms of the correla-
tion between individuals’ positions [Fig. 3(c)] and the shapes
generated between their positions and phases [Fig. 3(f)]. How-
ever, the population of particles goes back and forth, from a
single cluster to several ones, in an erratic way. Despite this
behavior, the linear correlation between xi and yi is preserved.

IV. STATIC STATES

We perform perturbation analyses to study the stability
of the static equilibrium states reached by our system. The
computations we carry out are based on the analyses presented
in Ref. [51] for an instance of the 1D model. Then, since the
procedures are known, only major considerations and results
are presented in the main text and complex calculations are
left for the Appendix.

A. Point synchronous state

This state is characterized by the convergence of the parti-
cles to a point state xi = x, yi = y, and θi = θ , which proves
to be a solution of Eqs. (3). We add small perturbations δxi,
δyi, and δθi to each particle in their equilibrium state and
find expressions for their time evolution. The perturbation
dynamics and their analysis as a linear system are shown in
detail in Appendix B.

The eigenvalues that determine the stability of the point
synchronous (PS) state are

λPS
0 = 0,

λPS
1 = −2K,

λPS
2 = JR − JA

2
, (5)

revealing that the PS state emerges only when K > 0 and
JA � JR, as expected from the remarks in the previous sec-
tion: phase synchronization is driven by K > 0 and particles’
clustering result from JA > JR. Moreover, from Eqs. (3), we
can see that phase synchrony strengthen the attractive effects
in spatial dynamics, reason why particles converge to a single
point in space instead of cluttering while keeping distance
from each other.

B. Static phase-wave states

The main feature shared by these states is the linear corre-
lation among xi, yi, and θi, as classified in Table I. It is easy
to check that equilibrium states based on these correlations
satisfy the dynamical equations.

In the static phase wave I, the equilibrium state is defined
by xi = 2π i/N + x0, yi = 2π i/N + y0, and θi = 2π i/N + θ0.
The perturbation analysis performed for this equilibrium is
described in Appendix B 2. The eigenvalues that determine
the stability of this state are

λ
(I )
0 = 0,

λ
(I )
1 = 0.5JR,

λ
(I )
2 = 0.5JR + 0.25JA,

λ
(I )
3 = 0.25JR + 0.125K

± 0.5
(
0.25J2

R + 0.0625K2 − 1.25JRK
)0.5

,

λ
(I )
4 = 0.25JR + 0.375K

± 0.5
(
0.25J2

R + 0.562K2 + 0.75JRK + 0.5JAK
)0.5

.

(6)

The simplest case to frame, using these eigenvalues, is
when (K = 0), which implies that individual phases will re-
main distributed randomly as in their initial state. Then the
conditions for stability are JR � 0 and JR � −0.5JA. The
negative repulsion and the positive attraction terms indicate
a primarily attractive nature of the particles. However, be-
cause phases are different, particles cluster with others of
similar phases. Additionally, considering (K > 0) would lead
to phase synchronization and, consequently, disrupt the clus-
tering behavior among different phases. This behavior is also
aligned with our expectation for this state based on the nature
of our model. The case where (K < 0) is more complex given
that the phase asynchrony is now weighted, incorporating an
active ingredient to the system. We explore this active state in
the following section.

The static phase wave II is given by xi = 2π i/N + x0,
yi = 2π i/N + y0, and θi = −2π i/N + θ0. The details of the
perturbation analysis for this equilibrium state are shown in
Appendix B 3. The eigenvalues that determine its stability are

λ
(II )
0 = 0,

λ
(II )
1 = −0.5JA,

λ
(II )
2 = −0.5JA − 0.25JR,

λ
(II )
3 = −0.25JA + 0.125K

± 0.5
(
0.25J2

A + 0.0625K2 + 1.25JAK
)0.5

,

λ
(II )
4 = −0.25JA + 0.375K

± 0.5
(
0.25J2

A + 0.562K2 − 0.75JAK − 0.5JRK
)0.5

.

(7)

The conditions for stability are similar to those found in
the previous case (static phase wave I): For K = 0, we need
JA � 0 and −JA � 0.5JR. Both conditions suggest the attrac-
tive nature of the particles, which will lead to the clustering of
particles with similar phases. When K > 0, diversity among
phases is disrupted, whereas K < 0 drives the emergence of
active states. The main difference between this state and the
previous one lies in the regions of the (JA-JR) plane where
each state appears, as we will demonstrate in a following
section.

Finally, the equilibrium states in the static phase wave
III is defined as xi = 2π i/N + x0, yi = −2π i/N + y0, and
θi = 2π i/N + θ0. Despite the similarity of these expressions
to the equilibria in the two previous cases, the analysis is
more complex. The negative correlation between xi and yi

prevent simplifications in the perturbation analysis. Conse-
quently, finding the eigenvalues that characterize the state’s
stability becomes more intricate. For details of this analysis,
we refer the reader to the Appendix B 4. Although we do not
present the corresponding eigenvalues in the main text, in a
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following section we will show the stability regions of this
state in the (JA-JR) plane.

C. Distributed states

To study the stability of these states we assume a contin-
uum of particles, instead of a discrete set like in the previous
cases. We define the fraction of particles lying among x, y,

and θ and x + dx, y + dy, and θ + dθ at time t by the density
ρ(x, y, θ, t )dxdydθ . Moreover, ρ will satisfy the normaliza-
tion condition ∫

ρ(x, y, θ )dxdydθ = 1, (8)

where all integrals run from 0 to 2π .
To perform the stability analysis we introduce order param-

eters of the form

Sσ eiφσ = 1

N

N∑
j=1

eiσ j . (9)

In this expression, σ can represent any individual variable x, y, θ , or a linear combination of these. So, for instance, if we consider
σ : θ , then the order parameter will measure phase coherence, giving Sθ = 1 for a fully synchronized state. Another instance,
a bit more interesting is the consideration of σ : (θ + x), which measures the correlation between individuals’ positions x j and
phases θ j . In this case, getting S(θ+x) = 1 is an indicator of a negative correlation between xi and θi as in the static phase-wave
state II.

In the continuum limit, considering Eq. (8), we can rewrite the order parameters as

Sσ eiφσ =
∫ 2π

0
eiσ ρ(x, y, θ )dxdydθ, (10)

so that Eq. (3) turns into the mean-field equations

vx = JA

2
S(θ+x) sin[φ(θ+x) − θ − x] + JR

2
S(θ−x) sin[φ(θ−x) − θ + x] − JA + JR

2
Sθ sin(φθ − θ ),

vy = JA

2
S(θ+y) sin[φ(θ+y) − θ − y] + JR

2
S(θ−y) sin[φ(θ−y) − θ + y] − JA + JR

2
Sθ sin(φθ − θ ),

vθ = KSθ sin(φθ − θ ) + K

4
{S(θ+2x) sin[φ(θ+2x) − θ − 2x] + S(θ−2x) sin[φ(θ−2x) − θ + 2x]

+ S(θ+2y) sin[φ(θ+2y) − θ − 2y] + S(θ−2y) sin[φ(θ−2y) − θ + 2y]}. (11)

A fully incoherent state, as depicted in the distributed
asynchronous case, would be portrayed by the conver-
gence of all the order parameters, in Eqs. (11), to zero.
However, we can also describe the distributed synchronous
state by considering that incoherence happens in space
only, letting the system reach phase synchronization (Sθ =
1). For both cases, we define the respective incoherent
densities

ρA
0 = 1

8π3
,

ρS
0 = 1

4π2
, (12)

which under conditions of the order parameters described
above prove to be equilibrium states of the continuity
equation

∂ρ

∂t
= −�∇(ρ�v), (13)

where �v = (vx, vy, vθ ) is the velocity field defined in Eq. (11).
We perform perturbation analyses for both incoherent states
(see Appendix C). The eigenvalues that determine the stability

of the distributed asynchronous state are

λA
1 = JA

16π2
,

λA
2 = − JR

16π2
,

λA
3 = K

8π2
,

λA
4 = K

32π2
, (14)

and, for the distributed synchronous state,

λS = JA − JR

8π2
, (15)

which additionally requires (K > 0) to reach phase
coherence.

V. ACTIVE STATES

In the previous section, we discussed all the conditions that
allow the emergence of the static states. Despite these analyt-
ical results, we found only very few hints on the conditions
driving the emergence of active states. In order to get more
clues on their behavior, we start our analysis by considering
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distributed states with finite number of particles. Then, we
will demonstrate that all the active states shown in Sec. III
are actually part of the same chaotic regime.

A. Active asynchronous state

The analysis of distributed states performed in Sec. IV C
relied on the assumption that the number of particles is infi-
nite, so that we could take the continuum limit. This allowed
us to consider that all order parameters in Eq. (11) would
converge asymptotically to zero. However, when dealing with
a finite number of particles, this last assumption is not quite
true. For K = 0, in particular (frozen phases), phase incoher-
ence is not perfect and Sθ > 0. This drawback promotes the
appearance of small velocities in ẋi and ẏi, proportional to
(JA + JR)/2, which ultimately will drive the emergence of an
active state. For an instance of this state, see movie S10 in the
Supplemental Material [53]. If JA = −JR, i.e., attraction and
repulsion have the same intensity, then the state still converges
to a static configuration.

B. Hyperchaos in 3N dimensions

In Sec. IV we studied the stability of static states by com-
puting the eigenvalues of the linearized dynamics in scenarios
where phases were frozen, K = 0, or driven towards syn-
chronization by K > 0. Negative phase couplings (K < 0),
however, not only make computation more complex but also
drive the emergence of active states (as shown in Figs. 3).

An interesting feature of these states is that particles are
sensitive to small changes in their initial conditions. We
highlight this property in Figs. 4(a), 4(b), and 4(c), where
trajectories in the x axis are shown for the same particle in
scenarios where K = −1. In each of these, we compare the
trajectories followed by a single particle when the system
starts on the N-dimensional initial states (�x0, �y0, �θ0) and (�x0 +
δ(1)

x , �y0, �θ0), where δ(1)
x = 10−4 represents that only the parti-

cle of interest’s state is perturbed [for instance x1(0) + δ(1)
x ].

It is clear then that, when considering (JA, JR) = (0.5,−0.5)
[Fig. 4(a)], the perturbation does not affect the trajectory
of the particle considerably. In fact, from Eqs. (6), we can
infer that these parameters drive the emergence of the static
phase wave I. However, once JA becomes negative [(JA, JR) =
(−0.5,−0.5) for Fig. 4(b) and (JA, JR) = (−0.5,−3) for
Fig. 4(c)], the perturbed trajectories suggest the existence of
chaos.

In order to explore the presence of chaotic states we
compute the maximum Lyapunov exponent as a function
of JA for K = −1 and JR = −0.5. We consider a system
of N = 500 individuals and take two 3N-dimensional state
trajectories, one with initial conditions (�x0, �y0, �θ0), and the
other one with (�x0 + δ(1)

x , �y0, �θ0). We remark that, although
δ(1)

x affects the initial condition of a single particle in the x
direction, it perturbs the entire 3N-dimensional state through
the couplings. We then calculate the evolution of the distances
d(t ) = d0eλt between the 3N-dimensional trajectories and in-
fer the Lyapunov exponents λ from the transitioning slope of
log[d(t )/d0]. These are shown in Fig. 4(d) and, as expected,
there is a threshold, at about JA = 0.2, where the system
jumps from regular to chaotic (positive Lyapunov exponent).

FIG. 4. Temporal behavior of single particle trajectories along
the x axis with nonperturbed (lavender) and perturbed (red) ini-
tial conditions (top row) and maximum Lyapunov exponents for
different values of JA (bottom row). Parameters (K, JR ) are set as
(−1,−0.5) for all the figures. Trajectories are generated for (a)
JA = 0.5, (b) JA = −0.5, and (c) JA = −3. The square in the top
corner of (a) shows a magnification of the circled trajectories, and
the ones in (d) show correlations in x-y coordinates depending on the
values of JA (see movies S11 and S12 in the Supplemental Material
[53]). The green dashed lines represent the change from static phase
wave to chaotic states (left) and the breaking of x-y coordinates
correlation (right).

Additionally, from Eqs. (6), we can see that JA ∈ [0, 0.2] is
a region where the static phase wave I state is also stable,
meaning that it is a region of bistability between the static
phase wave I and the chaotic regime.

State trajectories in the chaotic regime form strange at-
tractors whose structures differ according to the parameters
(K, JA, JR). Figure 5 shows a bidimensional projection of
the chaotic trajectory followed by a single particle, in the
x-θ torus, in four scenarios. We can see that, depending on
the scale difference between attracting (JA) and repulsing
(JR) terms, the trajectories patterns grow from a small disk
[Fig. 5(a)] to butterfly-like [Fig. 5(b)] to a disordered single-
loop [Fig. 5(c)] and end-up with a scribblelike structure that
covers the whole torus [Fig. 5(d)].

Another interesting phenomenon happens when the scale
difference between JA and JR surpasses a threshold: The sys-
tem undergoes a transition of dimensionality. We can see in
the insets of Fig. 4(d) that, despite being inside the chaotic
regime, when JA > −2, the linear correlation between xi and
yi is held. However, once JA gets below this threshold, this
correlation breaks. This behavior is strikingly unexpected for
our system, given that expressions for ẋi and ẏi are symmetric,
and even the variations in (JA, JR) are the same.
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FIG. 5. Top row: Trajectories (blue) followed by single particles in the x-θ torus. The red circles are positioned at the start of each trajectory.
Bottom row: Evolution of Smax

(θ±x) and Smax
(x±y) for the original initial conditions (purple and gold, respectively) and the perturbed initial conditions

(orange and green, respectively). Parameters (K, JA, JR ) are set as [(a) and (e)] (−1, 0, −0.5), [(b) and (f)] (−1, −0.5, −0.5), [(c) and (g)]
(−1,−1, −0.5), and [(d) and (h)] (−1, −3, −0.5). The small rectangle in (a) shows a magnification of the circled lines. See movies S13, S14,
S15, and S16 in the Supplemental Material [53] (for trajectories of two particles see movies S17, S18, S19, and S20).

In principle, we might infer that the dimensionality jump is
associated with the formation of the scribblelike structure in
Fig. 5(d), considering that more dimensions could be required
to show a clearer attractor structure. However, this raises an
additional question on what is the behavior in the remain-
ing dimensions. A more appropriate analysis to handle this
inquiry consists on evaluating more Lyapunov exponents, as
we show in Figs. 6 and 7. To compute these, we followed the
procedure described in Ref. [54], and due to computational
limitations, the evaluated system’s population was reduced to
only N = 30 swarmalators. In Fig. 6, we present the behav-
ior of 15 Lyapunov exponents of the 90 that conform the
Lyapunov spectrum, when changing JA for fixed (K, JR) =
(−1,−0.5). As shown, the evolution of the largest Lapunov
exponent λ1 in Fig. 6(a) is consistent with Fig. 4(d), and the
points where exponents become positive (pointed out by the
respective dashed lines) are positioned around the same place.
We attribute the amplitude differences of these paths to the
fact that exponents in the latter figure were calculated by hand
after plotting log[d(t )/d0]. As well, another source of error lies
in the nature of the algorithm used to calculate the spectrum,
where the precision depends on the computation time. Setting
these drawbacks aside, we can see that, in Figs. 6(a), 6(b),
and 6(c), more than one Lyapunov exponent becomes positive
once JA surpasses the threshold, revealing the hyperchaotic
behavior of the system. In addition, in Fig. 7, we present the
five largest Lyapunov exponents obtained considering only the
spatial dynamics. As expected, exponents are negative while
spatial correlation exists and become positive when correla-
tion is broken. The dashed lines in Figs. 7 and 4(d), pointing
out the approximate value of JA where correlation breaks, are
positioned in the same place.

C. Low-dimensional chaos

The chaotic behavior of the system can also be identi-
fied through the correlation functions defined in Sec IV C.

Specifically, we use the metrics

Smax
(θ±x) = max[S(θ+x), S(θ−x)],

Smax
(x±y) = max[S(x+y), S(x−y)],

so we can get a measure of the linear correlation between
the respective variables, at any specific time step, indepen-
dent of their sign. As shown in the bottom row of Fig. 5,
perturbing the initial conditions generates order parameters
that evolve differently. Some of these [Figs. 5(e), 5(f), and
5(g)] fluctuate around a fixed value, which indicates that we
can use them to discern between states. In Fig. 5(h), however,
the fluctuations have a much larger amplitude, hindering any
attempt to classify the state based on its value. Additionally,
the dimensionality jump is also spotted by Smax

x±y , given that it
converges to 1 when JA is over the threshold [Figs. 5(e), 5(f),
and 5(g)], indicating that xi and yi are fully correlated, but it
fluctuates once JA falls below it [Fig. 5(h)].

VI. ATTRACTION-REPULSION PHASE DIAGRAM

In Fig. 8, we present a summary of the regions where
each state emerges in the JA-JR plane. These are based on the
eigenvalues obtained in Sec. IV and the Lyapunov exponents
calculated in Sec. V.

Note that the active states analyzed in previous sec-
tions assumed a positive correlation among xi, yi, and θi,
corresponding to an extension of static phase wave I for (K <

0). We refer to this chaotic regime as Chaos I. Similarly, active
effects remain consistent when considering the correlation of
static phase wave II, leading us to name that region Chaos II.
We can also spot several regions of bistability and multistabil-
ity not only between static states but also between static and
active ones. Remarkably, the regions shown in Fig. 8 consider
that initial conditions are distributed randomly in x, y, and
θ . Starting in full synchronization (θi = θ ) and considering
frozen phases (K = 0) would lead to the emergence of a
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FIG. 6. Evolution of several Lyapunov exponents of the system
in function of JA. The largest exponent is given by λ1 and the subse-
quent ones, in terms of amplitude, follow the respective numeration.
Panels (a), (b), and (c) display sets of five consecutive exponents
within each panel but nonconsecutive across panels. The dashed
line is positioned close to where at least one exponent becomes
significantly positive.

FIG. 7. Evolution of the five largest Lyapunov exponents, esti-
mated considering only position degrees of freedom, in function of
JA. The dashed line is positioned close to where at least one exponent
becomes significantly positive.

synchronous state depending on (JA, JR). More exotic be-
haviors, that we do not study here, can be obtained when
considering nonrandom initial conditions.

VII. DISCUSSION

We have studied a swarmalators system where particles
move in the 2D plane with periodic boundary conditions.
The model, which generalizes the 1D instance introduced in
Ref. [47], considers attraction and repulsion terms, which ul-
timately lead to the emergence of distributed and active states,
some of them similar to the ones introduced in Refs. [21] and
[47]. All interaction functions involve only sines and cosines,
making stability analysis relatively simple but leading to a
weak form of repulsion. In contrast with previous 2D mod-
els, the strength of interactions depends on spatial distances
in each direction separately, xi − x j and yi − y j , instead of√

(xi − x j )2 + (yi − y j )2. That allowed us to obtain analytical
conditions for the emergence of all the static states we pre-
sented and also analyzed the nature of the active ones.

Two states presented in this work, the distributed syn-
chronous and asynchronous states, closely resemble their
counterparts described in Ref. [21], the only difference being
that, in our findings, particles are not radially distributed.
For these, we determined analytically the conditions that
drive their emergence considering only control parameters
(K, JA, JR). Along this line, we have also introduced an active
asynchronous state that emerges under specific conditions for
a finite number of particles. Furthermore, we derived the con-
ditions that guarantee the emergence of a point synchronous
state, similar to the one introduced in [47] for the 1D model.

We also described static phase-wave states that share fea-
tures with their 1D [47,49] and 2D counterparts [21]. The
main difference with the former is that, in our model, linear
correlations show up in three different ways, as classified
in Table I. Moreover, as pointed before for the distributed
synchronous and asynchronous states, our model leads to
square, instead of radial, symmetry in particle distribution.
Despite these differences, the phase-wave states share the
“like attracts like” feature, characteristic of their definition.
Our analytical findings allowed us to state all the conditions
in (K, JA, JR) that drive the emergence of each type of corre-
lation. Strikingly, we found that for (K � 0) there is a region
of multistability in the JA-JR plane, where the three types of
phase-wave state could emerge.

Despite the static states and their counterparts found in
previous works, the primary distinction between our model
and these lies in the active states, which have remained elusive
in 1D simplifications of the original swarmalators model. Pre-
vious studies where active states emerged in 1D were based
on the inclusion of additional parameters, such as frustration
[36], external forcing and pinning [52], or mixed coupling
signs [50]. Here we demonstrated that active states can emerge
solely by adjusting the model parameters (K, JA, JR) when
repulsion is included. This is coherent with the original idea of
swarmalator systems where unsteady states emerge as a result
of scale differences between attractive and repulsive effects.
Except for the radial symmetry, the active states we found
are similar to the splintered and active phase-wave states from
Ref. [21]. However, after estimating the Lyapunov spectrum,
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FIG. 8. Regions where states emerge on the JA-JR plane for (a) K < 0, (b) K = 0, and (c) K > 0. Arrows and gradients in (a) represent state
variations in the chaotic regime, transitioning from swirling to bouncing states. Colors labeling different states are an indicator of multistability.

we demonstrated that the active states in our system respond
to the emergence of hyperchaos. Just as interestingly, under
certain conditions in this regime, the system undergoes a
dimensionality transition, where the spatial correlation breaks
and particles behave chaotically in the x, y, and θ axes.

From a theoretical perspective, our model incorporates
intriguing characteristics that may pique curiosity as a dynam-
ical system in its own right. Given the system’s dimensionality
and its hyperchaotic behavior, we believe it would be worth-
while to delve more deeply into its features. We showed,
for example, that the spatial symmetry breaking, responsi-
ble for the dimensionality transition, is associated with the
appearance of positive Lyapunov exponents when analyzing
the spatial dynamics only. However, we have not intensively
explored the relation of this phenomena with that of the
synchronization of chaos. Another intriguing peculiarity to
explore can be observed in Fig. 6(a), where it appears that
more than one exponent becomes positive at the same time. It
may be also of interest to understand the bifurcations triggered
by varying K . In Fig. 8, we have shown three specific cases
that allowed us to discern between the states when (K < 0),
(K = 0), and (K > 0). However, it may be worthwhile to
study in detail the intermediate states of the system as K
transitions from being positive valued to negative valued and
vice versa. This investigation should provide valuable insights
into two open questions: why certain states, like the swirling
one, have a very long transient before exhibiting their active
characteristics and what mechanisms underlie the emergence
of chaos. Regarding the latter question, we also recommend
a rigorous study of the routes to chaos and dimensionality
breaking when (K < 0). Preliminary numerical studies on this
subject have given us hints of emergent intermittency and
crises when examining the evolution of the order parameters
for different (JA, JR). Finally, it would also be worthwhile
to explore whether a threshold on the number of particles
N exists and, if so, at what point chaotic behaviors are
triggered.

Our model merges two lines of research on the same topic:
one-dimensional systems based on the ring model and 2D
modifications of the original model. Therefore, its adaptation
to previous work on these two lines can occur smoothly.
For instance, future work could take our model as a base to
consider chirality [37], different phase interactions [38–40],
finite cutoff ranges [55], clusters with different attractive and

repulsive strengths [46], or short-range repulsive interactions
[56]. Then, given the structure of our model, finding analytical
solutions on each of these modifications would be less chal-
lenging than doing it for instance on the 2D model introduced
in Ref. [21].

Given that the interactions in our model are based on
Kuramoto-like terms, modifications performed in the Ku-
ramoto model could also be adapted to ours [57]. A
particularly interesting take would be to consider frustration,
given that the addition of lag parameters are responsible for
the emergence of a turbulent-like state in the ring model [51]
and also drive the formation of interesting spatial patterns in
swarming only systems [58,59]. Furthermore, the inclusion of
external stimulus discussed in previous work implies affecting
the dynamics in a periodic nature [52] and mainly in the
phase dynamics [36,60]. One suggestion would be to consider
external stimuli in space, mimicking a shear, as has been done
for bacterial suspensions [61]. It would also be of interest
considering finite cutoff interaction distances between indi-
viduals [55] so that different concentrations of individuals can
be managed, emulating the study on vinegar eels in Ref. [62].
If a collective of swarmalators works as a medium, then it
would also be worth studying how it is affected by external
particles and vice versa, similarly to the study in Ref. [32]
for nematodes. Additionally, we could explore changing the
mobility space of the swarmalators, for instance, by imposing
discontinuities in the (x, y) space or also considering self-
propulsion of the particles in the direction of their phases, as
presented in Ref. [63].

States emerging in our model could also fit collective
swarming-only behaviors if we consider that their three
spatial degrees of freedom interplay. A clear example of
this approach is depicted by the behavior of swarming
mosquitoes [64,65], which shows similarities with the active
asynchronous state in a spherical description. For this setup,
we consider switching the model variables such that θi de-
termines the radial distances and (xi, yi ), the azimuthal and
polar angles, respectively. The resulting state shows clustered
individuals in the middle of a cloud of loosely behaved ones,
coherent with a description given in Ref. [64] (see movie
S21 in the Supplemental Material [53]). We also expect the
chaotic states, shown in Fig. 5, to be useful in the study of
populations that exhibit this type of behaviors (see movie S22
in the Supplemental Material [53]). Finally, our model could
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be considered as a basis for engineered systems similar to the
ones presented in Refs. [66–68].

A repository containing scripts for the numerical computa-
tion of the model and its Lyapunov spectrum can be accessed
via Ref. [69].
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APPENDIX A: DERIVATION OF THE RING MODEL

We can collapse the 2D system to a single dimension in
space by considering ẋi = ẏi. Hence, we get rid of the second
expression in Eqs. (4). Additionally, if we assume that there
is no scale difference between attraction and repulsion, and
that individuals are purely attracting (i.e., J = JA = −JR, for
JA > 0), then the equations governing the system’s dynamics
become

ẋi = J

N

N∑
j=1

sin(x ji ) cos(θ ji ),

θ̇i = K

N

N∑
j=1

sin(θ ji )[cos(x ji )]
2.

Notice that, without loss of generality, we have neglected
the scaling factor in the phase dynamics (2K → K). This 1D
system fits with the structure described in Eqs. (2), and the
only difference with the 1D model introduced in Ref. [47]
is the squared cosine in the phase dynamics. This variation
ultimately improves the driving towards synchronous or asyn-
chronous states (depending on the value of K), as the influence
of the individuals’ positions will always be null or positive.

APPENDIX B: PERTURBATION ANALYSIS
OF COHERENT STATES

For each state described below, we will be able to rearrange
the respective perturbation dynamics as

δ�̇ri = Rδ�ri, (B1)

where δ�ri = (δxi, δyi, δθi ) and

R =
⎛
⎝R1 R2 R3

R4 R5 R6
R7 R8 R9

⎞
⎠ (B2)

is a 3N × 3N block matrix where each N × N block is circu-
lant. Thus, the stability of Eq. (B1) can be analyzed by finding
the eigenvalues of R.

We follow the usual procedure to solve an eigenvalue prob-
lem, which starts by defining R∗ = R − �λI3N×3N and then
concludes by finding the eigenvalues �λ from the determinant
of R∗. Thus, considering that R∗ is also a block matrix, we
can rewrite its determinant as

det (R∗) = det (M),

where

M = R∗
1 (R∗

5R∗
9 − R6R8) − R2(R4R∗

9 − R6R7)

+ R3(R4R8 − R∗
5R7),

since blocks commute, and

R∗
1 = R1 − �λ1IN ,

R∗
5 = R5 − �λ5IN ,

R∗
9 = R9 − �λ9IN .

Given that blocks composing R are circulant, the N × N
matrix M will also be circulant. Then, we can use the general
solution to find the determinant of circulant matrices as

det (M) =
N−1∏
k=0

N−1∑
r=0

Mr+1ζ
kr, (B3)

from where we are able to obtain the eigenvalues �λ. The term
ζ = exp{2π i/N} is a primitive N-root of unity. Notice that the
structure of M follows that of R in Eq. (B2) (i.e., elements’
subindexes represent the same position in the matrix).

1. Point synchronous

We add small individual perturbation to the equilibrium
states as

xi = x + δxi

yi = x + δyi

θi = x + δθi.

By plugging these into Eq. (4), we find the perturbation dy-
namics, governed by

δẋi = JA − JR

2N

N∑
j=1

(δx j − δxi ),

δẏi = JA − JR

2N

N∑
j=1

(δy j − δyi ),

δθ̇i = 2K

N

N∑
j=1

(δθ j − δθi ),

which can be arranged as the linear system shown
in Eq. (B1). In this particular case, we have that
{R2, R3, R4, R6, R7, R8} = 0 and R1 = R5, which simplifies
the eigenvalue problem considerably. Finally, using Eq. (B3),
we obtain the eigenvalues shown in Eqs. (5).

2. Static phase wave I

In this case, the perturbed equilibrium states are defined as

xi = 2π i

N
+ x0 + δxi,

yi = 2π i

N
+ y0 + δyi,

θi = 2π i

N
+ θ0 + δθi,
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and the perturbation dynamics are governed by

δẋi = 1

2N

∑
j

[
δx jF

(I )
a (i, j) + δθ jF

(I )
b (i, j)

] + JR

2
(δxi − δθi ),

δẏi = 1

2N

∑
j

[
δy jF

(I )
a (i, j) + δθ jF

(I )
b (i, j)

] + JR

2
(δyi − δθi ),

δθ̇i = K

2N

∑
j

[
δx jF

(I )
c (i, j) + δy jF

(I )
c (i, j) + δθ jF

(I )
d (i, j)

]
,

(B4)
where

F (I )
a (i, j) = JA cos

[
4π

N
( j − i)

]
− JR,

F (I )
b (i, j) = JR + JA cos

[
4π

N
( j − i)

]

− (JA + JR) cos

[
2π

N
( j − i)

]
,

F (I )
c (i, j) = cos

[
6π

N
( j − i)

]
− cos

[
2π

N
( j − i)

]
,

F (I )
d (i, j) = cos

[
6π

N
( j − i)

]
+ 3 cos

[
2π

N
( j − i)

]
.

The positive correlation between xi and yi, in the equilib-
rium, generates a clear symmetry in position dynamics. Then,
as noticed, the coefficients F (I )

a (i, j) and F (I )
b (i, j) repeat in

the expressions defining δẋi and δẏi, and F (I )
c (i, j) shows up

twice in the definition of δθ̇i. These features allow for the
simplification of the linear system when structuring it as in
Eq. (B1). Thus, for this case we have that R1 = R5, R3 = R6,
R7 = R8, and {R2, R4} = 0. These considerations allow us
to split the eigenvalue problem into two problems of lower
dimensions such that

M(I ) = R∗
1 (R∗

1R∗
9 − 2R3R7).

Then, using Eq. (B3), we have that

det(R∗
1 ) =

N−1∏
k=0

{
− λ + JR

2
+ 1

2N

N∑
j=1

ζ ( j−1)kF (I )
a (1, j)

}
,

det (R∗
1R∗

9 − 2R3R7) =
N−1∏
k=0

{
λ2 − λ

⎡
⎣JR

2
+ 1

2N

N∑
j=1

ζ ( j−1)k
[
F (I )

a (1, j) + KF (I )
d (1, j)

]⎤⎦

+ K

2N

N∑
j=1

ζ ( j−1)k

[
JRF (I )

c (1, j) + JR

2
F (I )

d (1, j) − JA + JR

2
cos

[
2π

N
( j − 1)

]]}
,

whose solution allows us to find the eigenvalues presented in Eqs. (6).

3. Static phase wave II

The only difference between this state and the previous one, in the equilibrium, is that the correlation between xi and θi is
now negative. Then, after perturbing the equilibrium states individually, we have that

xi = 2π i

N
+ x0 + δxi,

yi = 2π i

N
+ y0 + δyi,

θi = −2π i

N
+ θ0 + δθi,

and the perturbation dynamics are governed by

δẋi = 1

2N

∑
j

[
δx jF

(II )
a (i, j) + δθ jF

(II )
b (i, j)

] − JA

2
(δxi + δθi ),

δẏi = 1

2N

∑
j

[
δy jF

(II )
a (i, j) + δθ jF

(II )
b (i, j)

] − JA

2
(δyi + δθi ),

δθ̇i = K

2N

∑
j

[
δx jF

(II )
c (i, j) + δy jF

(II )
c (i, j) + δθ jF

(II )
d (i, j)

]
,

where

F (II )
a (i, j) = JA − JR cos

[
4π

N
( j − i)

]
,

F (II )
b (i, j) = JA + JR cos

[
4π

N
( j − i)

]
− (JA + JR) cos

[
2π

N
( j − i)

]
,

044209-13
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F (II )
c (i, j) = cos

[
2π

N
( j − i)

]
− cos

[
6π

N
( j − i)

]
,

F (II )
d (i, j) = 3 cos

[
2π

N
( j − i)

]
+ cos

[
6π

N
( j − i)

]
.

Notice that these equations also show the recurrence of some coefficients in the definition of δẋi, δẏi, and δθ̇i. This consideration
leads to the same simplifications described for the previous state when structuring the system as in Eqs. (B1). So we have that
R1 = R5, R3 = R6, R7 = R8, and {R2, R4} = 0,

M(II ) = R∗
1 (R∗

1R∗
9 − 2R3R7).

det(R∗
1 ) =

N−1∏
k=0

{
− λ − JA

2
+ 1

2N

N∑
j=1

ζ ( j−1)kF (II )
a (1, j)

}
,

det (R∗
1R∗

9 − 2R3R7) =
N−1∏
k=0

{
λ2 − λ

⎡
⎣−JA

2
+ 1

2N

N∑
j=1

ζ ( j−1)k
[
KF (II )

d (1, j) + F (II )
a (1, j)

]⎤⎦

+ K

2N

N∑
j=1

ζ ( j−1)k

[
JAF (II )

c (1, j) − JA

2
F (II )

d (1, j) + (JA + JR)

2
cos

[
2π

N
( j − 1)

]]}
,

which lead to the eigenvalues presented in Eqs. (7).

4. Static phase wave III

For this case, the perturbed equilibrium states are defined as

xi = 2π i

N
+ x0 + δxi,

yi = −2π i

N
+ y0 + δyi,

θi = 2π i

N
+ θ0 + δθi,

and the perturbation dynamics are governed by

δẋi = 1

2N

∑
j

[
δx jF

(III )
a (i, j) + δθ jF

(III )
b (i, j)

] + JR

2
(δxi − δθi ),

δẏi = 1

2N

∑
j

[
δy jF

(III )
c (i, j) + δθ jF

(III )
d (i, j)

] − JA

2
(δyi + δθi ),

δθ̇i = 1

2N

∑
j

[
δx jF

(III )
e (i, j) − δy jF

(III )
e (i, j) + δθ jF

(III )
f (i, j)

]
,

where

F (III )
a (i, j) = JA cos

[
4π

N
( j − i)

]
− JR,

F (III )
b (i, j) = JR + JA cos

[
4π

N
( j − i)

]
− (JA + JR) cos

[
2π

N
( j − i)

]
,

F (III )
c (i, j) = JA − JR cos

[
4π

N
( j − i)

]
,

F (III )
d (i, j) = JA + JR cos

[
4π

N
( j − i)

]
− (JA + JR) cos

[
2π

N
( j − i)

]
,

044209-14
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F (III )
e (i, j) = K cos

[
6π

N
( j − i)

]
− K cos

[
2π

N
( j − i)

]
,

F (III )
f (i, j) = 3K cos

[
2π

N
( j − i)

]
+ K cos

[
6π

N
( j − i)

]
.

Despite the slight difference in the definition of equilibrium states compared to the previous cases (types I and II), simplifications
are not possible in the perturbation equations of motion. As noticed, the only repeating coefficient is F (III )

e (i, j) in the definition
of δθ̇i. Hence, when structuring the perturbation dynamics as in Eqs. (B1), the only consideration we can make is that R7 = −R8.
This drawback forces us to write the determinant, using Eq. (B3), as

det(M(III ) ) =
N−1∏
k=0

{
− λ3 + λ2

[
JR − JA

2
+ 1

2N
S1

]
+ λ

[
JAJR

4
+ JAJR

4N
T1 + JA

4N
S2 − JR

4N
S3

]
+ K

16N
(JA + JR)2 − JAJR

8N
S4

}
,

where

S1 =
N∑

j=1

ζ ( j−1)k
[
F (III )

a (1, j) + F (III )
c (1, j) + KF (III )

f (1, j)
]
,

S2 =
N∑

j=1

ζ ( j−1)k
[
F (III )

a (1, j) + KF (III )
e (1, j)+KF (III )

f (1, j)
]
,

S3 =
N∑

j=1

ζ ( j−1)k
[
F (III )

c (1, j) + KF (III )
e (1, j)+KF (III )

f (1, j)
]
,

S4 =
N∑

j=1

ζ ( j−1)k
[
2F (III )

e (1, j) + F (III )
f (1, j)

]
,

T1 =
N∑

j=1

ζ ( j−1)k + 0.25
[
ζ ( j−1)(k+2) + ζ ( j−1)(k−2)

]
,

T2 = 0.5
k∑

j=1

ζ ( j−1)(k+1) + ζ ( j−1)(k−1).

To find the eigenvalues, we must address N cubic equations of the form −λ3 + λ2β + λξ + η. We solve these using the general
formula for

β =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for k = 0;

0.5(JR − JA) + 1.5K, for k = 1, N − 1;

0.25(JR − JA), for k = 2, N − 2;

0.5(JR − JA) + 0.25K, for k = 3, N − 3;

0.5(JR − JA), otherwise;

(B5)

ξ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for k = 0,

0.25[JAJR + K (JA − JR)], for k = 1, N − 1;

0.125(J2
A + J2

R + 2.5JAJR), for k = 2, N − 2;

0.25[JAJR + K (JA − JR)], for k = 3, N − 3;

0.25KJAJR, otherwise;

(B6)

and

η =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for k = 0;

0.125K[0.25(JA + JR)2 − JAJR], for k = 1, N − 1;

0, for k = 2, N − 2;

−0.1875KJAJR, for k = 3, N − 3;

0, otherwise.
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APPENDIX C: PERTURBATION ANALYSIS OF
INCOHERENT STATES

In general, we perturb the equilibrium state ρ0 by a small
quantity δρ, such that ρ = ρ0 + δρ. Then the temporal evolu-
tion of the perturbation is governed by

∂

∂t
δρ = −�∇(δρ)�v. (C1)

From Eq. (8), we know that

∫ 2π

0
δρ(x, y, θ, t )dxdydθ = 0,

and to first order in δρ(x, θ, t ), we have that

S1
σ eiφσ =

∫ 2π

0
eiσ δρ(x, y, θ, t )dxdydθ. (C2)

We expand δρ in Fourier series as

δρ =
∑
m,n,l

fm,n,l (t )ei (mx+ny+lθ ), (C3)

and we will solve equations of the type f (t ) = f̄ eλt to get the
eigenvalues λ.

1. Distributed asynchronous

We consider the equilibrium ρA
0 defined in Eqs. (12). Using

Eqs. (C1) and (C2), we obtain the perturbation dynamics

d

dt
δρ = JA

16π3

{
S1

(θ+x) cos[φ(θ+x) − θ − x] + S1
(θ+y) cos[φ(θ+y) − θ − y]

}
− JR

16π3

{
S1

(θ−x) cos[φ(θ−x) − θ + x] + S1
(θ−y) cos[φ(θ−y) − θ + y]

}
+ K

32π3

{
S1

(θ+2x) cos[φ(θ+2x) − θ − 2x] + S1
(θ−2x) cos[φ(θ−2x) − θ + 2x]

+ S1
(θ+2y) cos[φ(θ+2y) − θ − 2y] + S1

(θ−2y) cos[φ(θ−2y) − θ + 2y] + 4S1
θ cos(φθ − θ )

}
. (C4)

We expand this equation following the form of Eq. (C3) and
we will see that the only relevant terms correspond to

{(m, n, l )} = {(−1, 0, 1); (0,−1,−1); (1, 0,−1);

(0, 1,−1); (0, 0,−1); (2, 0,−1);

(−2, 0,−1); (0, 2,−1); (0,−2,−1)}. (C5)

Then, the solutions give us the eigenvalues shown in Eqs. (14).

2. Distributed synchronous

Given that in this state phases are synchronized and only
positions are uniformly distributed, we uncouple the system’s
dynamics. The incoherence between phases and positions will
lead to zeroing order parameters S(θ±2x) and S(θ±2y). That
allows us to rewrite

vθ = KSθ sin(φθ − θ ),

which is exactly the mean-field description of the Kuramoto
model without considering natural frequencies [17]. Then the
condition to reach synchronization is given by (K > 0).

In the equilibrium, the synchronization of phases will lead
to θi = θ . This condition allows for the equivalences

S(θ±x)e
iφ(θ±x) = Sxei (θ±φx ),

S(θ±y)e
iφ(θ±y) = Syei (θ±φy ),

and therefore the velocity field for this state is defined as

vx = JA − JR

2
Sx sin(φx − x),

vy = JA − JR

2
Sy sin(φy − y). (C6)

In this case we use the equilibrium ρS
0 from Eqs. (12), and

considering (C2), the perturbation dynamics are governed by

d

dt
δρ = JA − JR

8π2

[
S1

x cos(φx − x) + S1
y cos(φy − y)

]
. (C7)

Then, using Eq. (C3) for this equation, we find the eigenvalue
shown in Eq. (15).
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[30] K. Ērglis, Q. Wen, V. Ose, A. Zeltins, A. Sharipo, P. A. Janmey,
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[41] M. Belovs, R. Livanovičs, and A. Cēbers, Phys. Rev. E 96,
042408 (2017).

[42] P. Japón, F. Jiménez-Morales, and F. Casares, Cells Dev. 169,
203726 (2022).

[43] B. Adorjáni, A. Libál, C. Reichhardt, and C. J. O. Reichhardt,
Phys. Rev. E 109, 024607 (2024).

[44] N. Blum, A. Li, K. O’Keeffe, and O. Kogan, Phys. Rev. E 109,
014205 (2024).

[45] S. J. Kongni, V. Nguefoue, T. Njougouo, P. Louodop, F. F.
Ferreira, R. Tchitnga, and H. A. Cerdeira, Phys. Rev. E 108,
034303 (2023).

[46] S. Ghosh, G. K. Sar, S. Majhi, and D. Ghosh, Phys. Rev. E 108,
034217 (2023).

[47] K. O’Keeffe, S. Ceron, and K. Petersen, Phys. Rev. E 105,
014211 (2022).

[48] S. Yoon, K. P. O’Keeffe, J. F. F. Mendes, and A. V. Goltsev,
Phys. Rev. Lett. 129, 208002 (2022).

[49] K. O’Keeffe and H. Hong, Phys. Rev. E 105, 064208 (2022).
[50] B. Hao, M. Zhong, and K. O’Keeffe, Phys. Rev. E 108, 064214

(2023).
[51] J. U. F. Lizárraga and M. A. M. de Aguiar, Phys. Rev. E 108,

024212 (2023).
[52] G. K. Sar, D. Ghosh, and K. O’Keeffe, Phys. Rev. E 107,

024215 (2023).
[53] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevE.109.044209 for additional
figures and movies obtained by simulating the model.

[54] M. Balcerzak, D. Pikunov, and A. Dabrowski, Nonlin. Dynam.
94, 3053 (2018).

[55] H. K. Lee, K. Yeo, and H. Hong, Chaos 31, 033134 (2021).
[56] F. Jiménez-Morales, Phys. Rev. E 101, 062202 (2020).
[57] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R.

Spigler, Rev. Mod. Phys. 77, 137 (2005).
[58] N. Kruk, Y. Maistrenko, and H. Koeppl, Phys. Rev. E 98,

032219 (2018).
[59] N. Kruk, J. A. Carrillo, and H. Koeppl, Phys. Rev. E 102,

022604 (2020).
[60] L. M. Childs and S. H. Strogatz, Chaos 18, 043128

(2008).
[61] H. M. López, J. Gachelin, C. Douarche, H. Auradou, and E.

Clément, Phys. Rev. Lett. 115, 028301 (2015).
[62] A. C. Quillen, A. Peshkov, E. Wright, and S. McGaffigan, Phys.

Rev. E 104, 014412 (2021).
[63] D. Levis, I. Pagonabarraga, and B. Liebchen, Phys. Rev. Res. 1,

023026 (2019).
[64] A. Cavagna, I. Giardina, M. A. Gucciardino, G. Iacomelli, M.

Lombardi, S. Melillo, G. Monacchia, L. Parisi, M. J. Peirce, and
R. Spaccapelo, Sci. Rep. 13, 8745 (2023).

[65] L. Facchinelli, L. Valerio, R. S. Lees, C. F. Oliva, T.
Persampieri, C. M. Collins, A. Crisanti, R. Spaccapelo, and
M. Q. Benedict, Malaria J. 14, 271 (2015).

[66] Y. Togashi, J. Phys. Chem. B 123, 1481 (2019).
[67] C. Zhou, N. J. Suematsu, Y. Peng, Q. Wang, X. Chen, Y. Gao,

and W. Wang, ACS Nano 14, 5360 (2020).
[68] B. Chen, H. Tan, M. Ding, L. Liu, S. Wang, X. Peng, H.

Tian, J. Jiang, J. Gao, W. Huang et al., ACS Nano 17, 13826
(2023).

[69] https://github.com/terdegrede/2DSwarma_OCDT.git.

044209-17

https://doi.org/10.1016/j.hrthm.2014.03.049
https://doi.org/10.1016/j.jacep.2020.06.022
https://doi.org/10.1093/ietfec/e90-a.10.2154
https://doi.org/10.1007/s10015-007-0436-x
https://doi.org/10.1016/j.neuron.2006.09.020
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1103/PhysRevLett.74.4075
https://doi.org/10.1006/jtbi.2002.3065
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1038/s41467-017-01190-3
https://doi.org/10.1038/s41467-020-18209-x
https://doi.org/10.1098/rsif.2016.0575
https://doi.org/10.1103/PRXLife.1.013003
https://doi.org/10.1103/PhysRevE.92.032722
https://doi.org/10.1038/s41586-022-04889-6
https://doi.org/10.1038/srep03891
https://doi.org/10.1039/D1SM01572A
https://doi.org/10.1073/pnas.1401828111
https://doi.org/10.1529/biophysj.107.107474
https://doi.org/10.1098/rsif.2020.0179
https://doi.org/10.1103/PhysRevE.106.064401
https://doi.org/10.1038/s42005-023-01206-z
https://doi.org/10.1073/pnas.2022987118
https://doi.org/10.1063/5.0131552
https://doi.org/10.1063/1.5141343
https://doi.org/10.1038/s41467-023-36563-4
https://doi.org/10.1063/1.5039564
https://doi.org/10.1103/PhysRevE.102.032607
https://doi.org/10.1088/1367-2630/ac5da2
https://doi.org/10.1103/PhysRevE.96.042408
https://doi.org/10.1016/j.cdev.2021.203726
https://doi.org/10.1103/PhysRevE.109.024607
https://doi.org/10.1103/PhysRevE.109.014205
https://doi.org/10.1103/PhysRevE.108.034303
https://doi.org/10.1103/PhysRevE.108.034217
https://doi.org/10.1103/PhysRevE.105.014211
https://doi.org/10.1103/PhysRevLett.129.208002
https://doi.org/10.1103/PhysRevE.105.064208
https://doi.org/10.1103/PhysRevE.108.064214
https://doi.org/10.1103/PhysRevE.108.024212
https://doi.org/10.1103/PhysRevE.107.024215
http://link.aps.org/supplemental/10.1103/PhysRevE.109.044209
https://doi.org/10.1007/s11071-018-4544-z
https://doi.org/10.1063/5.0038591
https://doi.org/10.1103/PhysRevE.101.062202
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/PhysRevE.98.032219
https://doi.org/10.1103/PhysRevE.102.022604
https://doi.org/10.1063/1.3049136
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevE.104.014412
https://doi.org/10.1103/PhysRevResearch.1.023026
https://doi.org/10.1038/s41598-023-34842-0
https://doi.org/10.1186/s12936-015-0792-2
https://doi.org/10.1021/acs.jpcb.8b10633
https://doi.org/10.1021/acsnano.9b08421
https://doi.org/10.1021/acsnano.3c03575
https://github.com/terdegrede/2DSwarma_OCDT.git

