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Lévy flights and Lévy walks under stochastic resetting
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Stochastic resetting is a protocol of starting anew, which can be used to facilitate the escape kinetics. We
demonstrate that restarting can accelerate the escape kinetics from a finite interval restricted by two absorbing
boundaries also in the presence of heavy-tailed, Lévy-type, α-stable noise. However, the width of the domain
where resetting is beneficial depends on the value of the stability index α determining the power-law decay of
the jump length distribution. For heavier (smaller α) distributions, the domain becomes narrower in comparison
to lighter tails. Additionally, we explore connections between Lévy flights (LFs) and Lévy walks (LWs) in the
presence of stochastic resetting. First of all, we show that for Lévy walks, the stochastic resetting can also be
beneficial in the domain where the coefficient of variation is smaller than 1. Moreover, we demonstrate that in
the domain where LWs are characterized by a finite mean jump duration (length), with the increasing width of
the interval, the LWs start to share similarities with LFs under stochastic resetting.
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I. INTRODUCTION

Since the pioneering works of Smoluchowski [1], Einstein
[2], Langevin [3], Perrin [4], and Kramers [5], the study
of Brownian motion and random phenomena has attracted
steadily growing interest. The probabilistic explanation of the
properties of Brownian motion boosted development of the
theory of stochastic processes [6,7], increased our understand-
ing of random phenomena [8], and opened studies of noise
driven systems [9] and random walks [10–12].

The Wiener process [Brownian motion (BM)] is one of
the simplest examples of continuous (time and space) random
processes. Its mathematical properties nicely explain the ob-
served properties of Brownian motion [13], e.g., the linear
scaling of the mean-square displacement [4,14]. It can be
extended in multiple ways, e.g., by assuming more general
jump length distribution, introducing memory, or assuming
finite propagation velocity. In that context, Lévy flights (LFs)
[15,16] and Lévy walks (LWs) [17–19] are two archetypal
types of random walks [10]. In the LFs, it is assumed that
displacements are immediate and generated from a heavy-
tailed, power-law distribution. At the same time, in the LWs,
a random walker travels with a finite velocity v for random
times distributed according to a power-law density.

The assumption that individual jump lengths follow a gen-
eral α-stable density is supported by multiple experimental
observations demonstrating the existence of more general than
Gaussian fluctuations. Heavy-tailed, power-law fluctuations
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have been observed in a plenitude of experimental setups
including, but not limited to, biological systems [20], disper-
sal patterns of humans and animals [21,22], search strategies
[17,23], gaze dynamics [24], balance control [25,26], rotat-
ing flows [27], optical systems and materials [28,29], laser
cooling [30], disordered media [31], and financial time series
[32–34]. The properties of systems displaying heavy-tailed,
non-Gaussian fluctuations are studied both experimentally
[24,27,35] and theoretically [11,15,36–44]. Lévy flights have
attracted considerable attention due to their well-known math-
ematical properties, e.g., self-similarity, infinite divisibility,
and generalized central limit theorem. Therefore, the α-
stable noises are broadly applied in diverse models displaying
anomalous fluctuations or describing anomalous diffusion.

Stochastic resetting [45–47] is a protocol of starting anew,
which can be applied (among others) to increase the efficiency
of search strategies. In the simplest version, it assumes that
the motion is started anew at random times, i.e., restarts are
triggered temporally, making the times of starting over in-
dependent of the state of the system, e.g., position. Among
multiple options, resets can be performed periodically (sharp
resetting) [48] or at random time intervals following exponen-
tial (Poissonian resetting) [45] or a power-law [49] density.
Starting anew can be also spatially induced [50]. Escape ki-
netics under stochastic resetting display universal properties
[48,51] regarding relative fluctuations of first passage times
as measured by the coefficient of variation (CV) and as such
can also be treated in the unified approach [52]. Typically, it is
assumed that the restarting is immediate and does not generate
additional costs; however, options with finite return velocity
[53,54], overheads [55–57], or soft (due to attracting force)
resetting [58] are also explored.
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BARTOSZ ŻBIK AND BARTŁOMIEJ DYBIEC PHYSICAL REVIEW E 109, 044147 (2024)

Stochastic resetting has attracted considerable attention
due to its strong connection with search strategies [23,59,60]
and its ability to reduce the spread of particles [61–63], even
in the case of partial resetting [64]. During the search, an
individual or animal is interested in the minimization of the
time needed to find a target, which in turn is related to the
first passage problem [65]. In certain setups, due to long
excursions in the wrong direction, i.e., to points distant from
the target [66–69], the mean first passage time (MFPT) can di-
verge. In such cases, stochastic resetting is capable of turning
the MFPT finite. Furthermore, it can optimize already finite
MFPT [48,51]. Stochastic resetting is capable of minimization
of the time to find a target when the coefficient of variation
(the ratio between the standard deviation of the first passage
times and the MFPT in the absence of stochastic resetting) is
greater than unity [48,51].

Not surprisingly, the stochastic resetting is capable of min-
imizing the MFPT from a finite interval restricted by two
absorbing boundaries [70]. As demonstrated in [71], in the
case of escape from finite intervals restricted by two absorbing
boundaries, the mean first passage times for Lévy flights and
Lévy walks display similar scaling [71] as a function of the in-
terval width. Therefore, one can study the properties of escape
from finite intervals under the combined action of Lévy noise
and stochastic resetting with special attention to verification
if the properties of escape kinetics still bear some similarities
with LWs under restarts.

The model under study is described in the next sec-
tion (Sec. II). Section III analyzes properties of LWs on finite
intervals under stochastic resetting and compares them with
the properties of corresponding LFs. The manuscript closes
with a summary and conclusions in Sec. IV.

II. MODEL AND RESULTS

The noise driven escape (from any domain of motion �) is
a stochastic process; therefore, individual first passage times
are not fixed but random. For first passage times, it is possible
to calculate—the relative standard deviation—the coefficient
of variation (CV) [48],

CV = σ (tfp)

〈tfp〉 = σ (tfp)

T =
√
T2 − T 2

T =
√

T2

T 2
− 1, (1)

which is the ratio between the standard deviation σ (tfp) of the
first passage times (FPT) tfp and the mean first passage time
T = 〈tfp〉. In addition to statistical applications, the coefficient
of variation plays a special role in the theory of stochastic
resetting [48,51,70]. It provides a useful universal tool for
assessing the potential effectiveness of stochastic restarting,
which can be used to explore various types of setups under
very general conditions. Typically, stochastic resetting can
facilitate the escape kinetics in the domain where CV > 1.
Therefore, examination of the CV given by Eq. (1) (con-
strained by the fact that resets are performed to the same point
from which the motion was started) can be a starting point for
the exploration of the effectiveness of stochastic resetting.

The escape of a free particle from a finite interval (−L, L)
under the action of Lévy noise, i.e., escape of α-stable, Lévy-
type process, can be characterized by the mean first passage

time (MFPT) T , which reads [72]

T (x0) = (L2 − |x0|2)α/2

�(1 + α)σα
= (1 − |x0/L|2)α/2

�(1 + α)
× Lα

σα
, (2)

and the second moment T2 = 〈t2
fp〉 given by [72]

T2(x0) = αLα

[�(1 + α)σα]2

×
∫ L2

|x0|2
[t − |x0|2]

α
2 −1

2F1

[
−α

2
,

1

2
,

1 + α

2
;

t

L2

]
dt,

(3)

where x0 is the initial condition, 2F1(a, b; c; z) stands for the
hypergeometric function, while �(·) is the Euler gamma func-
tion. From Eqs. (2) and (3), with α = 2, one gets

CV =
√

2

3

√
L2 + x2

0

L2 − x2
0

=
√

2

3

√
1 + (x0/L)2

1 − (x0/L)2
. (4)

As Eqs. (2) and (3) imply, the coefficient of variation does not
depend on the scale parameter σ . The independence of the CV
on the scale parameter σ can be intuitively explained by the
fact that σ can be canceled by time rescaling. Such a transfor-
mation (linearly) rescales individual FPTs and consequently,
in exactly the same way, the MFPT and the standard deviation,
making their ratio σ independent. Equation (4) implies that
CV > 1 for

x0 ∈
(

−L,− L√
5

)
∪

(
L√
5
, L

)
, (5)

what is in accordance with earlier findings [70].
Equivalently, the setup corresponding to Eqs. (2) and (3)

can be described by the Langevin equation,

dx

dt
= ξα (t ), (6)

and studied by methods of stochastic dynamics. In Eq. (6), the
ξα is the symmetric α-stable Lévy-type noise and x(t ) repre-
sents the particle position [with the initial condition x(0) =
x0]. The α-stable noise is a generalization of the Gaussian
white noise (GWN) to the nonequilibrium realms [73], which,
for α = 2, reduces to the standard Gaussian white noise.
The symmetric α-stable noise is related to the symmetric
α-stable process L(t ); see Refs. [15,73]. Increments �L =
L(t + �t ) − L(t ) of the α-stable process are independent and
identically distributed random variables following an α-stable
density with the characteristic function [73,74]

ϕ(k) = 〈exp(ik�L)〉 = exp [−�tσα|k|α]. (7)

Symmetric α-stable densities are unimodal probability den-
sities defined by the characteristic function with probability
densities given by elementary functions only in a limited
number of cases (α = 1 Cauchy density, α = 2 Gauss distri-
bution); however, in more general cases, they can be expressed
using special functions [75]. The stability index α (0 < α �
2) determines the tail of the distribution, which, for α < 2, is
of the power-law type, p(x) ∝ |x|−(α+1). The scale parameter
σ (σ > 0) controls the width of the distribution, which can
be characterized by an interquantile width or by fractional
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FIG. 1. Numerically estimated MFPT (dots) and CV (squares) as
a function of the initial condition x0 for α = 2 along with theoreti-
cal values (solid lines). The gray region shows the domain where
CV(x0 ) > 1.

moments 〈|x|κ〉 of the order of κ (0 < κ < α), because the
α-stable variables with α < 2 cannot be quantified by the
variance which diverges. Within our studies, we set the scale
parameter to unity, i.e., σ = 1.

The MFPT can be calculated from multiple trajectories
generated according to Eq. (6) as the average of the first
passage times,

T (x0) = 〈tfp〉 = 〈inf{t : x(0) = x0 ∧ |x(t )| � L}〉, (8)

while T2(x0) is the second moment of the first passage time.
The Langevin equation (6) can be approximated with the
(stochastic) Euler-Maruyama method [76,77],

x(t + �t ) = x(t ) + ξ t
α�t1/α, (9)

where ξ t
α represents a sequence of independent and identically

distributed α-stable random variables [78–80]; see Eq. (7).
For the model under study, the coefficient of variation,

CV(x0), is a symmetric function of the initial condition x0,
i.e., CV(x0) = CV(−x0), as the escape problem (due to noise
symmetry) is symmetric with respect to the sign change in the
initial condition x0. The symmetry is implied from the sys-
tem symmetry (symmetric boundaries and symmetric noise)
and, consequently, is visible not only in Eq. (4), but also in
Eqs. (2) and (3). The condition CV > 1 is a sufficient, but not
necessary condition when stochastic resetting can facilitate
the escape kinetics [81–83]. As Eq. (5) implies, stochastic
resetting can accelerate the escape kinetics if the initial condi-
tion, which is equivalent to the point from which the motion
is restarted, sufficiently breaks the system symmetry, i.e., if
restarting the motion anew is more efficient in bringing a
particle towards the target (edges of the interval) than waiting
for a particle to approach the target (borders). In other words,
for the escape from a finite interval, the point from which the
motion is restarted is sufficiently far from the center of the
interval (x = 0). Figure 1 compares the results of numerical
simulations (points) with theoretical predictions (solid lines)
for α = 2 (GWN driving), demonstrating perfect agreement.
Due to system symmetry, in Fig. 1, we show results for x0 > 0
only. Moreover, we set the interval half-width L to L = 1 and
the scale parameter σ to σ = 1, which is equivalent to the

FIG. 2. MFPT under stochastic (Poissonian) restarting for the
GWN (α = 2) driving as a function of the resetting rate r. Various
lines correspond to different initial conditions x0. Points represent
results of numerical simulations, while solid lines represent results
of theoretical predictions given by Eq. (10).

transformation of the escape problem to the dimensionless
variables; see the Appendix.

Stochastic resetting, i.e., starting anew from the initial con-
ditions x0, can be used to facilitate the escape kinetics. One
of the common restarting schemes is the so-called fixed rate
(Poissonian) resetting, for which the distribution of time inter-
vals between two consecutive resets follows the exponential
density φ(t ) = r exp(−rt ), where r is the (fixed) reset rate.
Thus, the mean time between two consecutive restarts reads
〈t〉 = 1/r. The MFPT under Poissonian resetting for a pro-
cess driven by GWN (α = 2) [70] from the (−L, L) interval
restricted by two absorbing boundaries reads

T (x0) = 1

r

⎡
⎣ sinh 2L√

σ 2/r

sinh L−x0√
σ 2/r

+ sinh x0+L√
σ 2/r

− 1

⎤
⎦. (10)

Figure 2 presents MFPT as a function of resetting rate r for
various initial positions x0. MFPTs have been estimated using
the so-called direct approach [48]. Within such a scheme,
from the simulation of the system without resets, the (un-
known for α < 2) first passage time density is estimated. In
the next step, instead of simulating the Langevin dynamics
under stochastic resetting, pairs of first passages times (in the
absence of resetting) and resetting times are generated until
the first passage time is smaller than the resetting time. The
first passage time under restart is equal to the sum of (all) gen-
erated time intervals between resets increased by the last first
passage time; see [48, Fig. 4(a)]. In Fig. 2, points representing
the results of computer simulations with α = 2 nicely follow
solid lines, demonstrating the theoretical predictions given by
Eq. (10).

With the help of Eqs. (2) and (3), more general driving than
the Gaussian white noise can be studied. As is already visible
from Fig. 3(a), which presents numerically estimated CV(x0)
(points) along with theoretical values (lines), the width of
the domain where CV(x0) > 1 increases with the growing
α, i.e., for smaller α, the domain where resetting facilitates
the escape kinetics is narrower. The set of initial conditions
resulting in facilitation of the escape kinetics is further studied
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(a)

(b)

FIG. 3. (a) Numerically estimated CV(x0) for α ∈
{0.5, 1.0, 1.5, 2.0} with L = 1 (points) complemented by theoretical
results (solid lines); see Eqs. (1)–(3). The dashed line shows
the CV = 1 level. (b) Numerically calculated xtr (α) such that
CV(xtr ) = 1 (solid line) and the width W (x0) of the domain where
resetting is beneficial (dot-dashed line); see Eq. (11). For x0 > xtr ,
the coefficient of variation is greater than 1. The dashed line
indicates the GWN limit, i.e., xtr = 1/

√
5.

in Fig. 3(b). The bottom panel of Fig. 3 shows xtr such that
CV(xtr ) = 1, i.e., xtr divides the set of initial conditions x0

such that for |x0| > xtr , the coefficient of variation is greater
than 1. From Fig. 3(b), it clearly implies that with the increas-
ing stability index α, the xtr (solid line) moves towards the
center of the interval and attains its asymptotic value 1/

√
5 for

α = 2 [see Eq. (5)], which is marked by a dashed line. More-
over, it indicates that under the action of heavy-tailed noises,
stochastic resetting can be beneficial in narrower domain of
the width W ,

W = 2 × (L − xtr ), (11)

which, for L = 1, is equal to 2(1 − xtr ); see the dot-dashed
line in Fig. 3(b). The monotonous growth of W with the
increasing α should be contrasted with the (possible) non-
monotonous dependence of MFPT on α in the absence of
resetting (see Eq. (2) and [84]) or for fixed r [see Fig. 4(a)].
The growth of W can be intuitively explained by the mech-
anism underlying escape dynamics. More precisely, with
decreasing α, the dominating escape scenario is the escape via
a single (discontinuous) long jump, which is less sensitive to
the initial condition than the escape protocol for α = 2, when

(a)

(b)

FIG. 4. MFPT under Poissonian resetting. Various points repre-
sent different values of the stability index α. The solid line depicts
theoretical dependence for α = 2 [see Eq. (10)], while dashed lines
depict T (x0, r = 0) [see Eq. (2)]. The initial condition is set to
(a) x0 = 0.5 and (b) x0 = 0.7.

the trajectories are continuous. From Eqs. (2) and (3), one can
also calculate the opposite, α → 0, limit of the MFPT, i.e.,
T = 1, and of the second moment, i.e., T2 = 2. For α = 0, the
hypergeometric function in Eq. (3) can be replaced by unity,

and the remaining integral reads α
∫ L2

|x0|2 [t − |x0|2]
α
2 −1dt =

2[L2 − |x0|2]
α
2 . Additionally, by plugging T = 1 and T2 =

2 into Eq. (1), one gets CV = 1, regardless of x0. Indeed,
Fig. 3(a) demonstrates that with the decreasing α, the CV(x0)
curve approaches the CV = 1 line. Consequently, with the
decreasing α, the xtr moves to the right, i.e., towards the
absorbing boundary. However, we are unable to reliably cal-
culate the limα→0 xtr as numerical evaluation of the analytical
formulas leads to not fully controllable errors. At the same
time, for α ≈ 0, stochastic simulations are unreliable. Overall,
we are not able to provide the definitive answer of whether xtr

reaches the edges of the interval, i.e., ±L, or stops in a finite
distance to the absorbing boundary.

We finish the exploration of LFs under restarting in Fig. 4,
which shows numerically estimated MFPTs for LFs as a
function of the resetting rate for various values of the sta-
bility index α: α ∈ {0.8, 1.2, 1.6, 1.8, 2}. The different panels
correspond to various initial conditions: (a) x0 = 0.5 and (b)
x0 = 0.7. Finally, solid lines show the theoretical dependence
for α = 2 [see Eq. (10)], while dashed lines r = 0 show
the asymptotics of MFPTs, i.e., T (x0, r = 0) [see Eq. (2)].
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First of all, the comparison of Figs. 4(a) and 4(b) further
corroborates that with the decreasing α, the domain in which
resetting can facilitate the escape kinetics becomes narrower.
Importantly, Fig. 4 clearly shows the difference between the
escape scenarios for Lévy flights and Brownian motion. For
LFs, the dominating strategy, especially for small α, is escape
via a single long jump, while for BM, the trajectories are
continuous and the particle needs to approach the absorbing
boundary. This property changes the sensitivity to resetting,
especially in domains where restarting hinders the escape
kinetics. For small α, moving back to the initial condition
practically does not interrupt waiting for a long jump, while
for α close to 2, it substantially decreases the chances of
escape. Therefore, for α close to 2, the MFPT grows faster
with increasing resetting rate. On the other hand, the growth
rate is a decaying function of the initial position; cf. Figs. 4(a)
and 4(b) for α = 2. Moreover, from the simulations, we do
not see the facilitation of the escape kinetics due to resetting
in the domain where CV < 1.

In [71], similarities and differences between LFs and LWs
have been studied. In particular, it has been demonstrated that
for LWs with the power-law distribution of the jump length
duration τ ,

f (τ ) ∝ 1

τ 1+α
, (12)

the MFPT from the (−L, L) interval scales as

T (0) ∝

⎧⎪⎨
⎪⎩

L for 0 < α < 1

Lα for 1 < α < 2

L2 for α = 2,

(13)

with the half width of the interval. More precisely, in [71], it
was assumed that v = 1 and τ = |ξα|, where ξα are indepen-
dent and identically distributed random variables following
a symmetric α-stable density; see Eq. (7). The observed
(asymptotic) scaling suggests that in the situation when the
average jump duration (length) becomes finite (α > 1), Lévy
walks display the same scaling on the interval width as Lévy
flights; see Eq. (2). In contrast, for α < 1, the FPT for LWs is
bounded from below. Namely, the first passage time tfp � L/v,
which originates from the fact that the process has a finite
velocity. This property implies that T (0) � L/v and thus the
scaling of MFPT must differ from T (0) ∝ Lα observed for
LFs with α < 1. Finally, for α = 2, the underlying process,
by means of the central limit theorem, converges to the Wiener
process, revealing the same scaling of the MFPT like a Brow-
nian particle.

III. LÉVY WALKS UNDER STOCHASTIC RESETTING

After studying the properties of LFs on finite intervals un-
der stochastic resetting, we move to the examination of LWs.
In the case of LWs, numerical simulations were conducted
to investigate the regime in which stochastic resetting can be
beneficial. Similarly as in [71], it was assumed that v = 1 and
τ = |ξα|, where ξα are independent and identically distributed
random variables following a symmetric α-stable density with
the scale parameter σ = 1; see Eq. (7). Therefore, for LWs,
we eliminate two of three parameters (v and σ ), while we
keep the L parameter (see the Appendix), as it allows for the

(a)

(b)

FIG. 5. Coefficient of variation, CV [see Eq. (1)], as a function
of the initial position x0. Points represent the CV for LWs (obtained
through numerical simulations) and lines represent the CV for LFs
[analytical results from Eqs. (2) and (3)]. Various panels corre-
spond to different values of the interval half-width L: (a) L = 1 and
(b) L = 1000.

transparent examination of limiting (big number of jumps)
behavior.

For LWs, the first passage time density has two peaks
corresponding to escape in a single long jump or a sequence
of subsequent jumps towards the left or right boundary.
These peaks are located at (L − x0)/v (escape via the right
boundary) or (x0 + L)/v (escape via the left boundary). The
heights of the peaks associated with such escapes increase
with the drop in α and decay with the increasing interval
half-width L. We suspect that these peaks are one of the
reasons for the emergence of differences between LFs and
LWs; see, for instance, Eq. (13) for α < 1 and the discussion
below Eq. (13).

The coefficient of variation, CV(x0) [48] [see Eq. (1)], ob-
tained through numerical simulations of LWs onto an (−L, L)
interval with various initial positions x0, was compared to the
analytical results acquired for LFs; see Eqs. (2) and (3). We
focus mainly on the 1 � α � 2 case, as for α from that range,
the MFPT as a function of the interval half-width L for LWs
and LFs scales in the same manner; see Eqs. (2) and (13).
Figure 5(a) demonstrates that for relatively small intervals of
half width [L/(vσ ) ≈ 1], the CV for LFs and the CV for LWs
noticeably differ, i.e., the CV for LWs is significantly smaller
than the CV for LFs. However, as depicted in Fig. 5(b), with
increasing L, for the same set of α (α ∈ {1.5, 2}), the CV
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(a)

(b)

FIG. 6. Numerically estimated (analogous to Fig. 5) coefficient
of variation, CV (lines) [see Eq. (1)], as a function of the ini-
tial position x0 for LWs along with the normalized ratio �(x0 )
(points); see Eq. (14). Various panels correspond to different values
of the interval half-width L: (a) L = 1, (b) L = 100, and L = 10 000
[inset in (b)].

for the LWs model follows the one present for LFs. The
agreement originates in the fact that for large enough L, the
peaks corresponding to escape in a single jump (or sequences
of consecutive jumps toward the boundary) in the first passage
time distribution are small enough.

In the next step, the region in which stochastic resetting
can be beneficial for LWs was explored numerically under a
Poissonian (fixed rate) resetting. The distribution of time in-
tervals between two consecutive resets follows the exponential
density φ(t ) = r exp(−rt ), where r (r > 0) is the reset rate.
The efficiency of stochastic resetting can be verified by use of
the normalized ratio of the minimal MFPT under stochastic
resetting to its value in the absence of resetting,

�(x0) = minr T (x0, r)

T (x0, 0)
, (14)

where T (x0, r) stands for MFPT under resetting with re-
set rate r and the initial position x0 equivalent to the
restarting point. If stochastic resetting does not facilitate the
escape kinetics, then � = 1 because T (x0, 0) is the minimal
mean first passage time. The decay of � below one indi-
cates that stochastic resetting accelerates the escape kinetics.
Figure 6 presents the normalized ratio �(x0) (points) along
with CV(x0) (lines). For small |x0/L|, the asymmetry in-

troduced by the initial position is not strong enough (the
restarting point is too close to the origin) to open space for
optimization of the MFPT by stochastic resetting, resulting
in �(x0) = 1. Therefore, for small |x0|, �(x0) = 1 not only
shows the impossibility of enhancing the escape kinetics, but
also introduces a visual reference level clearly demonstrating
where CV drops below unity. From examination of the nor-
malized ratio �(x0), it is possible to easily see if the drop in
�(x0) coincides with the increase of the coefficient of vari-
ation, CV, above unity. As expected for |x0/L| large enough,
stochastic resetting facilitates the escape kinetics for LWs. For
small L, e.g., L = 1 (in physical units L/(vσ ) ≈ 1), the region
where escape kinetics is accelerated by stochastic resetting
differs from the one indicated by the CV > 1 criterion [48]
because MFPT can be shortened even in the domain where
CV < 1; see Fig. 6(a). This is in accordance with the fact
that the condition CV > 1 is sufficient, but not necessary
for observation of the facilitation of escape kinetics due to
stochastic resetting [81–83]. For large enough interval half-
widths L, the point where �(x0) drops below unity agrees with
the prediction based on the CV criterion for α ∈ {1, 1.5, 2};
see Fig. 6(b). However, in the case of α = 0.5, the disagree-
ment with the CV > 1 criterion persists. Moreover, for LWs
with large L, the coefficient of variation agrees with the one
calculated for LFs; see Fig. 5(b).

IV. SUMMARY AND CONCLUSIONS

Lévy flights and Lévy walks constitute two paradigmatic
random walk schemes generalizing the Brownian motion.
Both for LWs and LFs, displacements are drawn from
heavy-tailed distributions with diverging variance. LFs are
Markovian processes in which jumps occur at typical time
intervals, while LWs include a spatiotemporal coupling be-
tween jump lengths and waiting times, penalizing long jumps
with long waiting times, making the process non-Markovian.
Coupling between jump lengths and waiting times can be lin-
ear, resulting in a motion with a constant velocity. Therefore,
a random walker in LFs and LWs can be moving along the
same turning points, but for LFs, the jumps are instantaneous,
while for LWs, a random walker continues motion in a given
direction with a constant speed for a given time after which
the new direction can be generated. As a consequence, the
trajectories of LWs are continuous, while for LFs, they are
discontinuous.

We have demonstrated that stochastic resetting can facili-
tate the escape kinetics, as measured by the mean first passage
time, from a finite interval restricted by two absorbing bound-
aries both for LFs and LWs. Stochastic resetting is beneficial
when the initial condition, which is equivalent to the point
from which the motion is restarted, sufficiently breaks the
system symmetry, i.e., x0 is sufficiently far from 0 (center of
the interval). Under such a condition, restarting the motion
anew is more efficient in bringing a particle towards the target
than waiting for a particle to approach it. Both for LFs and
LWs, the domain in which resetting is beneficial depends on
the exponent α defining the power-law distribution of jump
lengths. Despite the fact that MFPT can be a nonmonotonous
function of stability index α, the width of the domain utilizing
restarting is growing with the increasing α, i.e., for lighter

044147-6



LÉVY FLIGHTS AND LÉVY WALKS UNDER STOCHASTIC … PHYSICAL REVIEW E 109, 044147 (2024)

tails, it is wider, as lighter tails change the typical escape
scenario.

Lévy flights and Lévy walks display the same scaling of
the MFPT on the interval half-width L for 1 � α � 2. For
LFs, it is the exact result, while for LWs, it is the large
L asymptotics. Analogously, under restarting, for 1 < α � 2
with the increasing interval half-width L, the coefficient of
variation for LWs tends asymptotically to the one for LFs.
Additionally, for LWs with small L, it is clearly visible that
the stochastic resetting facilitates escape kinetics, not only in
the region where CV > 1, but it can also accelerate the escape
kinetics in situations where CV < 1.

The data (generated randomly using the model presented
in the paper) that support the findings of this study are avail-
able from the corresponding author (B.Ż.) upon reasonable
request.
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APPENDIX: DE-DIMENSIONALIZATION
OF THE LANGEVIN EQUATION

For LFs, the α-stable noise driven escape from [−L, L]
described by the Langevin equation

dx

dt
= ξα (t ) = σξα (σ = 1; t ) (A1)

can be studied in dimensionless variables,

y = x

L
and s = t

T
. (A2)

In such variables,

dx

dt
= L

T

dy

ds
(A3)

and

σξα = σ
d

dt
L(sT ) = σ

ds

dt

dL(sT )

ds
= σ

T

d

ds
[T

1
α L(s)]

= σT
1
α
−1ξα (s). (A4)

In the transformation of Eqs. (A1) and (A4), we have used
the following facts: (i) the scale parameter σ can be extracted

from the noise and used as the multiplicative constant [73],
(ii) α-stable noise is the formal time derivative of the α-stable
process L(t ), and (iii) the α-stable process is 1/α self-similar,
i.e., L(T s) = T

1
α L(s); see [74]. In new variables, the Langevin

equation takes the form

L

T

dy

ds
= σT

1
α
−1ξα (s) (A5)

or
dy

ds
= σ

L
T

1
α ξα (s). (A6)

Setting σ
L T

1
α to unity, one finds the characteristic time T ,

T = Lα

σ α
. (A7)

In dimensionless variables, the motion is described by the
Langevin equation

dy

ds
= ξα (s), (A8)

and the motion is continued as long as the particle is within
the [−1, 1] interval.

Incorporation of the stochastic resetting (typically) intro-
duces another timescale associated with the inter-resetting
intervals. For example, for the fixed rate (Poissonian reset-
ting), time intervals between two consecutive resets follow
the exponential density φ(t ) = r exp(−rt ), where r is the
(fixed) reset rate. Thus, the mean time between two consecu-
tive restarts reads 〈t〉 = 1/r and r = 1/〈t〉. The dimensionless
reset rate r̃ [see Eq. (A2)] reads r̃ = T/〈t〉.

Overall, for LFs on a bounded interval accompanied by
the stochastic (Poissonian) resetting, the only parameter (in
addition to the stability index α determining tails of the jump
length distribution) is the dimensionless resetting rate. Alter-
natively to the above-described transformation of variables,
one can set L = 1 and σ = 1. The latter approach is used in
the manuscript in the part regarding Lévy flights.

For LWs, the situation is not identical, but very similar to
LFs. LWs on a bounded interval [−L, L] are characterized by
three parameters: L (interval half-width), v (velocity of propa-
gation), and σ (scale of the jump time and length distribution).
Therefore, by rescaling of the type given by Eq. (A2) it is not
possible to remove all parameters. After transformation of the
variables, a selected parameter must remain. Within current
studies, we have decided to keep L, while v and σ are set
to unity. Such a selection is motivated by the fact that it is
a transparent choice allowing for the study of a regime in
which the particle performs many jumps before leaving the
domain of motion. Subsequently, it facilitates the use of limit
theorems.
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[68] Ł. Kuśmierz and E. Gudowska-Nowak, Phys. Rev. E 92, 052127

(2015).

044147-8

https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1088/0305-4470/37/31/R01
https://doi.org/10.1080/14786442808674769
https://doi.org/10.1515/zpch-1914-8703
https://doi.org/10.1142/S0218127408021877
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1016/j.physd.2003.09.002
https://doi.org/10.1051/jp2:1991163
https://doi.org/10.1038/nature04292
https://doi.org/10.1038/nature06518
https://doi.org/10.1890/08-0153.1
https://doi.org/10.1038/srep20815
https://doi.org/10.1063/1.1785453
https://doi.org/10.1103/PhysRevLett.73.764
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nphys1286
https://doi.org/10.1103/PhysRevX.4.021036
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1007/s100510050276
https://doi.org/10.1103/PhysRevE.97.012150
https://doi.org/10.1016/0167-2789(94)90251-8
https://doi.org/10.1103/PhysRevE.63.046118
https://doi.org/10.1103/PhysRevE.59.2736
https://doi.org/10.1103/PhysRevE.80.011114
https://doi.org/10.1103/PhysRevE.76.020101
https://doi.org/10.1088/1742-5468/2009/03/L03002
https://doi.org/10.1209/0295-5075/98/50006
https://doi.org/10.1088/1742-5468/2014/09/P09002
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.3389/fphy.2022.789097
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1103/PhysRevE.103.052123
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevE.100.040101
https://doi.org/10.1103/PhysRevE.104.054124
https://doi.org/10.1103/PhysRevResearch.2.043174
https://doi.org/10.1103/PhysRevE.101.052130
https://doi.org/10.1088/1751-8121/acf3bb
https://doi.org/10.1088/1367-2630/ac5282
https://doi.org/10.1073/pnas.1320424111
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevResearch.2.013103
https://doi.org/10.1088/1751-8121/ac491c
https://doi.org/10.1088/1367-2630/aced1d
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevE.103.022103
https://doi.org/10.1103/PhysRevE.92.052127


LÉVY FLIGHTS AND LÉVY WALKS UNDER STOCHASTIC … PHYSICAL REVIEW E 109, 044147 (2024)

[69] A. Stanislavsky and A. Weron, Phys. Rev. E 104, 014125
(2021).

[70] A. Pal and V. V. Prasad, Phys. Rev. E 99, 032123 (2019).
[71] B. Dybiec, E. Gudowska-Nowak, E. Barkai, and A. A. Dubkov,

Phys. Rev. E 95, 052102 (2017).
[72] R. K. Getoor, Trans. Amer. Math. Soc. 101, 75 (1961).
[73] A. Janicki and A. Weron, Simulation and Chaotic Behavior of α-

stable Stochastic Processes (Marcel Dekker, New York, 1994).
[74] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian

Random Processes: Stochastic Models with Infinite Variance
(Chapman and Hall, New York, 1994).

[75] K. Górska and K. A. Penson, Phys. Rev. E 83, 061125 (2011).

[76] D. J. Higham, SIAM Rev. 43, 525 (2001).
[77] R. Mannella, Intl. J. Mod. Phys. C 13, 1177 (2002).
[78] J. M. Chambers, C. L. Mallows, and B. W. Stuck, J. Am. Stat.

Assoc. 71, 340 (1976).
[79] A. Weron and R. Weron, Lect. Notes Phys. 457, 379 (1995).
[80] R. Weron, Stat. Prob. Lett. 28, 165 (1996).
[81] T. Rotbart, S. Reuveni, and M. Urbakh, Phys. Rev. E 92,

060101(R) (2015).
[82] A. Pal and V. V. Prasad, Phys. Rev. Res. 1, 032001(R) (2019).
[83] A. Pal, S. Kostinski, and S. Reuveni, J. Phys. A: Math. Theor.

55, 021001 (2022).
[84] K. Szczepaniec and B. Dybiec, J. Stat. Mech. (2015) P06031.

044147-9

https://doi.org/10.1103/PhysRevE.104.014125
https://doi.org/10.1103/PhysRevE.99.032123
https://doi.org/10.1103/PhysRevE.95.052102
https://doi.org/10.1090/S0002-9947-1961-0137148-5
https://doi.org/10.1103/PhysRevE.83.061125
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1080/01621459.1976.10480344
https://doi.org/10.1007/3-540-60188-0_67
https://doi.org/10.1016/0167-7152(95)00113-1
https://doi.org/10.1103/PhysRevE.92.060101
https://doi.org/10.1103/PhysRevResearch.1.032001
https://doi.org/10.1088/1751-8121/ac3cdf
https://doi.org/10.1088/1742-5468/2015/06/P06031

