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Uncertainty quantification of time-average quantities of chaotic systems using
sensitivity-enhanced polynomial chaos expansion
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We consider the effect of multiple stochastic parameters on the time-average quantities of chaotic systems. We
employ the recently proposed sensitivity-enhanced generalized polynomial chaos expansion, se-gPC, to quantify
efficiently this effect. se-gPC is an extension of gPC expansion, enriched with the sensitivity of the time-averaged
quantities with respect to the stochastic variables. To compute these sensitivities, the adjoint of the shadowing
operator is derived in the frequency domain. Coupling the adjoint operator with gPC provides an efficient
uncertainty quantification algorithm, which, in its simplest form, has computational cost that is independent
of the number of random variables. The method is applied to the Kuramoto-Sivashinsky equation and is
found to produce results that match very well with Monte Carlo simulations. The efficiency of the proposed
method significantly outperforms sparse-grid approaches, such as Smolyak quadrature. These properties make
the method suitable for application to other dynamical systems with many stochastic parameters.
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I. INTRODUCTION

The performance of real-world systems is significantly af-
fected by the uncertainty of the parameters that define these
systems. Large research effort has focused on the quantifica-
tion of the effect of such stochastic variations to a quantity
of interest (QoI), usually a time-averaged quantity. This field
of research is commonly known as uncertainty quantification
(UQ) and efficient UQ methods have been developed for static
and dynamic problems [1–4].

In the standard generalized polynomial chaos (gPC)
method, originally proposed in Refs. [2,5], an orthonormal
polynomial base that spans the stochastic space is used for the
spectral representation of uncertain quantities. The spectral
coefficients are computed with Galerkin projection, allowing
for the efficient evaluation of the statistics of the QoI. How-
ever, the cost of gPC scales as ∼mp, where m is the number
of stochastic parameters and p the polynomial order of the
expansion. This exponential growth is known as the curse of
dimensionality [3]. Various approaches have been proposed
to mitigate the rapid growth of the computational cost, such
as sparse grid approaches such as Smolyak grids [6], or adap-
tive methods that build a sparse polynomial chaos expansion
(PCE) basis using least-angle regression [7]. gPC methods
have been successful in predicting the statistics of the QoI in
many applications, such as fluid dynamics, mechanics, space,
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medicine, see, for example, Refs. [2,4,8–10]. Applications of
gPC to chaotic systems have also appeared in the literature
[11–15].

Another method for the computation of the spectral co-
efficients is based on the least-squares approach [3,16]. To
reduce the computational coast, the method is usually coupled
with efficient multidimensional sampling techniques; for an
overview of the different sampling algorithms, see Ref. [17].
Recently, new sampling approaches that incorporate real-
world data into the computation of the gPC coefficients have
been introduced [18–20]. However the cost still grows expo-
nentially with the number of uncertain parameters, making
such methods difficult to apply in systems with a large m.

In this paper we use the sensitivity-enhanced gPC, or se-
gPC, a least-squares approach for the computation of the
spectral coefficients that is augmented with the sensitivity of
the QoI with respect to the uncertain parameters, see Ref. [21]
for a detailed description of the method and a review of
previous works in this area. When all the sensitivities are
computed efficiently in a single step with the adjoint method,
the computational cost of se-gPC is reduced by a factor m,
i.e., it scales as ∼mp−1, and the method becomes increasingly
useful as the number of stochastic inputs grows. Efficient
sampling algorithms can by employed to reduce the number
of required evaluations, see Ref. [21] for comparison between
two such algorithms. For the special case of first-order spectral
representation, i.e., for p = 1, the spectral coefficients can be
estimated with a single direct and a single adjoint evaluation,
regardless of the number of stochastic inputs.

The se-gPC is efficient because the sensitivities of the
QoI with respect to all stochastic inputs at one sampling
point can be estimated using a single adjoint evaluation. Ad-
joint methods have long been successfully used to estimate
derivatives (sensitivities) for stationary or nonchaotic systems
in aerodynamics [22], structural optimization [23], chemical
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kinetic systems [24], among many others. However, when the
underlying system is chaotic, a small variation in an input pa-
rameter causes large deviation in the trajectory of the system
in phase space (with respect to the reference trajectory); this
is popularly known as butterfly effect. Under these circum-
stances, standard sensitivity analysis tools (such as adjoint)
fail to produce physically meaningful results [25,26]. Math-
ematically, the deviation between the two trajectories is due
to the presence of one or more positive Lyapunov exponents.
To address this problem, the least-squares shadowing (LSS)
method and its variants were proposed in a series of papers
[27–29]. This method relies on the shadowing lemma [30,31]
and provides a systematic and rigorous approach for the com-
putation of sensitivities of time-average quantities of chaotic
systems.

Assume a reference trajectory of a dynamical system eval-
uated for a parameter value s, u(t ; s). Shadowing methods
aim to compute another trajectory at s + δs, u(τ ; s + δs) that
shadows, or stays close to, the reference trajectory for the
time frame T of the analysis. The sensitivity problem is re-
formulated as a minimization problem between the reference
and the shadowing trajectories. The solution results in two
trajectories that remain close to each other, and can be used
to compute accurate sensitivities for a long T . Note that the
two trajectories start from different initial conditions, but for
ergodic systems this does not affect the time-average QoI.
Also, the time variable in the shadowing trajectory is not be
the same as t , thus a different symbol, τ , is used.

Various approaches have been proposed to improve the
computational efficiency of the original LSS method. The
multiple shooting shadowing (MSS) algorithm [32] was in-
troduced to reduce the memory requirements of the standard
LSS. When coupled with a matrix-free preconditioner to
improve the convergence rate [33], MSS has lower compu-
tational cost and memory requirements than standard LSS.
In Ref. [34], the nonintrusive LSS (NILSS) approach was
derived and applied successfully to the two-dimensional (2D)
flow over a backward facing step and later to 3D flows inside
a channel and around a cylinder [35,36]. The computational
cost of NILSS methods scales linearly with the number of
positive Lyapunov exponents (PLEs). Theoretical predictions
indicate that the highest Lyapunov exponent scales with the
inverse of the Kolmogorov time scale [37,38]. Yet another
approach is the formulation of the shadowing problem in
the frequency domain; to this end, the shadowing harmonic
operator was introduced recently [39]. The cost of the method
is case dependent, but for the Kuramoto-Sivashinsky system,
sensitivities are computed at a cost roughly equal to that of the
baseline solution.

In this paper, we derive the adjoint of the shadowing har-
monic operator. The adjoint formulation allows us to compute
the sensitivity of a time-average QoI of a chaotic dynamical
system with respect to multiple parameters at a cost indepen-
dent of the number of parameters. These sensitivities are then
used to compute the UQ spectral coefficients in the context
of se-gPC. As mentioned earlier, for spectral order p = 1, the
cost of se-gPC is independent of m. This is an application of
UQ in chaotic systems with computational cost independent
of the number of stochastic parameters. The method is applied
and tested to the stochastically forced Kuramoto-Sivashinski

equation and the results are compared against reference data
obtained from Monte Carlo simulations.

The rest of this paper is structured as follows. In Sec. II
an overview of the standard gPC and se-gPC formulations is
given. The adjoint shadowing harmonic operator for a gen-
eral dynamical system is derived in Sec. III. The se-gPC is
applied to the Kuramoto-Sivashinsky equation with a single
and multiple uncertain forcing parameters in Secs. IV and V,
respectively. Finally, in Sec. VI the main findings of the paper
are summarized.

II. SENSITIVITY-ENHANCED UNCERTAINTY
QUANTIFICATION

Consider a dynamical system governed by a set of ordinary
differential equations,

du
dt

= f (u; s)

u(0; s) = u0(s), (1)

where u(t ; s) ∈ RNu is the vector of state variables and s ∈ RNs

is a set of control parameters that define the dynamics of
the system (for example Reynolds number in the case of
incompressible fluid flows). We assume that the vector field
f : RNu × RNs → RNu varies smoothly with u and s. In most
practical applications, we are interested in a time-averaged
quantity J (s) : RNs → R,

J (s) = lim
T →∞

1

T

∫ T

0
J (u, s)dt, (2)

which is usually referred to as the quantity of interest (QoI),
for example mean lift or drag coefficient of an aerofoil. We
assume that the control parameters s are functions of m in-
dependent stochastic variables ξi that form the vector ξ =
[ξ1, . . . , ξm]. Each random variable ξi is characterized by a
probability density function (PDF), wi(ξi) in the domain Ei.
We seek to estimate the effect of ξ on the statistics of J (s).

This effect can be quantified via the generalized polyno-
mial chaos (gPC) expansion. In gPC a complete probability
space P = (�,�, dP ) is defined, where � refers to the set of
random events and the probability measure dP is character-
ized by the σ algebra �. The vector ξ follows the PDF W =∏m

i=1 wi(ξi), defined in the domain E = ∏m
i=1 Ei. This stochas-

tic space is spanned by a polynomial basis � ={�0, �1, . . . },
which is orthogonal to W with respect to the inner product,

〈� j, �k〉 =
∫
E

� jW �kdξ = δ jk〈� j, � j〉. (3)

The polynomial basis is normalized so that 〈� j, � j〉 = 1.
When m > 1, � is defined by the tensor product of the unitary
polynomials ψ (i), as in � := ⊗m

i=1ψ
(i) = {�0, �1, . . . }. The

base is truncated to a finite number of polynomials by limiting
the order of � j to p. In that case, the QoI J is written in
spectral form as

J (ξ) =
P∑

i=0

c(i)�i(ξ) + ε(ξ), (4)
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where the number of basis functions is given by,

P + 1 = (p + m)!

p!m!
, (5)

and ε(ξ) is the truncation error (due to finite P). In UQ with
gPC, the goal is to compute the spectral coefficients c(i) in
a computationally efficient manner. The statistical moments
of J (ξ) can be easily computed algebraically from c(i), see
Eq. (5) in Ref. [21].

In this paper, the coefficients are computed via a weighted
least-squares (WLS) approach. To this end, q realizations
of ξ are defined, with the ith realization written as ξ(i) =
[ξ (i)

1 , . . . , ξ (i)
m ]. The QoI J is computed for q realizations and

stored in the vector Q = [J (ξ(1) ), . . . , J (ξ(q) )]	. Defining the
vector c = [c(0), . . . , c(P)]	 ∈ RP+1, Eq. (4) can be written in
matrix form as,

Q = ψc + ε, (6)

where ψ is the measurement matrix with elements ψi j =
� j (ξ

(i) ), i.e., the ith row contains the values of the orthogonal
polynomial basis � j evaluated at the ith sample point ξ(i), and
ε is the vector of truncation errors. The spectral coefficients
are computed by solving the following weighted least-squares
minimization problem,

min
c

‖W
1
2 (Q − ψc)‖2

2 = min
c

(Q − ψc)	W (Q − ψc), (7)

where W = (W
1
2 )	W

1
2 . The weighting matrix W

1
2 is a diag-

onal positive-definite matrix, to be defined later. The solution
of (7) results in the normal set of equations,

(ψ	Wψ)ĉ = ψ	W Q. (8)

For system (8) to be well conditioned q � P + 1. Evaluating
the QoI J (ξ(i) ) at the q sample points is computationally
expensive, and dominates the cost of the method. As men-
tioned in Sec. I, when the number of uncertain parameters
m is large, the number of spectral coefficients P grows ex-
ponentially [Eq. (5) indicates P + 1 ∼ mp], leading to large
computational cost, known as the curse of dimensionality.

The problem can be mitigated by enriching system (6)
with gradient information. This method, called the sensitivity-
enhanced gPC, or se-gPC, is presented in Ref. [21]. Differen-
tiating Eq. (4) with respect to the kth random variable at the
jth sample point we get,

∂J

∂ξ
( j)
k

=
P∑

i=0

c(i) ∂�i

∂ξ
( j)
k

+ ηk (ξ ( j) ) ( j = 1, . . . , q). (9)

For each random variable k, the block of q equations (9) can
be written in matrix form as,

∂Q
∂ξk

= ∂ψ

∂ξk
c + ηk (k = 1, . . . , m), (10)

where matrix ∂ψ

∂ξk
contains the gradients of the basis functions,

∂ψ

∂ξk
=

⎡⎢⎢⎢⎣
∂�0(ξ(1) )

∂ξ
(1)
k

. . .
∂�P(ξ(1) )

∂ξ
(1)
k

...
. . .

...
∂�0(ξ(q) )

∂ξ
(q)
k

. . .
∂�P(ξ(q) )

∂ξ
(q)
k

⎤⎥⎥⎥⎦. (11)

and vector ∂Q
∂ξk

stores the gradient of J with respect to the kth
random parameter at the q sample points,

∂Q
∂ξk

=
[

∂J

∂ξ
(1)
k

, . . . ,
∂J

∂ξ
(q)
k

]	
. (12)

By stacking together Q and ∂Q
∂ξk

, we define the following block

column vector G ∈ R(1+m)q×1:

G =
[

Q,
∂Q
∂ξ1

, . . . ,
∂Q
∂ξm

]	
. (13)

Similarly, by stacking together the measurement matrix ψ and
its sensitivity ∂ψ

∂ξ
, we define the following block matrix φ ∈

R(1+m)q×(P+1):

φ =
[
ψ,

∂ψ

∂ξ1
, . . . ,

∂ψ

∂ξm

]	
. (14)

We can therefore write the following (1 + m) × q equa-
tions for the spectral coefficients c:

G = φc + θ. (15)

As before, to compute the coefficients c, we solve the follow-
ing minimization problem:

min
c

‖W ′ 1
2 (G − φc)‖2

2 = min
c

(G − φc)	W ′(G − φc), (16)

where W ′ is a block diagonal weighting matrix, consisting of
1 + m blocks W . The solution ĉ is obtained via the normal
equations,

(φ	W ′φ)ĉ = φ	W ′G. (17)

Notice the similarity between Eqs. (8) and (17). The weights
W

1
2 are computed with asymptotic sampling, a version of

coherence sampling, see Ref. [40]. In this paper for simplic-
ity (and without loss of generality) only Gaussian inputs are
considered, and the weights can be computed analytically as,

W
1
2

ii (ξ) = exp(−‖ξ‖2/4). (18)

For more details on the weights calculation and for extension
to other input distributions, see Ref. [40].

To avoid large values of q, and thus keep the computational
cost low, it is important to sample the QoI effectively. Differ-
ent algorithms to sample the stochastic space are presented in
Ref. [17]. In this paper, we apply QR decomposition. This
is a greedy algorithm that maximizes the determinant of a
matrix; in this sense it is a D-optimal design method, see
Refs. [17,41,42]. The process is as follows: A large pool of q
random sample points is generated (from the prescribed prob-
ability density functions) and the measurement matrix ψ is
formed. The question is how to select a subset of at least P + 1
points from this large pool. To this end, we multiply Eq. (6)
from the left with the row selection matrix P ∈ R(P+1)×q and
we get,

PQ = Pψc. (19)

At each row of P all elements are 0, except the element at
the column that corresponds to the selected sampling point,
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which takes the value of 1. In D-optimal experiment de-
sign, P is found as a solution to the following maximization
problem:

P = argmax
P

|det(PW 1/2ψ)|, (20)

where det() denotes the determinant of a matrix. The solution
to this problem is given via the pivoted QR decomposition,

(W
1
2 ψ)	P = QR. (21)

The index matrix P is chosen so that the diagonal elements
rii of R are ranked in descending magnitude |r11| � |r22| �
· · · � |rii|.

Since each sample point offers 1 + m equations, at least
P+1
1+m samples with the highest rii scores are retained. Thus
sensitivity enhancement reduces the computational cost com-
pared to standard gPC by a factor m at the cost an adjoint
evaluation at each sample point.

We could have applied the same approach to system (15)
directly. However, applying QR decomposition to matrix
(W

1
2 ψ)	 and computing at these points the QoI and its gra-

dient is preferable compared to QR decomposition of the
weighted augmented matrix (W ′ 1

2 φ)	, see Ref. [21] for a
comparison between the two approaches.

III. ADJOINT SENSITIVITY ANALYSIS OF CHAOTIC
SYSTEMS

In this section we present a method for the computation of
sensitivities of time-average quantities of chaotic systems to
multiple parameters. To this end, we derive the adjoint version
of the shadowing harmonic operator introduced in Ref. [39].

The goal of the LSS is to find a shadowing trajectory at
s + ds that stays in close proximity to (i.e., shadows) the
reference trajectory at s. If the underlying system is uniformly
hyperbolic, the shadowing trajectory is guaranteed to exist.
To achieve this goal, LSS solves the following minimization
problem, see Ref. [32]:

min
v,η

1

2

∫ T

0
‖v(t )‖2dt s.t . (22a)

dv

dt
= ∂ f

∂u
v + ∂ f

∂s
+ η(t ) f (22b)

〈 f (u; s)v(u; s)〉 = 0, (22c)

where v(t ) = du(τ (t );s)
ds is the sensitivity of the solution u(t ; s)

to a change δs of s, η(t ) = d
ds ( dτ

dt ) is the time dilation, while
(22c) denotes the orthogonality between the vectors f (u; s)
and v(u; s) at each point along the trajectory. The gradient dJ

ds
is then given by the following expression:

dJ

ds
= 1

T

∫ T

0

∂J

∂u
v + ∂J

∂s
+ η(t )(J − J )dt . (23)

The solution of (22) has shown to produce accurate sensitivi-
ties [27–29,35].

In Ref. [39] the shadowing operator was formulated in the
frequency domain. The key idea is to replace the minimization
(22a) with the periodicity condition, yielding the following set

of equations:
dv

dt
= ∂ f

∂u
v + ∂ f

∂s
+ η(t ) f (24a)

〈 f (u; s)v(u; s)〉 = 0 (24b)

v(0) = v(T ). (24c)

Closing the system using periodicity leads to a sensitiv-
ity error that initially decays at a rate 1/T , followed by the
asymptotic rate 1/

√
T (the latter dictated by the central limit

theorem), see also Ref. [43]. Nevertheless, condition (24c)
makes the adjoint problem well posed, leading to physically
meaningful and accurate sensitivities, as will be shown later.

The contribution of the present paper with respect to
Ref. [39] is that an adjoint approach is taken, since sensitivi-
ties with respect to a large number of parameters are required.
To this end, a Lagrangian function is defined,

L = dJ

ds
+ 1

T

∫ T

0
λ	Rvdt + 1

T

∫ T

0
μRηdt, (25)

where Rv ∈ RNu and Rη ∈ R are the residuals of (24a) and
(24b), while λ ∈ RNu and μ ∈ R are the adjoint state vari-
ables. This is expanded as

L = 1

T

∫ T

0

∂J

∂u
v + ∂J

∂s
+ η(t )(J − J )dt

+ 1

T

∫ T

0
λ	

(
dv

dt
− ∂ f

∂u
v + ∂ f

∂s
+ η f

)
dt

+ 1

T

∫ T

0
μ

(
f 	v

)
dt,

and using integration by parts,

L = 1

T

∫ T

0

(
− dλ	

dt
− ∂ f

∂u
λ	 + ∂J

∂u
+ μ f 	

)
vdt

+ 1

T

∫ T

0
η(J − J − f 	λ)dt + [v	λ]T

0

+ 1

T

∫ T

0

(
∂J

∂s
− λ	 ∂ f

∂s

)
dt .

We seek to make the Lagrangian independent of v(t ) and
η(t ). This is achieved by solving the following field adjoint
equations:

dλ

dt
= −

(
∂ f
∂u

)	
λ + ∂J

∂u
+ μ f (26a)

f 	λ = J − J (26b)

λ(0) = λ(T ). (26c)

The gradients can be computed from

dJ

ds
= 1

T

∫ T

0

(
∂J

∂s
− λ	 ∂ f

∂s

)
dt . (27)

Notice that (26a) is similar to (22b); the difference is that the
transpose of the Jacobean is used and the time dilation term
η f is replaced by the adjoint term μ f . The adjoint normality
constraint (26b) has as forcing the residual J − J . Note also
that the periodicity condition (24c) for v extends also to λ,
see (26c).
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The above equations can be formulated in the frequency
domain by expanding λ(t ) and μ(t ) in Fourier series as

λ(t ) =
∑

k=−

λ̂keikω0t , μ(t ) =
∑

k=−

μ̂keikω0t , (28)

where λ̂k, μ̂k are the Fourier coefficients and ω0 = 2π
T is the

fundamental frequency. The index k ∈ [−, ] denotes the
harmonics with frequencies ωk = kω0. Introducing expan-
sions (28) into (26a) and (26b), the system that yields the
Fourier coefficients is written in compact form as

ikω0Iu

[
λ̂k

μ̂k

]
+

∑
l=−

Tk−l

[
λ̂l

μ̂l

]
=

[
d̂J
du k

Ĵk − J

]
, (29)

where

Iu =
[INu 0

0 0

]
, Tm =

⎡⎣( − ∂̂ f
∂u

)	
m f̂ m

f̂
	
m 0

⎤⎦. (30)

We define the block diagonal matrix,

T (Tm) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T0 T−1 . . . T−

T1 T0 T−1 . . . T−

. . .
. . .

. . . . . .
. . .

T . . . T1 T0 T−1 . . . T−

. . .
. . .

. . .
. . .

. . . . . .

T . . . T1 T0 T−1

T . . . T1 T0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(31)

which is a block Toeplitz matrix, because each diagonal has
the same block. Using T (Tm), system (29) can be written in
matrix form as

[D − T (Tm)]�̂ = R̂, (32)

where D = diag[D−q, . . . ,D0, . . . ,Dq] is a block
diagonal matrix with Dk = ikω0Iu, R̂ = [R̂−q, . . . ,

R̂0, . . . , R̂q]	 with R̂k = [ d̂J
du k

, Ĵk − J]	, and �̂ =
[�̂−q, . . . , �̂0, . . . , �̂q]	, where �̂k = [λ̂k, μ̂k]	. Matrix
H = D − T (Tm) is also known as a Hill matrix.

Defining the adjoint shadowing harmonic operator as

A = [D − T (Tm)]−1, (33)

the solution of system (32) can be written symbolically as

�̂ = AR̂. (34)

The adjoint operator A maps the forcing R̂ to the vector �̂

that contains the unknown Fourier coefficients of the adjoint
variables. More details can be found in Refs. [39,44,45].

We do not directly compute the adjoint shadowing operator
A. Instead we apply LU decomposition to the Hill matrix H =
D − T (Tm) and find �̂ by forward and backward substitution.

FIG. 1. Block diagram of the proposed UQ method. Arrows de-
note flow of information between blocks.

The gradients can then be computed from

dJ

ds
= ∂̂J

∂s

∣∣∣∣∣
0

−
∑

k=−

λ̂	
k

∂̂ f
∂s

∣∣∣∣∣
−k

, (35)

which is the equivalent of (27) in Fourier space.
The cost of solving system (32) is independent of the

number of parameters and thus the adjoint formulation can
provide the sensitivities of time-average quantities of chaotic
systems is a single step. This information is used to augment
the se-gPC system as explained in the previous section.

We close this section with the block diagram shown in
Fig. 1. The diagram presents the different components of the
algorithm, as described in Secs. II and III, and how they are
connected together.

IV. APPLICATION TO THE
KURAMOTO-SIVASHINSKY SYSTEM

The aforementioned methodology is now applied to the
forced Kuramoto-Sivashinsky (KS) equation,

ut + uux + uxx + uxxxx = φ(x), (36)

where x ∈ [0, L] and boundary conditions u(0, t ) = u(L, t ) =
0 and ux(0, t ) = ux(L, t ) = 0. Two QoIs are defined,

J (1) = 1

T L

∫ T

0

∫ L

0
J (1)(x, t )dxdt,

J (2) = 1

T L

∫ T

0

∫ L

0
J (2)(x, t )dxdt, (37)

where J (1)(x, t ) = u and J (2)(x, t ) = u2, that represent time-
and space-average values of the state and its energy. The
KS equation was discretized in space using second-order
central finite differences and integrated with a variable time
step Runge-Kutta method. We take L = 128 that results in
chaotic behavior. The state u(x, t ) was stored every dt = 0.1
time units and used as input to the adjoint system. The first
1000 time units were discarded to ensure that the system
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0 32 64 96 128

0

FIG. 2. Bell-shaped profile φ(x) with amplitude �.

has reached a chaotic attractor. The next T = 100 units were
considered as the time horizon for the UQ analysis.

We first consider the bell-shaped forcing distribution φ(x)
shown in Fig. 2, where � denotes the forcing amplitude. The
smooth profiles from 0 → � (close to the left boundary) and
from � → 0 (close to the right boundary) are obtained using
the error function, erf, see Ref. [46] for more details. This
forcing is infinitely differentiable and satisfies both Dirichlet
and Neumann boundary conditions.

The variations of J (1) and J (2) with respect to amplitude
� are shown in Figs. 3(a) and 4(a), respectively. The sen-
sitivities of these QoIs obtained using finite differences and
the adjoint of the shadowing harmonic operator are shown
in Figs. 3(b) and 4(b), respectively. To form the harmonic
operator, we consider frequencies in the range f ∈ [−0.3, 0.3]

FIG. 3. Variation of (a) J (1) with the forcing amplitude � and

(b) sensitivity dJ (1)

d�
computed using the adjoint operator and finite

differences. Results are averaged over 200 random initial conditions.

FIG. 4. Variation of (a) J (2) with the forcing amplitude � and

(b) sensitivity dJ (2)

d�
computed using the adjoint operator and finite

differences. Results are averaged over 200 random initial conditions.

that captures the active frequency band of the unforced KS
system, see Ref. [39]. Notice that the two approaches are in
very good agreement for both QoIs. In this case, where the
sensitivity with respect to a single parameter is considered,
the adjoint shadowing operator does not provide any com-
putational advantage over the standard shadowing harmonic
operator, hence this test case is only used as a benchmark to
evaluate the accuracy and computational implementation of
the method.

Contour plots of the state and adjoint variables in the (t, x)
plane for the unforced system, i.e., for φ(x) = 0, are shown
in Fig. 5. Notice that the adjoint variable λ(x, t ) does not
have the same spatiotemporal streaky structure as the state
variable u(x, t ). This has been observed before in sensitivity
analysis with shadowing method [35]. Similarly to the state
u(x, t ), the spatiotemporal structure of the adjoint state is
characterized by high sensitivity to initial conditions. We now
evaluate the effect of stochastic variation of � to J (1) and J (2)

using the se-gPC method and the sensitivities produced with
the adjoint shadowing operator to augment the least-squares
system. We assume that � follows Gaussian distribution with
� ∼ N (0, σ ), and σ = 0.01. The standard deviation σ is
small, but the response of the chaotic system to even small
values of � is large, as shown in Figs. 3(a) and 4(a). For
example, within the range � ∈ [−3σ,+3σ ], the value of J (2)

doubles and the sensitivity varies between −100 to +100; this
suggests that the effect of � is strong. In the range of � values
considered the system is chaotic. Larger forcing amplitudes
were also tested, however, they result in forced oscillations
with nonchaotic behavior.
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FIG. 5. Contour plots of the (a) state u(x, t ) and (b) adjoint
λ(x, t ) variables for the unforced system, φ = 0. Results from a
single realization with a random initial condition.

A Monte Carlo simulation with 5000 samples was per-
formed and used as a benchmark to evaluate the accuracy of
the se-gPC method. For a single stochastic variable (m = 1)
and polynomial order p = 1, there are P + 1 = 2 spectral
coefficients, while for p = 2 there are P + 1 = 3 coefficients.
In the se-gPC we used q = 4 samples for p = 1, that were
augmented with another four equations for the sensitivity of
the QoI with respect to �. For p = 2, q = 6 samples were
used, augmented with six additional equations for the sensi-
tivity. We used more equations than the number of coefficients
to account for the (small) variation of the sensitivities to initial
conditions. The results for the mean and standard deviation of
the QoIs are summarized in Table I, where se-gPC is com-
pared with Monte Carlo (MC). There is very good agreement
between the two methods. Errors in the standard deviation are
less than 1.5% for p = 1 and less than 0.5% for p = 2 for both
QoIs.

To better understand the effect of stochastic forcing
φ(x), in Fig. 6 we plot the expectation of the time-
average state, E[J (1)(x)], where J (1)(x) = 1

T

∫ T
0 J (1)(x, t )dt =

1
T

∫ T
0 udt , against x. We compare against the profile of the

unforced system [φ(x) = 0], where E[J (1)(x)] = J (1)(x). The

TABLE I. Comparison between Monte Carlo simulations with
5000 samples and se-gPC for the KS system. The stochastic input is
� ∼ N (0, 0.01).

se-gPC p = 1 se-gPC p = 2 Monte Carlo

QoI mean std mean std mean std

J (1) 0.0196 0.6286 0.0196 0.6395 0.0195 0.6370
J (2) 2.3478 0.5251 2.3505 0.5174 2.3552 0.5192

FIG. 6. E[J (1)(x)] for the unforced and forced KS system with
� ∼ N (0, 0.01) for T = 100. Results are averaged over 1000 ran-
dom initial conditions.

results are averaged over 1000 random initial conditions. It
is interesting to notice that the stochastic forcing smoothes
out the spatial oscillations of the time-average state of the
unforced system. We also compute the standard deviation
of J (1)(x) across x, and we superimpose the extent of one
standard deviation above and below the expectation (the area
between the two boundaries is marked gray). The large spread
indicates that the actual time-average J1(x) oscillates wildly
and can take values much larger than the expectation. There-
fore the stochastic forcing drastically affects the output of the
system. This explains why the standard deviation of J (1) is
much larger that the mean (expectation) in Table I.

V. MULTIDIMENSIONAL UNCERTAINTY FORCING

We now consider the stochastic forcing shown in Fig. 7,
which is a continuous and differentiable profile that con-
tains ten peaks and troughs. The local amplitudes �i are
the m = 10 independent stochastic variables considered. Such
cases are usually found in control problems, where spa-
tially complex forcing allows for more accurate control of
the desired output quantities. The mean values of the lo-
calized forcing amplitudes are �1 = 0.001, �2 = −0.001,
�3 = 0.005, �4 = 0.002, �5 = 0.007, �6 = −0.003, �7 =
−0.001, �8 = −0.002, �9 = 0.0005, �10 = −0.002. These

FIG. 7. Mean forcing φ(x) with m = 10 stochastic parameters,
�i (i = 1, . . . , m). The forcing amplitudes are �1 = 0.001, �2 =
−0.001, �3 = 0.005, �4 = 0.002, �5 = 0.007, �6 = −0.003,
�7 = −0.001, �8 = −0.002, �9 = 0.0005, �10 = −0.002.
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FIG. 8. Contour plots of (a) the state variable and (b) the adjoint
variable for the KS system forced with the profile shown in Fig. 7.
Results from a random initial condition.

values were selected arbitrarily, since the main objective of the
section is to demonstrate the efficiency of the proposed com-
putational approach to conduct UQ. The standard deviations
are taken equal to 20% of the mean value, i.e., σ�i = |�i|/5.

A. Characterization of the adjoint field

Contour plots of the direct and adjoint solutions at the mean
values of � are shown in Fig. 8. Again the two solutions do not
follow a similar structure. The adjoint variable λ(x, t ) shown
in Fig. 8(b) maintains small values close to zero, but displays
intermittent behavior with random peaks and troughs that have
relatively short time duration.

The spectra of λ(x, t ) at x = L
4 , L

2 , and 3L
4 are shown in

Fig. 9 for the unforced and forced systems. The spectra were
computed with a time window of T = 100 and were smoothed
with a fifth-order Savitzky-Golay convolution filter with five
averaging windows. For the unforced system, the spectra are
very similar at the three locations. However, for the forced
system the PSD values are larger and vary significantly be-
tween the locations due to the spatially varying forcing profile.
The lower frequencies are also damped.

The accuracy of the adjoint shadowing harmonic operator
is assessed in Fig. 10. The values of the m = 10 sensitivi-
ties computed by the adjoint operator are compared against
reference finite difference results. To evaluate the reference
results we varied each �i separately and averaged over 100
initial conditions (we performed in total 1000 simulations
with random initial conditions for all �′

is). The results for the
adjoint shadowing operator were averaged over 100 random
initial conditions. It is clear from the figure that the adjoint

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

10 -3

(a)

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6
10 -3

(b)

FIG. 9. Spectra of λ(x, t ) at x = L
4 , L

2 and 3L
4 for (a) the unforced

and (b) the forced KS system.

approach computes accurate sensitivities that are in very good
agreement with finite differences for both J (1) and J (2).

B. Uncertainty quantification with se-gPC

We now proceed to conduct UQ with se-gPC; the inde-
pendent stochastic variables are the m = 10 amplitudes �i,
as already mentioned. We first check if the system maintains
its chaotic behavior with the stochastic forcing. To this end,
the system was integrated for 2000 random �i inputs over
a time horizon of T = 200 and random initial conditions for
each input. The Lyapunov exponents were computed for each
realization using the methodology presented in Ref. [47]; the
maximum exponent λmax is shown in Fig. 11. For all realiza-
tions the forced system maintained its chaotic behavior, with a

1 2 3 4 5 6 7 8 9 10

-2

0

2

4

6

8

FIG. 10. Comparison of the sensitivities of J (1) and J (2) with
respect to the amplitudes �i computed using finite differences and
the adjoint shadowing operator. Results are averaged over 100 initial
conditions for the adjoint shadowing operator.
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0
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0.16

FIG. 11. Maximum Lyapunov exponent λmax for 2000 realiza-
tions of m = 10 stochastic variables.

maximum Lyapunov exponent that fluctuates around the value
of the unforced system (solid black line). For all systems it
was observed that λmax > 0.04.

In Fig. 12, the convergence rates of the mean and standard
deviation of J (1) against the number of evaluations required
by se-gPC, standard weighted least-squares [i.e., system (8)]
and Smolyak quadrature are compared. It was assumed that
one adjoint solution has the same cost as a direct solution
(i.e., forward integration of the dynamical system). This is
a realistic assumption for the KS system we consider, but
generally the cost of obtaining the adjoint solution for a
chaotic system is case dependent. In the plot, one adjoint or
one forward solution is considered as a single evaluation. The
errors are computed with respect to Monte Carlo with 10000
samples. The plot was obtained with p = 2, where Smolyak
quadrature requires (m + 1)(2m + 1) = 231 evaluations. It is
clear that the se-gPC outperforms the other two approaches,
providing a very accurate estimation of the mean and the
standard deviation with only 40 evaluations (this corresponds
to 20 samples, with 1 + m = 11 equations for each sample, in
total 220 equations).

The corresponding plot for J (2) is shown in Fig. 13. Once
again, se-gPC coupled with the adjoint shadowing opera-
tor offers a significant computational advantage compared
to other approaches. In practice this allows for the efficient

FIG. 12. Convergence rates of mean and standard deviation of
J (1) against number of evaluations computed with WLS, Smolyak
quadrature and se-gPC for p = 2. The stochastic input is shown in
Fig. 7.

FIG. 13. Convergence rates of mean and standard deviation of
J (2) against number of evaluations computed with WLS, Smolyak
quadrature and se-gPC for p = 2. The stochastic input is shown in
Fig. 7.

quantification of uncertain input variables on the time-average
quantities of chaotic systems.

VI. CONCLUSIONS

We propose a framework for efficient uncertainty quan-
tification of time-average quantities of chaotic systems. We
derive the adjoint version of the shadowing harmonic operator
for sensitivity analysis of chaotic systems in the frequency
domain. We subsequently employ the adjoint to compute the
sensitivities of the QoI with respect to all uncertain variables
and use this information to enrich the weighted least-squares
system from which the spectral coefficients of polynomial
expansion are computed. The adjoint formulation provides all
the required sensitivities in a single step, thus significantly
increasing the computational efficiency of the method. The
sampling points to integrate the dynamical system are ob-
tained by the QR decomposition of an appropriate weighted
matrix. The computational cost of the method is independent
of the number of stochastic variables for polynomial order
p = 1.

The adjoint formulation was applied to the Kuramoto-
Sivashinsky equation and found to produce accurate sensi-
tivities with respect to the amplitude of bell-shaped forcing.
When these sensitivities were used to augment gPC, the
resulting first and second moments computed matched ex-
cellently with Monte Carlo results. We then tested the
method on a stochastically forced system with ten inde-
pendent input variables that determined the actual shape of
the forcing. The adjoint was found to produce sensitivities
that are in excellent agreement with finite differences and
the se-gPC outperformed other UQ methods. These features
make the proposed method a promising candidate for appli-
cation to chaotic systems with a large number of stochastic
inputs.
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