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Occupation time of a system of Brownian particles on the line with steplike initial condition

Ivan N. Burenev , Satya N. Majumdar , and Alberto Rosso
LPTMS, CNRS, Université Paris-Saclay, 91405 Orsay, France

(Received 30 November 2023; accepted 29 February 2024; published 26 April 2024)

We consider a system of noninteracting Brownian particles on the line with steplike initial condition and
study the statistics of the occupation time on the positive half-line. We demonstrate that even at large times,
the behavior of the occupation time exhibits long-lasting memory effects of the initialization. Specifically, we
calculate the mean and the variance of the occupation time, demonstrating that the memory effects in the variance
are determined by a generalized compressibility (or Fano factor), associated with the initial condition. In the
particular case of the uncorrelated uniform initial condition we conduct a detailed study of two probability
distributions of the occupation time: annealed (averaged over all possible initial configurations) and quenched
(for a typical configuration). We show that at large times both the annealed and the quenched distributions
admit large deviation form and we compute analytically the associated rate functions. We verify our analytical
predictions via numerical simulations using importance sampling Monte Carlo strategy.
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I. INTRODUCTION

A classical problem in out-of-equilibrium statistical me-
chanics is the problem of effusion, i.e., the process in which
gas of particles leak from the reservoir through the small hole.
In its simplest one-dimensional realization this process can be
modeled by initially confining particles within a box and then
removing one of the walls. The system is intrinsically out of
equilibrium, which results in nontrivial behaviors even in this
seemingly simple case.

One of the peculiar features of such systems lies in their
ability to retain an everlasting memory of the initialization.
In other words, different initial conditions lead to distinct
behaviors and the differences do not fade out with time. For
diffusive particles this phenomenon has been observed in vari-
ous observables, such as total particle current [1,2], local time
at the origin [3,4], and displacement of a tracer [5,6]. Memory
effects also persist in more general Gaussian processes [7]
and in other systems like run-and-tumble particles [8–10],
Brownian particles with resetting [11,12], or Jepsen gas [13].

Here we focus exclusively on noninteracting Brownian
particles. In this case an important class of observables is
so-called Brownian functionals [14]. Denoting by xi(t ) the
trajectory of the ith particle and by t total time of the process,
we define these observables by

O ≡
∑

i

∫ t

0
V [xi(t

′)] dt ′, (1)

where V [x] is an arbitrary function.
It is important to note that the probability distribution of the

functional for an individual particle is inherently dependent on
its initial position, hence (1) involves a sum of independent yet
nonidentically distributed random variables. Consequently,
the general theory well developed for identically distributed
random variables is inapplicable here. At the same time, initial
condition, as was argued in Ref. [1], plays a role similar to the
realization of the disorder in the theory of disordered systems.

Thus there are two natural ways to treat it. The first way is
to average over all realizations (“annealed” scheme) and sec-
ond is to consider a typical initial configuration (“quenched”
scheme).

In our previous paper [3] we conducted a study of a specific
functional, local time density at the origin, which corresponds
to the choice V [x] = δ(x) in (1). Here we extend the analysis
to another observable. Specifically, we opt for V [x] in (1) to
be a Heaviside function V [x] = θ (x),

T ≡
∑

i

∫ t

0
θ [xi(t

′)] dt ′. (2)

This quantity, usually referred to as occupation (or residence)
time on the half-line, characterizes the amount of time parti-
cles have spent to the right of the origin.

The single-particle counterpart of (2) has been already
extensively studied in both mathematics [15–17] and physics
literature for various systems. A nonexhaustive list of exam-
ples includes diffusion in the Sinai-type potential [18,19],
fractional Brownian motion [20], Gaussian stationary pro-
cess [21,22], run-and-tumble particle [23], random accel-
eration model [24], renewal processes [25,26], trap model
[27], continuous-time random walk [28], coarsening systems
[29–31], heterogeneous diffusion [32], diffusion with a drift
[33,34], diffusion with stochastic resetting [35,36], and a class
of Gaussian Markov processes [37].

The concept of occupation time arises in very diverse do-
mains. Just to name a few examples, it appears in the context
of blinking quantum dots [38]; problems of interface growth
[39], spin glasses [40] and stochastic thermodynamics [41];
competitive sports [42]; and finance [43].

In this paper we study the statistical properties of the occu-
pation time on the positive half-line (2) for a system of non-
interacting Brownian particles on the line with steplike initial
condition. Following the approach of Ref. [5] we demonstrate
that the memory effects in the variance of the occupation
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FIG. 1. Schematic representation of the Brownian trajectories of
for N = 6 particles.

time are governed by the generalized compressibility (or Fano
factor) of the initial condition. For the particular case of
uncorrelated uniform initial condition we study the tails of
both quenched and annealed probability distributions at large
times. To do this we utilize large deviation theory [44,45].
We show that both distributions admit the large deviation
form and compute corresponding rate functions. All analytical
computations are supported by numerical simulations.

Let us stress that the analysis we are to conduct in this
paper closely resembles the one presented in Ref. [3] for
the local time density at the origin. Moreover, since δ(x) =
∂xθ (x), the occupation time and the local time are related in
a simple way on the functional level. However, this similarity
is, in fact, misleading, and one cannot derive the statistical
properties of the occupation time from the known results for
the local time density. Therefore, to describe statistics of the
occupation time precisely, one has to go through the whole
machinery of computations. In the present paper we provide
these calculations.

The paper is organized as follows. In Sec. II we introduce
the model and the problem we address and present our main
results. In Sec. III, we consider the case of general steplike
initial condition. By computing first two cumulants of both
quenched and annealed probability distributions, we describe
the behavior of the occupation time close to its typical value.
We show that the variance depends on the initial condition,
and this dependence persists over time. We also show that
this memory effect is governed by a single static quantity,
known as the generalized compressibility or Fano factor. In
Sec. IV we focus on uncorrelated uniform initial conditions
and characterize the tails of the probability distributions by
computing corresponding large deviation functions along with
their asymptotic expansions. Section V is devoted to numeri-
cal simulations. Finally, we conclude in Sec. VI. In addition,
in Appendix we provide detailed comparison between the
results presented in this paper and those obtained in Ref. [3]
for the local time density at the origin.

II. THE MODEL AND THE MAIN RESULTS

A. The model

Consider a system of N noninteracting Brownian particles
on a line initially confined in the box [−L; 0] (see Fig. 1).

If we denote the coordinate of the ith particle by xi(t ), then
the evolution of the system is governed by N independent
Langevin equations,

ẋi(t ) =
√

2D ηi(t ), i = 1, . . . , N, (3)

where D is the diffusion coefficient and ηi(t ) is Gaussian
white noise with zero mean and unit variance

〈ηi(t )〉 = 0, 〈ηi(t )η j (t
′)〉 = δi j δ(t − t ′). (4)

In this paper we study statistical properties of the occupa-
tion time (on the positive half-line). Denoting the total time of
the process by t , we define this observable as

T ≡
∑

i

∫ t

0
θ [xi(t

′)]dt ′, (5)

where θ (x) is a Heaviside θ function. The quantity (5) mea-
sures the amount of time particles have spent to the right of
the origin. Note that in Ref. [3] we used the same notation T
for the local time density at the origin, but these quantities do
not appear together in the main text of the paper; therefore it
should not cause any confusion.

Clearly, the occupation time depends on the initial posi-
tions of the particles. Therefore, in order for the problem to
be welldefined, we need to specify them. In this paper we
assume that initial coordinates of the particles are random
variables which, in principle, may exhibit correlations. The
only requirement is that the marginal probability distribution
of a single-particle initial coordinate is uniform along the
interval [−L, 0].

Since the initial positions of the particles are random, there
are two sources of randomness in the system: stochasticity
of Brownian trajectories and initial distribution of particles.
The latter, as was argued in Ref. [1], plays the role, similar to
the realization of the disorder in the theory of the disordered
systems. Therefore there are two natural ways to treat it. One
can either average over all possible realizations of the initial
configurations (“annealed” averaging scheme) or consider a
typical initial condition (“quenched” averaging scheme). Let
us now endow these two schemes with formal definitions.

Consider some fixed initial configuration of particles x =
(x1, . . . , xN ). Denote by P [T, t | x] the probability that at the
observation time t the total occupation time is equal to T and
by 〈e−pT 〉x its Laplace transform

〈e−pT 〉x ≡
∫ Nt

0−
dT e−pTP [T, t | x]. (6)

Then annealed and quenched probability distributions are de-
fined as ∫ Nt

0−
dT e−pTPan[T, t] ≡ 〈e−pT 〉x, (7)∫ Nt

0−
dT e−pTPqu[T, t] ≡ exp[log 〈e−pT 〉x]. (8)

Here and subsequently bar · · · denotes averaging over real-
izations of the initial conditions and brackets 〈· · · 〉x stand for
averaging over Brownian trajectories with initial configura-
tion x kept fixed. The upper limit in the Laplace transforms is
due to the fact that the occupation time for a single particle is
bounded by the total observation time.
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The aim of this paper is to study the statistics of the occu-
pation time (5) at large times in the thermodynamic limit, i.e.,
the limit in which N, L → ∞ with their ratio ρ̄ = N/L being
fixed. In particular we shall study two probability distribu-
tions of the occupation time: annealed Pan[T, t] and quenched
Pqu[T, t], defined by (7) and (8), respectively.

B. The main results

The probability distribution of the occupation time close to
its typical value has a Gaussian form which can be character-
ized by the mean and the variance. We compute them for the
general steplike initial condition in which initial coordinates
may be correlated.

First, we compute the mean value of the occupation time

〈T 〉x = 2

3

√
D

π
ρ̄ t3/2. (9)

Expression (9) holds for both annealed and quenched prob-
ability distributions; however, the variances differ. For the
quenched variance, which is defined in accordance with (8)
as

Varqu[T ] = 〈T 2〉x − 〈T 〉2
x, (10)

we find the explicit form

Varqu[T ] = 8(
√

2 − 1)

15

√
D

π
ρ̄ t5/2. (11)

We emphasize that results (9) and (11) hold for any time
t . Another observation we can make from (11) is that the
quenched variance depends only on the average density of
particles in the initial configuration and has no memory of
possible correlations whatsoever.

The annealed variance according to (7) is defined as

Varan[T ] = 〈T 2〉x − 〈T 〉x
2
. (12)

We find that at large times its behavior reads

Varan[T ] 	
t→∞

[
2

5
+ 2 (4

√
2 − 7)

15
(1 − αic )

]√
D

π
ρ̄ t5/2,

(13)

where αic denotes the Fano factor (generalized compressibil-
ity) of the initial condition,

αic ≡ lim
	→∞

Var[n(	)]

n(	)
. (14)

Here n(	) denotes the number of particles initially located in
the segment [−	, 0].

It is clear from (13) that the annealed variance does indeed
depend on the initialization. However, all the dependence is
encoded in a single static quantity αic. In other words, if we
initialize the systems in two different ways—by drawing the
initial configurations from either distribution p1(x) or p2(x)
with different Fano factor—then we can distinguish between
these initialization protocols by looking at the annealed vari-
ance of the occupation time. This is exactly what we mean by
the memory of the initial condition.

Let us take a closer look at two particular cases. First is
the hyperuniform initial condition, i.e., the initial condition in

which the ratio 	−1Var[n(	)] → 0 as 	 → 0. In this case αic is
equal to zero. Consequently,

αic = 0 : Varan[T ] 	
t→∞

8(
√

2 − 1)

15

√
D

π
ρ̄ t5/2. (15)

Comparing (15) with (11) suggests, that the “typical” initial
configuration, as mentioned when handwavingly defining the
quenched probability distribution, is essentially a configura-
tion drawn from a hyperuniform distribution (see Sec. III B
for more details).

Another important special case is uncorrelated uniform
initial condition, the scenario in which initial positions of par-
ticles are drawn from the uniform distribution independently.
Since particles do not interact, uncorrelated uniform distribu-
tion is essentially the equilibrium distribution and therefore it
is a very natural choice for the initial condition. In this case,
the distribution of the number of particles in a segment n(	)
is a Poisson distribution. Therefore the mean and the variance
entering (14) are the same, hence αic = 1 and we have

αic = 1 : Varan[T ] 	
t→∞

2

5

√
D

π
ρ̄ t5/2. (16)

Actually, for the uncorrelated uniform initial condition, ex-
pression (16) is exact for all times and not only in the limit
t → ∞ (see Sec III B for details). In particular this implies
that

uncorrelated uniform:
Varqu[T ]

Varan[T ]
= 4

√
2 − 1

3
< 1, (17)

and this ratio does not depend on time.
To explore the tails of the probability distributions we

resort to the large deviation formalism [44,45]. We find that
the probability distributions admit the large deviation forms

Pan[T, t] 	 exp[−ρ̄
√

4Dt 
an(τ )], (18)

Pqu[T, t] 	 exp[−ρ̄
√

4Dt 
qu(τ )], (19)

where

τ ≡ T

t3/2

1

ρ̄
√

4D
. (20)

As we show in Sec. III B, quenched rate function 
qu(τ )
is the same for all steplike initial conditions. Annealed rate
function 
an(τ ), on the other hand, is more subtle and differs
for different initial conditions. Therefore we restrict ourselves
to the case of uncorrelated uniform initial condition.

For the uncorrelated uniform initial condition we find that
the annealed rate function 
an(τ ) is given by an inverse Leg-
endre transform,


an(τ ) = max
q

[−qτ + φan(q)], (21)

with

φan(q) = 1√
π

− 1√
4q

erf
(√

q
)
. (22)

Expression (22) together with (21) provide parametric rep-
resentation of 
an(τ ) (see Fig. 2). Analyzing these two
expressions we extract leading asymptotic behaviors of
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FIG. 2. Large deviation function in the annealed case and its asymptotic expansions. In the left panel τ has a larger range, while in the right
panel, we zoom in around the minimum of 
an(τ ) reached at τ = τtyp = 1

3
√

π
. On both panels the solid lines correspond to the large deviation

function computed in Mathematica from (21) and (22). Dashed, dotted, and dash-dotted lines are asymptotic behaviors of 
an(τ ) in (23) for
small, typical, and large values of rescaled occupation time τ (20), respectively.


an(τ ),


an(τ ) ∼

⎧⎪⎪⎨
⎪⎪⎩

1√
π

− 3
2

(
τ
2

)1/3
, τ → 0,

5
2

√
π
(
τ − 1

3
√

π

)2
, τ → 1

3
√

π
,

τ
(
μ log[2τ

√
π] − 1

μ

)
, τ → ∞,

(23)

where

μ ≡ 1 + log log[2τ
√

π ]

log[2τ
√

π ]
. (24)

Asymptotic expansion (23) along with the large deviation
form (18) imply that close to the typical value of the occu-
pation time, annealed probability distribution is given by

Pan[T, t] 	 exp

[
−1

2

(
T − Ttyp

σan

)2
]
, T → Ttyp, (25)

with

Ttyp = 2

3

√
D

π
ρ̄ t3/2, σ 2

an = 2

5

√
D

π
ρ̄ t5/2. (26)

This is exactly the result we anticipate from (9) and (16).
For the quenched rate function 
qu(τ ) we obtain similar

representation. Namely


qu(τ ) = max
q

[−qτ + φqu(q)], (27)

where

φqu(q) = −
∫ ∞

0
dy log

⎡
⎣erf(y) + 1

π

∫ 1

0
dξ

e−qξ− y2

1−ξ

√
ξ (1 − ξ )

⎤
⎦.

(28)

Expressions (27) and (28) give us parametric representation
of the quenched rate function 
qu(τ ) (see Fig. 3) and allows
us to find the asymptotic behaviors,


qu(τ ) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ∞ − 1+ 1
2 log ν+ 1

3 log log ν
2√
π

(ν log ν)1/3 , τ → 0,

1
2

15
√

π

4(
√

2−1)

(
τ − 1

3
√

π

)2
, τ → 1

3
√

π
,(

4
3τ
)3

, τ → ∞,

(29)

where

ν = π3/2

12τ
, φ∞ = −

∫ ∞

0
log [erf(y)]dy ≈ 1.03. (30)

Similarly to the annealed case, from (29) and (19) it is clear
that close to the typical value of the occupation time

Pqu[T, t] 	 exp

[
−1

2

(
T − Ttyp

σqu

)2
]
, T → Ttyp, (31)

where

Ttyp = 2

3

√
D

π
ρ̄ t3/2, σ 2

qu = 8
(√

2 − 1
)

15

√
D

π
ρ̄ t5/2. (32)

which indeed matches with the mean (9) and the variance (11).
Note that the annealed and quenched probability distribu-

tions are very different (see Fig. 4 for the comparison). For
example, the probabilities that T = 0, i.e., the probabilities
that no particle have reached the origin up to the observation
time t , in both cases are stretched exponentials,

Pan[0, t] ∼ e−θan ρ̄
√

4Dt , Pqu[0, t] ∼ e−θqu ρ̄
√

4Dt , (33)

but the constants are different. Namely

θan = 1√
π

≈ 0.56, θqu = φ∞ ≈ 1.03. (34)

This difference is due to the atypical initial conditions. The
annealed probability distribution takes into account initial
configurations in which particles are far from the origin and
hence they require more time to reach it, which leads to higher
probability of survival. Such initial conditions are indeed the
atypical ones and therefore they do not contribute to the
quenched probability distribution.

In fact, survival probabilities (33) naturally appear in the
context of target problems (see Ref. [46] for a review) and
both constants in (34) can be computed in a much simpler
way [47]. Here we obtain them as by-products.

The behaviors of the quenched and annealed distributions
at atypically large occupation times also differ. Asymptotic
expansions (23) and (29) imply that

Pan[T, t] ∼ exp

[
−1

2

T

t
log

(
1

t3Dρ̄2
T 2

)]
, T � Ttyp,

(35)

Pqu[T, t] ∼ exp

[
−16

27

T

t

(
1

t3Dρ̄2
T 2

)]
, T � Ttyp. (36)

Thus, the quenched probability distribution decay much faster
than the annealed one. This is due to the atypical initial
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FIG. 3. Large deviation function in the quenched case and its asymptotic expansions. In the left panel τ has a larger range, while in the
right panel, we zoom in around the minimum of 
qu(τ ) reached at τ = τtyp = 1

3
√

π
. On both panels the solid lines correspond to the large

deviation function computed in Mathematica from (27) and (28). Dashed, dotted, and dash-dotted lines are asymptotic behaviors of 
qu(τ ) in
(29) for small, typical, and large values of rescaled occupation time τ (20), respectively.

configurations, in which particles are concentrated in the
vicinity of the origin. Since it does not take much time for
these particles to reach the origin, they contribute to the atyp-
ically large values of the occupation time.

III. THE MEAN AND THE VARIANCE

Close to the typical value, we expect the probability dis-
tribution of the occupation time to be Gaussian and hence we
can describe it by the mean and the variance. In this section we
compute them for general steplike initial condition in both
annealed and quenched averaging schemes.

A. One particle

Let us first consider the case of the individual particle. In
the case of simple Brownian motion the probability distribu-
tion P [T, t | x] of the occupation time T can be found, e.g.,
in Ref. [17] (p. 162 therein), and for a pedagogical derivation
of this result we refer the reader to Reference [14]. If the par-
ticle starts at x(0) = x � 0, then the probability distribution
P [T, t | x] reads

P [T, t | x] = erf

[ |x|√
4Dt

]
δ(T ) + 1

π

1√
T (t − T )

× exp

[
− x2

4D(t − T )

]
, x � 0, (37)

FIG. 4. Quenched (solid) and annealed (dashed) probability dis-
tributions obtained from (19) and (18), respectively. In this plot we
use t = 10 000, D = 1/2, ρ̄ = 1.

where

erf(z) = 2√
π

∫ z

0
e−s2

ds. (38)

Note that if the particle starts at the origin, then (37) simplifies
into the famous Lévy’s arcsine law [48]

P [T, t | x = 0] = 1

π

1√
T (t − T )

. (39)

The first term in (37) comes from the trajectories that have not
reached the origin up to time t and is nothing but the survival
probability of an individual particle.

We should stress that the expression (37) is valid only
when x � 0. But since this is exactly the case in which we
are interested, to simplify the notation we shall not emphasize
this anymore.

We will also need the Laplace transform of the P [T, t | x]
which is defined in a usual way as

〈e−pT 〉x ≡
∫ t

0−
e−pT P [T, t | x] dT . (40)

Since the occupation time cannot be larger than t , the prob-
ability measure is supported on [0, t] and hence the upper
limit in the integral above. Using the explicit form (37) of the
probability distribution P [T, t | x] we obtain

〈e−pT 〉x = erf

[ |x|√
4Dt

]
+ 1

π

∫ 1

0
dξ

e−pt ξ

√
ξ (1 − ξ )

× exp

[
− x2

4Dt

1

(1 − ξ )

]
. (41)

The integral in (41) has no explicit expression in terms of
elementary functions, but nevertheless it provides us a lot of
information. For example, the moments of the occupation time
are given by

〈T n〉x = t n 1

π

∫ 1

0
dξ

ξ n

√
ξ (1 − ξ )

exp

[
− x2

4Dt

1

(1 − ξ )

]
. (42)

After the change of variables ξ = y
y+1 and rescaling of the

coordinate z = x2

4Dt expression (42) transforms into

〈T n〉x=−√
4Dt z = t n e−z �

(
n + 1

2

)
π

U

(
n + 1

2
,

1

2
; z

)
, (43)
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where �(a) is Euler gamma function and U (a, b; z) denotes
the confluent hypergeometric function of the second kind [49],

U (a, b; z) ≡ 1

�(a)

∫ ∞

0
ds e−zssa−1(s + 1)b−a−1. (44)

From (44) it follows that U (a, b; z) satisfies a recurrence rela-
tion,

U (a + 1, b; z) = z1−a

a(a − b + 1)

d

dz
[zaU (a, b; z)]. (45)

In addition, one can easily check that

U

(
1

2
,

1

2
; z

)
= √

πez[1 − erf(
√

z)]. (46)

Combining (46) with recurrence relation (45) and then using
(43) we can find all the moments of the occupation time. In
particular, the first two moments are

〈T 〉x=−√
4Dt z = t

[(
1

2
+ z

)
erfc(

√
z) −

√
ze−z

√
π

]
, (47)

〈T 2〉x=−√
4Dt z = t2

(
3

8
+ 3

2
z + 1

2
z2

)
erfc(

√
z)

− t2

(
1

2
z + 5

4

)√
ze−z

√
π

, (48)

where erfc(z) = 1 − erf(z). From (47) and (48) we extract
large-time behavior for the mean and the variance of the
occupation time. At large times,

z = x2

4Dt
→ 0, t → ∞, (49)

and hence

〈T 〉x ∼ 1

2
t, 〈T 2〉x − 〈T 〉2

x ∼ 1

8
t2, t → ∞. (50)

B. System of particles

Now we proceed to the system of N Brownian particles
initially located to the left of the origin and compute the mean
and the variance of the occupation time. But first we shall
specify initial conditions more precisely.

Denoting by xi the position of the ith particle at t = 0, we
define the empirical density of the initial condition as

ρ̂(y | x) ≡
∑

i

δ(xi − y). (51)

Now all the information about the initial configuration is
encoded in ρ̂(y | x). In what follows, we restrict ourselves to
the particular type of the initial condition; that is, we assume
that the initial configuration of the particles was obtained from
the translational invariant distribution on the real line by re-
moving all particles on the positive half-line. This assumption
essentially implies two things. First, the average density is a
constant to the left of the origin and zero to the right

ρ̂(y | x) = ρ̄ θ (−y). (52)

Second, the two-point correlation function C(y1, y2) of the
initial condition

C(y1, y2) ≡ ρ̂(y1 | x) ρ̂(y2 | x) − ρ̄2 (53)

depends only on the difference (y1 − y2),

C(y1, y2) = ρ̄ θ (−y1)θ (−y2)C(y1 − y2). (54)

Note that we can already guess the scaling behavior of both
the mean and the variance. Indeed, the typical displacement of
a Brownian particle is proportional to

√
Dt . Consequently, the

particles that have reached the origin up to time t are those that
were initially located within the segment [−√

Dt, 0]. Since
there are approximately ρ̄

√
Dt such particles, and contribu-

tion of each particle to the mean value of the occupation time
is proportional to t (50), we expect the mean value of the total
occupation time to scale as

√
t · t = t3/2. Similarly, we expect

the variance to scale as
√

t · t2 = t5/2. Having this heuristic
argument in mind, we proceed to the rigorous computation.

The mean value of the occupation time for a given initial
configuration x in terms of the empirical density reads

〈T 〉x =
∫ ∞

−∞
dy ρ̂(y | x)〈T 〉y, (55)

where 〈T 〉y denotes the mean value of the occupation time of a
single particle starting at y which is given by (47). Averaging
(55) over initial conditions we get

〈T 〉x =
∫ ∞

−∞
dy ρ̂(y | x)〈T 〉y. (56)

Combining (56) with (52) we obtain

〈T 〉x = ρ̄

∫ 0

−∞
dy 〈T 〉y. (57)

Recalling (47) and after straightforward computation we ar-
rive at

〈T 〉x = 2

3

√
D

π
ρ̄ t3/2. (58)

This is the result stated in (9). The mean value depends only
on the average density of the particles and is the same for both
quenched and annealed distributions. Let us now proceed to
the computation of the variances

We start with the quenched distribution. According to (8),
the quenched variance is given by

Varqu[T ] = 〈T 2〉x − 〈T 〉2
x (59)

or in terms of the empirical density,

Varqu[T ] =
∫ ∞

−∞
dy ρ̂(y | x)

[〈T 2〉y − 〈T 〉2
y

]
. (60)

Due to (52), averaging over initial conditions yields

Varqu[T ] = ρ̄

∫ 0

−∞
dy
[〈

T 2
〉
y − 〈T 〉2

y

]
. (61)

Substituting (47) and (48) into (61) we get

Varqu[T ] = 8(
√

2 − 1)

15

√
D

π
ρ̄ t5/2. (62)

This is exactly the result (11).
Note that the quenched variance depends only on the av-

erage density of particles in the initial configuration. In fact,
the same is true for the full probability distribution Pqu[T, t].
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It becomes clear if we rewrite its definition (8) in terms of the
empirical density (51). Since there is no interaction we have

log〈e−pT 〉x =
∫ ∞

−∞
dy ρ̂(y | x) log〈e−pT 〉y, (63)

hence

log 〈e−pT 〉x = ρ̄

∫ 0

−∞
dy log〈e−pT 〉y, (64)

and therefore∫ Nt

0−
dT e−pTPqu[T, t] = exp

[
ρ̄

∫ 0

−∞
dy log〈e−pT 〉y

]
. (65)

Now we advance to the annealed probability distribution.
In accordance with (7) its variance is

Varan[T ] = 〈T 2〉x − 〈T 〉x
2
. (66)

Following the procedure introduced in Ref. [5] (see also
Ref. [7], Sec. IV) we formally rewrite (66) as a sum of two
terms

Varan[T ] = [〈T 2〉x − 〈T 〉2
x

]+ [〈T 〉2
x − 〈T 〉x

2]
= Varqu[T ] + Varic[T ]. (67)

The first term in (67) is the quenched variance (59) and all
dependence of possible correlations in the initial condition is
encoded solely in the second term,

Varic[T ] ≡ 〈T 〉2
x − 〈T 〉x

2
. (68)

To express Varic[T ] in terms of of the empirical density (51)
we note that

〈T 〉2
x =

∫ ∞

−∞
dy
∫ ∞

−∞
dy′ ρ̂(y | x) ρ̂(y′ | x)〈T 〉y〈T 〉y′ (69)

and

〈T 〉x
2 = ρ̄2

∫ 0

−∞
dy 〈T 〉y

∫ 0

−∞
dy′ 〈T 〉y′ . (70)

Substituting (70) and (69) into (68) we express Varic[T ] in
terms of the two-point correlation function (53) as

Varic[T ] = ρ̄

∫ 0

−∞
dy
∫ 0

−∞
dy′〈T 〉y〈T 〉y′C(y − y′). (71)

To proceed further we should either specify initial condition
and provide the exact form of the C(y − y′) or, alternatively,
we can study the large-time limit and compute (71) as t → ∞.
The latter can be done by introducing the Fourier transform of
the two-point correlation function

C(y) = 1

2π

∫ ∞

−∞
dq eiqyS(q). (72)

Then (71) turns into

Varic[T ] = ρ̄

∫ 0

−∞
dy
∫ 0

−∞
dy′〈T 〉y〈T 〉y′

× 1

2π

∫ ∞

−∞
dq S(q)eiq(y−y′ ). (73)

In the limit t → ∞ the integral over q is essentially a δ

function. Indeed, if we rescale the variables of the integration

in (73) as y = 4Dt ỹ, y′ = 4Dt ỹ′, q = p
4Dt , then the integral

over q transforms into

1

2π

∫ ∞

−∞
d p S

( p

4Dt

)
eip(ỹ−ỹ′ ) 	

t→∞ S(0) δ(ỹ − ỹ′), (74)

where we used a representation

δ(ỹ − ỹ′) = 1

2π

∫ ∞

−∞
d p eip(ỹ−ỹ′ ). (75)

Due to (74), at large times (73) simplifies into

Varic[T ] 	 ρ̄ S(0)
∫ 0

−∞
dy 〈T 〉2

y, t → ∞ (76)

and using (47) we arrive at

Varic[T ] 	 S(0)
2(7 − 4

√
2)

15

√
D

π
ρ̄ t5/2, t → ∞. (77)

The quantity S(0) is exactly the Fano factor defined in (14).
To see this, we express n(	) in terms of the empirical density

n(	) =
∫ 0

−	

dy ρ̂(y | x), (78)

and hence

n(	) ∼ 	ρ̄, 	 → ∞. (79)

Similarly for the variance

Var[n(	)] =
∫ 0

−	

dy
∫ 0

−	

dy′ [ρ̂(y | x) ρ̂(y′ | x) − ρ̄2] (80)

the integrand is nothing but a two-point correlation function
(53). Using the Fourier transform (72) after rescaling p = q	,
y = ỹ	, y′ = ỹ′	 we get

Var[n(	)] = ρ̄ 	

∫ 0

−1
dỹ
∫ 0

−1
dỹ′
∫ ∞

−∞

d p

2π
eip(ỹ−ỹ′ )S

( p

	

)
, (81)

which in the limit 	 → ∞ reduces to

Var[n(	)] ∼ ρ̄ 	

∫ 0

−1
dỹ
∫ 0

−1
dỹ′δ(ỹ − ỹ′)S(0), (82)

hence

Var[n(	)] ∼ ρ̄ 	 S(0) 	 → ∞ (83)

and

αic ≡ lim
	→∞

Var[n(	)]

n(	)
= S(0). (84)

Having expressions (62) and (77) for both terms in (67) we
combine them together arriving at the result stated in (13),
i.e.,

Varan[T ] 	
t→∞

[
2

5
+ 2 (4

√
2 − 7)

15
(1 − αic )

]√
D

π
ρ̄ t5/2.

(85)
As we have mentioned, instead of taking the limit t → ∞

in (71) we can choose a particular initial condition. For ex-
ample, if we draw initial coordinates independently from the
uniform distribution, then the two-point correlation function
is just a δ function,

C(y1, y2) = ρ̄ θ (−y1)θ (−y2) δ(y1 − y2). (86)

044150-7



BURENEV, MAJUMDAR, AND ROSSO PHYSICAL REVIEW E 109, 044150 (2024)

FIG. 5. Examples of typical initial configurations [(a)–(c)]. For the comparison, we provide three initial configurations [(d)–(f)] drawn
from the uncorrelated uniform probability distribution.

Then αic = S(0) = 1 and (71) simplifies into

uncorr. uniform: Varic[T ] = ρ̄

∫ 0

−∞
dy 〈T 〉y

2, (87)

and hence

uncorr. uniform: Varic[T ] = 2(7 − 4
√

2)

15

√
D

π
ρ̄ t5/2, (88)

and for the annealed variance we get

uncorr. uniform: Varan[T ] = 2

5

√
D

π
ρ̄ t5/2. (89)

We stress that for the uncorrelated uniform initial condition,
expression (89) is valid at any time, whereas (85) is the be-
havior at large times.

As a final remark let us briefly comment on the physi-
cal meaning of the quenched probability distribution. At this
point, we have already mentioned a couple of times that the
quenched probability distribution corresponds to fixing the
initial configuration of particles to be a “typical” one. But
what are these “typical” configurations exactly? Comparing
(85) with (62) suggests that “typical” configurations are those,
drawn from the probability distribution with αic = 0. In fact,
we can point out the “typical” initial conditions more pre-
cisely. Namely, if we consider a fixed initial configuration,
such that xi(0) is confined within the segment χi,

χi ≡
[
− i

ρ̄
,− i − 1

ρ̄

]
, (90)

and study the probability distribution of the occupation time,
then at large observation time, the resulting distribution will
be the same as the quenched one Pqu[T, t] defined in (8). In
other words all these configurations are “typical” (see Fig. 5).
The rigorous proof of this statement is essentially the same
as the one we have performed in Ref. [3] for the local time
density at the origin (see Appendix B therein), and, therefore,
to avoid burying the reader under technical details, we do not
provide the derivation here.

A simple consequence is that if we draw xi(0) from a
distribution supported on χi, then all initial configurations
will be “typical,” and, hence, at large times, they all result
in Pqu[T, t]. Consequently, within this initialization protocol,
the quenched and the annealed probability distributions are
the same.

IV. THE LARGE DEVIATION FUNCTIONS

In the previous section we have described the behavior of
the occupation time close to its typical value in both annealed
and quenched cases for general steplike initial conditions.
In this section we focus on the uncorrelated uniform initial
condition and study the tails of the probability distributions
(7) and (8).

The mean and the variances we have computed suggest that
at large times probability distributions admit the following
forms:

Pan[T, t] 	 exp[−ρ̄
√

4Dt 
an(τ )], (91)

Pqu[T, t] 	 exp[−ρ̄
√

4Dt 
qu(τ )], (92)

with

τ ≡ T

t3/2

1

ρ̄
√

4D
. (93)

In what follows we compute rate functions 
an(τ ) and 
qu(τ )
along with their asymptotic expansions.

A. Annealed large deviation function

As we have shown in (85) annealed probability distribution
depends on the initial condition, and this dependence does not
vanish with time. Clearly such dependence remains on the
level of the rate function 
an(τ ) and has significant impact
on the the tails of the probability distribution. Thus we focus
on the uncorrelated uniform initial condition. In this case

〈e−pT 〉x =
[∫ 0

−L

dx

L
〈e−pT 〉x

]N

. (94)

The exact form of 〈e−pT 〉x is given by (41) and consists of two
terms. Integral of the first term can be computed exactly and
its large L behavior reads∫ 0

−L

dx

L
erf

[ |x|√
4Dt

]
	

L→∞
1 − 1

L

√
4Dt

π
. (95)

To determine the behavior of the second term we first integrate
with respect to x, then take the limit L → ∞

1

π

∫ 0

−L

dx

L

∫ 1

0
dξ

e−pt ξ

√
ξ (1 − ξ )

exp

[
− x2

4Dt

1

(1 − ξ )

]

= 1

L

√
tD

π

∫ 1

0
dξ

e−pt ξ

√
ξ

erf

[
L√

4Dt (1 − ξ )

]
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L→∞

1

L

√
tD

π

∫ 1

0
dξ

e−pt ξ

√
ξ

= 1

L

√
D

p
erf(

√
pt ). (96)

Combining (96) with (95) we obtain for (94)

〈e−pT 〉x 	
L→∞

⎡
⎣1 − 1

L

√
4Dt

π
+ 1

L

√
D

p
erf(

√
pt )

⎤
⎦

N

, (97)

and hence in the thermodynamic limit N, L → ∞ with the
fixed ratio ρ̄ = N/L we have

〈e−pT 〉x 	
L,N→∞

exp[−ρ̄
√

4Dt φan(pt )], (98)

where

φan(q) = 1√
π

− 1√
4q

erf(
√

q). (99)

In principle, to find the annealed probability distribution
Pan[T, t] we need to invert double Laplace transform,∫ ∞

0−
dT e−pTPan[T, t] = exp[−ρ̄

√
4Dt φan(pt )]. (100)

However, since we are interested in the large-time behavior,
we can instead substitute ansatz (91) into (100). Then after
rescaling of the variables we get∫ ∞

0−
dτ e−ρ̄

√
4Dt[qτ+
an(q)] = e−ρ̄

√
4Dt φan(q), (101)

where

q = pt, τ = T

t3/2

1

ρ̄
√

4D
. (102)

The large-time limit corresponds to the saddle-point approx-
imation of the integral in (101). By comparing exponents we
find that

min
τ

[qτ + 
an(τ )] = φan(q). (103)

Inverting Legendre transform (103) we obtain


an(τ ) = max
q

[−qτ + φan(q)]. (104)

Expression (104) together with (99) provides us with the para-
metric representation of the annealed large deviation function

an(τ ). It is a concave function with the minimum at some
point τtyp. Due to (58) we indeed expect τtyp = 1

3
√

π
. Further-

more, by analyzing φan(q) at q → 0, q → ∞, and q → −∞
we can extract asymptotic behavior of 
an(τ ) for τ → τtyp,
τ → 0, and τ → ∞ respectively. Below we provide the com-
putation eventually arriving at (23).

1. Typical fluctuations

Typical fluctuations of the occupation time are governed by
the behavior of the φan(q) close to q = 0. By expanding (99)
up to the second order in q we find

φan(q) 	 1√
π

(
1

3
q − 1

10
q2

)
, q → 0, (105)

and hence


an(τ ) 	 max
q

[
−qτ + 1√

π

(
1

3
q − 1

10
q2

)]
. (106)

This is a quadratic function and we easily find that


an(τ ) 	 5

2

√
π

(
τ − 1

3
√

π

)2

, τ → τtyp = 1

3
√

π
, (107)

which implies

Pan[T, t] 	 exp

[
−1

2

(
T − Ttyp

σan

)2
]
, T → Ttyp, (108)

with

Ttyp = 2

3

√
D

π
ρ̄ t3/2, σ 2

an = 2

5

√
D

π
ρ̄ t5/2. (109)

In other words, large deviation function gives us exactly the
same results as we have obtained in the previous section by
different means [recall (58) and (89)].

2. Atypical fluctuations T � Ttyp

Atypically small fluctuations are governed by large-q be-
havior of the φan(q). Expanding (99) in series as q → ∞ we
get

φan(q) 	 1√
π

− 1√
4q

, q → ∞. (110)

Therefore


an(τ ) 	 max
q

(
−qτ + 1√

π
− 1√

4q

)
. (111)

Maximizing this function we arrive at


an(τ ) 	 1√
π

− 3

2

(τ

2

)1/3
, τ → 0. (112)

3. Atypical fluctuations T � Ttyp

To study atypically large fluctuations we need to expand
φan(q) as q → −∞. The subtlety here lies in the square root,
namely we need to perform an analytical continuation of the
erf(z) as

φan(q) = 1√
π

+ ierf(i
√|q|)√

4|q| , q < 0, (113)

and using the expansion

ierf(i
√

|q|) 	 − e|q|
√

π |q| , q → −∞, (114)

we arrive at


an(τ ) 	 max
q

(
|q|τ + 1√

π
− 1√

π

e|q|

2|q|
)

. (115)

Taking the derivative of the expression in (115) we find that
its maximum is reached at q = q∗ satisfying

τ − e|q∗|

2
√

π |q∗| = 0. (116)

This is a well-known transcendent equation, and its solution
is expressed in terms of the Lambert W function [50]. For
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τ > e
2
√

π
there are two roots of (116), but since we are looking

at τ → ∞ we should choose the solution corresponding to the
larger τ . It is given by the lower branch of the Lambert W
function,

q∗ = W−1

(
− 1

2τ
√

π

)
. (117)

Utilizing the asymptotic expansion of W−1(z),

W−1(−z) 	 log z − log [− log z], z → 0, (118)

we find that in the leading order

|q∗| 	 log[2τ
√

π ] + log log[2τ
√

π ], τ → ∞. (119)

Substituting (119) into (115) we get the asymptotic behavior
of the large deviation function,


an(τ ) 	 τ

(
μ(τ ) log[2τ

√
π ] − 1

μ(τ )

)
, τ → ∞, (120)

where

μ(τ ) = 1 + log log[2τ
√

π ]

log[2τ
√

π ]
. (121)

B. Quenched large deviation function

Now we proceed to the quenched probability distribution
(8). As we have shown in (65) its Laplace transform reads∫ t

0
dTe−pTPqu[T, t] = exp

[
ρ̄

∫ ∞

0
dy log〈e−pT 〉y

]
. (122)

Using the explicit form (41) of 〈e−pT 〉y we find that the
quenched probability distribution is given by∫ t

0
dTe−pTPqu[T, t] = exp[−ρ̄

√
4Dt φqu(pt )], (123)

where

φqu(q) = −
∫ ∞

0
dy log

⎡
⎣erf(y) + 1

π

∫ 1

0
dξ

e−qξ− y2

1−ξ

√
ξ (1 − ξ )

⎤
⎦.

(124)

Analogously to the annealed case we find that in the saddle-
point approximation

Pqu[T, t] 	 exp[−ρ̄
√

4Dt 
qu(τ )], τ = T

t3/2

1

ρ̄
√

4D
,

(125)
where the large deviation function 
qu(τ ) is given by an
inverse Legendre transform


qu(τ ) = max
q

[−qτ + φqu(q)]. (126)

Equations (126) and (124) give the parametric representation
of 
qu(τ ). Let us now study its the asymptotic behavior and
derive (29).

1. Typical fluctuations

In order to obtain fluctuations of the occupation time close
to the typical value we need to study the behavior of φqu(q) as
q → 0. By first expanding the integrals in (124) in series with
respect to q and then using the representation of the moments

in terms of confluent hypergeometric function (44) as in (43),
after technical yet straightforward computation we arrive at

φqu(q) 	 1

3
√

π
q − 4

15

√
2 − 1√

π
q2, q → 0. (127)

Therefore, in accordance with (126), we have


qu(τ ) 	 max
q

(
−qτ + 1

3
√

π
q − 4

15

√
2 − 1√

π
q2

)
. (128)

Maximizing this quadratic function yields


qu(τ ) 	 1

2

15
√

π

4(
√

2 − 1)

(
τ − 1

3
√

π

)2

, τ → τtyp = 1

3
√

π
.

(129)

Expression (129) implies that close to the typical value, the
quenched probability distribution behaves as

Pqu[T, t] 	 exp

[
−1

2

(
T − Ttyp

σqu

)2
]
, T → Ttyp, (130)

where

Ttyp = 2

3

√
D

π
ρ̄ t3/2, σ 2

qu = 8
(√

2 − 1
)

15

√
D

π
ρ̄ t5/2. (131)

This is exactly the behavior anticipated in (58) and (62).

2. Atypical fluctuations T � Ttyp

Atypically small fluctuations can be extracted from the
q → ∞ expansion of φqu(q). First we note that in (124) the
main contribution to the integral over ξ comes from values of
ξ close to zero, and therefore

∫ 1

0
dξ

e−qξ− y2

1−ξ

√
ξ (1 − ξ )

	 e−y2
∫ 1

0
dξ

e−qξ

√
ξ

, q → ∞. (132)

Computing this integral yields

∫ 1

0
dξ

e−qξ

√
ξ

=
√

πerf(
√

q)√
q

	
√

π

q
, q → ∞. (133)

Substituting (133) and (132) into (124) we arrive at

φqu(q) 	 −
∫ ∞

0
dy log

[
erf(y) + e−y2 1√

πq

]
, q → ∞.

(134)
To proceed further we use a trick. Namely, we take a derivative
of φqu(q),

∂

∂q
φqu(q) = 1

2q3/2

∫ ∞

0
dy

1
1√
q + ey2√

πerf(y)
, (135)

and note that the integral (135) diverges as q → ∞. To deter-
mine the large-q behavior of φqu(q), it is sufficient to find the
divergent part of (135) and integrate it back. This can be done
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by rewriting the integral in (135) as∫ ∞

0
dy

1
1√
q + ey2√

πerfy

=
∫ 1

0
dy

⎡
⎣ 1

1√
q + ey2√

πerf(y)
− 1

1√
q + 2y

⎤
⎦

+
∫ ∞

1
dy

1
1√
q + ey2√

πerf(y)
+
∫ 1

0

1
1√
q + 2y

dy.

(136)

In (136) first two integrals converge, and computing them we
get ∫ ∞

0
dy

1
1√
q + ey2√

πerf(y)

	 1

4
log

π

4
+
∫ 1

0

1
1√
q + 2y

dy. (137)

The remaining integral diverges logarithmically, and hence

∂

∂q
φqu(q) 	 1

8q3/2
log πq, q → ∞. (138)

Integrating (138) back gives us

φqu(q) = φ∞ − 2 + log πq

4
√

q
, (139)

where the constant of integration is restored by taking the limit
q → ∞ in (134)

φ∞ = −
∫ ∞

0
log [erf(y)]dy ≈ 1.03. (140)

The only thing left is to invert the Legendre transform


qu(τ ) 	 max
q

(
−qτ + φ∞ − 2 + log πq

4
√

q

)
. (141)

Maximum of this expression is reached at q∗, a root of

− τ + 1

8q3/2
log πq∗ = 0. (142)

After a change of variables q = 1
π

exp[− 2
3 u] Eq. (142) trans-

forms into

eu + 12τ

u π3/2
= 0. (143)

We have already solved this equation in (116) and its solution
is given in terms of the lower branch of the Lambert W
function as

q∗ = 1

π
exp

[
−2

3
W−1

(
− 12τ

π3/2

)]
, τ → 0. (144)

Using the asymptotic expansion for W−1(z) as in (118) we find
that in the leading order

q∗ 	
(

1

12τ
log

π3/2

12τ

)2/3

, τ → 0, (145)

and hence


qu(τ ) 	 φ∞ − 1 + 1
2 log ν + 1

3 log log ν

2√
π

(ν log ν)1/3 , τ → 0, (146)

where

ν = π3/2

12τ
. (147)

3. Atypical fluctuations T � Ttyp

Atypically large fluctuations correspond to q → −∞ ex-
pansion of φqu(q). To obtain this expansion we perform the
change of variables y �→ y

√|q| and ξ �→ 1 − ξ in (124), ar-
riving at

φqu(q) = −
√

|q|
∫ ∞

0
dy

× log

⎡
⎣erf(y

√
|q|) + 1

π

∫ 1

0
dξ

e−|q|( y2

ξ
+ξ−1)

√
ξ (1 − ξ )

⎤
⎦.

(148)

The integral over ξ can be evaluated in the saddle-point ap-
proximation yielding

1

π

∫ 1

0
dξ

e−|q|( y2

ξ
+ξ−1)

√
ξ (1 − ξ )

	 e−|q|(2y−1)

√
π |q|(1 − y)

, q → −∞,

(149)
and hence we have

φqu(q) 	 −
√

|q|
∫ ∞

0
dy log

[
1 + e−|q|(2y−1)

√
π |q|(1 − y)

]
. (150)

Integrating by parts we get

φqu(q) 	 −
√

|q|
∫ 1

0
dy

2y|q|
1 + √

π |q| e−|q|(1−2y)
. (151)

This is a complete Fermi-Dirac integral which can be evalu-
ated in terms of the polylogarithm function,

φqu(q) 	 1

2
√|q|Li2

(
− e|q|

√
π |q|

)
, q → −∞, (152)

and using the expansion

Li2(−z) 	 − 1
2 log2(z), z → ∞, (153)

we finally find that

φqu(q) 	 − 1
4 |q|3/2, q → −∞. (154)

Thus the large deviation function is given by


qu(τ ) 	 max
q

[
−qτ − 1

4
(−q)3/2

]
(155)

and hence


qu(τ ) 	
(

4

3
τ

)3

, τ → ∞. (156)

V. NUMERICAL SIMULATIONS

To support our analytical calculations we perform nu-
merical simulations. Since there is no interaction, the total
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occupation time is nothing but a sum of occupation times for
individual particles. Therefore, in order to explore probabil-
ity distributions (7) and (8) we can sample N single-particle
occupation times from (37) while choosing appropriate initial
conditions. However, in this process we encounter two prob-
lems.

The first problem involves effectively sampling from (37).
The second problem is more intricate, as it entails capturing
samples with atypical values of the occupation time. Since the
probability of getting such values is very small, we cannot
reach the tails of the distribution when sampling from (37).
Fortunately, both problems can be resolved. To address the
first problem, we introduce an additional variable correspond-
ing to the first hitting time and sample occupation time in
two steps. The second problem, although more subtle, is well
known and in many situations can be resolved by importance
sampling Monte Carlo [3,51–55]. Here we shall utilize this
approach as well.

A. Sampling strategy

First we address the problem of sampling from the prob-
ability distribution of the single-particle occupation time
P [T, t, | x]. To do this we rewrite (37) as

P [T, t | x] =
∫ ∞

t
dω δ(T ) F [ω | x]

+
∫ t

0
dωP [T, t − ω | x = 0] F [ω | x], (157)

where

F [ω | x] = |x|√
4πDω3

exp

[
− x2

4Dω

]
. (158)

Function F [ω | x] in (158) is nothing but a probability distribu-
tion of the first passage time [56], i.e., ω is the time at which
Brownian particle reaches the origin for the first time given
the initial position x. The factor P [T, t − ω | x = 0] according
to (37) is

P [T, t − ω | x = 0] = 1

π

1√
T (t − ω − T )

1[0,t−ω](T ).

(159)
In (159) we added an indicator function to emphasize that the
distribution is supported on the segment [0, t − ω].

The sampling procedure for the occupation time of an
individual particle is now as follows: First, we sample ω from
F [ω | x] given by (158); if ω � t , i.e., the particle does not
reach the origin up to the observation time, then occupation
time is zero [it corresponds to the first term in (157)]; other-
wise, we sample occupation time T from P [T, t − ω | x = 0]
in (159). Since both (158) and (159) are relatively simple, we
sample from them directly. This way, we can effectively draw
occupation time for a single particle with fixed initial position.

Now we proceed to the problem of exploring the tails of
the probability distribution. To address it, we utilize impor-
tance sampling Monte Carlo technique. Let us briefly recall
its basics.

Consider a random variable z with probability distribution
P [z] and suppose that our goal is to compute an average value

of some observable O(z),

〈O(z)〉 =
∫

dz O(z)P [z]. (160)

The usual Monte Carlo strategy is to get n samples zi from
P [z] and estimate an average by

〈O(z)〉 ≈ 1

n

∑
i

O(zi ), zi ← P [z]. (161)

To study the probability distribution itself we can choose the
observable to be an indicator function,

O(z) = 1[z1;z2](z) ≡
{

1, z ∈ [z1, z2],
0, z /∈ [z1, z2]. (162)

The average value of the indicator function is nothing but the
probability that z falls into the interval [z1, z2],

〈1[z1;z2](z)〉 = P [z1 � z � z2]. (163)

By choosing sufficiently small interval [z0, z0 + dz] we get the
probability distribution itself,

〈1[z0,z0+dz](z)〉 = P [z0] dz. (164)

If we are interested in the tails of the probability distribution
where P [z] is usually very small, then the above procedure
is ill suited. Indeed, the smaller P [z0] the rarer we get val-
ues laying in [z0, z0 + dz]. Of course, in the limit n → ∞
approximation (161) becomes exact; however, in practice it
may require unreasonably many samples.

To overcome this problem we rewrite (160) as

〈O(z)〉 =
∫

dz

[
O(z)

P [z]

Q[z]

]
Q[z], (165)

where Q[z] is some, for the moment arbitrary, probability
distribution. Comparing (165) with (160) we see that instead
of (161) we can use

〈O(z)〉 ≈ 1

n

∑
i

O(zi)
P [zi]

Q[zi]
, zi ← Q[z]. (166)

where zi are drawn from Q[z] and not from P [z] as in (161).
Formally (161) and (166) are indeed equivalent. But by

an appropriate choice of Q[z] we can drastically decrease
the number of samples required for an approximation to be
accurate enough.

Now we return to the problem of a Brownian motion. To
implement the importance aampling strategy, we introduce an
exponential tilt in (37) and sample occupation time from

Q[T, t | x] = 1

Z (β, t | x)
e−β T

t P [T, t | x], (167)

where the normalization Z (β, t | x) is

Z (β, t | x) =
∫ t

0
dT e−β T

t P [T, t | x]. (168)

By varying the parameter β in (167) we can bias the tra-
jectories, namely positive (negative) values of β bias the
trajectories with small (large) occupation time. To get the sam-
ple of the occupation time from the tilted distribution (167)
we use Metropolis algorithm [57], i.e., sample new value of
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FIG. 6. The quenched probability distribution obtained from (19), (27), and (28) (solid lines). Results of the simulations for the negative
(positive) values of tilt β in (167) are shown in the left (right) plane. Different shapes correspond to the different values of the tilt β.

occupation time T̃ from P [T, t | x] and accept the “move”
with probability min(1, e−β T̃ −T

t ).

B. Probability distributions

1. Quenched distribution

The quenched probability distribution corresponds to the
typical configuration of particles. One of the ways to realize a
typical configuration is to take equidistantly distributed parti-
cles. Therefore to mimic the quenched probability distribution
we consider frozen initial condition [Fig. 5(a)]

xi ≡ xi(0) = − i − 1
2

ρ̄
, i = 1, . . . , N. (169)

The quenched probability distribution can then be approx-
imated as

Pqu[T, t]dT ≈ 1

n

∑
i

1[T,T +dT ]

⎛
⎝ N∑

j=1

Tj

⎞
⎠ N∏

j=1

P [T, t | x j]

Q[T, t | x j]
,

(170)

with x j given by (169) and Tj sampled from the tilted distri-
bution Q[T, t | xi] as in (167),

Tj ← Q[T, t | x j]. (171)

To get the sample of N single-particle occupation times, we
use the Metropolis algorithm. At each step we pick some
fraction r < N of single-particle occupation times Tj and re-
sample them. The value of r is chosen in such a way that
approximately half of proposed Metropolis steps are accepted.

In numerical simulation we use D = 0.5, N = 104, L =
104 (ρ̄ = 1), and t = 1000. For each value of β we produce
106 configurations (that is 1010 samples of a single-particle
occupation times). To compare simulations with the analytical
results we compute Z (β, t | x j ) in (168) and the normalization
constant in (92) numerically. Resulting plots are given in
Fig. 6.

2. Annealed distribution

The only difference with respect to the quenched case is
that now initial coordinates are not fixed but drawn from
the uniform distribution on the segment [−L; 0]. Hence we

approximate the probability distribution as

Pan[T, t]dT ≈ 1

n

∑
i

1[T,T +dT ]

⎛
⎝ N∑

j=1

Tj

⎞
⎠ N∏

j=1

P [Tj, t ; x j]

Q[Tj, t ; x j]
,

(172)

where we sample (Tj, x j ) from

(x j, Tj ) ← Q[T, t ; x j], (173)

and P [T, t ; x] and Q[T, t ; x] are joint distributions of the
occupation time and initial coordinate, given by

P [T, t ; x] = 1

L
P [T, t | x], (174)

Q[T, t ; x] = 1

Z (β, t )
e−β T

t P [T, t ; x]. (175)

The normalization in (175) is

Z (β, t ) =
∫ 0

−L
dx
∫ t

0
dT e−β T

t P [T, t ; x]. (176)

Note that constants in (175) and (167) are related via

Z (β, t ) =
∫ 0

−L

dx

L
Z (β, t | x). (177)

The sampling strategy is the same as in the quenched case,
and the only difference is that we instead of using (169) we
sample x from the uniform distribution.

In numerical simulation we use D = 0.5, N = 104, L =
104 (ρ̄ = 1), and t = 1000. For each value of β we produce
106 configurations (that is 1010 samples of a single-particle
occupation times). To compare numerical results with the
analytical we compute Z (β, t ) in (176) and the normalization
constant in (91) numerically. Resulting plots are given in
Fig. 7.

As a side comment, let us mention, that on the contrary to
Ref. [3] we do not directly bias the distribution of the initial
coordinates of particles.

C. Impact of the initial conditions

One of the advantages of the Metropolis algorithm is that
it tells us which trajectories contribute to the atypical values
of the occupation time.

In the quenched case, the initial coordinates of particles are
fixed, and atypically large values in principle can be reached
via two mechanisms. First option is that a lot of particles
contribute slightly more than they typically would, but due
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FIG. 7. The annealed probability distribution obtained from (18), (21), and (22) (solid lines). Results of the simulations for the negative
(positive) values of tilt β in (175) are shown in the left (right) plane. Different shapes correspond to the different values of the tilt β.

to their numbers, total occupation time is atypically large.
The second option is that the main contribution comes from a
small number of particles which have extremely large values
of the occupation time. By plotting average values of the
single-particle occupation times Tj (Fig. 8) we see that the
latter mechanism is in work here. For the atypically small
values of the occupation time we see a similar picture. In other
words both tails of the quenched probability distributions are
governed by just a handful of particles.

As a consistency check, recall that the mean-square dis-
placement of a Brownian particle is

√
〈�x2〉 = √

2Dt which
in our simulation is

√
〈�x2〉 = 100. Therefore we expect ap-

proximately 100 of 10 000 particles to contribute to the typical
values of the occupation time. From Fig. 8 we see that this is
exactly the case.

On the contrary to the quenched distribution, the annealed
one takes into account atypical initial conditions. As we ar-
gued in Sec. II B, this leads to the higher probabilities of both
atypically large and atypically small values of the occupation
times. Indeed, configurations with particles initialized close
to (far from) the origin should lead to large (small) values of
the occupation time. This can be observed by plotting average
initial density of particles for different values of the tilt β

[see Fig. 9 (left)]. In addition, by plotting average value of
the occupation time as a function of the initial position [see
Fig. 9 (right)], we see that, as in the quenched case, atypical
values of the occupation time are governed by a small faction
of particles located close to the origin. This clearly shows that
both randomness in the initial configuration and stochasticity

FIG. 8. The quenched case: Average value of the single-particle
occupation time as a function of its initial position. Different shapes
correspond to the different values of the tilt β. Atypically small and
atypically large values of the total occupation time originate from a
bunch of particles close to the origin.

of trajectories contribute to the atypical values of the occupa-
tion time in the annealed case.

VI. CONCLUSION

We have considered a system of noninteracting Brownian
particles on the line with steplike initial conditions focusing
on a particular observable, occupation time on the half line.
In this paper we have derived several exact asymptotic results
that are summarized below.

We have computed the mean and the variance of the oc-
cupation time on the half-line for the general steplike initial
condition. We have shown that the dependence of the variance
on the initial condition is encoded in the single static quantity
known as generalized compressibility (Fano factor). For the
uncorrelated uniform initial condition we have found the large
deviation forms of the quenched and the annealed probability
distributions. By computing the corresponding large deviation
functions we have described the tails of these probability dis-
tributions. Two resulting distributions are very different. As a
verification of the theoretical results we performed numerical
simulations with importance sampling Monte Carlo.

We emphasize that, despite the similarity in the methods,
the results for the occupation time presented in this paper
could have not been predicted based on those obtained by the
authors in Ref. [3] for the local time. However, given the sim-
ilarity in the analysis, it is natural to inquire whether the same
methods can be extended further to study other functionals,
such as the area under a Brownian excursion, for example.

There are several natural directions in which it would be
interesting to generalize our results. First and foremost we can
consider more general, though still noninteracting, systems.
This includes introducing external potential or stochastic
resetting or replacing the Brownian motion with general Sta-
tionary process [58,59], Lévy flights, fractional Brownian
motion, continuous random walks [60–62], or active run-and-
tumble particles. Another direction is adding an interaction
into the system, and consider, for example, noncrossing parti-
cles [63], ranked diffusion [64,65], or Brownian particles with
annihilation or coalescence [66]. Finally, it would be inter-
esting to step out of one dimension and ask all the questions
mentioned above in two or three dimensions.

APPENDIX: COMPARISON WITH THE LOCAL
TIME DENSITY

As mentioned previously, the analysis we conducted in this
paper to study the occupation time on the positive half-line is,
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FIG. 9. The annealed case: Average initial density profile (left) and average value of the single-particle occupation time as a function of its
initial position (right). Different shapes correspond to the different values of the tilt β. From the left plane it is clear that atypically large values
of the occupation time correspond to the initial conditions with particles localized close to the origin whereas atypically small values of the
occupation time correspond to the configuration with the vicinity of the origin being depopulated. Right plane shows that, as in the quenched
case, atypical values of the occupation time are due the particles initially located close to the origin.

in fact, very similar to the one performed in Ref. [3] for an-
other Brownian functional: the local time density at the origin.
Therefore, it is natural to present the results side by side and
compare them, highlighting the similarities and differences
between them. Below, we provide such a discussion.

Since we have used the notation T to denote both the
occupation time on the positive half-line (in this paper) and
the local time density at the origin (in Ref. [3]), to prevent
confusion while comparing the results, we shall denote them
by T occ and T loc, respectively.

Both of the aforementioned observables belong to the class
of additive Brownian functionals and have the form

O =
N∑

i=1

∫ t

0
V [xi(t

′)]dt ′. (A1)

The difference between T occ and T loc lies in the choice of the
functional V [x(t )]. Specifically, the occupation time on the
positive half-line corresponds to V [x(t )] = θ [x(t )], whereas
for the local time density V [x(t )] = δ[x(t )],

T occ ≡
∑

i

∫ t

0
θ [xi(t

′)] dt ′, (A2)

T loc ≡
∑

i

∫ t

0
δ[xi(t

′)] dt ′. (A3)

The occupation time quantifies how long particles reside in
the positive half-line an it is exactly the time that the particles
spent to the right of the origin. Since θ [x] is either 0 or 1,
from (A2) it is evident that if there are N particles in the
system, then T occ cannot be greater than Nt . In other words, its
probability distribution is supported on the segment [0, Nt],

dim [T occ] = time, T occ ∈ [0, Nt]. (A4)

The quantity T loc in (A3), on the other hand, characterizes
the amount of time particles have spent in the vicinity of the
origin but in a slightly more subtle way, as it is time density
rather than time itself. Consequently, and this can be easily
seen from (A3), the local time density is not bounded and can
take arbitrarily large values,

dim[T loc] = time

length
, T loc ∈ [0,∞). (A5)

At first glance, these two observables appear quite similar.
Indeed, since ∂xθ (x) = δ(x), they are related on the functional
level. However, the reader should not let this similarity mis-
lead them, since there is no straightforward way of deriving
the results for one observable from those obtained for the
other.

Nevertheless, we should mention that both T occ and T loc

are special cases of another, more general, Brownian func-
tional. Namely, if we choose V [x(t )] to be an indicator
function on a segment [a, b],

V [x(t )] = 1[a;b][x(t )] ≡
{

1, x(t ) ∈ [a; b],
0, x(t ) /∈ [a; b], (A6)

then occupation time on the half-line and local time density at
the origin may be interpreted as the following limits:

T occ = lim
	→∞

∑
i

∫ t

0
1[0;	][xi(t

′)] dt ′, (A7)

T loc = lim
	→0

1

2	

∑
i

∫ t

0
1[−	;	][xi(t

′)] dt ′. (A8)

Thus, it would be interesting to study the Brownian func-
tional with the potential (A6) and find the behavior of the
corresponding probability distributions at large times. Then,
by using (A7) and (A8), we could derive the results for T occ

and T loc. However, such a computation provide a challenging
task, which falls beyond the scope of the present paper.

Let us now proceed and compare the results obtained
for the occupation time on the positive half-line (which are
summarized in Sec. II B) with those obtained by the authors
previously in Ref. [3] for the local time density at the origin.

1. Typical values

First, let us have a look at the behaviors of the observables
close to their typical values. In this case, both quenched and
annealed probability distributions are Gaussian, and therefore
we can describe them by first two cumulants: the mean and
the variance.
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The mean values for the quenched and annealed distribu-
tions are the same, and for T occ and T loc they are given by

〈T occ〉x = 2

3

√
D

π
ρ̄ t3/2, 〈T loc〉x = 1

2
ρ̄ t . (A9)

For the variances in the quenched case we have

Varqu[T occ] = 8(
√

2 − 1)

15

√
D

π
ρ̄ t5/2, (A10)

Varqu[T loc] = 2

3
(2 −

√
2)

1√
πD

ρ̄ t3/2, (A11)

and the annealed variances at large times behave as

Varan[T occ] 	
t→∞

2

5

[
1 + (4

√
2 − 7)

3
(1 − αic )

]√
D

π
ρ̄ t5/2,

(A12)

Varan[T loc] 	
t→∞

2

3
[1 + (1 −

√
2)(1 − αic )]

1√
πD

ρ̄ t3/2.

(A13)

Note that the scaling of the mean values and the variances
of T occ and T loc are very different. For the local time density,
the mean value grows as t and the variances grow as t3/2,
whereas for the occupation time the mean value grows as t3/2

and the variances grow as t5/2. Consequently, for studying the
probability distributions in the large deviation formalism, we
use different scaling variables, namely

τ occ = T occ

t3/2

1

ρ̄
√

4D
, τ loc = T loc

t

1

ρ̄
. (A14)

Let us emphasize that the observables are very different (they
even have different dimensions) and therefore there is no
apparent reason for them to have the same scaling. However,
there are still some similarities.

First, both for the occupation time and for the local
time density, annealed variances depend on the initialization
through the single static quantity αic (14), the Fano factor
of the initial condition. Moreover, for both observables, the
dependence is linear. This is, in fact, expected, since the for-
malism we used in Sec. III B can be straightforwardly applied
to any additive Brownian functional.

Second, the ratios between the square of the mean value
and the variances are the same for T occ and T loc, namely

(〈T occ〉x)2

Varan;qu[T occ]
∼

t→∞
(〈T loc〉x)2

Varan;qu[T loc]
∼

t→∞ ρ̄
√

Dt . (A15)

Hence the large deviation forms are

Pan;qu[T occ, t] ∼ exp[−ρ̄
√

4Dt 
an;qu(τ occ)], (A16)

Pan;qu[T loc, t] ∼ exp[−ρ̄
√

4Dt 
an;qu
(
τ loc
)
], (A17)

where an additional factor of 2 in the exponential is due to
purely esthetic reasons.

The factor ρ̄
√

Dt in (A16), (A17) is again very natural.
The particles do not interact, and hence both T loc and T occ are
essentially sums of N independent random variables. How-
ever, a lot of these random variables are zeros. Indeed, only
the particles that have reached the origin up to the observation
time have nonzero contribution to both T occ and T loc. Since

FIG. 10. Examples of the Brownian trajectories with atypically
large value of the occupation time (red) and local time density at the
origin (blue). These two trajectories are qualitatively different. In the
simulation t = 40, x(0) = −10, and D = 1. To obtain this picture,
we have generated 107 independent Brownian trajectories and picked
two of them corresponding to the largest values of T loc and T occ.

the typical displacement of a Brownian particle is proportional
to

√
Dt , we expect that the effective number of particles is

proportional to ρ̄
√

Dt . In other words, we have effectively
n ∼ ρ̄

√
Dt terms in (A2) and (A3), and therefore it is natural

to expect this sums to be proportional to n. However, we
should stress that since we are dealing with nonidentically
distributed random variables, the above argument is somewhat
hand-waving.

2. Atypical values

Now let us comment on the tails of the probability distri-
butions of T occ and T loc. Note that if one observable is equal
to zero, then the other one equals zero as well. This is simply
due to the fact that both situations correspond to configura-
tions of the trajectories in which no trajectory crosses the
origin. Therefore we expect that P [T loc = 0, t] ∼ P [T occ =
0, t]. This is in perfect agreement with our results,

Pan[T occ = 0, t] ∼ Pan[T loc = 0, t] ∼ e−θan ρ̄
√

4Dt , (A18)

Pqu[T occ = 0, t] ∼ Pqu[T loc = 0, t] ∼ e−θqu ρ̄
√

4Dt . (A19)

As for the atypically large values, the situation is different.
Recall that for the occupation time we have

Pan[T occ, t] ∼
T occ→∞

exp

[
−T occ

2t
log

(
(T occ)2

t3Dρ̄2

)]
, (A20)

Pqu[T occ, t] ∼
T occ→∞

exp

[
−16

27

T occ

t

(
(T occ)2

t3Dρ̄2

)]
, (A21)

whereas for the local time density

Pan[T loc, t] ∼
T loc→∞

exp

⎡
⎣−

√
D

T loc

√
t

√
log

T loc

t ρ̄

⎤
⎦, (A22)

Pqu[T loc, t] ∼
T loc→∞

exp

[
−
√

32

27

√
D

(T loc)3/2

t
√

ρ̄

]
, (A23)

There seems to be no similarity between the T loc and T occ

but this should not surprise the reader. The trajectories that
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contribute to the atypically large values of these observables
are qualitatively different. This becomes clear when consider-
ing a single-particle problem. Trajectories with T loc � 〈T loc〉

tend to remain close to the origin most of the time. On the
other hand, trajectories with T occ � 〈T occ〉 can go arbitrary
far from the origin (see Fig. 10).
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