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We investigate the nature of the deconfinement transitions in three-dimensional lattice Abelian Higgs models,
in which a complex scalar field of integer charge Q � 2 is minimally coupled with a compact U (1) gauge field.
Their phase diagram presents two phases separated by a transition line where static charges q, with q < Q,
deconfine. We argue that these deconfinement transitions belong to the same universality class as transitions in
generic three-dimensional ZQ gauge models. In particular, they are Ising-like for Q = 2, of first order for Q = 3,
and belong to the three-dimensional gauge XY universality class for Q � 4. This general scenario is supported
by numerical finite-size scaling analyses of the energy cumulants for Q = 2, Q = 4, and Q = 6.
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I. INTRODUCTION

Three-dimensional (3D) Abelian Higgs (AH) gauge mod-
els, in which charged scalar fields are coupled with an Abelian
gauge field, provide effective models for several emergent
collective phenomena in condensed-matter physics [1–3].
The phase structure of this class of models has been exten-
sively studied, see, e.g., Refs. [3–98]. It has been realized
that a crucial role is played by topological properties. In-
deed, the phase diagram and the nature of the transitions
depend on the compact or noncompact nature of the gauge
fields [5,6,13,17,36,93] and, in compact lattice models, on
the charge of the scalar fields [5,9,34,87] and on the pres-
ence or absence of topological defects such as monopoles
[19,38,82,85].

We consider compact lattice AH (CLAH) models defined
on 3D cubic lattices. The partition function reads

Z =
∑
{z,λ}

e−βH , H = JHz + KHλ, (1)

Hz = −2
∑
x,μ

Re z̄xλ
Q
x,μzx+μ̂, (2)

Hλ = −2
∑

x,μ>ν

Re �x,μν, (3)

�x,μν = λx,μ λx+μ̂,ν λ̄x+ν̂,μ λ̄x,ν , (4)

where λx,μ ∈ U (1) are phases (unit-length complex variables)
associated with each lattice link (starting at site x along one of
the lattice direction, μ = 1, 2, 3), zx are unit-length complex
variables associated with each lattice site, and Q ∈ N is the
charge of the complex scalar field zx. Without loss of general-
ity, the inverse temperature β = 1/(kBT ) can be absorbed in
the definition of the couplings J and K , formally setting β = 1
in the partition function (1). The model is invariant under
U (1) gauge transformations, zx → U Q

x zx, λx,μ = Uxλx,μŪx+μ̂,
where Ux is a phase. The CLAH model can also be rewritten in

terms of only the gauge fields by exploiting the gauge invari-
ance. Indeed, by appropriate gauge transformations, we can
set zx = 1 everywhere (the so-called unitary gauge), obtaining
the unitary-gauge CLAH Hamiltonian,

Hug = −2J
∑
xμ

Re λQ
x,μ + KHλ, (5)

which presents a residual invariance under local ZQ

gauge transformations, i.e., under transformations λx,μ =
Vxλx,μV̄x+μ̂ with Vx ∈ ZQ, i.e., such that V Q

x = 1.
The phase diagrams of the CLAH models with Q = 1

and Q > 1 differ significantly [5,34]. While the Q = 1 model
has only one thermodynamic phase, for Q � 2 two different
phases occur. They are divided by a transition line where the
charged degrees of freedom with q < Q deconfine. A sketch
of the phase diagram for Q � 2 is shown in Fig. 1. The
deconfinement transition line is expected to connect the tran-
sition points of the models obtained for J → ∞ and K → ∞,
respectively, i.e., the ZQ gauge model and the standard XY
model [5,34].

In the present paper we investigate the nature of the decon-
finement transition line and, in particular, its universal critical
properties when the transitions are continuous. Numerical re-
sults for the one-component CLAH model have been reported
in Refs. [9,33,34] for several values of Q � 2. On the basis
of analyses of Monte Carlo (MC) data, Ref. [34] claimed that
the critical behavior along the deconfinement transition line
is not universal, but it is controlled by a line of fixed points.
So critical exponents change continuously along the transition
line, varying from those of the ZQ gauge transition at J = ∞
to those of the XY transition at K = ∞.

This type of behavior, if confirmed, would be quite unusual
for 3D transitions. Indeed, while there are several examples of
fixed-point lines in two dimensions—exact results have been
obtained for the eight-vertex model [99], the Ashkin-Teller
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FIG. 1. Sketch of the J-K phase diagram of the 3D one-
component CLAH model, in which a compact U (1) gauge field is
coupled with a (unit-length) complex scalar field with charge Q � 2.
A confined phase (for small J or small K) and a deconfined phase
(for large J and K) are present, separated by a deconfinement tran-
sition line. For K → ∞ and J → ∞ the model reduces to the XY
vector model and to the lattice ZQ gauge model with Wilson action,
respectively. See Sec. II for more details.

model [100–102], and the low-temperature spin-wave phase
of the XY model [103–106]—there is no robust evidence (i.e.,
exact results or compelling physical arguments) that some
transition lines in 3D models are associated with lines of fixed
points. Therefore, it is important to review and improve the
previous numerical results, given that the existence of a line
of fixed points would represent a new phenomenon in three
dimensions.

In this paper we return to this issue, performing a detailed
finite-size scaling (FSS) analysis of MC data for Q = 2, Q =
4, and Q = 6. We anticipate that the results of our analyses
are consistent with the more conventional 3D scenario: The
universality class of the deconfinement transitions does not
change along the line. Their critical behavior is the same as
in generic lattice ZQ gauge models, so the transitions belong
to the Ising and XY universality classes for Q = 2 and Q � 4,
respectively. This is the same critical behavior observed in ZQ

gauge models obtained in the J → ∞ limit with a notable ex-
ception, the case Q = 4. This is related to the fact that the Z4

gauge model obtained for J → ∞ is not a generic Z4 gauge
model but a particular one that is equivalent to two decoupled
Ising gauge models. Instead, along the deconfinement line, the
critical behavior of the Q = 4 model is expected to be that of
a generic Z4 gauge model, which undergoes an XY transition,
as for Q > 4.

We stress that, since numerical analyses based on MC
simulations only consider a limited range of lattice sizes or
correlation lengths (the same is true for experiments), the con-
trol of the nonuniversal scaling corrections to the asymptotic
critical behavior is crucial to check universality. Without a
proper handling of these corrections, inaccurate estimates of
critical universal parameters are obtained, leading to apparent
violations of universality. In particular, we point out the ex-
istence of significant crossover effects for large values of K ,
arising from the unstable XY vector critical behavior present
for K = ∞. They may hide the universal behavior when ana-
lyzing numerical data for relatively small lattice sizes.

The paper is organized as follows. In Sec. II we discuss the
phase diagram of CLAH models with Q � 2 and put forward a
general scenario for the deconfinement transitions. In Sec. III
we outline the main features of our FSS analyses of the energy
cumulants. In Sec. IV we report our FSS analyses of the MC
data for Q = 2, Q = 4, and Q = 6. In Sec. V we summarize
and draw our conclusions. We also compare the results for
the one-component CLAH models with those for other lattice
AH models. We also add a number of Appendices, reporting
useful results that characterize the universality class of ZQ

gauge models and of gauge XY models.

II. PHASE DIAGRAMS OF MULTICHARGE
CLAH MODELS

In this section we discuss the phase diagram of the CLAH
model defined in Eq. (1) for Q � 2 as a function of the
Hamiltonian parameters J and K (as mentioned we
set β = 1); see Fig. 1. We assume K � 0, so the
parameter K plays the role of inverse square gauge
coupling, i.e., K ∼ g−2. Moreover, since the phase
diagram is symmetric for J → −J , as can be seen
by using the field redefinition zx → (−1)x1+x2+x3 zx, we
assume J � 0.

For Q � 2, two different phases are present, which are
distinguished by the confinement properties of the charged
excitations with q < Q. Indeed, the transition line separating
these two phases is related to the deconfinement of the charged
degrees of freedom with q < Q and, in particular, to the be-
havior of the unit-charge Wilson loops WC = ∏

�∈C λ�, where
C is a closed lattice loop. For Q � 2, the Wilson loop for
unit-charge sources obeys the area law in the confined phase
and the perimeter law in the deconfined phase. For Q = 1 the
area law never holds, due to the screening of the charged scalar
modes, so only the deconfined phase is present. Note that
the nontrivial dependence on the charge Q is strictly related
to the compact gauge action in which λx,μ ∈ U (1) is used.
In noncompact formulations, the gauge field is a real field
Ax,μ, and the charge Q can be eliminated by a redefinition of
Ax,μ and K .

For J → ∞ the model with Q � 2 is equivalent to the lat-
tice ZQ gauge model with Wilson action [34,87,107]. Indeed,
if we start from the unitary-gauge Hamiltonian (5), then only
fields satisfying λ

Q
x,μ = 1 are allowed for J → ∞. Therefore,

we obtain a gauge theory with link variables,

ρx,μ = exp(2π inx,μ/Q), nx,μ = 1, . . . , Q, (6)

and Hamiltonian,

HZQ = −2K
∑

x,μ>ν

Re (ρx,μ ρx+μ̂,ν ρ̄x+ν̂,μ ρ̄x,ν ). (7)

The ZQ gauge model (7) has a topological transition for a
finite K = KZQ [108,109].

The ZQ gauge model is dual to a specific Q-state
clock model [110], with ZQ spin variables exp(2π inx/Q)
(where nx = 1, . . . , Q) associated with the sites and a
Hamiltonian which is symmetric under global ZQ transfor-
mations. The two-state clock model is equivalent to the Ising
model, while the three-state clock model is equivalent to
the three-state Potts model, which undergoes a first-order
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transition. The nature of the transitions for
Q � 4 can be understood using the Landau-
Ginzburg-Wilson (LGW) approach. The LGW
Hamiltonian for a ZQ-symmetric spin system can be
written as [94]

HZQ = |∂μ
|2 + r |
|2 + u |
|4 + v (
Q + 
̄Q), (8)

where 
(x) is a complex field. Note that HZQ is also invariant
under the transformation 
 → 
̄, which, however, does not
play any role at criticality. The Q-dependent potential has
dimension Q and is therefore irrelevant for Q > 4. We can
thus set v = 0, obtaining the standard 
4 theory for a complex
field. We thus predict an XY critical behavior and an effective
enlargement of the symmetry at the transition.

For Q = 4, the Q-dependent potential has dimension four
and represents a cubic anisotropy. The renormalization-group
(RG) flow of model (8) with Q = 4 has been studied by using
different approaches; see, e.g., Refs. [111–114]. It turns out
that the stable fixed point is again the XY fixed point with v =
0. The anisotropic interaction with coefficient v gives only
rise to scaling corrections. However, due to the small absolute
value of the corresponding RG dimension [113,115,116] yv =
−0.108(6), these scaling corrections are expected to decay
slowly. Beside the stable fixed point along the line v = 0,
the LGW model admits also an unstable nontrivial fixed point
along the line w = u − 6v = 0, where the LGW Hamiltonian
can be written as the sum of two identical LGW Hamiltonians
with a real scalar field, so that this fixed point corresponds to
an Ising critical behavior. The parameter w parametrizes a rel-
evant perturbation of the Ising fixed point with RG dimension
yw = d − 2/νI = 0.17475(2), where [117] νI = 0.629971(4)
is the Ising critical exponent. The LGW analysis therefore
predicts that generic Z4 invariant clock models undergo XY
transitions. However, the standard Z4 clock model can be
exactly rewritten as a sum of two Ising models [118,119], and
thus it exactly corresponds to the LGW theory with w = 0,
hence it undergoes an Ising transition.

We can use duality and the above results for Q-state
clock models to predict the nature of the transitions in ZQ

gauge models, corresponding to the J → ∞ limit of the
CLAH models. For Q = 2 we have an Ising transition for
J = ∞ and KZ2 = 0.380706646(6) [87,107,120], while for
Q = 3, the transition should be of first order. The Z4 gauge
model is dual to the standard Z4 clock model, and hence it
should undergo an Ising transition. This result also follows
from the exact relation [121]

ZZ4 (K ) = ZZ2 (K/2)2, ZZQ (K ) =
∑
{ρ}

e−HZQ
(K )

, (9)

between the partition functions of the Z4 and Z2 gauge
models defined by the Hamiltonian (7), which is demon-
strated in Appendix A. This relation also implies that the
transition point of the Z4 gauge model is located at KZ4 =
2KZ2 = 0.761413292(12). For Q > 4 the transitions of the
lattice ZQ gauge models belong to the 3D XY universality
class [87,119]. For Q = 6 the transition occurs at KZ6 =
1.50342(4) [109]. Moreover, for large Q we have [93]

KZQ ≈ KIXY

2
Q2, KIXY = 0.076051(2), (10)

where KIXY is the critical point of the inverted XY model that
represents the J → ∞ limit of the noncompact lattice AH
model.

The previous discussion allows us to conclude that the
limiting ZQ gauge model with Hamiltonian (7) undergoes an
Ising transition for Q = 2 and 4 and an XY transition for Q �
5. It is, however, important to stress that this identification is
done using the duality between the gauge and the spin system
and that duality only maps the free energy and the related
thermal observables. Strictly speaking, the Ising and XY fixed
points that control the critical behavior of ZQ gauge models
differ from the Ising and XY fixed points that are relevant for
the corresponding ZQ clock models. Indeed, they represent
fixed points obtained by performing RG transformations on
two different classes of Hamiltonians—those with local and
global ZQ symmetry, respectively. We have used the same
name because of the existence of the duality transformation,
which, however, only relates the thermal sectors of the two
models. There are both relevant and irrelevant operators that
are unrelated: For instance, the magnetic sector in the spin
universality class has no counterpart in the gauge universality
class. In the following, to avoid confusion, we distinguish the
gauge XY from the spin XY universality class by writing XYG

in the gauge case. No suffix will be used for the Ising case,
as no confusion can arise: In this work we always refer to the
Ising-gauge universality class.

For K → ∞, the plaquette term becomes trivial, i.e.,
�x,μν = 1 everywhere. Therefore, in the thermodynamic
limit, we can set λx,μ = 1 modulo gauge transformations (in
a finite volume there are some subtleties that are discussed in
Appendix B). The scalar Hamiltonian becomes

HXY (J ) = −2J
∑
x,μ

Re z̄xzx+μ̂, (11)

for any Q. The model undergoes therefore an XY vector tran-
sition at [122–124] JXY = 0.22708234(9) for any Q.

The XY spin fixed point that controls the critical behavior
in the model (11) is unstable with respect to the addition of
Abelian gauge variables [93]. This can be shown by comput-
ing the RG dimension of the gauge operator that drives the
system out of the fixed point in the AH field theory [88]. To
all orders of perturbation theory in the ε = 4 − d expansion,
we obtain [88] yα = 4 − d (yα = 1 in three dimensions) for
the crossover exponent associated with the squared gauge
coupling α ≡ g2 ∼ 1/K . The RG dimension yα corresponds
to the energy dimension of the gauge coupling α. Therefore,
in the large-K limit, the gauge field gives rise to an intrinsic
crossover scale ξα ∼ K . If the correlation length ξ or the size
of the system L satisfies ξ � ξα or L � ξα , then significant
crossover effects with an apparent XY behavior can be ob-
served.

We now turn to discuss the deconfinement transitions for
finite J and K . A natural working hypothesis is that all transi-
tions along the line running from [J = ∞, KZQ ] to [JXY , K =
∞] have the same universal features—as we have already
mentioned, a line of fixed points seems unlikely in 3D. Given
that the CLAH model is equivalent to a purely gauge model
with ZQ gauge symmetry in the unitary gauge, see Eq. (5),
the most natural hypothesis is that the finite-J deconfinement
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transitions have the same universal features as the topological
transition in the ZQ gauge model obtained for J → ∞. In
this scenario we would expect Ising deconfinement transitions
for Q = 2; first-order transitions for Q = 3, since the J → ∞
transition is of first order; and XYG transitions for any Q > 4.

We do not expect the above scenario to work for Q = 4.
Indeed, as we have discussed above, the Z4 gauge model (7)
is not a generic Z4 gauge model: Because of the identity (9),
its partition function is equivalent to that of two decoupled
Ising gauge models. The addition of the scalar field spoils
this factorization [this is more easily seen using the unitary-
gauge Hamiltonian (5)]: Barring unexpected cancellations,
the finite-J scalar Hamiltonian should represent a relevant
perturbation of the J → ∞ Ising fixed point. Therefore, the
finite-J transitions should be controlled by the stable XYG

fixed point also for Q = 4. However, for large J we expect
significant crossover effects due to the nearby Ising gauge
transition, given the small RG dimension, yw ≈ 0.17, of the
relevant perturbation of the unstable Ising fixed point.

It is important to observe that the critical behavior for
Q � 4 is quite peculiar, as the addition of Abelian gauge fields
to the spin (clock) model drives the system out of the unstable
spin XY fixed point towards the related stable XYG fixed
point. To understand this behavior, it is important to remember
that the spin XY and the XYG fixed points differ, as duality
only relates their thermal sectors. In particular, the relevant
gauge perturbation of the spin XY fixed point does not have
a counterpart at the XYG fixed point, given that the latter is
stable—this is our working hypothesis that is confirmed by the
numerical results—when scalar degrees of freedom are added.

As we shall see, the numerical FSS analyses for Q =
2, 4, 6 that we report in the next section are substantially
consistent with the above scenario. No anomalous violations
of universality along the deconfinement line are observed.
Indeed, all deviations can be explained as standard scaling
corrections to the asymptotic critical behavior. It is worth
mentioning that the noncompact lattice AH model, which
can be seen as the Q → ∞ limit of the CLAH model [93],
has an analogous phase diagram, with an XYG deconfinement
transition line.

We finally mention that a similar analysis has already
been performed for multicomponent CLAH models, in which
the scalar field has N > 1 complex components. The phase
diagram is more complex due to the possibility of the sponta-
neous breaking of the global SU (N ) symmetry. One observes
three different phases (see Fig. 2): a low-J disordered-
confined (DC) phase and two high-J ordered phases [ordered
confined (OC) and ordered deconfined (OD), respectively]
distinguished by the confinement properties of the gauge field,
which is confined for small K and deconfined for large K .
The numerical analyses reported in Refs. [87,93] show that
(i) along the OC-OD line transitions are topological and are
expected to belong, for any N , to the universality class of the
ZQ gauge models (numerical results for Q = 2 are reported
in Ref. [87]); (ii) the transitions along the DC-OD line are
controlled by the charged fixed point of the AH field theory
and therefore belong to the same universality class as the
transitions between the Coulomb and Higgs phases of the
noncompact lattice AH model [87,88,93,98]; and (iii) along
the DC-OC line the gauge variables are not critical, so the

FIG. 2. Sketch of the J-K phase diagram of the 3D multicompo-
nent CLAH model, in which a compact U (1) gauge field is coupled
with an N-component unit-length complex scalar field of charge Q �
2, for generic N � 2. There are three phases, the disordered-confined
(DC), the ordered-deconfined (OD), and the ordered-confined (OC)
phases. The AH model is equivalent to the CPN−1 model for K = 0,
to the O(2N ) vector model for K → ∞. For J → ∞ and Q � 2, we
obtain the lattice ZQ gauge model as in the one-component case.

critical behavior is expected to be analogous to that of the
CPN−1 model, obtained setting K = 0.

III. FINITE-SIZE SCALING BEHAVIOR
OF THE ENERGY CUMULANTS

A. Energy cumulants

Our FSS analyses focus on the gauge-invariant energy
cumulants Ck . They can be defined by formally restoring
the dependence on the inverse temperature β in Eq. (1), as
the inverse-temperature derivatives of the free-energy density,
more precisely,

Ck = 1

L3

(
∂

∂β

)k

log Z (β, J, K ), (12)

where Z is the partition function defined in Eq. (1). The
cumulants Ck are intensive quantities which can be related to
the energy central moments,

Mk = 〈 (H − 〈H〉)k 〉, (13)

by

C1 = −L−3〈H〉, C2 = L−3M2,

C3 = −L−3M3, C4 = L−3(M4 − 3M2
2

)
, (14)

etc. Note that C2 is proportional to the specific heat. These
global quantities allow one to characterize topological tran-
sitions in which no local gauge-invariant order parameter is
present; see, e.g., Refs. [34,87,125].

At fixed K and J , if the transition is continuous, then the
cumulant Ck is expected to show the FSS behavior [34,87,125]

Ck (βJ, βK, L) = p(J, K )

q(J, K )k
Lk/ν−d [Uk (Y ) + O(L−ω) )]

+ Bk (βJ, βK ), (15)

Y = 1

q(J, K )
[β − βc(J, K )]L1/ν, (16)
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where βc(J, K ) is the critical inverse temperature, ν is the
length-scale critical exponent, ω is the leading correction-
to-scaling exponent, and Bk (βJ, βK ) is a regular function—
the so-called analytic background [87,112]. The functions
p(J, K ) and q(J, K ) are nonuniversal functions that guarantee
that Uk (Y ) is universal, i.e., it is the same in all models that be-
long to the same universality class. They are unambiguously
defined only once one fixes their value for a specific J and
K . We have fixed the prefactor in Eq. (15) so that the relation
Ck+1 = ∂Ck/∂β implies

Uk+1(Y ) = ∂YUk (Y ). (17)

We can infer the asymptotic behavior of the scaling functions
Uk (Y ) for Y → ±∞ by matching the FSS behavior (15) with
the leading singular behavior of Ck in the thermodynamic
limit, i.e.,

Ck,∞ = lim
L→∞

Ck ≈ ck,±|β − βc|−(k−dν) + Bk, (18)

for β → βc at fixed J and K . We obtain

Uk (Y ) ∼ |Y |−(k−dν) for |Y | → ∞. (19)

This implies that if k − dν > 0, then Uk (Y ) vanishes for
|Y | → ∞, a property than can be used to determine Uk (Y )
from Uk+1(Y ). Indeed, using Eq. (17), we can write

Uk (Y ) =
∫ Y

−∞
dZ Uk+1(Z ). (20)

Taking the limit Y → ∞, we obtain the consistency relation∫ ∞

−∞
dY Uk+1(Y ) = 0. (21)

The cumulants Ck also allow us to define some universal
quantities that are independent of the nonuniversal normal-
ization constants p and q appearing in Eq. (15). Since the
specific heat C2 has a single maximum, the corresponding
scaling function U2(Y ) has a maximum at Y2. Moreover, since
C3 = ∂C2/∂β, C3 should have a maximum and a minimum
and vanish at the value of β where C2 has a maximum. Thus,
the scaling function U3(Y ) should vanish for Y = Y2 and have
a maximum and a minimum of opposite sign at two different
values of Y , i.e., for Y = Y3,a and Y = Y3,b (in general, Uk (Y )
is expected to have k − 2 zeros and k − 1 stationary points),
with C3,# = U3(Y3,# ). We conventionally identify Y3,a and Y3,b

by requiring |Y3,a| > |Y3,b|. We can then define the universal
RG invariant ratios,

W1 ≡ C3,b

C3,a
, W2 ≡ Y3,b

Y3,a
, W3 ≡ Y2

Y3,a
. (22)

B. Energy cumulants when varying one Hamiltonian parameter

Instead of fixing J and K and varying β, in our numerical
analyses we fix β = 1 and vary K or J . Assuming for instance
that J = J̄ is fixed, we determine the cumulants Ck defined
in Eq. (14) for different values of K . Their FSS behavior is
expected to be analogous to that reported in Eq. (15),

Ck (J̄, K, L) = Lk/ν−d [Ck (X ) + O(L−ω )] + bk (K ),

X = (K − Kc)L1/ν . (23)

Comparing with Eq. (15), we obtain bk (K ) = Bk (J̄, K ) and
we can relate the scaling functions Ck (X ) with Uk (Y ). At fixed
J the model has a transition for K = Kc, with βc(J̄, Kc) = 1.
Then, close to criticality, we obtain

Ck (X ) = p(J̄, Kc)

(ac)k
Uk (X/a), (24)

with

Y = X

a
, a = q(J̄, Kc)

c
, c = −∂βc(J, K )

∂K

∣∣∣∣
J̄,Kc

. (25)

As before, we have

Ck (X ) ≈ ek,±|X |−(k−dν) for X → ±∞, (26)

a result that can be obtained by matching the FSS be-
havior with the singular behavior in the thermodynamic
limit. The constants ek,± are related to the constants that
parametrize the leading singular behavior of Ck,∞(J̄, K ) =
limL→∞ Ck (J̄, K, L) for K → Kc:

Ck,∞(K ) ≈ ek,±|K − Kc|−(k−dν) + bk (K ). (27)

If k − dν > 0, then Ck (X ) vanishes for |X | → ∞, allowing
us to determine Ck (X ) from Ck+1(X ). Equations (17) and (24)
imply Ck+1(X ) = ∂XCk (X )/ac, so we write

Ck (X ) = ac
∫ X

−∞
dZ Ck+1(Z ). (28)

Taking the limit X → ∞, we obtain the consistency relation∫ ∞

−∞
dX Ck+1(X ) = 0. (29)

If the universality class of the critical behavior does not
change in the limit J → ∞, therefore for any Q 
= 4, then
we can take the limit J → ∞. In this case the theory is a
function of βK only. Thus, if Kc is the critical point of the
J → ∞ model with β = 1, then we have βc(∞, K ) = Kc/K ,
which implies c = 1/Kc. We now use the arbitrariness in the
definition of p(J, K ) and q(J, K ), setting p(∞, Kc) = 1 and
q(∞, Kc) = 1/Kc, and thus a = 1 in Eq. (25). We obtain

Uk (X ) = 1

Kk
c

Ck (X ). (30)

We will use this relation to compute the universal functions
Uk (X ) in the Ising case; see Appendix C. For the XYG case,
we will instead determine Uk (X ) in the inverted XY gauge
model; see Appendix D.

C. Other related quantities

In the analyses one can also consider cumulants of Hz and
Hλ, which can be related to derivatives of the free energy with
respect to J or K . In particular, we define

CJ,k = 1

L3

(
∂

∂J

)k

log Z

∣∣∣∣∣
β=1

. (31)

At fixed J = J̄ they behave as

CJ,k (J̄, K, L) = Lk/ν−d [CJ,k (X ) + O(L−ω )] + bk (K ), (32)
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where X is given in Eq. (23) and bk (K ) is the analytic con-
tribution. Also CJ,k (X ) can be related to the universal scaling
function Uk (X ). Indeed, a simple calculation gives

CJ,k (X ) = p(J̄, Kc)ck
J Uk (X/a), (33)

where a is the same as in Eqs. (25) and (24), while

cJ = − ∂

∂K

[
βc(J, K )

q(J, K )

]∣∣∣∣
J̄,Kc

. (34)

Of course, analogous equations can be obtained in the case we
vary J keeping K = K̄ fixed.

IV. NUMERICAL ANALYSES

To investigate the nature of the transition lines and check
the predictions outlined in the previous section, we performed
MC simulations, considering cubic lattices of size L3. We use
C� boundary conditions [88,126,127], defined by λx+Lμ̂,ν =
λx,ν and zx+Lμ̂ = z̄x, to be able to compare our FSS results
with analogous results obtained in noncompact lattice AH
models. We report FSS analyses for Q = 2, 4, 6. In partic-
ular, for Q = 2 we discuss in detail the FSS behavior along
the line K = 1. This is the same region of phase space con-
sidered in Ref. [34], which reported substantial deviations
from the Ising asymptotic critical behavior. In the simula-
tions we perform a combination of microcanonical [128] and
Metropolis [129] updates for the scalar fields and Metropolis
updates for the gauge fields. For the Metropolis updates we
choose the trial state so as to satisfy detailed balance and to
have an acceptance probability of approximately 30%. For the
gauge field we also employ a Metropolis update with proposal
λx,μ → e±2π i/Qλx,μ, in order to avoid any slowdown of the
dynamics in the large-J limit.

In the following we focus on the scaling behavior of the
energy cumulants, testing the RG predictions of Sec. III. We
will use the existing estimates of the critical exponents, which
are known with high accuracy both for Ising [112,117,120,
130–134] and XY [112,122,123,130,133,135] systems. In the
Ising case, we have ν = νI = 0.629971(4) and ω = ωI ≈
0.8297(2) [117]. For the XY universality class, we have
[122,123] ν = νXY = 0.6717(1) and ω = ωXY = 0.789(4).

The specific heat C2 is not particularly convenient for a nu-
merical analysis. Indeed, in the Ising case C2 diverges with the
small exponent 2/νI − 3 = αI/νI = 0.17475(2). Therefore,
the leading corrections are due to the background and decay
as L−0.1747. The situation is even worse in the XY case, since
2/νXY − 3 = αXY /νXY ≈ −0.022 is negative. In this case, the
background contribution b2 in FSS Eq. (23) is the dominant
contribution.

Higher cumulants are more promising. For example, for the
third cumulant we have 3/νI − 3 = 1.76235(3) and 3/νXY −
3 = 1.4663(7) for Ising and XY transitions, respectively. The
leading scaling corrections decay as L−ω, with ω ≈ 0.8 in
both cases, so the analytic background is negligible. However,
the use of higher cumulants also presents some drawbacks.
In particular, statistical errors increase significantly with the
order of the cumulant. Therefore, in the following we only
present results up to the fourth cumulant.

FIG. 3. Rescaled C3 cumulant along the J = 0.7 line (top) and
the K = 1 line (bottom) for Q = 2. Data approach an asymptotic
FSS curve, supporting the Ising nature of the transition, although
significant scaling corrections are visible for K = 1. The continuous
curves are computed using Eq. (37), with a = 0.67, p(ac)−3 = 2.15
for J = 0.7, and with a = 0.78, p(ac)−3 = 0.46 for K = 1; the
scaling curve U (I )

3 (X ) is reported in Appendix C. In the insets we
plot LωI [L3−3/νI C3(J, K, L) − C3(X )] versus X with ωI = 0.83. The
observed behavior is consistent with Eq. (39), as expected for a
transition in the Ising universality class.

A. Results for Q = 2

For Q = 2 we have performed simulations along the line
K = 1 on lattices of size up to L = 56, and along the line J =
0.7 on lattices up to L = 32. MC estimates of C3 are shown
in Fig. 3. They are consistent with the asymptotic Ising-gauge
FSS behavior,

L3−k/νICk (J, K, L) ≈ Ck (X ), (35)

X = (K − Kc)L1/νI or X = (J − Jc)L1/νI . (36)

However, we note the presence of significant scaling correc-
tions, in particular, in the data along the K = 1 line (we will
return to this point later). From fits of C3 to the scaling behav-
ior (35) fixing νI to the Ising value, we obtain Kc(J = 0.7) =
0.5880(2) and Jc(K = 1) = 0.34910(6). The other cumulants
give compatible, but less precise, results.

A stronger check that the critical behavior is the same as
that of the Z2 gauge model is obtained by comparing the
computed scaling functions Ck (X ) and the universal curve U (I )

k
that we have computed for the Z2 gauge model with the same
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FIG. 4. Rescaled C4 cumulant along the J = 0.7 line (top) and
the K = 1 line (bottom) for Q = 2. The continuous curves are com-
puted using Eq. (37) with a = 0.67, p(ac)−4 = 2.55 for J = 0.7,
and with a = 0.78, p(ac)−4 = 0.35 for K = 1. We use the relation
U (I )

4 (X ) = ∂XU (I )
3 (X ); the scaling function U (I )

3 (X ) is reported in
Appendix C. We do not report MC data for K = 1 and
L = 56 because they are too noisy. In the insets we plot
LωI [L3−4/νI C4(J, K, L) − C4(X )] versus X with ωI = 0.83. The ob-
served behavior is consistent with Eq. (39), as expected for a
transition in the Ising universality class.

boundary conditions; see Appendix C. Equation (24) implies

Ck (X ) = p

(ac)k
U (I )

k (X/a), (37)

where p, a, and c are constants that depend on the model but
not on the order k of the cumulant. In Fig. 3, we compare
the data of the combination L3−3/νIC3 with the scaling curves
C3(X ) obtained from Eq. (37). The normalization constants
have been determined to best agreement. We find a ≈ 0.67
and p(ac)−3 ≈ 2.15 for J = 0.7, and a ≈ 0.78 and p(ac)−3 ≈
0.46 for K = 1, with a relative uncertainty of approximately
5%. In Fig. 4 we report the results for C4, together with the
scaling curve obtained by using Eq. (24):

C4(X ) = p

(ac)4
U ′(I )

3 (X/a), (38)

where U ′(I )
3 (Y ) = d U (I )

3 (Y )/dY , see Eq. (17). Using the same
constant a reported above, and the estimates p(ac)−4 ≈ 2.55
for J = 0.7, or p(ac)−4 ≈ 0.35 for K = 1 (the error on such
estimates is about 5% and 10%, respectively), the Ising-gauge
scaling curves are in reasonable agreement with the numerical
data, again confirming the Ising-gauge nature of the transition.

The results obtained from the analysis of C3 and C4 also allow
us to determine the two constants p and c separately: p ≈ 1.3,
c ≈ 1.3 for J = 0.7 and p ≈ 1.04, c ≈ 1.7 for K = 1.

Another stringent check is obtained by analyzing the de-
viations of the finite-volume cumulants from the asymptotic
Ising FSS curves. At Ising transitions, for k � 3, one gener-
ally expects the presence of corrections vanishing as L−ωI ,
with ωI = 0.8297(2) [117]; see Eq. (23). Deviations from
the asymptotic curves Ck (X ) are thus expected to satisfy the
relation

LωI [L3−k/νICk (J, L) − Ck (X )] ≈ Ck,ω(X ), (39)

for k � 3. Note that the scaling functions Ck,ω(X ) are also
expected to be universal apart from an overall rescaling if
one uses X/a as independent variable, where a is the same
constant defined in Eq. (37). As shown in the insets of Figs. 3
and 4, both C3 and C4 data are nicely consistent with Eq. (39)
and with the universality (apart from a rescaling) of Ck,ω(X )
when expressed in terms of X/a (note that a is approxi-
mately the same for the data along the two different lines).
Equation (39) does not hold for C2, since the leading correc-
tions are due to the analytic background and decay as L−αI /νI ,
with αI/νI ≈ 0.1747.

We also note that the value Jc ≈ 0.349 obtained for K = 1
is close to the asymptotic K → ∞ critical value JXY ≈ 0.227,
indicating that the transition point at K = 1 is already in a
region where the transition line runs almost parallel to the
K axis in Fig. 1. In this situation it might be more natural
to use the cumulants CJ,k of Hz instead of the cumulants Ck

defined in Eq. (12). Estimates of CJ,3 and CJ,4 for K = 1 are
reported in Fig. 5, together with the scaling curves obtained
using Eq. (33). Since the constant p has already been de-
termined using the cumulants Ck , only the constant cJ can
be tuned. If we set cJ = 0.97, then we observe a reasonable
agreement for both CJ,3 and CJ,4. Finally, we analyzed the
scaling corrections, considering the combination defined as
in Eq. (39). Data scale nicely; see the insets in Fig. 5. Note
also that, as predicted by the RG theory, the scaling curves
of the finite-volume corrections differ only by a multiplicative
nonuniversal factor from those computed using the cumulants
C3 and C4; see the insets of Figs. 3 and 4 for K = 1.

The above results show that the critical behavior of the
energy cumulants for Q = 2 and K = 1 is fully compatible
with the Ising-gauge nature of the transition. They are in ap-
parent contradiction with the numerical analysis of Ref. [34],
which reported significant deviations from the Ising behav-
ior in the same region of the phase diagram (see Fig. 7 of
Ref. [34], keeping into account that the ratio κ/β in Ref. [34]
corresponds to K/J in our notations, thus κ/β ≈ 2.9 at the
transition point for K = 1).

We also remark that, with increasing K , the regime where
the eventual asymptotic FSS behavior can be observed is
expected to be pushed toward larger and larger values of L,
due to the emergence of a preasymptotic regime in which
the critical behavior is controlled by the XY spin fixed point.
Thus, when the correlation length ξ of the critical modes, or
the lattice size L in finite-size systems, is smaller than the
crossover length ξα ∼ K , we expect to observe an apparent
XY critical behavior because the gauge modes are effectively
frozen. These preasymptotic crossover effects can be hardly
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FIG. 5. Results for Q = 2 along the line K = 1. Rescaled cumu-
lants CJ,3 (top) and CJ,4 (bottom), for Q = 2 along the line K = 1,
using the Ising critical exponent νI = 0.629971. The continuous
curves are computed using Eq. (33), with a = 0.78, p = 1.04, cJ =
0.97; the scaling curve U (I )

3 (X ) is reported in Appendix C. We do not
report estimates of CJ,4 for K = 1 and L = 56 because data are too
noisy. In the insets we plot the combination defined as in Eq. (39)
versus X with ωI = 0.83.

disentangled when performing FSS analyses with data in
a limited range of lattice sizes and may lead to apparent
variations of the effective critical exponents with L. These
crossover effects do not allow us to analyze the critical behav-
ior for values of K significantly larger than 1. For instance, for
K = 2 one would probably need precise results on lattices of
size up to L = 100 to observe the asymptotic behavior with
reasonable precision. These simulations would require a huge
numerical effort.1

In conclusion, the above FSS analyses show that the decon-
finement transitions in the Q = 2 CLAH model are consistent
with the expected Ising critical behavior. They belong to the
same universality class as the transition in the lattice Z2 gauge
model. All violations of universality are explained by standard
scaling corrections, as predicted by the RG theory of critical
phenomena [112]. We expect substantial crossover phenom-
ena for large values of K , when approaching the XY transition
at K = ∞, which may be naively interpreted as violations of

1In our simulations for Q = 2 and K = 1 a statistics of the order of
108 lattice updates was gathered for each value of L, requiring about
105 core-hours of total CPU time.

FIG. 6. FSS behavior of the third cumulant C3 for Q = 6 along
the line J = 1.0, using the XY critical exponent νXY = 0.6717. We
also report (solid curve) the scaling curve (40), obtained by using
the parametrization of U (XY )

3 (X ) reported in Appendix D. In the in-
set we plot LωXY [L3−3/νXY C3(J, L) − C3(X )], with νXY = 0.6717 and
ωXY = 0.789.

universality in numerical analyses. Therefore, our results do
not confirm the existence of a fixed-point line with varying
critical exponents put forward in Ref. [34].

B. Results for Q = 6

We have performed an analogous FSS analysis of the en-
ergy cumulants for Q = 6 at fixed J = 1.0. In this case, see the
general arguments reported in Sec. II, we expect the decon-
finement transitions to belong to the XYG universality class.
This is related to the fact that, for Q > 4, the J → ∞ limit of
the model, the lattice ZQ gauge model, undergoes a topologi-
cal phase transition in the XYG universality class. XYG transi-
tions are expected along the whole transition line, as it occurs
in the one-component noncompact lattice AH model [98].

As already remarked in Sec. III, the behavior of the second
cumulant C2, which corresponds to the specific heat, is domi-
nated by the analytic background. Therefore, we focus on the
third cumulant. Results along the line J = 1.0 are shown in
Fig. 6. They clearly support the expected XYG behavior. The
estimates of L3−3/νXY C3 plotted versus X = (K − Kc)L1/νXY

FIG. 7. FSS behavior of the third cumulant C3 in the Q = 6
model along the K = 4 line, with νXY = 0.6717 and Jc = 0.4684.
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FIG. 8. FSS behavior of the third cumulant C3 in the XY vector
model, with νXY = 0.6717 and Jc = 0.22708234.

appear to approach a scaling function C3(X ) if we use the XY
value νXY = 0.6717 and Kc ≈ 2.0808(4). In Fig. 6 we also
report (solid curve)

C3(X ) = p

(ac)3
U (XY )

3 (X/a), (40)

where a ≈ 35, p(ac)−3 ≈ 7.5 × 10−5 (with a relative un-
certainty of about 10%) and U (XY )

3 (X ) is the FSS scaling
function of the XYG universality class computed with the same
boundary conditions; see Appendix D. Deviations from the
asymptotic curve are expected to scale as in Eq. (39) (with
νXY replacing νI ). The results, shown in the inset of Fig. 6,
are consistent with the XYG nature of the transition. We do not
present data for the cumulant C4, because the available data
are too noisy.

We also performed some MC simulations along the line
K = 4. We observe a transition at Jc = 0.4684(3) with expo-
nents consistent with those of the XYG universality class. The
scaling curve of C3 shows some apparent deviations from the
one obtained using Eq. (40), for any choice of the nonuni-
versal parameters a, p, and c; see Fig. 7. This can be again
explained as a crossover effect due to the presence of the
unstable spin XY fixed point. Indeed, given that the XY and
XYG universality classes differ, we expect the scaling curves
computed along the deconfinement line to be unrelated with
those computed in the XY spin model with the same boundary
conditions (see Appendix B for a discussion of the appropriate
boundary conditions). For large K and finite L we expect data
to show a crossover, with an apparent behavior related to that
observed in the spin model for small values of L and, more
precisely, for L � ξα , where ξα is the crossover length.

To clarify this point we have determined the cumulants
in the XY spin model with analogous boundary conditions.
Results are shown in Fig. 8. Although significant scaling
corrections are present, nevertheless, some qualitative features
clearly distinguish the spin XY scaling curve in Fig. 8 from
that of the XYG universality class; see Fig. 6. For instance, in
the spin XY case the maximum and the minimum are located
on opposite sides of the critical point. Instead, they are located
on the same side in the XYG case.

The results presented in Fig. 7 show that the FSS behav-
ior of C3 at K = 4 is somewhat intermediate between that

FIG. 9. FSS behavior of the third cumulant C3 for Q = 4
along the line J = 1.0, with νXY = 0.6717, Jc = 1.0205. Data ap-
proach the FSS scaling curve computed using Eq. (40); we use
the parametrization of U (XY )

3 (X ) reported in Appendix D, a = 16,
p(ac)−3 = 9 × 10−5.

expected for the vector XY and for the XYG universality
classes. Again, this can be understood by looking at the po-
sition of the minimum, which, for q = 6 and K = 4, almost
coincides with the critical-point position; see Fig. 7. For a
quantitative comparison we report the ratio W2 defined in
Eq. (22): We have W2 ≈ 0 for the Q = 6 model along the line
K = 4, W2 ≈ −0.2 for the XY model, and W2 = 0.25(5) for
the XYG universality class. We can also compare the ratio W1

that is related to the height of the peaks. For this quantity, the
Q = 6 data at K = 4 are quite different from the XY ones and
close to the XYG results. We find W1 ≈ −1.5 for the Q = 6
model at K = 4 on the lattices studied, to be compared with
W1 ≈ −2.4 and W1 = −1.75(4) for the XY (L = 32 lattice)
model and the XYG universality class, respectively.

C. Results for Q = 4

Finally, we present some results for Q = 4. As discussed
in Sec. II, this model is expected to represent an exception
with respect to the general scenario. Indeed, along the decon-
finement line transitions are expected to belong to the XYG

and not to the Ising universality class, which characterizes
the critical behavior of the lattice Z4 model obtained in the
J → ∞ limit. This prediction is confirmed by the analysis of
the numerical data obtained along the line J = 1. In Fig. 9 we
report a scaling plot of C3 using the XY value νXY = 0.6717
and Kc ≈ 1.0205(2). We also show the scaling curve obtained
by using Eq. (40) using the XYG scaling curve with a = 16
and p(ac)−3 = 9 × 10−5 (with a relative uncertainty of about
5%). Data clearly confirm the XYG nature of the transition. We
also mention that the MC data are in clear disagreement with
the alternative Ising scenario.

V. CONCLUSIONS

We have investigated the nature of the deconfinement
transitions of the one-component multicharge CLAH models
defined in Eqs. (1)–(4) (see Fig. 1 for a sketch of the phase
diagram). We argue that they belong to the same universality
class as the continuous transitions in generic ZQ lattice gauge
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models without scalar fields. In particular, the transitions be-
long to the Ising-gauge and XYG universality classes for Q = 2
and Q � 4, respectively. For Q = 3 we expect first-order de-
confinement transitions, since there is no universality class
with Z3 gauge symmetry. This scenario contrasts with the one
put forward in Ref. [34], which suggested the existence of a
fixed-point line with continuously varying critical exponents.

To accurately investigate the transitions of the single-
component model, we consider the FSS behavior of the energy
cumulants; see, e.g., Eq. (14). For these quantities we derive
several useful general properties that can be used to identify
the nature of the critical behavior in any topological transition.
We apply these general techniques to the CLAH model with
Q = 2, 4, 6 for several values of the Hamiltonian parameters.

Our FSS analyses for Q = 2 indicate that the continuous
transitions along the deconfinement transition line belong to
the Ising-gauge universality class, i.e., that the critical behav-
ior is the same as in the lattice Z2 gauge model, which is
formally obtained in the J → ∞ limit. We remark that this
check requires a careful analysis of the nonuniversal scaling
corrections, which are predicted by the RG approach. Indeed,
in FSS analyses of data obtained for relatively small lattices,
irrelevant scaling fields or nearby unstable fixed points may
give rise to apparent violations of universality. For instance,
significant crossover effects (with a crossover length ξα ∼ K)
are expected for large values of K , due to the XY transition
occurring for K = ∞.

For Q � 4, the deconfinement transitions should belong
to the XYG universality class, with an effective enlargement
of the symmetry from ZQ to U (1). This is supported by the
FSS analyses of the energy cumulants for Q = 4 and Q = 6.
Note that for Q = 4, at variance with what occurs for Q > 4,
the critical behavior along the deconfinement transition line
differs from that observed in the Z4 gauge model obtain for
J → ∞, which instead belongs to the Ising-gauge universality
class. Crossover phenomena are expected for large values of K
also for Q � 4. This crossover is quite peculiar as the unstable
fixed point is the spin XY fixed point, while the stable one is
the gauge XYG fixed point. The two fixed points are different,
although related by duality. This implies that, even though
critical exponents are the same, other universal properties (for
instance, the FSS functions) differ.

We finally mention that, for Q = 3, the CLAH model is
expected to undergo first-order transitions for any finite K and
J . However, since the continuous XY transition is approached
for K → ∞, we expect that the first-order transitions become
weaker as K increases. More precisely, the first-order nature
becomes apparent only for L  ξα , where ξα ∼ K is the
crossover length. For smaller sizes, sizable crossover effects
are expected, with an apparent XY critical behavior. These
crossover effects may explain the results of Ref. [34], which
apparently observed a change of the nature of the transition
with increasing K , from a first order to a continuous one.

It is worth looking at these results in a more general
context, considering multicomponent compact and noncom-
pact lattice AH models. To begin with, let us compare the
phase diagrams of the one-component (N = 1) with those
of the multicomponent (N � 2) CLAH models, reported in
Figs. 1 and 2, respectively. In the multicomponent model
there are three phases, separated by three transition lines. The

FIG. 10. The phase diagram of the N-component NCLAH model
(D1), in the Hamiltonian parameter space κ-J , for N = 1 (top)
and generic N � 2 (bottom). For N = 1, there are two phases,
the Coulomb (C) and Higgs (H) phases, characterized by the con-
finement and deconfinement of charged gauge-invariant excitations,
respectively. For N � 2, the scalar field is disordered and gauge cor-
relations are long ranged in the small-J Coulomb (C) phase. For large
J two phases occur, the molecular (M) and Higgs (H) ordered phase,
in which the global SU (N ) symmetry is spontaneously broken. The
two phases are distinguished by the behavior of the gauge modes:
The gauge field is long ranged in the M phase (small κ), while it is
gapped in the H phase (large κ). Moreover, while the C and M phases
are confined phases, the H phase shows the deconfinement of charged
gauge-invariant excitations. See, e.g., Ref. [98] for more details.

topological OC-OD transition line, which separates two or-
dered phases, is the analog of the deconfinement line in the
one-component model. Also in multicomponent models the
scalar fields do not directly contribute to the critical behavior
along such transition line, which belongs to the ZQ gauge
universality class [87]. The other two lines (DC-OC and
DC-OD) are instead associated with the spontaneous breaking
of the SU (N ) symmetry and are therefore specific of the
multicomponent CLAH models. Along the DC-OC line only
scalar fields are critical, and thus the transition is the same
as in the CPN−1 model. Instead, the DC-OD transitions are
driven by a nontrivial interplay between the U (1) gauge and
SU (N ) global symmetry. For N < N∗, N∗ = 7(2) these tran-
sitions are of first order. For N � N∗ the DC-OD transitions
can be continuous, controlled by the stable fixed point of the
multicomponent AH field theory [87,93].

It is also interesting to compare the phase diagrams of
the CLAH models with those of the noncompact lattice AH
(NCLAH) models (see Appendix D for definitions) reported
in Fig. 10 (see, e.g., Refs. [88,98] for more details). The
topology of the phase diagrams is similar both in the one-
component and in the multicomponent case. This is not
surprising since, as argued in Ref. [93], the NCLAH models
can be obtained as an appropriate large-Q limit of the CLAH
models. Interestingly, also the critical behavior in compact and
noncompact models is the same, except in one case we discuss
below. In multicomponent models the behavior along the CM
transition line of the NCLAH model is the same as along
the DC-OC line of the CLAH models for any Q � 2. The
same is true for the Q = 1 multicomponent CLAH models
[83], in which there is a single transition line, which has the
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same nature as the CM transitions of the NCLAH models and
the DC-OC transitions of the multicomponent CLAH models.
Analogously, the critical behaviors along the CH line of the
NCLAH models and the DC-OD line of the CLAH models for
any Q � 2 (these transitions do not exist for Q = 1) share the
same universality class associated with the stable fixed point
of the AH field theory. The deconfinement transitions we have
studied here, as well as the OC-OD transitions in multicom-
ponent CLAH models for Q � 4, belong to the same XYG

universality class as the topological transitions in NCLAH
models (MH line for N � 2 and CH line for N = 1). Only in
CLAH systems with charge Q = 2 these deconfinement tran-
sitions belong to a different (Ising-gauge) universality class.

The topological transitions in NCLAH models are asso-
ciated with the condensation of a nonlocal order parameter
defined by dressing the scalar field with a nonlocal electro-
magnetic cloud [13,14,17,95,98]. The critical correlations of
this nonlocal charged operator were numerically studied in
Refs [95,98], exploiting the fact that it is equivalent to the
scalar field in the lattice Lorenz gauge. Along the XYG tran-
sition line they display a power-law critical behavior, which
definitely differs from that of the local scalar order param-
eter in standard spin XY transitions, thus providing a better
characterization of the XYG universality class. In these studies
the use of the Lorenz gauge fixing [95,136] was crucial, as
the charged order parameter becomes local with this choice
of gauge. Since the topological transitions in CLAH models
with Q � 4 have the same critical behavior, it is natural to
expect that also these transitions are characterized by the
condensation of an appropriately dressed scalar operator or,
equivalently, by a local scalar operator in some generalized
Lorenz gauge. Such a program is made difficult by the nonlin-
ear nature of the compact gauge fields that does not allow the
use of simple linear gauge fixings. A priori one might think
of using other gauge fixings, but they may not be appropriate
to investigate charged nonlocal excitations; see Refs. [95,136]
for a discussion. For instance, in the unitary gauge no scalar
condensation occurs [7]. If a strategy could be found to over-
come these difficulties, then it would be possible to investigate
charged excitations both for Q � 4 (it would represent a fur-
ther universality check) and for Q = 2.
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APPENDIX A: RELATION BETWEEN THE Z4

AND Z2 GAUGE MODELS

In this Appendix we prove the relation (9) between the
partition functions of the Z4 and Z2 gauge models defined
by the Hamiltonian (7). For this purpose, it is convenient to
expand the partition function as follows:

ZZQ (K ) =
∑
{ρ}

e−HZQ
(K ) =

∑
{ρ}

∏
plaq

e2KRe �x,μν , (A1)

where �x,μν = ρx,μ ρx+μ̂,ν ρ̄x+ν̂,μ ρ̄x,ν . For Q = 4 the differ-
ent values of exp(2KRe �x,μν ), counted with their degenera-
cies (corresponding to random choices of ±1 and ±i on each
link), are

(Q = 4) e2KRe �x,μν =

⎧⎪⎨
⎪⎩

e2K deg = 64
1 deg = 128
e−2K deg = 64

, (A2)

while for Q = 2 we have

(Q = 2)e2KRe �x,μν =
{

e2K deg = 8
e−2K deg = 8

. (A3)

We can now write ZZ2 (K/2)2 as a sum on two independent
sets of configurations, and it is easily seen that the possible
values (and the corresponding degeneracies) of the expres-
sion exp[K (Re �(1)

x,μν + Re �(2)
x,μν )] are exactly the same as

reported in Eq. (A2), from which we obtain Eq. (9). We
mention that an analogous relation holds for the Z4 and Z2

clock models [118,119], which is used in Ref. [121] to prove
Eq. (9) by duality.

APPENDIX B: THE ROLE OF THE BOUNDARY
CONDITIONS IN THE LIMITING MODELS

We wish now to discuss the limits J → ∞ and K → ∞
in a finite volume L3. We consider both periodic boundary
conditions (PBC),

λx+Lμ̂,ν = λx,ν zx+Lμ̂ = zx, (B1)

and C∗ boundary conditions

λx+Lμ̂,ν = λx,ν zx+Lμ̂ = z̄x. (B2)

The limit J → ∞ is particularly simple. Indeed, if we start
from the unitary-gauge Hamiltonian (5), then the increase of J
has the only effect of reducing the fluctuations of λx,μ, which,
in the limit, takes only Q different values. Therefore, the
limiting model has the same boundary conditions considered
in the finite-J system.

Let us now discuss the limit K → ∞. In this limit all gauge
plaquettes are equal to the identity. For both PBC and C∗
boundary conditions, we can set, modulo gauge transforma-
tions,

λ(x1,x2,x3 ),μ = V1 if x1 = L, 1 � x2, x3 � L, μ = 1,

= V2 if x2 = L, 1 � x1, x3 � L, μ = 2,

= V3 if x3 = L, 1 � x1, x2 � L, μ = 3,

= 1 otherwise, (B3)

where V1, V2, and V3 are three arbitrary phases. We consider
here a cubic lattice of size L3 and set x = (x1, x2, x3) with 1 �
xμ � L.

In the PBC case, the gauge fields given in Eq. (B3) satisfy
�x,μν = 1 on all plaquettes and gauge invariance is com-
pletely fixed. The presence of the three phases Vμ is related
to the fact that, in the PBC case, a field configuration λx,μ is
completely specified (modulo gauge transformations) not only
by the values of the fields on the plaquettes but also by the
values of three Polyakov loops (the product of the gauge fields
along a straight lattice line that winds around the lattice) in the
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three different directions. We substitute Eq. (B3) in the scalar
Hamiltonian and obtain the standard XY vector Hamiltonian
except on the boundary links. The boundary terms are

−2J
∑
xa,xb

Re[z̄(L,xa,xb)z(1,xa,xb)W1 (B4)

+ z̄(xa,L,xb)z(xa,1,xb)W2 + z̄(xa,xb,L)z(xa,xb,1)W3], (B5)

where Wμ = V Q
μ . Thus, we obtain an XY spin model with

three additional dynamical boundary fields. They are ir-
relevant in the infinite-volume limit, but change the FSS
properties of the model for finite sizes. One can also view
the resulting model as a standard XY model with fluctuating
boundary conditions, i.e., with fields satisfying

zx+Lμ̂ = Wμzx. (B6)

In the case of C∗ boundary conditions, Eq. (B3) does not guar-
antee that �x,μν = 1 on all plaquettes. Indeed, there are three
additional conditions. If we consider x = (L, L, 1), μ = 1 and
ν = 2, then we have

�x,μν = λ(L,L,1),1λ̄(1,L,1),2λ(L,1,1),1λ̄(L,L,1),2 = V 2
1 V̄ 2

2 , (B7)

which implies V 2
1 = V 2

2 . Analogously, we obtain V 2
1 = V 2

3 .
Therefore, we can set V1 = σ1V3 and V2 = σ2V3, where σ1

and σ2 can only take the values ±1. Substituting the gauge
fields in the scalar Hamiltonian, we obtain an XY model with
nontrivial boundary terms:

− 2J
∑
xa,xb

Re
(
zL,xa,xbz1,xa,xbσ

Q
1 W

+ zxa,L,xbzxa,1,xbσ
Q
2 W + zxa,xb,Lzxa,xb,1W

)
, (B8)

where W = V Q
3 . If we now perform a global change of vari-

ables z′
x = W 1/2zx, then we can get rid of the phase W . If Q

is even, then also the signs σ1 and σ2 drop out and thus we
obtain an XY spin model with C∗ boundary conditions. For
odd Q, instead, we obtain an XY model with Z2-fluctuating
C∗ boundary conditions.

These considerations can also be applied to the AH model
with Z2 gauge and matter fields: λx,μ and zx are real and take
only the values ±1. If we use PBC, then for J → ∞ we obtain

the Z2 lattice gauge model with the same boundary condi-
tions. For K → ∞ we obtain the usual Ising model, but with
fluctuating boundary conditions. The Z2 scalar fields satisfy
zx+Lμ̂ = Vμzx, where Vμ = ±1. The latter result allows us to
clarify the role of duality in finite-size systems. Reference
[137] showed that the Z2 AH model satisfies an exact duality
relation for finite J and K . The duality relation also holds in
a finite cubic volume if PBC are used. By taking the limits
J → ∞ or K → ∞, it is easy to see that duality relates the
Z2 pure gauge model obtained for J → ∞ with the Ising
model obtained for K → ∞. This relation also holds in a finite
volume, provided one considers the boundary conditions that
are obtained by properly performing the two limits. Thus, in a
finite cubic volume the Z2 pure gauge model with PBC is not
exactly dual to the Ising spin model with PBC. Exact duality
holds only if one considers the Ising model with fluctuating
boundary conditions as discussed above.

APPENDIX C: ENERGY-CUMULANT SCALING
FUNCTIONS IN THE 3D Z2 GAUGE MODEL

In this section we determine the universal scaling functions
U (I )

k (X ) for the gauge Ising universality class with periodic
boundary conditions (C∗ and periodic boundary conditions
are equivalent for Z2 gauge variables). For this purpose we
consider the Z2 gauge theory and use Eq. (30). We have
performed high-precision simulations on lattice up to L = 64
in the range −2.0 � X � 0.5. We have determined the cumu-
lants C̃n(K ) of Hλ, which are related to the cumulant Cn(K )
defined in Sec. III by

C̃n(K, L) = 1

Kn
Cn(K ). (C1)

Because of Eq. (30) we have in the scaling limit

C̃n(K, L) ≈ Ln/ν−3U (I )
n (X ) + b̃n(K ). (C2)

The data for n = 3 and 4 scale nicely and allow us to compute
the corresponding scaling functions U (I )

n (X ), where we have
added a superscript (I ) to specify that the results refer to the
Ising gauge universality class with periodic boundary condi-
tions. Data are quite precisely interpolated by the following
expression:

U (I )
3 (X ) = −(16399.705 + 30410.750X + 26897.615X 2 + 13094.665X 3

+ 3416.983X 4 + 369.113X 5) exp
[−(X − m1)2/

(
2σ 2

1

)
]

+ (302.042 − 1329.328X + 2523.811X 2 − 2655.760X 3

+ 1536.383X 4 − 402.120X 5) exp
[−(X − m2)2/

(
2σ 2

2

)]
, (C3)

where m1 = −1.1, m2 = −0.3, σ1 = 0.38, and σ2 = 0.46.
This expression interpolates all data points with L � 32 with
deviations that are of the order of or smaller than the statistical
errors [the errors on C̃3(K, L)L3−3/νI are approximately equal
to 0.1 for L = 32, 48, and 0.2 for L = 64]; see the upper
panel of Fig. 11. By differentiating U (I )

3 (X ) with respect to X
we obtain the scaling curve U (I )

4 (X ), which is in very good

agreement with the numerical data; see the lower panel of
Fig. 11. We can compute the universal RG invariant ratios
(22), obtaining

W1 = −1.59(3) W2 = 0.41(4) W3 = 0.74(3). (C4)

These results hold for any model in the Ising gauge univer-
sality class with C∗/periodic boundary conditions and can be
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FIG. 11. FSS behavior of the energy cumulants C̃3 (top) and C̃4

(bottom), for the 3D Z2 gauge model. The solid line in the upper
panel is the interpolation U (I )

3 (X ) reported in Eq. (C3), while the solid
line in the lower panel corresponds to d

dX U
(I )
3 (X ).

compared, e.g., with those characteristic of the XYG universal-
ity class; see Eq. (D5).

We have also determined the scaling curve U (I )
2 (X ) for the

second moment, using relation (28). For this purpose, how-
ever, we need to determine U (I )

3 (X ) on the whole real axis. In
practice, we need simulations in a wider range of values of X ,
such that we are able to observe the asymptotic behavior (26)
for large values of |X |. If we use a parametrization that satis-
fies Eq. (26), then we expect it to be approximately valid also
for large and small values of X outside the simulation interval.
We have therefore performed an additional set of simulations
on lattices of size L = 24 in the ranges −8 � X � −2 and
0.6 � X � 9 and determined a new parametrization of the
MC data in the whole range −8 � X � 9; see Fig. 12. Then
we have computed two different approximations of U (I )

2 (X ):

U (I )
2a (X ) =

∫ X

−∞
dYU (I )

3 (Y )

U (I )
2b (X ) = −

∫ ∞

X
dYU (I )

3 (Y ). (C5)

The difference between the two results allows us to understand
the role of the tails of U (I )

3 (X ). Indeed, for values of X in
the simulation interval, the first expression depends on the
extrapolation for X → −∞ but not on the values of U (I )

3 (X )
for large X . Conversely, the second expression is only
sensitive to the large-X extrapolation. The two expressions

FIG. 12. Plot of B̃3(J, L)L−3/νI +3 versus X in the extended range
−8 � X � 9 and interpolated scaling curve U (I )

3 (X ).

differ by a constant value, which is approximately equal to
0.9. As our final estimate we consider, see the upper panel of
Fig. 13,

U (I )
2 (X ) = 1

2

[
U (I )

2a (X ) + U (I )
2b (X )

]
. (C6)

We expect the absolute error on this quantity to be approxi-
mately 0.9/2 ≈ 0.5. In the interval −2 � X � 0.5, the curve

FIG. 13. Top: Plot of the scaling curves U (I )
2a (X ) and U (I )

2b (X )
(thin lines) and of their average, which is what we consider our best
estimate (thick central line). Bottom: Plot of (C̃2(J, L) − bc )L−2/νI +3

with bc = −4.10. The thick line is the estimate of U (I )
2 (X ).
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U (I )
2 (X ) can be determined using the parametrization (C3) and

U (I )
2 (X ) = U (I )

2 (0) +
∫ X

0
dYU (I )

3 (Y ), (C7)

where U (I )
2 (0) = 5.8(4).

To compare the estimated U (I )
2 (X ) with the data, it is

necessary to take into account the analytic-background contri-
bution; see Eq. (23). In the scaling limit we can simply replace
b2(J ) with its value at criticality, i.e., with bc = b2(Jc)/K2

c .
This constant has been fixed by requiring the MC estimates of
C̃2(K, L) for X ≈ 0 and L � 48 to agree with U (I )

2 (0)L2/νI −3 +
bc. We obtain bc = −4.1(9), where the error is essentially
due to the uncertainty on the scaling curve. Note that back-
ground contribution is large and comparable with the scaling
contribution [U (I )

2 (0)L2/νI −3 ≈ 11.2 with an approximate error
of 0.9, for L = 48], which explains why it is not possible
to estimate critical exponents from the behavior of C2 (the
specific heat). In the lower panel of Fig. 13, we compare
U (I )

2 (X ) with the data, observing a reasonable agreement for
all values of X .

APPENDIX D: ENERGY-CUMULANT SCALING
FUNCTIONS IN THE INVERTED XY MODEL

To determine the universal scaling curves U (XY )
k (X ) for

the XYG universality class, we should consider an arbitrary
model in this universality class and cumulants normalized
so that Eq. (17) holds. For this purpose we have considered
the inverted XY model [6,36], which can be obtained as the
J → ∞ limit of the N = 1 noncompact LAH model, with
Hamiltonian H = KHA + JHz, where

HA = 1

2

∑
x,μ>ν

F 2
x,μν,

Hz = −2
∑
x,μ

Re (λx,μzxzx+μ̂), (D1)

FIG. 14. Scaling plot of C̃3 as a function of X for the inverted XY
model. We also report the interpolating curve given in Eq. (D4).

and partition function

Z =
∫

[dAx,μdz̄xdzx]e−H (A,z). (D2)

We have defined λx,μ = eiAx,μ , Fx,μν = �μAx,ν − �νAx,μ,
�μAx,ν = Ax+μ̂,ν − Ax,ν , and Ax,ν is a real variable. This
model is well defined on a finite lattice with C∗ boundary
conditions [88].

We perform simulations in the inverted XY model obtained
for large values of J , determining the third cumulant C̃3 of HA,
cf. Eq. (C1), for lattices up to L = 32. Data should scale as

C̃3(K, L) ≈ L3/νXY −3U (XY )
n (X ), (D3)

where X = (K − Kc)L1/νXY with Kc = 0.076051 (from
Ref. [36]). The scaling is excellent; see Fig. 14. The results
are parametrized by the following function:

K3
c U

(XY )
3 (x) =(104.93856 − 417.6510x + 2172.749x2 + 72345.33x3 + 1.4355919 × 106x4)e−0.5s2(x−μ)2

− 150.76378 + 393.6980x + 11444.009x2

1 + s2(x − μ)2
+ 598978.55x3 + 9.81037366 × 106 x4

1 + s4(x − μ)4
,

(D4)

where μ = −0.021, σ = 0.042, s2 = 1/σ 2, and s4 = 1/σ 4.
This expression holds for x in the range [−0.15, 0.05]. It
interpolates quite precisely all data, with an absolute error
� 0.5, The interpolating curve is also reported in Fig. 14.

Using these data we can also compute the universal RG
invariant ratios defined in Eq. (22):

W1 = −1.75(4) W2 = 0.25(5), W3 = 0.68(5). (D5)

These results can be compared with the analogous results for
the XY spin model with the same boundary conditions. The
analysis of the data with L = 24 and 32 gives

W1 = −2.4(1) W2 = −0.2(1), W3 = 0.5(1). (D6)
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