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Universality and hysteresis in slow sweeping of bifurcations
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Bifurcations in dynamical systems are often studied experimentally and numerically using a slow parameter
sweep. Focusing on the cases of period-doubling and pitchfork bifurcations in maps, we show that the adiabatic
approximation always breaks down sufficiently close to the bifurcation, so the upsweep and downsweep dynam-
ics diverge from one another, disobeying standard bifurcation theory. Nevertheless, we demonstrate universal
upsweep and downsweep trajectories for sufficiently slow sweep rates, revealing that the slow trajectories depend
essentially on a structural asymmetry parameter, whose effect is negligible for the stationary dynamics. We obtain
explicit asymptotic expressions for the universal trajectories and use them to calculate the area of the hysteresis
loop enclosed between the upsweep and downsweep trajectories as a function of the asymmetry parameter and
the sweep rate.
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I. INTRODUCTION

A key property of dissipative dynamical systems is that
bounded trajectories converge towards an attractor, whose
properties thus determine the persistent long-term behavior of
the system. When the dynamical system depends smoothly
on a parameter, the attractor varies smoothly as a function
of the parameter, except at special parameter values, where
a small parameter variation induces a sharp transition—a
bifurcation—in the long-time dynamics of the system. The
study of bifurcations is facilitated by the fact that their local
structure is universal and captured by a normal-form dynam-
ical system whose dimension is equal to the codimension of
the bifurcation [1].

Here we study the persistent dynamics of systems whose
parameters are time-dependent and change adiabatically, in
the sense that the timescale of parameter variation is much
longer than any dynamical timescale. When the system pa-
rameters are far from bifurcation points, the convergence to
the attractor occurs on a dynamical timescale, and there-
fore the trajectory of the nonautonomous system follows the
time-dependent attractor of the autonomous system with the
instantaneous (also called frozen) parameter values, up to an
error that tends to zero as the adiabatic timescale tends to
infinity. However, bifurcations typically involve the exchange
of stability, so the timescale of convergence to the attractor
diverges when the system parameters approach a bifurca-
tion point. Therefore, no matter how slowly the parameter is
varied, the variation is no longer adiabatic close enough to
the bifurcation. Does this observation imply that parameter
sweeps are useless as probes of bifurcations? Not necessarily,
but the dynamics near a swept bifurcation are qualitatively
different than that of an autonomous dynamical system. In
particular, the dynamics depend on the direction of the sweep
and exhibit hysteresis.

In the context of continuous-time dynamics, the slow
sweep of bifurcations has been studied theoretically and

experimentally in Refs. [2–6] and other works, demonstrating,
in particular, the breakdown of adiabaticity and hysteresis near
supercritical bifurcations. A lot of attention has been given
to the case where the parameter sweep is periodic, usually
produced by oscillatory internal dynamics of a slow degree
of freedom, and the system exhibits relaxation oscillation ca-
nard cycles [7–10]. Another highly studied effect in adiabatic
dynamics is rate-induced tipping, where the system switches
from one family of attractors to another family because the
adiabatic rate of change is not slow enough [11–14], unlike
delayed bifurcations and canard dynamics (sometimes called
bifurcation-induced tipping in this context), which occur for
an arbitrarily slow change of parameters because the attractor
branch ends or becomes unstable.

Here we focus on the adiabatic sweep of bifurcations in the
less-studied case of discrete-time dynamical systems, specif-
ically of period-doubling and the closely related pitchfork
bifurcations. In experiments, this question arises naturally
when studying periodically driven systems, like AC-driven
nonlinear electric circuits, which are sampled at drive-period
intervals [15–19]. In these cases, parameter sweeping is often
used to efficiently extract the attractor for a range of parameter
values. The breakdown of adiabaticity and hysteresis in maps
undergoing period doubling was demonstrated numerically
in Refs. [16,17,20]. A theory of the universal dynamics of
maps in the vicinity of a period-doubling bifurcation, based on
singular perturbation theory and asymptotic analysis was first
put forward in [21], and further developed in Refs. [22,23].
These works introduced the concept of the adiabatic manifold,
an attracting submanifold of the extended phase space, on
which the dynamics are slow. The theory of Refs. [21–23] is
strong and general, but difficult to apply to specific examples,
and the adiabatic manifold approach has not yet been used in
an experimental context.

This paper aims to derive theoretical results that are di-
rectly applicable to experiments and simulations of slow
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sweeping of period-doubling bifurcations. For this purpose,
we analyze asymptotic trajectories that start sufficiently far
from the bifurcation. These trajectories converge on the in-
stantaneous autonomous system attractor well before the
control parameter approaches the bifurcation region, where
the dynamics of a physical system of interest can be mapped
to a universal time-dependent normal form. Moreover, we
use the resulting effective dynamics to derive several results,
most notably the shape and area of the hysteresis loop in the
bifurcation diagram, and its dependence on the adiabatic small
parameter, ε, (the sweep rate of the control parameter) that can
be easily measured in an experiment or numerical simulation
of a given system.

Specifically, we study the trajectory of a one-degree-
of-freedom map depending on a single parameter that is
adiabatically swept through a supercritical period-doubling
bifurcation of a fixed point by considering the trajectory of
its second iterate, which has fixed point attractors on both
sides of the bifurcation, in Sec. II A. The slow sweep im-
plies that the fixed points vary slightly between subsequent
iterations of the map, allowing us to approximate the map by
a one-degree-of-freedom normal-form continuous-time flow,
as shown in Sec. II B. We next study the dynamics near the
bifurcation using the normal-form flow, showing that the uni-
versal adiabatic trajectories depend strongly on the asymmetry
parameter w that inflicts an overall drift of the fixed points
near the bifurcation; the effect of this parameter is negligible
in autonomous dynamics. In Secs. III A and III B, we solve the
normal-form equations of motion and calculate the upsweep
and downsweep trajectories explicitly in the limit where ε,
the adiabatic parameter is small. We observe that a key role
is played by the parameter s = ε1/4w, which determines the
shape of the trajectories, in the sense that adiabatic trajectories
with the same s value are related by a scaling transformation.
For a fixed map, the shape parameter tends to zero in the
adiabatic limit, but the upsweep trajectory does not approach
a limiting form. As a consequence, the area of the hysteresis
loop has a complicated behavior in the adiabatic limit: its
leading asymptotic is 2

3ε1/4(− ln(2πs2
√

− ln(2πs2)))3/4, as
shown in Sec. III C. The results outlined so far were derived
for the adiabatic normal-form map; in Sec. III D, we use the
normal-form theory to calculate the adiabatic sweep trajec-
tories of the logistic map in the region of the fundamental
period-doubling bifurcation, demonstrating the universality of
our theory. Finally, we present our conclusions in Sec. IV.

II. THE EFFECTIVE DYNAMICS

A. The normal-form adiabatic sweep map

We consider nonautonoumous one-degree-of-freedom
discrete-time dynamics

xn+1 = Fn(xn), (1)

with xn real, viewing Fn as a family of one-variable maps
parametrized by the integer n. We assume that the dynamics
of (1) is adiabatic in the sense that the difference between
the maps Fn for consecutive values of the parameter is small
and that there is a range of n values around zero where the
maps Fn have a fixed point y0(n) = Fn(y0(n)) that undergoes

FIG. 1. Instantaneous fixed points (full black lines, stable, and
broken black line, unstable) and adiabatic sweep trajectories (gray)
of the normal-form family of maps Fr,u [defined in (3)], as a function
of the parameter r, choosing u = wr, w = 0.4. Instantaneous fixed
points are solutions of Fr,u(y) = y, showing the standard supercritical
pitchfork structure at r = 0. Adiabatic trajectories are trajectories
of (4) with parameters varying according to (5) with ε = 10−4,
and positive and negative sign choice in (5) yielding the upsweep
(pale gray) and downsweep (dark gray) trajectory, respectively. Note
that since the adiabatic trajectories are shown as a function of the
instantaneous value of the parameter r that changes by ±ε each
time step, the spacing between consecutive points is so small that
they overlap in the figure, obscuring the discrete nature of the map
dynamics and motivating the continuum approximation, and that
time increases from right to left for the downsweep trajectory, as
indicated by the arrows. Adiabatic dynamics was calculated starting
from a large negative initial time, allowing the trajectory to reach
the close vicinity of one of the stable fixed points, and making
it independent of the initial value of x. We observe that the up-
and downsweep trajectories are different, forming a hysteresis loop
whose width and height are proportional to ε1/2 and ε1/4, respectively,
up to logarithmic corrections. For r values outside this interval, the
adiabatic trajectories follow one of the stable instantaneous fixed
points up to small corrections shown in the inset.

a supercritical pitchfork bifurcation at n = 0. For adiabatic
upsweep, this means that when n < 0, y0 is linearly sta-
ble |∂xFn(y0(n))| < 1, and when n > 0, y0 becomes unstable
∂xF0(y0(n)) > 1, and two stable fixed points y±(n) appear.
Far from the bifurcation, the slow parametric variation of Fn

implies that xn is attracted to a stable fixed point, y0(n) if
n < 0 and one of y±(n) if n > 0, but near the bifurcation,
adiabaticity breaks down no matter how slow the variation
of Fn is, and the dynamics follows the universal upsweep
trajectory instead. Adiabatic downsweep is similar except that
the roles of negative and positive n are reversed; the upsweep
and downsweep trajectories, shown for a particular choice of
Fn in Fig. 1 overlayed with the instantaneous fixed points, are
universal in the sense that they do not depend on the details of
the family of maps, as explained in detail below. The analysis
of these dynamics also covers the case of adiabatic sweeping
through a period-doubling bifurcation, because when a map G
period-doubles, its second iterate F ≡ G2 undergoes a pitch-
fork bifurcation [1]. It is preferable to start with the adiabatic
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analysis of the pitchfork-bifurcation family, because, unlike
the period-doubling family, its maps have a stable fixed point
for every n, facilitating the continuum model approximation
of Sec. II B below.

The universal dynamics in the vicinity of the pitchfork
bifurcation is studied using a normal-form family of maps.
A normal-form family of maps depending on the control pa-
rameter r, whose autonomous dynamics undergoes a pitchfork
bifurcation at r = 0, is given by [1]

Fr (x) = (1 + r)x − x3, (2)

with fixed points y0 = 0 and, for r > 0, y± = ±√
r. When

the dynamics near a pitchfork bifurcation is autonomous, y0

can always be shifted to zero by a change of coordinates,
but for the adiabatic dynamics of (1), y0 varies with the pa-
rameter and its time dependence must be taken into account;
for this reason, we have to use a two-parameter normal-form
map

Fr,u(x) = u + (1 + r)(x − u) − (x − u)3 (3)

with y0 = u. For adiabatic dynamics, we let the parameters
depend on time so we choose the normal-form adiabatic map

xn+1 = F NF
n (xn) = Frn,un (xn). (4)

Adiabatic sweep means that the timescale of variation of
the parameters r and u is much longer than a single time step
of the map, so the paramater steps rn+1 − rn, un+1 − un are of
order ε, 0 < ε � 1. Our goal is to derive the universal part
of the adiabatic sweep trajectories, which, like the universal
trajectories of autonomous maps, takes place for sufficiently
small r, even though it consists of many time steps; in partic-
ular, we show below that the sweep trajectories follow closely
one of the stable fixed points except in an order-

√
ε-width in-

terval of parameter values, consisting of O(ε−1/2) time steps.
In particular, the relevant interval of parameters is small, so
we may approximate rn, un in it by linear functions, and since
by shifting x and n we can make r0 = u0 = 0, we let

rn = ±εn, un = εwn, (5)

where w is an order-one real number that parametrizes the
overall drift rate of the fixed points of the system. Equa-
tions (3)–(5) define the normal-form adiabatic sweep model.
A positive (negative) sign in (5) generates adiabatic upsweep
(downsweep) trajectories, respectively.

The universal sweep trajectories are obtained by starting
at some negative n with sufficiently large absolute value, so
the trajectories approach one of the stable instantaneous fixed
points of F well before n changes signs, and iterating the
map until n becomes positive and large enough to observe
the eventual convergence to a different branch of instanta-
neous fixed points that become stable for positive n. Figure 1
shows example upsweep and downsweep trajectories of the
map F NF with parameters evolving according to (5), choosing
ε = 10−4, w = 0.4, overlayed with the instantaneous fixed
points of the map. The sign of w breaks the sign-flip symmetry
of the pitchfork bifurcation, and in the positive-w case shown
in Fig. 1, the upsweep trajectory remains below y0, eventually

converging to y−, which is used as the starting point of the
downsweep trajectory. Our next goal is to study the adiabatic
sweep trajectories and the hysteresis loop using a continuum
approximation.

B. Continuous-time dynamics approximation

The continuum model approximation starts from the obser-
vation that since the parameters of the normal-form map F NF

change slowly, its fixed points change slowly, and therefore if
xn is close to a fixed point of F NF

n , then xn+1 is close both
to xn and to a fixed point of F NF

n+1. It follows that after the
initial transient, the adiabatic trajectory approaches a branch
of instantaneous stable fixed points and remains close to an
instantaneous fixed point throughout its evolution. Adopting
this view, substituting (3) and (5) in (4), and subtracting xn

from both sides,

xn+1 − xn = ±εn(xn − εwn) − (xn − εwn)3, (6)

that by letting yn = xn − εwn is simplified to

yn+1 − yn = ±εnyn − y3
n − εw. (7)

The steps xn+1 − xn are therefore small, so we can view n as a
real variable and approximate xn+1 − xn ∼ dx/dn, and obtain
the continuum version of the adiabatic sweep normal-form
dynamics

dy

dn
= ±εny − y3 − εw; (8)

as before a positive (negative) sign choice in the equa-
tion of motion corresponds to upsweep (downsweep) dynam-
ics, respectively. In Eq. (7), the only explicit time dependence
is in the linear term on the right-hand side. The adiabatic
parameter can be eliminated from this term by transforming
to the slow time variable t = √

εn, obtaining

dy

dt
= ±ty − y3

√
ε

− √
εw. (9)

Since the variable t describes the adiabatic sweep of map
parameters, we see that the range of parameter values near
the bifurcation where the sweep trajectory fails to follow
one of the fixed points is of order

√
ε, as seen in Fig. 1; in

particular, this interval is small, justifying the linear approx-
imation to the time dependence of the map parameters made
in (5), and giving rise to the universal shape of the adiabatic
trajectories.

The validity of (9) as an approximation to (4) is checked
in Fig. 2, which shows a comparison between the numerically
calculated trajectories of the continuous-time equation (9) and
those of the discrete time map dynamics in Eq. (4). As ex-
pected, we observe that the difference between the continuum
and discrete trajectories is small, and decreases with the value
of the adiabatic parameter ε.

Next, we want to identify the characteristic scale of y
for small ε. It turns out that there are two regimes in (9)
with different characteristic scales. When t < 0 for the up-
sweep and t > 0 for the downsweep trajectory, y approaches
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FIG. 2. Top: Continuum model trajectories from numerical solutions of Eq. (9) in turquoise (thin dashed dark gray) and blue (thin dashed
pale gray) for upsweep and downsweep, respectively, overlayed on the trajectories of the map (4) (after transformation from n and x to t
and y/ε1/4) in pale (upsweep) and dark (downsweep) gray, alongside the instantaneous fixed points of the map in filled (stable) and dashed
(unstable) black. Bottom: The difference between the trajectories of the continuum model and the map, showing that as ε → 0 the trajectories
of the continuous- and discrete-time systems approach each other. Here we used ε = 10−4, w = 0.4 (s = 0.04) in the left panels, and ε =
10−3, w = 0.4 (s = 0.07), in the right panels.

0, so y ∼ √
ε, and the cubic term is negligible. In this time

interval, which will be referred to as the small-y regime,
the appropriate scaling is y = √

εys, and the equation of
motion becomes

dys

dt
= ±tys − w − √

εy3
s . (10)

On the other hand, when ±t > 0, y approaches one of the
branches ±ε1/4√|t |, so y ∼ ε1/4, and the term proportional
to w is negligible. In this time interval, which will be referred
to as the large-y regime, the appropriate scaling is y = ε1/4yl ,
and the equation of motion becomes

dyl

dt
= ±tyl − y3

l − ε1/4w. (11)

The crossover between the two regimes occurs at different
times for the upsweep and downsweep trajectories which we
will identify next, and then use to calculate the crossover
trajectories.

The form (11) of the effective dynamics equation of mo-
tion makes it clear that the only dimensionless parameter
in the adiabatic dynamics is s = ε1/4w; since s determines
the trajectories y(t ) up to scaling, we will refer to it as the

shape parameter. Note, however, that unlike w, s tends to
zero in the adiabatic limit, so the limit ε → 0 with s fixed
is not appropriate for studying the adiabatic sweep problem.
Furthermore, this is a singular limit, in the sense that the
adiabatic trajectories and the hysteresis loop do not converge
to a well-defined shape.

III. THE ADIABATIC TRAJECTORIES

We seek solutions of the adiabatic equation of motion (9) or
its equivalent (10) and (11), that start far from the bifurcation
at some t < 0, and end far on the other side of the bifurcation
for t > 0. Far from the bifurcation point, the adiabatic sweep
trajectories track a stable instantaneous fixed point of (6) up
to small deviations, so we seek solutions that start close to
these points for sufficiently negative t , studying upsweep and
downsweep trajectories separately.

A. Adiabatic upsweep

Starting with t < 0, |t | of order one or larger in the small-y
regime, ys is of order one, and the nonlinear term is negligi-
ble. In this approximation, the solution of (10) (choosing the
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positive sign for upsweep) that tends to 0 as t → −∞ is

ys↑(t ) = −w

∫ t

−∞
e

1
2 (t2−(t ′ )2 )dt ′ = −w

√
π

2
e

1
2 t2

erfc

(
− t√

2

)
,

(12)

where erfc stands for the complementary error function [24].
The approximation remains valid as long as |ys↑| � ε−1/4 ⇔
|y↑| � ε1/4; since erfc(t ) ∼ e−t2

/(
√

πt ) as t → ∞, it follows
that (12) remains valid for all negative t , and since erfc(t ) →
2 as t → −∞, also for positive t such that e

1
2 t2 � ε−1/4.

For times later than this range, the nonlinear term in Eq. (9)
becomes important, so the scaling of the large-y regime is
applicable, while the term proportional to w becomes negli-
gible. When this term is neglected, (11) becomes a Bernoulli
equation, whose general solution is

yl↑(t ) = ± et2/2√
c1 + √

πerfi(t )
, (13)

where erfi(t ) = −i(1 − erfc(it )), and c1 is an arbitrary con-
stant of integration. For t large and positive, erfi(t) ∼
et2

/(
√

πt ), so yl (t ) → ±√
t for all values of c1; the constant

has to be determined by matching the right-hand side of
Eq. (13) with that of Eq. (12).

For this purpose, we note that w is negligible in Eq. (11)
as long as |yl↑| � ε1/4 ⇔ |y↑| � √

ε, so there is an overlap
interval

√
ε � y↑ � ε1/4, where both Eq. (12) for the small-y

regime and Eq. (13) for the large-y regime are valid. In this in-
terval, ys↑(t ) ∼ −√

2πwe
1
2 t2

and for this asymptote to match
Eq. (13), we must choose c1 � erfi(t ) in the interval to en-
sure that yl↑(t ) ∼ ±c−1/2

1 e
1
2 t2

. Recalling that ys↑ = ε−1/4yl↑,
it follows that the two asymptotes match if

c1 = (2πw2)−1ε−1/2 (14)

and the ambiguous sign in (13) is chosen to match the
sign of −w.

In summary, we obtain the all-time aymptotic approxima-
tion for the adiabatic upsweep trajectory:

y↑(t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−√
εw

√
π

2
et2/2 erfc

(
− t√

2

)
t � 0, or t > 0 and e

1
2 t2 � ε−1/4 (small y)

−sign(w)
ε1/4et2/2√

(2πw2)−1
ε−1/2 + √

πerfi(t)
t > 0 and 1 � e

1
2 t2

(large y).
(15)

We check that the small- and large-y asymptotics agree in their common interval of validity, and that c1 � erfi(t) holds in this
interval. It is useful to express the result also in terms of the shape parameter s = ε1/4w:

y↑(t ) = −ε1/4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s

√
π

2
et2/2 erfc

(
− t√

2

)
t � 0, or t > 0 and e

1
2 t2 � 1/s (small y)

sign(s)
et2/2√

(2πs2)−1 + √
πerfi(t)

t > 0 and 1 � e
1
2 t2

(large y).
(16)

B. Adiabatic downsweep

Starting with t < 0, |t | of order one or larger in the large-y regime, |yl | is comparable with
√−t , and the term proportional

to w is initially negligible. In this approximation, the solutions of Eq. (11) (choosing the negative sign for downsweep) that
approach ±√−t as t → −∞ are

yl↓(t ) = ±e−t2/2

π1/4
√

erfc(−t)
, (17)

respectively. As in the case of Eq. (13), this approximation remains valid as long as |yl↓| � ε1/4, which here holds for all negative
t , and for positive t small enough that e−t2/2 � ε1/4. For later times, the trajectory is in the small-y regime, and we can use (10)
without the nonlinear term, whose general solution is

ys↓(t ) = e−t2/2

(
c2 − w

√
π

2
erfi

(
t√
2

))
, (18)

valid when |ys↓| � ε−1/4. In the overlap interval
√

ε � |y↓| � ε1/4, c2 � erfi( t√
2

), and erfc(t) ∼ 2, so the asymptotes match if
we choose

c2 = ±ε−1/4/(
√

2π1/4). (19)
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FIG. 3. Top: The asymptotic approximations of the adiabatic trajectories given in Eqs. (16) and (21) in purple (dark gray) and violet
(pale gray) for upsweep and downsweep, respectively, overlayed with the numerically calculated continuum model trajectories of Eq. (9) in
turquoise (thin dashed light gray) and blue (thin dashed dark gray) for upsweep and downsweep, respectively. The asymptotic approximations
given in Eqs. (16) and (21) are shown each with two curves corresponding to the small-y (left) and large-y (right) regimes, in their overlapping
intervals of validity. The breakout time τ , defined in Sec. III C, is marked in a dotted black line. Bottom: The difference between the asymptotic
approximation and the numerically calculated trajectories. In the overlap interval where both the early- and late-time asymptotes are valid, the
smaller error in absolute value is shown. As in Fig. 2, ε = 10−4, w = 0.4 (s = 0.04) in the left panels, and ε = 10−3, w = 0.4 (s = 0.07) in
the right panels. As expected, the error in the asymptotic approximations decreases with decreasing ε.

The all-time asymptotic approximation for the downsweep trajectory is therefore

y↓(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

±ε1/4e−t2/2

π1/4
√

erfc(−t)
t � 0, or t > 0 and e

1
2 t2 � ε−1/4 (large y)

√
εe−t2/2

(
± ε−1/4

√
2π1/4

− w

√
π

2
erfi

( t√
2

))
t > 0 and 1 � e

1
2 t2

(small y)
(20)

or

y↓(t ) = ε1/4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

±e−t2/2

π1/4
√

erfc(−t)
t � 0, or t > 0 and e

1
2 t2 � 1/s (large y)

e−t2/2

(
± 1√

2π1/4
− s

√
π

2
erfi

(
t√
2

))
t > 0 and 1 � e

1
2 t2

(small y),
(21)

in terms of the shape parameter.

Figure 3 shows a comparison between the asymptotic
approximations given in Eqs. (16) and (21) and numerical so-
lutions of the continuum model (9), confirming the validity of
the early and late asymptotic approximations in the expected
intervals and the overlap of the validity intervals.

C. The hysteresis loop

The breakdown of adiabaticity near the bifurcation point
breaks time-reversal symmetry, yielding essentially different
dynamics in the upsweep and downsweep directions. The
most important expression of this difference is the delay τ
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between the time that the control parameter r sweeps through
the bifurcation point in the upward direction, and the time
where the map trajectory approaches the attractor near
±ε1/4

√
t .

A convenient definition for the upsweep breakout time τ is
the time where the upsweep trajectory y↑ reaches the midway
point ±ε1/4

√
t/2 between the stable and unstable branches.

For this t , we can use the late-time asymptotic Eq. (16),
approximating erfi(t ) ∼ et2

/(
√

πt ), to obtain
√

τ

2
=

√
τ√

(2πs2)−1τe−τ 2 + 1
⇒ 2πs2τeτ 2

= 1

3
⇒ τ ∼

√
− ln(6πs2) (22)

in the adiabatic limit where s → 0; note that τ diverges loga-
rithmically in this limit.

The breakout time τ is a measure of the temporal width
of the upsweep-downsweep hysteresis loop, whose height is
therefore ∼ε1/4√τ , yielding the estimated area ε1/4τ 3/2 ∼
ε1/4(− ln s)3/4 for the area of the loop in the y, t space, or
ε3/4(− ln s)3/4 in the x, r space.

To obtain a more precise approximation, we define the
normalized loop area

H = 1

ε1/4

∣∣∣∣
∫ ∞

−∞
(y↓(−t ) − y↑(t ))dt

∣∣∣∣ (23)

that is a function of s only. It follows from the preceding
arguments that H diverges in the limit s → 0; our goal is
to identify the form of this divergence, and in this view
we can subtract from H contributions that remain finite in
this limit. Thus, we can restrict the domain of integration
to the interval 0 � t < ∞ and use the early-time approxi-
mation ±ε1/4

√−t for y↓(t ) and the late-time approximation
±ε1/4

√
t/(1 + (2πs2)−1te−t2 ) for y↑(t ), so as s → 0,

H ∼
∫ ∞

0

√
t

(
1 − 1√

1 + (2πs2)−1te−t2

)
dt . (24)

As observed above, for t � τ , the second term in the integrand
is much smaller than the first, but for t � τ the two terms in
the integrand cancel, so the integration is effectively cut off at
τ from above. An analysis of the asymptotic approximation
of the area, outlined in the Appendix, shows that in the limit
s → 0,

H ∼ 2

3

(
ln

(√
− ln(2πs2)

2πs2

))3/4

+ H0, (25)

where H0 is an indeterminate constant; least squares fitting
yields H0 ≈ 0.8853

Figure 4 compares H (s), calculated in four ways: (a)
directly from the adiabatic sweep trajectories of the normal-
form map (4), (b) from the numerical solutions of the
continuum model (9), (c) from the asymptotic approximations
for the sweep trajectories (16) and (21), and (d) from the
asymptotic approximation to H (25), regarding H0 as a fit
parameter. The values obtained by the four methods converge
in the adiabatic limit s → 0.

FIG. 4. The area enclosed within the hysteresis loop in the t, y
plane divided by ε1/4 versus ln(s) (natural logarithm of the shape
parameter). The area is calculated in four different ways: using
the adiabatic trajectories of the normal-form map in gray, the nu-
merically calculated trajectories of the continuum model Eq. (8) in
turquoise (light gray), the asymptotic approximations of the contin-
uum trajectories in purple (dark gray), and the explicit asymptotic
approximation of the area (25) in black, using H0 as a fit parameter.
Circle (respectively, asterisk) symbols are used for cases where the
map trajectories were calculated for w = 0.4 (respectively, w = 0.2).

D. Universality of the adiabatic trajectories: The logistic map

As argued above, the adiabatic sweep trajectories that we
derived and the resultant hysteresis loop are universal; they
capture the shape of any sufficiently slow sweep trajectories of
a map through a period-doubling or pitchfork bifurcation, suf-
ficiently close to the bifurcation point. We next demonstrate
this claim for the case of the logistic map

xn+1 = Ln(xn), Ln(x) =
(

3 ± 1

2
εn

)
x(1 − x), (26)

with ε > 0 small and with positive and negative sign choice
corresponding to upsweep and downsweep trajectories (re-
spectively) as above. Note that we parametrize Ln(x) such that
it passes through the fundamental period-doubling bifurcation
of the logistic map at n = 0. As discussed above, the universal
trajectories in Eqs. (15) and (20) are adiabatic asymptotic
approximants to trajectories of Mn = L2

n , which undergoes a
supercritical pitchfork bifurcation at n = 0; meanwhile, tra-
jectories of Mn are adiabatic approximants of trajectories of
Ln ◦ Ln−1.

To bring the second iterate of the logistic map to normal
form, we apply a linear transformation, shifting the bifurca-
tion point to zero and stretching the map vertically so the
positive-n outer instantaneous fixed points of the map are at
the standard ±√

εn + O(ε). This transformation produces the
stretched and shifted map Nn = √

18(Mn( x√
18

+ 2
3 ) − 2

3 ); the

instantaneous inner fixed point of Nn is at εn/
√

18 + O(ε2),
and thus w = 1/

√
18 in this example.

Figure 5 shows a comparison between the adiabatic sweep
trajectories of Nn and those of the normal-form map Fn of
Eq. (4). The figure confirms that for small enough r and ε,
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FIG. 5. Adiabatic sweep trajectories of the shifted and stretched
second iterate of the logistic map Nn in black and of the normal
map Fn in red (thin dashed gray) for two values of the adiabatic
parameter (sweep rate) ε. The agreement is good and improves for
decreasing ε.

the adiabatic logistic map indeed behaves like the universal
map.

IV. DISCUSSION AND CONCLUSIONS

Bifurcations in autonomous dynamical systems are impor-
tant because they mark a qualitative change in the long-term
behavior of the system. The study of bifurcations is facilitated
by the transformation to a normal form, which allows one to
calculate the trajectories of the system near the bifurcation.
Since the normal form has a universal structure, the dynamics
near the bifurcation are universal.

Here we analyzed the dynamics of an adiabatically time-
dependent map that is swept past a period-doubling or
pitchfork bifurcation. The first main result of this analysis is
the development of the adiabatic normal form for this class
of bifurcations from which it follows that the universal adi-
abatic sweep dynamics depends on a structural asymmetry
parameter, which is irrelevant for the autonomous bifurcation
analysis. The shape of the adiabatic sweep trajectories is de-
termined, up to scaling, by the shape parameter, a combination
of the asymmetry parameter and the adiabatic small parameter

(which is the sweep rate). Thus, even though all autonomous
period-doubling and pitchfork bifurcations have the same
structure after appropriate scaling, there is a one-parameter
family of structures of adiabatic sweeping trajectories of these
bifurcations.

Our second main result is the complete asymptotics of
the up- and downsweep adiabatic trajectories, explicitly ex-
pressed in terms of error functions. In both directions, the
trajectory initially follows closely a branch of the instanta-
neous stable fixed points of the map, but opens an increasing
gap from it upon approaching the bifurcation, before finally
breaking back toward a stable branch after leaving the bifur-
cation region. The breakdown of adiabaticity at the bifurcation
is the source of asymmetry between the up- and downsweep
trajectories that gives rise to hysteresis.

On the basis of these explicit asymptotic expressions, we
next calculated the area of the hysteresis loop enclosed be-
tween the upsweep and downsweep trajectories. We showed
that even though the adiabatic-trajectory shape parameter
tends to zero in the adiabatic limit, the hysteresis loop itself
does not converge to a well-defined shape in this limit and,
as a consequence, the area of the loop has a complicated
logarithmic adiabatic asymptote. Finally, as an application of
our results, we showed that the universal sweep trajectories
correctly capture the dynamics of the logistic map with an adi-
abatically varying parameter in the region of the fundamental
period-doubling bifurcation.

The results of this paper are geared to be useful for the anal-
ysis of adiabatic sweep experiments and simulations. While
the breakdown of adiabaticity implies that the autonomous dy-
namics close to a bifurcation and, in particular, the location of
the bifurcation point itself, can never be faithfully reproduced
by a finite speed sweeping, full information about the bifur-
cation structure can be extracted from the sweep trajectories,
namely, a fit of the experimental trajectories with the universal
ones would yield both the location of the bifurcation point
and the values of the map parameters at the bifurcation, from
which it is possible to reconstruct the bifurcation diagram of
the autonomous map.

APPENDIX: ASYMPTOTIC APPROXIMATION
OF THE AREA OF THE HYSTERESIS LOOP

In this Appendix, we derive an asymptotic approximation
for the integral

Ha =
∫ ∞

0

√
t

(
1 − 1√

1 + ate−t2

)
dt = 2

3

∫ ∞

0

(
1 − 1√

1 + at2/3e−t4/3

)
dt (A1)

in the limit a = (2πs2)−1 → ∞. Changing the variable to x = e−t4/3
, we get

Ha = 1

2

∫ 1

0

(
1 − 1√

1 + ax
√− ln x

)
dx

x(− ln x)1/4
=

∫ 1

0

a(− ln x)1/4dx

2
√

1 + ax
√− ln x(

√
1 + ax

√− ln x + 1)
. (A2)

To estimate this integral, note that for a given a � 1, and x which is not too small, ax
√− ln x � 1, and for such x,

a(− ln x)1/4

2
√

1 + ax
√− ln x(

√
1 + ax

√− ln x + 1)
∼ 1

2x(− ln x)1/4
, (A3)

which is logarithmically divergent for small x.
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On the other hand, for sufficiently small x, ax
√− ln x � 1, and for such x, the integrand in Eq. (A2) is close to a(− ln x)1/4/4,

which is integrable at 0. The crossover between the two limits occurs for x ∼ 1/(a
√

ln a), so it is advantageous to express

Ha =
(∫ k/(a

√
ln a)

0
+

∫ 1

k/(a
√

ln a)

)
a(− ln x)1/4dx

2
√

1 + ax
√− ln x(

√
1 + ax

√− ln x + 1)
, (A4)

with k an order-one number. The small-x integral is ∼ k
4 (ln a)−1/2(ln(a

√
ln a/k))1/4, and can be neglected in the limit a → ∞,

and we can let k be large enough that the estimate (A3) is valid for all x in the larger-x integral, obtaining, finally,

Ha ∼
∫ 1

k/(a
√

ln a)

1

2x(− ln x)1/4
∼ 2

3
(ln(a

√
ln a))3/4. (A5)

[1] S. Wiggins, Introduction to Applied Nonlinear Dynamical Sys-
tems and Chaos, 2nd ed., Texts in Applied Mathematics, Vol. 2
(Springer, New York, 2003).

[2] N. R. Lebovitz and R. J. Schaar, Exchange of stabilities in
autonomous systems, Stud. Appl. Math. 54, 229 (1975).

[3] R. Haberman, Slowly varying jump and transition phenomena
associated with algebraic bifurcation problems, SIAM J. Appl.
Math. 37, 69 (1979).

[4] T. Erneux and P. Mandel, Imperfect bifurcation with a slowly-
varying control parameter, SIAM J. Appl. Math. 46, 1 (1986).

[5] P. Mandel and T. Erneux, The slow passage through a steady
bifurcation: delay and memory effects, J. Stat. Phys. 48, 1059
(1987).

[6] D. Premraj, K. Suresh, T. Banerjee, and K. Thamilmaran, An
experimental study of slow passage through Hopf and pitch-
fork bifurcations in a parametrically driven nonlinear oscillator,
Commun. Nonlinear Sci. Numer. Simul. 37, 212 (2016).

[7] E. Benoit, J. Callot, F. Diener, and M. Diener, Chasse au canard,
Collect. Math. 32, 37 (1981).

[8] E. Benoit, Linear dynamic bifurcation with noise, in Dynamic
Bifurcations, edited by E. Benoît (Springer, Berlin, Heidelberg,
1991), pp. 131–150.

[9] P. Szmolyan and M. Wechselberger, Canards in R3, J. Diff. Equ.
177, 419 (2001).

[10] P. De Maesschalck, F. Dumortier, and R. Roussarie, Canard
Cycles: From Birth to Transition, A Series of Modern Surveys in
Mathematics, Vol. 73 (Springer International Publishing, Cham,
2021).

[11] P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox, Tipping points
in open systems: Bifurcation, noise-induced and rate-dependent
examples in the climate system, Philos. Trans. R. Soc. A 370,
1166 (2012).

[12] P. Ritchie and J. Sieber, Early-warning indicators for rate-
induced tipping, Chaos 26, 093116 (2016).

[13] P. Ashwin, C. Perryman, and S. Wieczorek, Parameter shifts
for nonautonomous systems in low dimension: Bifurcation- and
rate-induced tipping, Nonlinearity 30, 2185 (2017).

[14] C. Kiers, Rate-induced tipping in discrete-time dynamical sys-
tems, SIAM J. Appl. Dyn. Syst. 19, 1200 (2020).

[15] T. Klinker, W. Meyer-Ilse, and W. Lauterborn, Period doubling
and chaotic behavior in a driven Toda oscillator, Phys. Lett. A
101, 371 (1984).

[16] B. Morris and F. Moss, Postponed bifurcations of a quadratic
map with a swept parameter, Phys. Lett. A 118, 117
(1986).
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