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Kosambi-Cartan-Chern perspective on chaos:
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This article confronts the formidable task of exploring chaos within hidden attractors in nonlinear three-
dimensional autonomous systems, highlighting the lack of established analytical and numerical methodologies
for such investigations. As the basin of attraction does not touch the unstable manifold, there are no straightfor-
ward numerical processes to detect those attractors and one has to implement special numerical and analytical
strategies. In this article we present an alternative approach that allows us to predict the basin of attraction
associated with hidden attractors, overcoming the existing limitations. The method discussed here is based on
the Kosambi-Cartan-Chern theory which enables us to conduct a comprehensive theoretical analysis by means of
evaluating geometric invariants and instability exponents, thereby delineating the regions encompassing chaotic
and periodic zones. Our analytical predictions are thoroughly validated by numerical results.

DOI: 10.1103/PhysRevE.109.044205

I. INTRODUCTION

From the latter half of the century onwards, the enigmatic
world of chaotic oscillators has beckoned researchers, casting
a spell of fascination and intrigue that continues to deepen.
In that period, chaotic self-excited attractors were found nu-
merically [1,2] by standard numerical procedure, in which the
trajectory starting from an unstable manifold in the vicinity
of equilibrium reaches a state of oscillation after an inter-
mediate transient process; thereby localization of the basin
of attraction of these kinds of self-excited chaotic oscillators
is somewhat systematic. Since that time, an abundance of
research has been diligently carried out in this fascinating
realm [3–13]. In recent times, a significant surge of scholarly
attention has been directed towards a remarkable develop-
ment, spurred by the seminal work of Kuznetsov, Lenov, and
Vagaitsev [14]. This notable advancement unveils a distinctive
class of attractors, characterized as hidden attractors [15–19],
where the basin of attraction remains devoid of any intersec-
tion with the unstable manifold of equilibrium points. For
instance, within the framework of dynamical systems, cases
characterized by the absence of any equilibrium points or
the existence of only a single equilibrium point engender the
emergence of chaotic hidden oscillations [20–26]. In such
intricate scenarios, the computational and analytical endeavor
associated with the localization of the basin of attraction
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assumes a distinctly formidable character, primarily due to
the inherent challenge posed by the unavailability of a priori
equilibrium point information. Extensive research efforts in
recent years have been directed towards the localization of
hidden attractors, employing both numerical and analytical
approaches. Numerical procedures encompass methodologies
such as homotopy and continuation techniques [27], while
analytical methods are rooted in the construction of Lyapunov
functions and an assessment of the dissipative properties in-
herent to the system [28]. Additionally, a novel approach has
emerged involving the construction of perpetual points [29].

However, despite these significant advancements, the field
currently lacks an analytical method capable of predicting
the basin of attraction for hidden oscillators. Addressing this
critical gap in the existing body of knowledge constitutes
the central focus of our article. In our pursuit, we employ a
geometrodynamical approach, rooted in the Kosambi-Cartan-
Chern (KCC) theory [30–32], which is founded on the
principles of Finsler space theory [33,34]. This approach
holds the promise of shedding new light on the intricate prob-
lem of predicting the basin of attraction for hidden oscillators.

While global stability analysis of chaotic systems can
traditionally be characterized through Lyapunov stability as-
sessments, it is worth noting that the numerical calculation of
Lyapunov exponents, often necessitating substantial computa-
tional resources, can pose considerable challenges in practice.
A commonly utilized and highly effective numerical approach
for computing the Lyapunov spectrum in a smooth dynamical
system is through periodic Gram-Schmidt orthonormalization
of the Lyapunov vectors. This method is employed to prevent
the misalignment of all vectors along the direction of maximal
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expansion. While this method is extensively used, achieving
better accuracy often necessitates running a large number of
iterations, which can be both time-consuming and computa-
tionally challenging.

Alternatively, within the framework of the KCC theory,
one finds a compelling avenue for stability analysis. Among
the five geometric invariants offered by the KCC theory, the
second invariant, namely, the deviation curvature tensor (Pi

j),
provides a valuable insight into the bunching and dispersing
behavior of nearby trajectories, near the arbitrarily chosen ini-
tial positions. This approach offers an alternative perspective
on stability analysis, commonly known as Jacobian stability.
Jacobi stability analysis, as elucidated in detail by Harko
et al. [35], has become a pivotal tool in the analysis of
complex dynamical systems. Its applicability extends across
a diverse spectrum of systems, including but not limited to the
renowned Lorenz, Rossler, Rabinovich-Fabrikant, and Chen
chaotic systems [36–40]. Furthermore, Jacobi stability analy-
sis has found successful application in the study of biological
systems, encompassing areas such as cell dynamics [41,42],
prey-predator models [43], and competitive models [44]. Its
versatility is further underscored by its effectiveness in the
investigation of various bifurcation phenomena [45,46], es-
tablishing it as an indispensable analytical framework in the
realm of nonlinear dynamics.

In this article, we delve into the dynamics of two unique
three-dimensional (3D) systems. The first system, character-
ized by a single stable fixed point [25], presents an intriguing
dynamic that captures our attention. Conversely, the second
system, devoid of any fixed points [47], represents a rare and
complex scenario in dynamical systems. Surprisingly, both
systems exhibit hidden chaotic oscillations, adding to their
enigmatic nature. Our primary focus is to uncover the un-
derlying dynamics of these systems by exploring the basin of
attraction, an area in phase space where trajectories ultimately
converge. We aim to achieve this by meticulously analyzing
deviation vectors originating from various initial points within
the phase space. This approach allows us to gain valuable
insights into the intricate dynamics at play, shedding light on
the hidden chaotic behavior exhibited by these systems.

II. REVIEW OF KCC THEORY AND JACOBI STABILITY

We revoke the fundamentals of the KCC theory which
will be used in the following sections. We follow the work
of Böhmer et al. [35]. Let p = (x, y) ∈ TM, where x =
(x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and TM is the tangent
bundle of the smooth n-dimensional manifold M = Rn. Now
consider an open connected subset � ∈ Rn × Rn × R and
(x, y, t ) ∈ �, where we consider a system of second-order
differential equations in the form of

d2xi

dt2
+ 2Gi(x, y, t ) = 0, i ∈ {1, 2, . . . , n}, (2.1)

where Gi is a smooth function of local coordinates defined
on TM. Now by defining the time-independent coordi-
nate transformation x̃i = x̃i(x1, x2, . . . , xn) and ỹi = ∂ x̃i

∂x j y j , the
equivalent vector field V on TM of Eq. (2.1) is given by

V = yi ∂

∂xi
− 2Gi(x j, y j, t )

∂

∂yi
, (2.2)

from which one can establish the nonlinear connection N j
i

defined by [35]

N j
i = ∂Gi

∂y j
. (2.3)

We can proceed further to obtain the covariant differential
of the vector field ξ i ⊆ � as [35]

Dξ i

dt
= dξ i

dt
+ Ni

jξ
j . (2.4)

Substituting ξ i = yi, we can generate

Dyi

dt
= Ni

jy
j − 2Gi = −εi, (2.5)

where εi is the contravariant vector field defined on � and
known as the first KCC invariant which physically implicates
the external force present in the system.

If we now deviate the trajectory of the system in Eq. (2.1)
from nearby ones according to

x̃i(t ) = xi(t ) + ηξ i(t ), (2.6)

with ‖ η ‖ treated as a small perturbation parameter and ξ i as
a component of the contravariant vector field along the path xi,
and substitute the above equation into Eq. (2.1) and take the
limit η −→ 0, we can arrive at the variational equations [35]

d2ξ i

dt2
+ 2Ni

j

dξ j

dt
+ 2

∂Gi

∂x j
ξ j = 0. (2.7)

With the KCC covariant differential, the above equation takes
the form

D2ξ i

dt2
= Pi

jξ
j, (2.8)

where Pi
j is defined as

Pi
j = −2

∂Gi

∂x j
− 2GlGi

jl + yl
∂Ni

j

∂xl
+ Ni

l Nl
j + ∂Ni

j

∂t
. (2.9)

Equation (2.8) is called the Jacobi equation of the second-
order differential equation, and Pi

j symbolizes the second KCC
invariant or the deviation curvature tensor, with the Berwald

connection denoted as Gi
jl ≡ ∂Ni

j

∂yl . There are three more KCC
invariants [35] which are excluded here due to the motive our
article.

Now to analyze the Jacobi stability of the trajectories xi =
xi(t ) of Eq. (2.1) in the vicinity of a point xi (t0 = 0) in the
Euclidean space (Rn, 〈., .〉), we have to study the behavior of
the deviation vector ξ i, which satisfies the initial conditions
ξ (0) = O and ξ̇ (0) = W 	= O, where O is the null vector
in Rn. For arbitrary two vectors 〈〈X,Y 〉〉 ∈ Rn we consider
an adapted inner product 〈〈., .〉〉 of ξ such that 〈〈X,Y 〉〉 :=

1
〈W,W 〉 · 〈X,Y 〉.

This enables us to describe the bunching and dispersing
tendency of ξ around t0 = 0 as follows: as t → 0+ if ‖ξ‖ <

t2, then the trajectories are bunching together, and if ‖ξ‖ > t2

as t → 0+, the trajectories are dispersing.
Definition. If Eq. (2.1) satisfies the initial conditions men-

tioned above, then the trajectories xi(t ) are called Jacobi
stable if and only if the real part of the eigenvalues of the
deviation curvature tensor Pi

j (0) is negative.
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In the upcoming sections, we undertake the analysis of
two distinct systems, each exemplifying a unique dynamical
characteristic—one with a single equilibrium point and the
other devoid of any fixed points. Our objective is to demon-
strate that the KCC analysis is adept at extracting the basin of
attraction for both systems through an analytical framework.
This framework is expressed in terms of a set of coupled dif-
ferential equations governing the deviation vectors, denoted as
ξ i. By determining the solution of ξ i, we subsequently define
the instability exponent δi, akin to the Lyapunov exponent, as
a quantitative measure of the chaotic behavior. The deviation
vector can be evaluated from its components by

ξ (t ) =
√

[ξ 1(t )]2 + [ξ 2(t )]2√
[ξ̇ 1(0)]2 + [ξ̇ 2(0)]2

. (2.10)

Now the instability exponents are defined as

δi(x
j, y j, t ) = lim

t→∞
1

t
ln

[
ξ i

ξi0

]
, i = 0, 1, (2.11)

and

δ(x j, y j, t ) = lim
t→∞

1

t
ln

[
ξ

ξ10

]
, (2.12)

where ξ̇ 1(0) = ξ10 and ξ̇ 2(0) = ξ20. It is important to note that
the instability exponent, in general, is a function of initial con-
ditions (x j, y j, t ) and holds the potential to predict the basin.
The notable advantage lies in having an analytical descrip-
tion of the instability exponent, in contrast to the Lyapunov
exponent, which, in general, defies analytical calculation. In
most cases, numerical techniques become imperative for the
computation of Lyapunov exponents.

III. STABILITY OF A SYSTEM
WITH A SINGLE FIXED POINT

The following system has a single fixed point at
S(x0, y0, z0) = ( 1

4 , 1
16 ,−16a):

ẋ = yz + a, (3.1)

ẏ = x2 − y, (3.2)

ż = 1 − 4x, (3.3)

The attractor is shown in Fig. 1. Now we define x = X 1,
y = X 2, and z = X 3, and ẋ = Y 1, ẏ = Y 2, and ż = Y 3. By
rearranging the equations, following the methodology detailed
in the previous section, we can express the system as

d2X 1

dt2
+ 2G1 = 0, (3.4)

d2X 2

dt2
+ 2G2 = 0, (3.5)

where

G1 = 1

2

[
X 2(4X 1 − 1) + Y 2

X 2
(a − Y 1)

]
, (3.6)

G2 = 1

2
[Y 2 − 2X 1Y 1]. (3.7)

FIG. 1. Attractor of the system of Eqs. (3.1)–(3.3) with the initial
condition (0,0,0).

The components of the nonlinear connections are deter-
mined by

N1
1 = −1

2

Y 2

X 2
, N2

1 = −1

2

a − Y 1

X 2
,

N1
2 = −X 1, N2

2 = 1

2
. (3.8)

The components of the Berwald connection are

G1
11 = 0, G1

12 = − 1

2X 2
, G1

21 = − 1

2X 2
, G1

22 = 0,

G2
11 = G2

12 = G2
21 = G2

22 = 0. (3.9)

Now by Eq. (2.9), the components of the deviation curva-
ture tensor are expressed as

P1
1 = −4X 2 + 1

2X 2
[Y 2 − 2X 1Y 1] + 1

2

(
Y 2

X 2

)2

+ 1

4

(
Y 2

X 2

)2

− X 1

2

[
a − Y 1

X 2

]
,

P1
2 =

[
Y 2

(X 2)2
(a − Y 1) − (4X 1 − 1)

]
+ 1

2X 2

[
X 2(4X 1 − 1)

+ Y 2

X 2
(a − Y 1)

]
+ Y 2

2

[
Y 1 − a

(X 2)2

]
− Y 2

4(X 2)2
[a − Y 1]

+ 1

4

[
a − Y 1

X 2

]
,

P2
1 = Y 1 + X 1Y 2

2X 2
− X 1

2
,

P2
2 = 1

4
− X 1

2X 2
(a − Y 1). (3.10)

In Fig. 2, the components of Pi
j are depicted with the initial

condition set to (0,0,0), while the value of a remains fixed at
a = 0.01. The plotting of these components is achieved using
Eq. (3.10). Now we have all the components of the Pi

j matrix,
which can be evaluated at the fixed point S(x0, y0, z0). The
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FIG. 2. Components of the deviation curvature tensor Pi
j , Eq. (3.10), as it varies with time for the system of Eqs. (3.1)–(3.3) with the initial

condition (0,0,0). (a) P1
1 (t) vs time (t). (b) P1

2 (t) vs time (t). (c) P2
1 (t) vs time (t). (d) P2

2 (t) vs time (t).

matrix [
P1

1 P2
1

P1
2 P2

2

]
S

=
[− 1

4 − 2a 4a

− 1
8

1
4 − 2a

]

gives the characteristics equation

λ2 + 4aλ + 4a2 − 1

16
+ a

2
= 0. (3.11)

The eigenvalues of the above equation are

λ1,2 = −2a ± 1

2

√
1

4
− 2a. (3.12)

Clearly the equilibrium S(x0, y0, z0) is Jacobi unstable and it
is a saddle focus [35]. The deviation vectors ξ i can be written
by Eq. (2.7) as

d2ξ 1

dt2
− Y 2

X 2

dξ 1

dt
+

(
a − Y 1

X 2

)
dξ 2

dt
+ 4X 2ξ 1

[
(4X 1 − 1) − Y 2

(X 2)2
(a − Y 1)

]
ξ 2 = 0 (3.13)

and

dξ 2

dt
− 2X 1 dξ 1

dt
+ dξ 2

dt
− 2Y 1ξ 1 = 0. (3.14)

Substituting the system’s variables in the above equations,
we get the forms, respectively, as

d2ξ 1

dt2
− x2 − y

y

dξ 1

dt
− z

dξ 2

dt
+ 4yξ 1

[
(4x − 1) + z(x2 − y)

y

]
ξ 2 = 0 (3.15)

and

d2ξ 2

dt2
− 2x

dξ 1

dt
+ dξ 2

dt
− 2(yz + a)ξ 1 = 0. (3.16)

Equations (3.15) and (3.16) represent a system of coupled
differential equations for ξ 1 and ξ 2, offering a depiction of
the basin for the system described by Eqs. (3.1)–(3.3). The
solutions to these equations can be obtained through numer-
ical methods such as RK-4 or Euler. Subsequently, utilizing
Eqs. (2.10) and (2.12), the instability exponent δ can be deter-
mined as a function of the system’s variables. This approach
offers a computationally more tractable alternative to the labo-
rious task of numerically calculating Lyapunov exponents. In
Fig. 3, two basins are presented. One is computed by tracing
the maximum Lyapunov exponent, while the other is deter-
mined by calculating the instability exponent using Eq. (2.12).
Remarkably, the figures exhibit a close alignment, providing
an accurate visualization of the periodic and chaotic zones
associated with the hidden attractor.

Behavior of the deviation vectors near the fixed point

The linear stability analysis reveals the existence of a stable
fixed point at S within the system. However, when subjected to
Jacobi stability analysis, the equilibrium point emerges as an
unstable saddle focus. This intriguing contradiction motivates
us to scrutinize the curvature variation around this point. At
first Eqs. (3.15) and (3.16) take the form of a linearly coupled
equation near the fixed point:

d2ξ 1

dt2
+ 16a

dξ 2

dt
+ 1

4
ξ 1 = 0 (3.17)
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(a)

(b)

FIG. 3. Basin of attraction of the system Eqs. (3.1)–(3.3).
(a) Basin (x0, y0) is numerically determined by the estimation of
maximum Lyapunov exponent. (b) Basin is determined by calculat-
ing the instability exponent δ with the help of the deviation vector
computed from Eqs. (3.15) and (3.16).

and

d2ξ 2

dt2
− 1

2

dξ 1

dt
+ dξ 2

dt
= 0. (3.18)

From the information of ξ 1 and ξ 2 one can derive the
curvature [35] defined as

κ (S) = ξ̇ 1(t )ξ̈ 2(t ) − ξ̇ 2(t )ξ̈ 1(t )

{[ξ 1(t )]2 + [ξ 2(t )]2} 3
2

. (3.19)

While ξ 2 and ξ 2 can indeed be analytically computed from
the coupled ordinary differential equations provided earlier,
and subsequently used to evaluate the curvature κ , we opt to
sidestep the cumbersome expression for the sake of brevity.
Instead, we numerically solve these elements, allowing us to
directly observe their variations. The variation of ξ 1 and ξ 2 is
depicted in Fig. 4. Moving beyond the knowledge of deviation
vectors, we proceed to illustrate the curvature variation using

(a)

(b)

(c)

FIG. 4. Deviation vectors are numerically calculated from
Eqs. (3.15) and (3.16). (a) Variation of the deviation vector ξ 1

with time. Initial conditions are ξ̇ 1(0) = 10−10 and ξ̇ 2(0) = 10−10.
(b) Variation of the deviation vector ξ 2 with time. (c) Phase portrait
in the ξ 1-ξ 2 plane.

Eq. (3.19) in Fig. 5. It is widely recognized that the onset
of chaos within the system can be identified by observing
whether the curvature changes sign before a critical mini-
mum time. This critical time, denoted as τ0, is determined
by setting ξ 1(t0) = ξ 2(t0), implying the curvature κ (t0) is
zero. In Fig. 5(a), the numerical calculation yields a value
of approximately 7.5 for τ0. Furthermore, in Fig. 5(b), it is
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(a)

(b)

FIG. 5. (a) Critical time τ0 at which the curvature κ is zero, i.e.,
ξ 1(τ0 ) = ξ 2(τ0), is approximately 7.5. (b) Variation of curvature κ

with time (t). It clearly shows that the curvature changes its sign
before the critical time, which is a quantitative indication of chaos.

evident that the curvature changes sign before τ0, indicating
that the underlying evolution of this hidden attractor will
exhibit chaotic behavior in the long term. The variation of
instability exponent δ with time (t) and the variation of de-
viation vector ξ (t ) with t2 are shown in Figs. 6(a) and 6(b)
respectively.

IV. STABILITY OF A SYSTEM
WITHOUT A FIXED POINT

Let us consider a system of a Sprott case A hidden attractor
[47], which is a special case of a Nose-Hoover [49] system,
pertinent to many natural natural phenomenon [48]:

ẋ = y, (4.1)

ẏ = −x + yz, (4.2)

ż = 1 − y2. (4.3)

Despite the inherent conservativity of the system, the
absence of any apparent attractor is an expected outcome.
However, our investigation uncovers a surprising and fasci-
nating revelation—the presence of a coexisting chaotic sea
alongside nested tori, each contingent on varying initial condi-
tions (see Fig. 7). This intriguing phenomenon strongly hints
at the existence of a concealed attractor within the system.
For the systematic and analytical prediction of the basin of
attractor we employ KCC theory as follows.

(a)

(b)

FIG. 6. (a) Instability exponent near the equilibrium point
S(x0, y0, z0) for the system of Eqs. (3.1)–(3.3) calculated by
Eq. (2.12) and ξ10 = 10−10. (b) Variation of ξ (t ) and t2 against t .

By Eq. (3.2) taking the derivative on both sides and using
ẋ = y, we arrive at

ÿ = −y + ẏz + yż. (4.4)

Also, Eq. (3.3) gives

z̈ = −2yẏ. (4.5)

Now express the variables of the system as

X 1 = y, X 2 = z, X 3 = x,

Y 1 = ẏ, Y 2 = ż, Y 3 = ẋ, (4.6)

and one can symbolize Eqs. (3.4) and (3.5) in comparison with
Eq. (2.1) as

d2X 1

dt2
+ 2G1(X 1, X 2,Y 1,Y 2) = 0, (4.7)

d2X 2

dt2
+ 2G2(X 1, X 2,Y 1,Y 2) = 0, (4.8)

where the expressions for Gi’s are specified as

G1 = 1
2 (X 1 − Y 1X 2 − X 1Y 2), G2 = X 1Y 1. (4.9)

Now the coefficients of nonlinear connection, Eq. (2.3), are
calculated as

N1
1 = − 1

2 X 2,

N2
1 = − 1

2 X 1, N1
2 = X 1, N2

2 = 0. (4.10)
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FIG. 7. Phase plot (y-z) of the system of Eqs. (4.1)–(4.3) with two different initial conditions (0,1,1) and (0,5,1).

The components of the Berwald connection Gi
jl = ∂Ni

j

∂Y l are
worked out as

G1
11 = G1

12 = G1
21 = G1

22 = 0,

G2
11 = G2

12 = G2
21 = G2

22 = 0. (4.11)

After successfully calculating the coefficients of nonlinear
and Berwald connection, our analytical journey leads us to
the computation of the coefficients of the deviation curvature
tensor equation (2.9). This pivotal step equips us with the tools
necessary to make informed assessments about the Jacobi
stability of the system.

Henceforth, the deviation curvature tensor, commonly rec-
ognized as the second KCC invariant, can be derived as
follows:

P1
1 = 1

2 (Y 2) − 1 + 1
4 (X 2)2 − 1

2 (X 1)2,

P1
2 = 1

2Y 1 + 1
4 X 1X 2,

P2
1 = −Y 1 − 1

2 X 1X 2,

P2
2 = − 1

2 (X 1)2. (4.12)

In Figs. 8 and 9, the temporal evolution of P j
i compo-

nents is illustrated for identical initial conditions as previously
employed in Fig. 7. Specifically, the components of P j

i de-
lineate the variation for the nested tori when initialized at
(0,1,1) and the chaotic sea for the initial condition (0,5,1),
respectively.

Specifically the Pi
j matrix is given by

[
P1

1 P2
1

P1
2 P2

2

]
and its

eigenvalues can be acquired as

λ1,2 = 1

2

[
P1

1 + P2
2 ±

√(
P1

1 − P2
2

)2 + 4P2
1 P1

2

]
, (4.13)

which satisfies the characteristics equation

λ2 − (
P1

1 + P2
2

)
λ + (

P1
1 P2

2 − P1
2 P2

1

) = 0. (4.14)

According to Routh-Hurwitz criteria, the system is Jacobi
stable if

P1
1 + P2

2 < 0, P1
1 P2

2 − P1
2 P2

1 > 0, (4.15)

otherwise it is Jacobi unstable.
From Eq. (4.13), it becomes evident that the eigenvalues

are solely determined by the coordinates (X 1, X 2,Y 1,Y 2).
Consequently, this insight provides us with a comprehensive
visualization of the basin, particularly within the (X 1-X 2)
plane, where the eigenvalues can assume positive, negative,
or complex values.

Crucially, it is noteworthy that the entire framework of the
KCC theory hinges on the dynamics of nearby trajectories
around initial points. This sets it apart from conventional
linearization methods that necessitate prior knowledge of
equilibrium points. Consequently, the KCC theory offers a
more robust analytical approach for determining the basin
of attraction, even in systems devoid of fixed points, as op-
posed to the arduous task of numerically evaluating Lyapunov
exponents.

We take a significant step forward by proceeding to eval-
uate the deviation vector ξ i, a decisive element that provides
crucial insights into the onset and characterization of chaos
within the system of Eqs. (4.1)–(4.3). One can write the dif-
ferential equations of ξ i by Eq. (2.8) as

d2ξ 1

dt2
− X 2 dξ 1

dt
− X 1 dξ 2

dt
+ (1 − Y 2)ξ 1 − Y 1ξ 2 = 0, (4.16)

d2ξ 2

dt2
+ 2X 1 dξ 1

dt
+ 2Y 1ξ 1 = 0. (4.17)

Then by Eq. (4.6), the above equations can be written as

d2ξ 1

dt2
− z

dξ 1

dt
− x

dξ 2

dt
+ (1 − ż)ξ 1 − ẋξ 2 = 0, (4.18)

d2ξ 2

dt2
+ 2x

dξ 1

dt
+ 2ẋξ 1 = 0. (4.19)
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FIG. 8. Components of the deviation curvature tensor Pi
j , Eq. (4.12), of the system of Eqs. (4.1)–(4.3) with the initial condition (0,1,1)

forming a nested tori. (a) P1
1 (t) vs time (t). (b) P1

2 (t) vs time (t). (c) P2
1 (t) vs time (t). (d) P2

2 (t) vs time (t).

Given that the system lacks equilibrium points, describ-
ing the behavior of deviation vectors through local stability
analysis, as done in the previous case, is not applicable. How-
ever, by utilizing Eqs. (4.18) and (4.19), we can numerically
compute the instability exponent. This provides a means to

characterize the basin of attraction (see Fig. 10) for this type
of hidden attractor.

The presented graphical representation offers a compelling
insight into the consistency between the numerically com-
puted basin using the maximum Lyapunov exponent and the

FIG. 9. Components of deviation curvature tensor Pi
j , Eq. (4.12), of the system of Eqs. (4.1)–(4.3) with the initial condition (0,5,1) forming

a chaotic attractor. (a) P1
1 (t) vs time (t). (b) P1

2 (t) vs time (t). (c) P2
1 (t) vs time (t). (d) P2

2 (t) vs time (t).
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FIG. 10. Basin of attraction of the system of Eqs. (4.1)–(4.3).
(a) Basin (x0, y0) is numerically determined by the estimation of the
maximum Lyapunov exponent. (b) Basin determined by calculating
the instability exponent δ with the help of the deviation vector com-
puted from Eqs. (4.18) and (4.19).

basin derived from the instability exponent obtained through
the two analytically coupled differential equations. This ob-
servation holds true not only for the system with a stable
equilibrium but also extends to the system without equilibrium
points. The virtually perfect match in both scenarios attests
to the robustness and versatility of our analytical approach. It

underscores the effectiveness of deriving instability exponents
from the coupled differential equations, offering a reliable and
comprehensive understanding of the basin of attraction, even
in systems lacking equilibrium points.

V. CONCLUSIONS

In conclusion, our exploration has provided profound in-
sights into the intricate dynamics of two distinct autonomous
3D systems. The first system, characterized by a singular
stable fixed point, exhibited unexpected chaotic behavior,
challenging conventional expectations from linear stability
analysis. Utilizing the Kosambi-Cartan-Chern (KCC) theory,
we successfully captured the basin of attraction for this sys-
tem through the analytical depiction of deviation vectors and
curvature variation, unveiling hidden chaotic oscillations.

Equally intriguing was the examination of the second
system, which lacked equilibrium points altogether. By nu-
merically computing the instability exponent using Eqs. (4.18)
and (4.19), we effectively characterized the basin of attrac-
tion for this unique hidden attractor. This analytical approach
provides a valuable alternative to the conventional numerical
evaluation of Lyapunov exponents, demonstrating the robust-
ness and versatility of the KCC theory.

The comprehensive visualization of basins, as demon-
strated in Figs. 4 and 5, not only substantiates the efficacy
of the instability exponent in predicting chaotic zones but also
underscores the superiority of the KCC theory in offering an-
alytical insights into the behavior of complex dynamical sys-
tems. This work contributes significantly to the understanding
of hidden attractors, showcasing the KCC theory as a pow-
erful tool for capturing nuanced dynamics, even in scenarios
where equilibrium points are absent. Indeed, the applicability
of this method is not confined solely to autonomous systems
but can be extended to nonautonomous systems as well. This
extension is facilitated by augmenting the dimension of the
system, effectively converting it into an autonomous one.
Consequently, the theory can be readily applied to investi-
gate the chaotic behavior of forced duffing, van der Pol, and
various other relevant systems. Furthermore, this theoretical
framework lends itself to a geometrical interpretation, offering
a visual representation that enhances our understanding of the
intricate dynamics exhibited by these systems.
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