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Sawtooth structures are observed in tunneling probabilities with changing Planck’s constant for a periodically
perturbed rounded-rectangular potential with a sufficiently wide width for which instanton tunneling is substan-
tially prohibited. The sawtooth structure is a manifestation of the essential nature of multiquanta absorption
tunneling. Namely, the periodic perturbation creates an energy ladder of harmonic channels at En = EI + nh̄ω,
where EI is an incident energy and ω is an angular frequency of the perturbation. The harmonic channel that
absorbs the minimum amount of quanta of n = n̄, such that V0 < En̄ � V0 + h̄ω, makes a dominant contribution
to the tunneling process, where V0 is the height of the static potential and V0 − EI � h̄ω. At each steep slope
part of the sawtooth structure, replacement of the dominant harmonic channel, i.e., En̄ → En̄+1, occurs and
the tunneling probability suddenly drops with increasing 1/h̄. Due to the flatness of the potential top, resonance
eigenstates exist just above the potential and the first resonance state appears as the peak of each edge of the
sawtooth structure for the tunneling probability in the potential region. Sawtooth structures are also observed
with changing the perturbation frequency. We introduce an effective formula to characterize the basic profile of
those sawtooth structures.
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I. INTRODUCTION

Tunneling observed for classically nonintegrable systems
is essentially different from tunneling for classically inte-
grable systems, which is mainly explained by the instanton
theory [1–3]. In particular, tunneling that appears as a
form of dynamical tunneling for quantum maps, periodically
perturbed one-dimensional systems, and two-dimensional
systems has attracted many authors’ attention in the past
three decades [1–4]. The tunneling process and its underlying
mechanism change depending on the situation and several
types of tunneling processes have been reported and theoreti-
cally studied from various viewpoints.

In the case that twin tori regions are embedded in a chaotic
sea in the phase space, a so-called mixed system, the tunneling
doublets of localized quasimodes corresponding to twin tori
are no longer isolated in the spectrum and interact with states
associated with the chaotic sea [5,6]. Indeed, the doublets are
disturbed by a third level associated with the chaotic sea and
the statistical nature of the fluctuations of the level splittings
are theoretically explained by the prediction based on a ran-
dom matrix model of the chaotic sea [6]. Then, the tunneling
rate between twin tori is considerably enhanced compared
with that for the classical integrable system. So it is called
chaos-assisted tunneling (CAT). Evidence for CAT has been
observed experimentally—for example, dynamical tunneling
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observed for microwave billiards and modulated optical lattice
potentials [7].

For a nearly integrable system with twin tori, a visible
chaotic region may be restricted to a dominant saddle and the
phase space may be almost occupied by tori regions, which
are symmetric with respect to the saddle, namely tunneling
doublets exist in the spectrum regime. Even in this case, the
tunneling rate between twin tori is considerably enhanced.
This phenomenon has been theoretically explained by the
notion of resonance-assisted tunneling (RAT) for the case that
classically nonlinear resonances form non-negligible island
chains in the classical phase space [8]. The theory of RAT
provides an underlying picture that a tunneling path via a
succession of classically forbidden transitions across non-
linear resonances is selected and considerably enhances the
tunneling rate of twin tori when the (reduced) Planck constant
h̄ becomes relatively small.

The theory of RAT has been further improved and applied
to a simpler case of dynamical tunneling from a regular region
(tori) to a chaotic region [9–12]. In this case, several reso-
nance peaks appear with changing 1/h̄ in the semiclassical
regime. The theory of RAT gives a qualitative recipe iden-
tifying the relevance of nonlinear resonances: the tunneling
path via one or multiple nonlinear resonances dominates the
tunneling process and provides a quantitative prediction at a
resonance peak. In this situation, the existence of resonance
peaks associated with classical nonlinear resonances is the
main reason for the enhancement of tunneling probability.
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FIG. 1. Schematic picture of instanton tunneling and noninstan-
ton tunneling (multiquanta absorption tunneling) for a periodically
perturbed rounded-rectangular potential.

For the scattering problem of periodically perturbed barri-
ers, an increase in tunneling probability owing to a mechanism
different from CAT and RAT is observed [13–18]. As shown
in Fig. 1, an energy ladder created by Floquet’s theory induces
a tunneling process, which is also different from instanton
tunneling; for the instanton, see Refs. [19,20]. Namely, the
transition from an input channel with energy E = EI to har-
monic channels with energy E = EI + nh̄ω above the top of
the potential barrier induces multiquanta absorption tunneling
(MQAT), where ω is the angular frequency of the perturba-
tion [18,21,22]. When these transition probabilities become
larger than that of instanton, this tunneling process makes its
appearance. In terms of semiclassics, this tunneling process
is interpreted as the stable-unstable manifold guided tunnel-
ing (SUMGT); thus its mechanism is different from that of
instanton-type tunneling [14–18,21,23]. The plateau spectrum
observed for a scattering spectrum is a quantum mechanical
manifestation of an unstable manifold [15,16].

This type of tunneling should apply to nearly integrable
systems that have a single dominant saddle in the classical
phase space so that in the integrable limit, the saddle works
like an energetic barrier, the tunneling through which can be
explained by the instanton theory. In this paper, we use the
term “noninstanton” as a generic term for the tunneling which
is observed for those nearly integrable systems and whose
mechanism is not explained by the instanton theory [18,21].
This situation is suitable for studying the transition between
tunneling for classically integrable systems, i.e., instanton
tunneling, and that for classically nonintegrable systems, i.e.,
noninstanton tunneling [5,6,13–18,21,23–26].

Hanada et al. reported the enhancement of probabilities
owing to this type of tunneling process for nearly integrable
discrete-time systems with tiny island chains, i.e., the Hénon
map, and the standard map [27–29]. The tunneling probability
forms a staircase structure as a function of quantum numbers
assigned to initial states. They argued that the successive
switching among the harmonic channels with decreasing the
quantum number is the key mechanism generating the stair-
case structure and this mechanism was called the resonant
multiquanta excitation mechanism (RMEM) [28,29]. Namely,
the movement of dominant harmonic channels from the out-
side of the separatrix to the inside induces a change from a
flat part to a steep slope part of the staircase structure. Then,
the subsequent replacement of dominant harmonic channels
from inside ones to different ones outside causes a transition
to the next flat part. When the energy of a quantized torus
coincides with one of the dominant harmonic channels, the

staircase structure is accompanied by a spike induced by such
a quantized torus. Their result indicates that a staircase like
structure as a function of a dynamical parameter, e.g., the
Planck constant, generally appears for the tunneling process
owning to MQAT.

In this paper, we explore and clarify the basic nature of
staircase and sawtooth structures, which appear as a manifes-
tation of noninstanton tunneling for discrete and continuous
time systems with a single dominant saddle in the nearly
integrable regime [28–31]. A periodically perturbed rounded-
rectangular potential is suitable for this purpose for the
following reasons. When the width of the potential is wide
enough, instanton tunneling is substantially prohibited and
the nature of noninstanton tunneling induced by a periodic
perturbation is purely extracted [22]. Furthermore, plateau
structures are observed for scattering spectra [22]. Our situ-
ation is out of the RAT regime in the sense that the system
has no nonlinear resonances in the real classical phase space.
On the other hand, there exist purely quantum resonance
eigenstates above the potential top, which have no classical
counterparts, namely no quantized real periodic orbits or tori
[31]. Thus we investigate the influence of quantum resonance
eigenstates on the tunneling process.

According to the previous works [18,21], the tunneling
probability induced by the noninstanton tunneling decreases
exponentially in the limits of ω → 0 and ∞. If instanton and
noninstanton tunneling processes coexist, instanton tunneling
governs in the limits of ω → 0 and ∞, but noninstanton
tunneling, namely MQAT, takes relatively large values and
can overwhelm instanton tunneling in a middle range. For the
cases of periodically perturbed (rounded) step and (rounded)
rectangular potentials with wide width [21–23], instanton
tunneling is substantially prohibited and the noninstanton tun-
neling process is observed in the whole range of ω.

Under the above circumstance, we consider the problem
of how the tunneling probability changes with either 1/h̄ or
ω for a periodically perturbed rounded-rectangular potential
with a wide width, in particular how the staircase or sawtooth
structure is observed as a function of 1/h̄ or ω. We also
pay attention to the problem of how the tunneling probability
changes depending on the perturbation strength as a power
law or exponential growth [22]. When the potential width is
sufficiently wide, marked resonance eigenstates exist in the
range E > V0 [22]. Thus we consider the problem of how res-
onance eigenstates affect and enhance the tunneling process
generated by MQAT.

This paper is organized as follows.
In Sec. II, we introduce a model system and explain the

setup of quantum calculation. In Sec. III, we explain the
properties of the wave function on an oscillating flat-top
potential and the underlying mechanism of MQAT taking a
periodically perturbed step potential as a simple example. We
also mention the relationship among MQAT, RAT, and CAT.
In Sec. IV, we show numerical results. Namely, tunneling
probabilities in the potential and transmissive regions change
like a sawtooth function with either 1/h̄ or ω. In particular, the
sawtooth structure of the potential region is accompanied by
resonance peaks due to the effect of resonance eigenstates. In
Sec. V, we consider the basic profile of the sawtooth structure
by introducing an effective formula relying on the results
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of the previous works [18,21]. Section VI is devoted to a
discussion.

II. MODEL AND QUANTUM WAVE OPERATOR

The system studied in this paper is a periodically perturbed
rounded-rectangular potential given by [22]

Ĥ (Q, P, ωt ) = 1

2M
P2 + (1 + ε sin ωt )VR0(Q), (1)

where VR0(Q) is the unperturbed potential set as

VR0(Q) = {1 + exp[−(Q − QL )]}−1

−{1 + exp[−(Q − QR)]}−1. (2)

All the dynamical values and parameters are dimensionless.
We set the mass as M = 1. The width and center of the
potential barrier are given by L ≡ QR − QL and QC ≡ (QR +
QL )/2, respectively, and the height of the unperturbed poten-
tial is defined as V0 ≡ VR0(QC ) (see Fig. 1). We set L = 30,
thus 1 − V0 ∼ 6.118×10−7, and set the right edge of the po-
tential barrier at QR = 0 throughout this paper. In the limit
of QL → −∞, the rounded-rectangular potential VR0(Q) con-
verges to a rounded-step potential [21,23].

We consider the case that a plane wave is injected from
positive infinity in Q with a constant momentum PI (< 0),
where the subscript of dynamical variables, “I ,” indicates
input. Thus a scattering eigenstate, more precisely a quasis-
tationary state, is represented by the wave operator [13,32],

〈Q|�̂+
1 (t )|PI〉 = lim

|QI |→∞

√
|PI |

2π h̄M
eiPI QI /h̄

∫ ∞

0
ds

× 〈Q|Û (ωt : ωt − ωs)|QI〉 exp

{
i

h̄
EI s

}
,

(3)

where initial energy is given by EI = P2
I /2M and Û denotes

the propagator of the system,

Û (θ + ωt : θ ) = T exp

{
− i

h̄

∫ t

0
Ĥ (θ + ωs)ds

}
, (4)

where T indicates the time ordering operator.
For the case of a free particle with VR0 = 0, the wave

operator (3) provides a plane wave as

〈Q|�̂+
1 (t )|PI〉|VR0=0 = 1√

2π h̄
e

i
h̄ (PI Q−EI t ). (5)

To kill the dependence in amplitude on h̄ for convenience
in the following study, we renormalize the momentum
eigenstate as

|P̄I〉 ≡
√

2π h̄|PI〉. (6)

Then, the scattering eigenstate is given as

〈Q|�̂+
1 (t )|P̄I〉 = lim

|QI |→∞

√
|PI |
M

eiPI QI /h̄
∫ ∞

0
ds

× 〈Q|Û (ωt : ωt − ωs)|QI〉 exp

{
i

h̄
EI s

}
.

(7)

FIG. 2. Probability densities of scattering eigenstates
|〈Q|�̂+

1 (t = 0)|P̄I 〉|2 at ε = 0.0, 0.05, 0.1, and 0.2 with EI = 0.75,
ω = 0.3, and h̄ = h̄ref = 1000/(3π×210) ∼ 0.1036165.

We show scattering eigenstates at an off-resonance
condition taking Planck’s constant as h̄ = h̄ref ≡
1000/(3π×210) ∼ 0.1036165, which are very similar to
those for the case of L = 20 studied in the previous work
[22]. Hereafter, we take this value of h̄ref as the reference value
of Planck’s constant. Scattering eigenstates are calculated
by using the symplectic integrator including a plane wave
generator [32]. Note that resonance eigenstates for the
condition of EI > V0 are shown in Appendix A.

Figure 2 shows probability densities at t = 0 (mod T ) with
T = 2π/ω for four representative values of ε, ε = 0, 0.05,
0.1, and 0.2, where the remaining parameters are taken as
EI = 0.75 and ω = 0.3. For the unperturbed system with
ε = 0, the tunneling tail penetrating into the potential barrier
can be explained by instanton tunneling and drops off expo-
nentially. For the perturbed system, the tunneling probability
is enhanced due to MQAT and increases with ε. For each
scattering eigenstate, the probability density takes larger val-
ues near the right edge of the potential, while it takes almost
constant values accompanied by a small undulation in the left
half of the potential region QL < Q < QC . The probability
density in the range Q < QL takes values slightly less than
those in the potential region and gradually undulates due to
the periodic perturbation.

To evaluate tunneling probabilities in the potential and
transmissive regions, we introduce the following quantities,
PQ

p and PQ
t :

PQ
p ≡ 2

L

∫ QC

QL

|〈Q|�̂+
1 (t = 0)|P̄I〉|2dQ, (8)

PQ
t ≡ 1

Qte − Qts

∫ Qte

Qts

|〈Q|�̂+
1 (t = 0)|P̄I〉|2dQ, (9)

where Qte and Qts are set as Qte = QL − 5.0 and Qts =
Qte − T

√
2V0/M, respectively. Namely, PQ

p provides mean
probability density over the left half of the potential region
to avoid large irregular oscillations near the right end and PQ

t
gives the amplitude averaged over a nearly spatial period in
the transmissive region, which roughly corresponds to a time
average of the tunneling probability through the potential.
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FIG. 3. Schematic picture of multiquanta absorption tunneling
for a periodically perturbed step potential.

III. WAVE PROPERTIES ON THE OSCILLATING FLAT
TOP FOR A PERIODICALLY PERTURBED STEP

POTENTIAL AND MQAT

Before going to numerical analysis, let us consider the
properties of the wave function in the potential region taking
a periodically perturbed step potential studied in the previous
work as a simplified example [21]. Owing to the periodic
perturbation, harmonic channels are generated by multiquanta
absorption and emission forming an energy ladder, En = EI +
nh̄ω. Figure 3 schematically shows the multiquanta absorption
tunneling (MQAT) for the periodically perturbed step poten-
tial. Note that sawtooth structures are also observed for this
case, although we do not show results [30].

On the other hand, the oscillation of the flat-top potential,
V (t ) = V0(1 + ε sin ωt ), adds a time-dependent phase modu-
lation to a wave function in the potential region as [33]

�(Q, t ) = exp

(
i
εV0

h̄ω
cos ωt

)
�0(Q, t ), (10)

where �0(Q, t ) is a wave function in the potential region for
the unperturbed system. Thus, for the periodically perturbed
systems, a scattering eigenstate with incident energy EI is
represented in the potential region as

�(Q, t ) =
∑

n

Cn�n(Q, t ), (11)

where Cn are constants of complex values and each �n(Q, t )
denotes a modulated harmonic channel at E = En given by

�n(Q, t ) = exp

[
i

h̄

(
εV0

ω
cos ωt − Ent

)]
�0,n(Q), (12)

where �0,n(Q) is the scattering eigenstate of the unperturbed
system at E = En. Hereafter, we simply call the modulated
harmonic channel by the harmonic channel. In the case of the
step potential, �0,n(Q) with energy En > V0 is regarded as a
plane wave with the momentum of a nonzero real value in the
potential region. In contrast, for En < V0, the momentum takes
an imaginary value like instanton. Thus harmonic channels
with En < V0 do not substantially contribute, while harmonic
channels with En > V0 contribute to MQAT.

Since the probabilistic weight of each harmonic channel
is given by |Cn�n(Q, t )|2, the transition rate from the in-
cident plane wave with E = EI to each harmonic channel
with En > V0, i.e., Ptr(n) = |Cn|2, is the key to evaluating
the contribution of the harmonic channel to MQAT. Figure 4
schematically shows Ptr(n) as a function of the order of the
harmonic channel n, where an approximate formula for Ptr(n)

FIG. 4. Schematic picture of the transition rates Ptr(n) from the
incident plane wave to harmonic channels.

given in Sec. V is used in advance [21]. In the range 0 � n �
eεV0
2h̄ω

, which corresponds to the classically accessible energy
range caused by the periodic perturbation, Ptr(n) takes values
of the same order; thus it is approximately represented by a
constant function. In the range n � eεV0

2h̄ω
, namely the tunnel-

ing regime, Ptr(n) decreases more than exponential functions
with n. Thus the harmonic channel with the energy such that
V0 < En � V0 + h̄ω dominantly contributes to MQAT when
instanton tunneling is prohibited.

The above argument should apply to the periodically per-
turbed rounded-rectangular potential with a wide width, since
it has an almost flat top and instanton tunneling is substan-
tially prohibited (see Fig. 1). Then, the order of the dominant
harmonic channel n̄ is specified as

n̄ = min{n|nh̄ω > V0 − EI , n ∈ N} (13)

and En̄ is given as

En̄ = EI + n̄h̄ω. (14)

Thus there is a critical condition that one of the harmonic
channels satisfies the condition En = V0. When either Planck’s
constant h̄ or angular frequency ω is taken as a control param-
eter, the critical condition for a given n is satisfied at h̄ = h̄c

n
or ω = ωc

n, where h̄c
n and ωc

n are respectively defined as

h̄c
n ≡ V0 − EI

nω
, (15)

ωc
n ≡ V0 − EI

nh̄
. (16)

Let us call h̄c
n and ωc

n the switching points in the following
sense. From the above discussion, when h̄ passes through
each switching point h̄c

n, a sudden change of tunneling prob-
ability should be observed. In a neighborhood of each h̄c

n,
the dominant harmonic channel is given by n̄ = n for h̄ > h̄c

n
and by n̄ = n + 1 for h̄ < h̄c

n; thus the tunneling probabil-
ity abruptly decreases when h̄ decreases and passes through
h̄c

n. The same is true in the case that ω passes through ωc
n.

This means that the tunneling probability forms a sawtooth
structure as a function of 1/h̄ or ω. For the case of ω > ωc

1,
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the single-quantum absorption tunneling (SQAT) dominates
the tunneling process and the tunneling probability should be
decreased almost exponentially with increasing ω like in the
case of a periodically perturbed rounded-step potential [21].

As shown in the previous work [22], the periodically
perturbed rounded-rectangular potential has resonance eigen-
states, each of which has a complex eigenenergy Er

m (ReEr
m >

V0) accompanied by harmonic channels (see Appendix A).
When the synchronization with the dominant harmonic chan-
nel, i.e., ReEr

m = En̄, occurs for a lower-order resonance state,
e.g., m = 1 or 2, this should affect the tunneling process and
enhance a tunneling probability in the potential region. This
point should be confirmed with numerical simulation.

In the above discussion, we assume that the transition
rate Ptr(n) among the harmonic channels is a fairly regular
function of n and the resonance eigenstates and their eigenen-
ergies under perturbation are close to those of the unperturbed
system. Let us consider the applicability of the above sce-
nario to tunneling processes for nearly integrable systems. For
periodically perturbed systems, energy levels except contin-
uous spectrum are written owing to Floquet’s theory as the
following set:

Elev = {Em,n|Em,n = Em + nh̄ω}, (17)

where {Em} denote input energy and energy eigenvalues close
to those of an integrable system and {Em,n} for each m denote
harmonic channels of Em.

For scattering potentials without resonance states, e.g.,
the Eckart barrier, we can take E0 as input energy, namely
E0 = EI , and the others are removed. Thus there exists a
single energy ladder E0,n = E0 + nh̄ω. If the potential width
is sufficiently large, namely the contribution of instanton is
sufficiently small, a sawtooth structure should be observed.
For scattering potentials with resonance states as in the present
case, we also take E0 = EI and assign Em (m > 0) for reso-
nance energies as Em = Er

m. For a potential with a wide width,
a sawtooth structure should be observed and the resonance
condition Re Er

m − E0 = nh̄ω should cause an additional ef-
fect on the tunneling process.

For nearly integrable quantum maps with a dominant sad-
dle and without (visible) nonlinear resonances, the energy
level set, {Em}, in Eq. (17) can be taken to be close to that of
the unperturbed system. From the observations of tunneling
behavior [27–29], the underlying mechanism of the tunneling
process should be similar to that mentioned above.

For nearly integrable quantum maps involving visible non-
linear resonance(s), namely in the RAT regime [8–12], at least
a part of energy levels corresponding to the nonlinear reso-
nance(s) and their eigenfunctions are fairly deformed from
unperturbed ones. In this case, the transition probabilities
among the harmonic channels for each Em via nonlinear reso-
nance(s) should fairly deviate from those for systems without
(visible) nonlinear resonances, but the resonance condition
Re Er

m − E0 = nh̄ω should still play an important role. Thus
the underlying mechanism of the tunneling process via non-
linear resonance(s) should be fairly modified and either an
additional scenario or another different scenario, e.g., the RAT
theory, should be needed to explain the tunneling process
[8–12].

FIG. 5. Changes of tunneling probabilities PQ
p and PQ

t as func-
tions of 1/h̄ with ω = 2.0 and EI = 0.75 for ε = 0.05, 0.1, and 0.2.
Broken vertical lines denote 1/h̄c

1 and 1/h̄c
2.

For quantum maps with mixed phase space, namely in
the CAT regime [5,6], most energy levels are significantly
different from those of the unperturbed system and their
eigenfunctions are largely deformed from unperturbed ones.
For this case, the underlying mechanism of the tunneling
process should be completely different from that mentioned
above and detail processes should sensitively depend on the
situation, e.g., the detail of the classical phase structure.

IV. CHANGE OF TUNNELING PROBABILITIES
WITH h̄ AND ω

A. Change of tunneling probabilities with h̄

In this subsection, we consider how the tunneling proba-
bilities in the potential and transmissive regions change with
Planck’s constant h̄.

1. Change of tunneling probabilities at ω = 2.0

First, we consider the case of ω = 2.0, where one or
a few quanta majorly contribute to the tunneling process.
Figure 5 shows PQ

p and PQ
t as functions of 1/h̄ for the cases

of ε = 0.05, 0.1, and 0.2, which form sawtooth structures,
and PQ

p is always larger than PQ
t at each value of ε. Actu-

ally, very sharp transitions of PQ
p and PQ

t are observed near
the switching points 1/h̄c

1 ∼ 8 and 1/h̄c
2 ∼ 16 owing to the

replacement of the dominant harmonic channel. The single-
quantum absorption tunneling with n̄ = 1 is dominant in the
region 1/h̄ < 1/h̄c

1, the two-quanta absorption tunneling with
n̄ = 2 becomes dominant in the region 1/h̄c

1 � 1/h̄ < 1/h̄c
2,

and so on. Furthermore, PQ
p have sharp peaks corresponding

to the first resonance state at En̄ ∼ ReEr
1 , each of which ap-

pears just before the switching point. In each of the regions,
1/h̄ < 1/h̄c

1 and 1/h̄c
1 � 1/h̄ < 1/h̄c

2, PQ
t increase slightly less

than exponential functions with 1/h̄, while PQ
p grow more than

exponential functions due to the wide skirts of the resonance
peaks. Values of PQ

p and PQ
t increase with increasing ε when

h̄ is fixed. From the comparison of the cases of ε = 0.05, 0.1,
and 0.2, the increasing rates of PQ

p and PQ
t with ε are not

markedly changed with 1/h̄ as long as n̄ takes the same value,
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(a)

(b)

FIG. 6. Tunneling probabilities and probability densities at
ε = 0.2 near the first switching point 1/h̄c

1 in Fig. 5. (a) Changes
of tunneling probabilities PQ

p and PQ
t as functions of 1/h̄. The labels

from “a” to “e” denote representative values of h̄ in Table I. (b) Prob-
ability densities |〈Q|�̂+

1 (t = 0)|P̄I 〉|2 at the representative values
of h̄.

but clearly change when n̄ is replaced, e.g., the rates at n̄ = 2
are apparently larger than those at n̄ = 1.

Figure 6(a) shows the variations of PQ
p and PQ

t in a
neighborhood of 1/h̄c

1 at ε = 0.2 and 6(b) shows probability
densities at representative values of h̄ labeled from “a” to
“e” in 6(a) (also see Table I). For the case of “c,” at which
the peak of the first resonance state appears in Fig. 6(a), a
single hump is observed in the potential region in Fig. 6(b).
This means that the first resonance state is excited owing
to the synchronization with the dominant harmonic channel,
namely the first harmonic channel in this case, under the
condition ReEr

1 = En̄, and majorly forms probability density
in the potential region. Actually, the contributions of harmonic
channels with n > n̄ are negligible because their transition
rates Ptr(n) are exponentially smaller than that of the domi-
nant harmonic channel and further no lower-order resonance
states with Er

m (m > 1) synchronize with the (n̄ + 1)th har-
monica channel because ReEr

m � En̄+1 when ω is sufficiently
large.

For the case of “b,” which corresponds to the second res-
onance state, twin peaks are observed in the potential region
in Fig. 6(b), although no clear resonance peak is observed in
Fig. 6(a) because the wide skirt of the first resonance peak

TABLE I. Representative values of Planck’s constant h̄.

ω h̄/h̄ref h̄ 1/h̄

a 2.0 1.23 0.1274483 7.84631921
b (2nd) 2.0 1.21 0.1253769 7.97601043
c (1st) 2.0 1.2075 0.1251169 7.99252391
d 2.0 1.203 0.1246506 8.02242113
e 2.0 1.185 0.1227856 8.14428070

f 0.3 9.5 0.9843567 1.0158918
g (2nd) 0.3 8.6 0.8911019 1.1222061
h (1st) 0.3 8.2 0.8496553 1.1769479
i 0.3 8.0 0.8289320 1.2063716
j 0.3 6.7 0.6942305 1.4404437

k 0.3 1.02 0.1056888 9.46173787
l (2nd) 0.3 1.008 0.1044454 9.57437761
m (1st) 0.3 1.006 0.1042382 9.59341216
n 0.3 1.005 0.1041346 9.60295784
o 0.3 1.0 0.1036165 9.65097263

hides it. For the case of “a” in the off-resonance condition,
it forms a tablelandlike distribution in the potential region.
In the transmissive region, the probability densities for the
cases of “a,” “b,” and “c” form almost flat distributions taking
nearly the same values but accompanied by small undulation.
This means that the resonance eigenstates do not influence the
probability density in the transmissive region. However, this
fact does not contradict the fact that the resonance eigenstates
have long lifetimes and rather allows them to do so because of
relatively smaller leak rates.

For the case of “d” in the transition region around the
switching point 1/h̄c

1, as shown in Fig. 6(b), it exponentially
decreases being accompanied by a high-frequency oscillation
with gradually increasing amplitude as Q decreases in the
potential region, while it periodically oscillates with large
amplitude in the transmissive region. For the case of “e,”
namely, just after the transition, as Q decreases, it rapidly
decays being accompanied by a gradually increasing high-
frequency oscillation in the right half of the potential region,
while it forms a nearly flat distribution in the left half. Then,
it takes an almost flat distribution with small undulation in
the transmissive region. Therefore, the probability densities
of “d” and “e” take smaller values in the transmissive region
than those of “a,” “b,” and “c” owing to the replacement of
the dominant harmonic channel, but that of “d” oscillates with
large amplitude because it is in the critical condition.

2. Change of tunneling probabilities at ω = 0.3

Here, we consider the case of ω = 0.3 in the MQAT
regime. Figure 7 shows PQ

p and PQ
t as functions of 1/h̄ for

the cases of ε = 0.05, 0.1, and 0.2. At each value of ε, PQ
p

and PQ
t form sawtooth structures and PQ

p is always larger

than PQ
t . Indeed, abrupt changes of PQ

p and PQ
t are observed

near every switching point 1/h̄c
n given by Eq. (15) and PQ

p
have clear resonance peaks, each of which appears just before
1/h̄c

n. An average line (or baseline) of PQ
p or PQ

t , which is,
for example, defined as a mean line of the upper and lower
envelope lines of the sawtooth structure in a logarithmic scale,
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FIG. 7. Changes of tunneling probabilities PQ
p and PQ

t as func-
tions of 1/h̄ at ω = 0.3 and EI = 0.75 for ε = 0.05, 0.1, and 0.2.

decreases exponentially with 1/h̄ as ∝exp[−C(ε)/h̄], where
C(ε) decreases with increasing ε. In every interval between
the nearest switching points, 1/h̄c

n and 1/h̄c
n+1, PQ

t increases
with 1/h̄ slightly less than exponential functions, while PQ

p
grows more than exponential functions due to the wide skirt
of the resonance peak.

Figure 8(a) shows the variations of PQ
p and PQ

t in a
neighborhood of 1/h̄c

1 at ε = 0.2 and 8(b) shows probability
densities at representative values of h̄ labeled from “f” to “j”
in 8(a) (also see Table I). Figure 9(a) shows PQ

p and PQ
t in

a neighborhood of 1/h̄c
8 and 9(b) shows probability densities

at representative values of h̄ labeled from “k” to “o” in 9(a)
(also see Table I). Since “o” is the case of h̄ref, the probability
density labeled “o” in Fig. 9(b) is the same as that at ε = 0.2
in Fig. 2.

As shown in Figs. 8(a) and 9(a), PQ
p and PQ

t suddenly
fall off near 1/h̄c

n owing to the replacement of the dominant
harmonic channel; PQ

p and PQ
t are steeper near 1/h̄c

8 than near
1/h̄c

1. At the values of 1/h̄ labeled “h” and “m,” PQ
p forms

clear peaks corresponding to the first resonance states, while
PQ

t takes local maximum values, which are not so large. Thus
the synchronization between the dominant harmonic channel
and the first resonance state does not significantly enhance
the tunneling probability in the transmissive region, especially
in the semiclassical regime, h̄ω � 1. As shown in Fig. 8(b)
the probability density labeled “h” with n̄ = 1 has a single
hump in the potential region, while in Fig. 9(b), the probability
density labeled “m” with n̄ = 8 has a hump deformed by the
harmonic channel of n = n̄ + 1 = 9, i.e., En̄+1 = EI + 9h̄ω.
Thus the subdominant harmonic channel of n = n̄ + 1 is not
negligible and contributes to probability density in the poten-
tial region when h̄ω is sufficiently small in the semiclassical
regime.

The probability densities labeled “g” and “l” should cor-
respond to the second resonance states. In Figs. 8(a) and
9(a), they individually make small bumps on the skirts of
the first resonance peaks. In Fig. 8(b), the probability den-
sity labeled “g” takes smaller values near the center and
larger values near the left and right ends in the potential
region, while in Fig. 9(b), the probability density labeled “l”
forms twin peaks deformed by the subdominant harmonic

(a)

(b)

FIG. 8. Tunneling probabilities and probability densities at
ε = 0.2 near the first switching point 1/h̄c

1 in Fig. 7. (a) Changes
of tunneling probabilities PQ

p and PQ
t as functions of 1/h̄. The labels

from “f” to “j” denote representative values of h̄ in Table I. (b) Prob-
ability densities at the representative values of h̄.

channel of n = n̄ + 1. The states labeled “f” and “k” are
out of resonance but their probability densities take rela-
tively large values in the potential region: it undulates in
Fig. 8(b) and it behaves as a higher resonance mode in
Fig. 9(b).

In Figs. 8(a) and 9(a), the states labeled “i” and “n” are in
the steep transition regions and very close to 1/h̄c

1 and 1/h̄c
8,

respectively. As shown in Figs. 8(b) and 9(b), they almost
exponentially decrease being accompanied by high-frequency
oscillations as Q decreases in the potential regions and have
dips near Q = −40 in the transmissive region; in particular,
that of “i” forms a deep valley. Thus these probability densities
are more irregular than the others because they are in critical
conditions at each of which the replacement of the dominant
harmonic channel occurs. As shown in Figs. 8(a) and 9(a),
the states labeled “j” and “o” are to the right of the transition
regions. In Figs. 8(b) and 9(b), the probability densities of
“j” and “o” rapidly decay with decreasing Q in the right
half of the potential region, while in the left half nearly flat
distributions accompanied by undulations are observed. Each
of the probability densities of “j” and “o” takes smaller values
in the transmissive region than those of the states on the left
sides of the transition region because of the replacement of the
dominant harmonic channel.
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(a)

(b)

FIG. 9. Tunneling probabilities and probability densities at
ε = 0.2 near the eighth switching point 1/h̄c

8 in Fig. 7. (a) Changes
of tunneling probabilities PQ

p and PQ
t as functions of 1/h̄. The labels

from “k” to “o” denote representative values of h̄ in Table I. (b) Prob-
ability densities at the representative values of h̄.

B. Change of tunneling probabilities with ω

In this subsection, we consider how the tunneling probabil-
ities PQ

p and PQ
t change with ω at h̄ = h̄ref. Figure 10 shows

PQ
p and PQ

t as functions of ω for the cases of ε = 0.05, 0.1,

and 0.2. The tunneling probabilities PQ
p and PQ

t form saw-

FIG. 10. Changes of tunneling probabilities PQ
p and PQ

t as func-
tions of ω with h̄ = h̄ref and EI = 0.75 for ε = 0.05, 0.1, and 0.2.

tooth structures and the stepwise transitions occur at ω = ωc
n

defined by Eq. (16), and PQ
p have clear resonance peaks, each

of which appears just after ωc
n.

In the region ω > ωc
1, the single-quantum absorption

tunneling (SQAT) governs the tunneling process and the
tunneling probabilities decrease almost exponentially with
ω, because the energy gap between the dominant harmonic
channel of n̄ = 1 and the potential height V0, i.e., E1 − V0 =
EI + h̄ω − V0, increases with ω. Thus the quantum perturba-
tion method based on the single-quantum absorption process
should be available if an unperturbed solution is given ana-
lytically and the tunneling amplitude should be proportional
to ε like that for the rounded-step potential in the previous
work [21].

From Eq. (16), ωc
n decreases as ∝1/n and the interval be-

tween the nearest switching points, i.e., (ωc
n+1, ω

c
n), decreases

as ∝1/n(n + 1) with increasing n. Thus switching points
become densely in a low-frequency range. In each interval
(ωc

n+1, ω
c
n), PQ

t almost obeys a power-law decay ∝ω−αω when
n̄ is sufficiently large and the absolute value of the exponent
αω increases with n̄. On the other hand, PQ

p decreases faster
than exponential functions of 1/ω near the resonance peak but
seems to obey a power-law decay far from the peak. Thus the
tunneling probabilities PQ

p and PQ
t sensitively change with ω

in a low-frequency range.
Average lines of PQ

p and PQ
t for ω < ωc

1 take the maximum
values in a middle range for ε = 0.2, while they increase
with ω except in neighborhoods of ωc

1 for ε = 0.1 and 0.05.
Thus the average lines almost exponentially decrease with
decreasing ω in a low-frequency range. On the other hand,
the average lines of PQ

p (or PQ
t ) with ε = 0.05, 0.1, and 0.2

approach each other when ω approaches ωc
1 and take val-

ues of the same order near ω = ωc
1. Thus the growth rate

of the mean tunneling probabilities with ε decreases as ω

increases.
From the discussion so far, it is important to clarify the

feature of the sawtooth structure as a function of 1/h̄ and ω.
In the following section, we explore this issue.

V. BASIC PROFILE OF THE SAWTOOTH STRUCTURE

In this section, we consider the basic profile of the saw-
tooth structure as a function of 1/h̄ or ω relying on a
formula introduced for periodically perturbed step and rect-
angular potentials in the previous works [18,21]. Namely,
under a plausible assumption we introduced an approximate
formula to evaluate the elements of the transition matrix,
which gives the transition rate from the incident plane wave
to one of the harmonic channels and we provided with
the help of this formula a theoretical explanation for the
generation mechanism of plateau spectra in the S matrix,
which are commonly observed for periodically perturbed
(rounded) step and barrier potentials. Based on the dis-
cussion in Sec. III, we assume that essentially the same
formula is applicable for the rounded-rectangular potential
and bring out the basic profile of the sawtooth structure
relying on it.

According to the previous works [18,21], in the regime of
h̄ω � ε, the transition rate Ptr(n) from the incident plane wave
with E = EI to a harmonic channel with En = EI + nh̄ω is
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approximated by the Bessel function Jn as

Ptr(n) ∼
∣∣∣∣Jn

(
εV0

h̄ω

)∣∣∣∣
2

∼

⎧⎪⎨
⎪⎩

2h̄ω
πεV0

(|n| � eεV0
2h̄ω

)
,

1
2πn

(
eεV0
2nh̄ω

)2n (|n| � eεV0
2h̄ω

)
,

(18)

where we apply the asymptotic form of Jn for n � 1 to the
range of |n| � eεV0

2h̄ω
[34]. As mentioned in Sec. III, the range

0 � n � eεV0
2h̄ω

corresponds to the classically accessible range
owing to the perturbation and the range n � eεV0

2h̄ω
∼ εV0

h̄ω
corre-

sponds to the tunneling regime induced by MQAT. Thus we
focus on the latter range and rewrite Ptr as a function of En:

Ptr(En, EI ) ∼ 1

2πn
exp

{
−2n

[
ln

(
2nh̄ω

εV0

)
− 1

]}

= h̄ω

2π (En − EI )

× exp

{
−2

En − EI

h̄ω

[
ln

(
2(En − EI )

εV0

)
− 1

]}
.

(19)

Then, the transition rate Ptr(En, EI ) decreases slightly faster
than the exponential decay ∝exp(−2 En−EI

h̄ω
) and this fact is

important for considering the nature of the sawtooth structure.
From the discussion in Sec. III, the probability weight of

the nth harmonic channel W �n(Q, t ) can be approximated in
the potential region as

W �n(Q, t ) ≡ |Cn�n(Q, t )|2 ∼ Ptr(n)|�0,n(Q)|2, (20)

where �0,n(Q) is the scattering eigenstate of the unperturbed
system at E = En. From the definition of the dominant har-
monic channel given by Eq. (13) with Eq. (14), |�0,n(Q)|2
with n < n̄ is negligible in the potential region and W �n(Q, t )
does not practically contribute to tunneling. For n � n̄,
W �n(Q, t ) rapidly decreases with increasing n from Eq. (19).
Therefore, the waveform in the potential region is mainly
constructed by the dominant harmonic channel of n̄ and
contributions of higher harmonic channels with n > n̄ are
considerably small. When |�0,n(Q)|2 ∼ O(1), the weight of
the dominant harmonic channel is roughly approximated by
the transition rate as W �n̄(Q, t ) ∼ Ptr(n̄). Since En̄ ∼ V0 when
h̄ω � V0, Eq. (19) at n = n̄ is roughly estimated as

Ptr(En̄, EI ) ∼ h̄ω

2π (V0 − EI )

× exp

{
−2

V0 − EI

h̄ω

[
ln

(
2(V0 − EI )

εV0

)
− 1

]}

∝ ε2 V0−EI
h̄ω (for fixed h̄ω). (21)

This formula estimates the upper envelope of the sawtooth
structure, which is proportional to the exponentiation of the
base ε with the power 2V0−EI

h̄ω
. Note that the essentially

same formula is obtained by using semiclassical approxima-
tion relying on the Melnikov method in the framework of
the stable-unstable manifold guided tunneling (SUMGT) for

(a)

(b)

FIG. 11. Changes of P̃tr(x) in Eq. (22) with Eq. (23) together with
those of P̃up

tr in Eq. (24) at ε∗ = 1 and 0.5. (a) Changes with 1/x.
(b) Changes with x.

several potential models including the model under consider-
ation [18,21,22].

Let us estimate the transition rate Ptr(n) at n = n̄ as a func-
tion of h̄ω, which is given by Eq. (18) combined with Eq. (13).
Here, we take x = h̄ω, ε∗ = eε, V0 = 1, and EI = 0 for sim-
plicity and obtain, from the second equation in Eq. (18), the
transition rate for |n| � eεV0

2h̄ω
as a function of x:

P̃tr(x) = 1

2πn∗

(
ε∗

2n∗x

)2n∗

, (22)

where n∗ corresponds to n̄ in Eq. (13) and is defined as

n∗ = min{n|n > 1/x}. (23)

Furthermore, Eq. (21) is rewritten as

P̃up
tr (x) = x

2π

(
ε∗

2

)2/x

. (24)

Figures 11(a) and 11(b) show the changes of P̃tr together
with those of P̃up

tr at ε∗ = 1, 0.5 as functions of 1/x and x in
semilogarithmic and logarithmic scales, respectively.

Figure 11(a) corresponds to the case of changing 1/h̄.
Namely, P̃tr qualitatively reproduces the sawtooth structure
of PQ

t in Fig. 7 and P̃up
tr provides the upper envelope of P̃tr,

whose slope changes with ε∗, because the exponential factor
in Eq. (24) is expressed as a base ε∗/2 raised to a 2/x. In each
interval between switching points, P̃tr increases with 1/x as
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∝(1/x)2n∗
and well captures the change of PQ

t . This means that
the tunneling probability in the transmissive region, PQ

t , is not
significantly influenced by resonance eigenstates. To consider
the change of PQ

p , we have to take into account the resonance
effect in the potential region. Indeed, from Eq. (20), the prob-
ability density at the first resonance peak can be estimated by
multiplying the probability density of the first resonance state
of the unperturbed system by Ptr(n̄); thus its average value
over the potential region should reproduce the resonance peak
in PQ

p . Due to the wide skirt of the resonance peak, PQ
p should

increase more rapidly than exponential functions of 1/h̄ in
each interval between switching points.

Figure 11(b) corresponds to the case of changing ω:
P̃tr qualitatively reproduces the sawtooth structure of PQ

t in
Fig. 10 and P̃up

tr provides the upper envelope of P̃tr. The smaller
ε∗ is, the more rapidly P̃up

tr decreases with decreasing x be-
cause of the exponential factor (ε∗/2)2/x in Eq. (24). In each
interval between switching points, P̃tr decreases as ∝1/x2n∗

with x and the slope becomes steeper with increasing n∗.
Thus P̃tr well captures the change of PQ

t for ω < ωc
1. The

step height decreases with decreasing x, but is not negligible
even at x = 0.1 on the logarithmic scale. To confirm this, we
estimate how the step height converges in the limit of x → 0,
i.e., n → ∞. From Eq. (23), x takes a value of xc

n = 1/n at
each switching point, so that n∗ = n + 1 at x = xc

n − 0 and
n∗ = n at xc

n + 0. Then, P̃tr(x) is represented at x = xc
n − 0 and

xc
n + 0 as

P̃tr
(
xc

n − 0
) = 1

2π (n + 1)

(
n

2(n + 1)

)2(n+1)

, (25)

P̃tr
(
xc

n + 0
) = 1

2πn

(
n

2n

)2n

. (26)

Thus both P̃tr(xc
n − 0) and P̃tr(xc

n + 0) converge to zero in the
limit of n → ∞, so that the step height P̃tr(xc

n + 0) − P̃tr(xc
n −

0) goes to zero. However, the ratio of P̃tr(xc
n − 0) to P̃tr(xc

n + 0)
converges to a nonzero value as

lim
n→∞

P̃tr
(
xc

n − 0
)

P̃tr
(
xc

n + 0
) = lim

n→∞
1

4

(
1 + 1

n

)−2n(
1 + 1

n

)−3

= 1

4e2
.

(27)

Hence every step has a finite height on a logarithmic scale
even when n is a large integer and this seems to be true in real
calculations in Figs. 7 and 10.

Finally, we mention the relation to the staircase structure
reported by Hanada et al. [29]. When PQ

p and PQ
t are regarded

as functions of the incident energy EI , they form staircase
structures, which are qualitatively reproduced by Eq. (18)
combined with Eq. (13); for details, see Appendix B. These
staircase structures are similar to those observed for a nearly
integrable Hénon map [29].

VI. DISCUSSION

In this paper, we explored how tunneling probabilities
change depending on either Planck’s constant h̄ or angular fre-
quency ω for the periodically perturbed rounded-rectangular
potential, for which instanton tunneling is substantially pro-
hibited. As a result, we found that the sawtooth structure is

attributed to the repeated replacement of the dominant har-
monic channel as 1/h̄ or ω changes in the process of the
multiquanta absorption tunneling (MQAT).

Namely, the periodic perturbation generates an energy lad-
der of harmonic channels at En = EI + nh̄ω. Since instanton
tunneling is substantially prohibited, harmonic channels with
En > V0 generate tunneling probabilities in the potential and
transmissive regions in the MQAT regime of h̄ω � V0 − EI .
Furthermore, the transition rates from the incident state with
E = EI to harmonic channels should decay more than ex-
ponentially with En for En > V0 [see Eq. (19)]; thus the
harmonic channel with the lowest energy En̄ in the range
E > V0 dominantly contributes to noninstanton tunneling.
When the tunneling probability is written as a function of 1/h̄
or ω, a sudden change of the tunneling probability is observed
in each neighborhood of the switching points at En = V0 given
by Eq. (15) or Eq. (16), at which the replacement of the domi-
nant harmonic channel occurs. Namely, when the order of the
dominant harmonic channel changes from n̄ = n to n̄ = n + 1
passing through a switching point, the tunneling probabil-
ity suddenly drops in its neighborhood called the transition
region.

The nature of the sawtooth structure can be characterized
by using the approximate formula of the transition rate Ptr(n)
given by Eq. (18), which was introduced in the previous
works to estimate transition rates from the incident state with
E = EI to harmonic channels with E = En for the periodi-
cally perturbed step and rectangular potentials [18,21]. Since
a major part of the tunneling probability is determined by
the transition rate, the change of tunneling probability in the
transmissive region, PQ

t , is qualitatively explained by Eq. (22)
with Eq. (23), where the variable x is regarded as x ∝ h̄ω. Fur-
thermore, the formula (21) qualitatively estimates the upper
envelope of the sawtooth structure, which is proportional to
ε2 V0−EI

h̄ω , when h̄ω is fixed. Note that, as shown in Appendix B,
the staircase structure is also observed when the incident en-
ergy EI is changed and its feature is qualitatively explained by
the approximate formula of the transition rate Ptr(n). Such a
staircase structure in the tunneling probability is observed for
a nearly integrable Hénon map [29].

In the potential region, a sudden change of the tunneling
probability PQ

p is also observed in each transition region. Fur-
thermore, PQ

p is affected by resonance eigenstates, although
they do not have classical counterparts. Indeed, the first reso-
nance peak appears at each top edge of the sawtooth structure,
at which the condition ReEr

1 = EI + n̄h̄ω is satisfied and a
clear resonance hump of the probability density is observed
in the potential region. A clear peak does not appear at the
second resonance, but a probability distribution with twin
peaks is observed. The first resonance peak has a wide skirt
in each interval between switching points, which makes PQ

p
grow more than exponential functions as a function of 1/(h̄ω)
and hides the second resonance peak. Thus the first resonance
peaks further enhance the tunneling probability in the po-
tential region. A similar stepwise transition accompanied by
resonance peaks is also observed for a periodically perturbed
cubic polynomial potential [31]. In this case, MQAT induces
tunneling from the potential well to the outside and the tun-
neling probability is enhanced when one of the harmonic
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channels coincides with one of the resonance states around
the threshold of the potential well.

For the continuous-time models that have a single domi-
nant saddle in the classical phase space, MQAT is interpreted
as the stable-unstable manifold guided tunneling (SUMGT)
in terms of the semiclassical analysis [14–18,21,23]. Further-
more, the Melnikov method provides a formula essentially
the same as Eq. (21) for several potential models [18,21,22].
Therefore, it is crucial to explore the underlying mechanism of
the sawtooth structure from the viewpoint of the semiclassical
analysis. We will address this issue in a forthcoming paper.
Indeed, we will consider the problem of to what extent the
complex semiclassical method reproduces the change of tun-
neling probability with 1/h̄ even in the situation that quantum
resonance eigenstates have no classical counterparts. We will
also consider the problems of how precisely the Melnikov
method estimates the envelope of the sawtooth structure with
1/h̄ or ω and how precisely the Melnikov method estimates
the power of the exponentiation of the base ε when h̄ω

is fixed.
For the case that the potential width is not sufficiently

large, instanton tunneling becomes non-negligible and the
sawtooth structure should be modified such that the slopes
in transition regions become more gradual like that caused
by instanton. In this case, two or more harmonic channels
with energies around the threshold of the potential barrier
should contribute to the tunneling process and the competi-
tion among them should affect the formation of the sawtooth
structure. The tunneling for the nearly integrable Hénon map
and periodically perturbed cubic polynomial potential should
be categorized into this case [29,31]. A periodically perturbed
Eckart potential is suitable for investigating the problem of
how the sawtooth structure changes depending on the po-
tential width due to the effect of the instantonlike tunneling
working for harmonic channels below the potential height
[18]. As discussed in Sec. III, the Eckart potential has no
resonance eigenstates and the sawtooth structure without reso-
nance peaks should be observed when a periodic perturbation
is applied to it [30].

As mentioned in Sec. III, for tunneling processes in the
MQAT regime [5,6], we assume that the transition rate Ptr(n)
from the initial state to a harmonic channel is a regular func-
tion of n and the resonance eigenstates and their eigenenergies
are close to those of the unperturbed system. For a system
in the CAT regime, most energy levels and corresponding
eigenstates are markedly different from those of classically
integrable systems. Thus one needs a different scenario to treat
such a tunneling process, e.g., the CAT theory.

From the discussion in Sec. III, for a system in the
RAT regime [8–12], a part, at least, of energy levels and
the corresponding eigenfunctions are fairly deformed from
unperturbed ones. Thus, from the viewpoint of MQAT,
the underlying mechanism of the tunneling process should
be modified and one needs either an additional scenario
or another different scenario for explaining the tunneling
process, e.g., the RAT theory. It is interesting to investigate
the transition in the tunneling process from a nearly integrable
system with a dominant saddle and without (visible) nonlinear
resonances to that with nonlinear resonance(s). The problem
is how the tunneling process via nonlinear resonance(s)

merges with or takes the place of that based on MQAT. If
the merging scenario is true, additional peaks induced by
RAT would considerably deform the base formed by MQAT,
though the scenario may change depending on the situation.

Concerning the situation that a regular region formed by
tori is embedded in a chaotic sea, there exists no isolated dom-
inant saddle that separates these two regions and the scenario
based on MQAT is not directly applicable to the tunneling pro-
cess. When one or multiple nonlinear resonances form island
chains in the regular region, the leaking rate from a quantized
torus to a chaotic sea is enhanced [9–12]. When a single
nonlinear resonance exists, the tunneling probability changes
with 1/h̄ in a manner similar to the sawtooth structure caused
by MQAT and resonance peaks seem to be observed when
the initial state and an excited state are connected through
harmonic channels via the nonlinear resonance. From the
semiclassical analysis in Ref. [12], we may infer that multiple
saddles caused by the nonlinear resonance play a similar role
to the saddle in the MQAT regime although the situation is
more complicated.

Further developments in the directions discussed above are
left for future work.
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APPENDIX A: SCATTERING EIGENSTATES
AT RESONANCE CONDITIONS

To search resonance eigenstates, we set the incident energy
EI in the range EI > V0 and see the change of PQ

p defined by
Eq. (8) with EI at the representative values of ε. Figure 12(a)
shows PQ

p in the range 1.0 � EI � 1.00015 at ω = 0.3 and
h̄ = h̄ref for ε = 0, 0.05, 0.1, and 0.2. For each value of ε, PQ

p
has a peak corresponding to the first resonance state at EI =
ReEr

1 ∼ 1.000015. The largest resonance peak is observed at
ε = 0 and the peaks decrease with increasing ε. In particular,
the peaks at ε = 0.1 and 0.2 are considerably smaller than
the others. As shown in Fig. 12(b), the waveform of the first
resonance state at ε = 0 has a clear single hump in the poten-
tial region QL � Q � QR, while that at ε = 0.05 has a hump
accompanied by a high-frequency oscillation caused by a scat-
tering eigenstate with higher energy. Namely, it is regarded as
a superposition of the resonance eigenstate at EI = ReEr

1 and
the nearest harmonic channel at E = ReEr

1 + h̄ω. At ε = 0.1
and 0.2, the probability densities swell in the potential region
but are irregularly deformed by more than one harmonic chan-
nel at E = ReEr

1 + nh̄ω (n > 0).
Compared with the probability density in the MQAT

regime labeled “m” in Fig. 9, where EI = 0.75, ε = 0.2, and
h̄ = 1.006h̄ref, the probability density at ε = 0.2 is apparently
irregular. In the MQAT regime, harmonic channels with E =
En̄ + l h̄ω (l > 0) are more than exponentially small compared
with the dominant channel with E = En̄ because the transition
rate Ptr(n) decreases more than exponentially with n. Thus the
second dominant channel with E = En̄ + h̄ω merely makes a
small additional contribution to forming a wave function in the
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(a)

(b)

FIG. 12. Resonance eigenstates in the range EI > V0 at ω = 0.3
and h̄ = h̄ref for ε = 0, 0.05, 0.1, and 0.2. (a) Changes of PQ

p with EI .
The first resonance peak is observed at ReEr

1 ∼ 1.000015 and the
positions of the second and third resonance peaks are estimated as
ReEr

1 ∼ 1.000065 and ReEr
1 ∼ 1.000135, respectively. (b) Probabil-

ity densities of resonance eigenstates.

potential regime. On the other hand, for the case of EI > V0,
the transitions to multiple harmonic channels around the inci-
dent energy EI occur in a classically accessible region. Indeed,
the transition rates from the incident state to those harmonic
channels take values of the order of ε. They markedly disturb
the first resonance state waveform at Er

1 = EI when ε is not
negligibly small.

As shown in Fig. 12(a), no clear peaks are observed at the
positions of the second and third resonances because the wide
skirt of the first resonance peak spreads over the right-hand
side and hides their existence even for the unperturbed system
at ε = 0. For the cases of ε = 0 and 0.05, small humps corre-
sponding to the second resonance are however observed near
the position labeled ReEr

2 ∼ 1.000065. Actually, as shown in
Fig. 12(b), for the case of ε = 0, a hump accompanied by twin
peaks, which is regarded as a superposition of the first and
second resonance states, is observed. For the case of ε = 0.05,
the twin peaks deformed by the harmonic channel at E =
ReEr

1 + h̄ω are observed. However, for the cases of ε = 0.1
and 0.2, no clear twin peaks are observed due to the distur-
bance by multiple harmonic channels. Furthermore, for the
case of ε = 0, a hump with triple peaks corresponding to the
third resonance state is observed at E = ReEr

3 ∼ 1.000135.
Note that, at ε = 0, the probability densities take almost

the same values independent of EI in the transmissive region.
This means that the resonance eigenstates do not influence

FIG. 13. Change of P̄tr (x) in Eq. (B1) with Eq. (B2) at c = 0.03
and ε = 0.2.

the probability density in the transmissive region, but this fact
does not contradict the fact that the resonance eigenstates have
long lifetimes and rather allows them to do so because of
relatively smaller leak rates.

APPENDIX B: CHANGE OF TUNNELING PROBABILITIES
WITH THE INITIAL ENERGY EI

Here, we regard the transition rate approximately given by
Eq. (18) with Eq. (13) as a function of EI when h̄, ω, and ε are
fixed. Setting up as y = EI < 1, V0 = 1, and c = h̄ω < ε < 1,
Eq. (18) can be rewritten as

P̄tr(y) = min

{
1

2πn∗∗

(
eε

2n∗∗c

)2n∗∗

,
2c

πε

}
, (B1)

where n∗∗ corresponding to n̄ is defined as

n∗∗ = min{n|n � (1 − y)/c}. (B2)

Figure 13 shows the change of P̄tr(y) at c = 0.03 and ε = 0.2.
For n∗∗ � eε

2c , i.e., y � 1 − eε
2 ∼ 0.728, P̄tr(y) forms a stair-

case function owing to the stepwise change of n∗∗ with y.
When |n∗∗| � eε

2c , i.e., y � 1 − eε
2 , P̄tr(y) takes a constant value

of 2c
πε

∼ 0.0955. But, in the range |n| � eε
2c , real transition

rates do not take a constant value and rather undulate accom-
panied by dips at some values in n, at which the transition
from the initial state with E = EI to the harmonic channel
with E = EI + nh̄ω is extremely suppressed [18,21]. Further-
more, since the probability density is estimated as Eq. (20), PQ

p
is affected by resonance eigenstates at the condition ReEr

m =
EI + nh̄ω even in the range |n| � eε

2c .
Figure 14 shows changes of PQ

p and PQ
t with EI at ε = 0.2,

ω = 0.3, and h̄ = h̄ref. There exists a threshold energy E cl

such that, for the range EI < E cl, any classical particles are
forbidden to reach the transmissive region and purely quan-
tum tunneling occurs. Note that E cl is larger than V0 − ε

(>V0 − eε
2 ). Thus PQ

t forms a staircase structure in the range
EI < E cl, which is qualitatively reproduced by that in Fig. 13.
This staircase structure is similar to that of the nearly inte-
grable Hénon map studied by Hanada et al. [29], though they
took the quantum number of the initial state instead of the
incident energy EI as the control parameter. In each unit of
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FIG. 14. Changes of PQ
p and PQ

t as functions of the incident
energy EI at ε = 0.2, ω = 0.3, and h̄ = h̄ref. In the range EI < E cl ∼
0.83985, any classical particles are forbidden to reach the transmis-
sive region.

the staircase structure, PQ
t is almost constant as long as n̄ is

the same. On the other hand, PQ
p has resonance peaks at EI =

ReEr
1 − n̄h̄ω, each of which has a wide skirt on the right-hand

side of it.
Even in the range EI > E cl, staircase structures still exist

in PQ
p and PQ

t , although the heights of steps become smaller.
Furthermore, PQ

p is accompanied by resonance peaks. As
shown in Fig. 12 in Appendix A, PQ

p merely has a very
small resonance peak at EI = ReEr

1 due to the disturbance by
harmonic channels with En = ReEr

1 + nh̄ω, with n � 1, and
PQ

t does not have a clear step. However, the other peaks of
PQ

p at EI = ReEr
1 − n̄h̄ω, except n̄ = 2, are larger than that

at EI = ReEr
1 . It means that the contributions of harmonic

channels at En = EI + nh̄ω with n �= n̄ are relatively small. At
EI = ReEr

1 − 2h̄ω (n̄ = 2), PQ
p has no clear peak and PQ

t has
no clear step. We suspect that the transition to the resonance
eigenstate at E = ReEr

1 is substantially forbidden due to a dip
in the transition rate.
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