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Field-theoretic approach to neutron noise in nuclear reactors
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An operating nuclear reactor is designed to maintain a sustained fission chain reaction in its core, which
results from a delicate balance between neutron creations (i.e., fissions) and total absorptions. This balance
is associated with random fluctuations that can have two, very different, origins. A distinction must thus be
made between low-power noise, whose origin lies in the inherently stochastic nature of neutron interactions
with matter, and high-power noise, whose origin lies in the particular thermomechanical constraints associated
with the environment in which neutrons propagate. Modeling the behavior of this noisy neutron population with
the help of stochastic differential equations, we first show how the Martin-Siggia-Rose-Janssen-De Dominicis
(MSRJD) formalism, providing a field theoretical representation of the problem, reveals a convenient and adapted
tool for the calculation of observable consequences of neutron noise. In particular, we show how the MSRJD
approach is capable of encompassing both types of neutron noises in the same formalism. Emphasizing then on
power noise, it is shown how the self-sustained chain reaction developing in a reactor core might be sensitive to
noise-induced transitions. Establishing an unprecedented connection between the neutron population evolving
in a reactor core and the celebrated Kardar-Parisi-Zhang (KPZ) equation, we indeed find evidence that a noisy
reactor core power distribution might be subject to a process analogous to the roughening transition, well-known
to occur in systems described by the KPZ equation.
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I. INTRODUCTION

Neutron transport theory, that is, the study of the behavior
of the neutron population as it evolves within a fissile material,
is the foundation upon which our understanding of nuclear
reactor operations is based. The theory assimilates the neutron
population to a dilute gas, which can be accurately modeled
using a linear Boltzmann equation. As such, nuclear industry
has seen the development of a multitude of analytical or nu-
merical methods to solve this equation and obtain the average
spatial distribution of the neutrons in a nuclear reactor, i.e., the
core power distribution.

Fluctuations around this mean solution has also been the
subject of considerable research [1–3], although this “neutron
noise” has often been considered—quite legitimately—to be
of secondary importance for reactor operations and safety. At
low power, fluctuations in the neutron population arise from
the inherently stochastic nature of the processes to which neu-
trons are subjected: interaction probability, precursor decay,
variable number of neutrons emitted by fission, etc. In this
setting, the neutron population is best described by a stochas-
tic branching process [4] for which the standard Boltzmann
transport equation used in reactor physics would correspond
to the mean-field equation. Relatively recent experimental re-
sults [5], building upon a number of theoretical studies [6–8],
have nevertheless sparked new interest in the study of neutron
noise by providing an example of a situation where neutron
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fluctuations need to be taken into account in a (low-power)
nuclear reactor. In this experiment, it was shown that non-
trivial spatiotemporal correlations of the neutron population
might lead to the formation of special patterns in the expected
neutron distribution in the reactor’s core due to a clustering
of the neutron population. This clustering phenomenon is a
direct consequence of the stochastic and branching nature of
the fission process.

In another direction [9,10], the nature of the neutron
branching process has recently been investigated in the
framework of statistical field theory, revealing, in par-
ticular, an interesting connection between reactor physics
and time-directed percolation processes. In the presence of
counter-reaction mechanisms (such as the Doppler effect,
which, in principle, would require a nonzero power level),
criticality was found to be a second-order phase transition
that would fall into the directed percolation universality
class. In this scenario, small deviations from the mean field
equations could be expected. These, in turn, would place
constraints on the maximum achievable precision targeted by
the latest, high-precision, numerical schemes.

The work carried out in Ref. [10] can be criticized in that
the observed deviations and the very existence of the phase
transition depend crucially on the coupling of the neutron
population to feedback mechanisms, which are generally con-
sidered negligible at low power, where the intrinsic stochastic
nature of the neutron population is the most important. An
interesting refinement would therefore consist of replacing or
complementing the low-power noise model used previously
with a power noise model, which is the second source of
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neutron fluctuations usually encountered in neutronics [2].
This type of noise is not directly related to the stochastic
nature of neutron interactions in matter, but has a purely
phenomenological origin, related to random fluctuations in the
media in which neutrons propagate. This noise is expressed
as the result of various sources of fluctuations or vibrations
(pumps, fluid circulation, boiling for BWRs, etc.) that can be
found in nuclear reactors operating at a high power.

This paper therefore aims to complement the pioneering
work of Ref. [10] by applying the same formalism, that of
the Martin-Siggia-Rose-Janssen-De Dominicis (MSRJD) re-
sponse functional, to the neutron theory of power noise.

In Sec. II, the first model considered is the simplified zero-
dimensional kinetic point model, which serves as a reminder
of the MSRJD formalism and helps build a bridge to previous
work. In particular, we take advantage of this simplified model
to highlight the differences and similarities between high and
low power noise models. In this context, we show that the
response functional formalism allows both types of neutron
noise to be treated in a transparent and unified way, something
that has been little studied in the literature [11] but might
reveal interesting in intermediate power regime, during for
instance reactor startup.

Section III deals with the addition of a space dimension
in the diffusion approximation. In this setting, we show that
power neutron noise is described by a stochastic heat equa-
tion (SHE) with multiplicative noise. This type of model has
extensively been studied, notably because of its link to the
celebrated Kardar-Parisi-Zhang (KPZ) equation. Through this
link, we conclude that there might exist a regime in which
the neutron population evolving in a nuclear reactor might see
the development of noise-induced transitions on the model
of the well-known roughening transition associated with the
KPZ equation.

II. POINT KINETIC EQUATIONS

The simplest model in the reactor physicist’s toolbox is that
of a zero-dimensional reactor in which the neutron population
N (t ) and the population of so-called precursors of delayed
neutrons M(t ) are described by the point kinetic equations (as-
suming here only one family of delayed neutrons),

dN (t )

dt
= ρN (t ) + λDM(t ) + S

dM(t )

dt
= βN (t ) − λDM(t ), (1)

where ρ is defined as the total reactivity (per unit time), λD is
the decay constant of the unstable precursors nuclei, S is the
neutron production rate from an external neutron source (from
spontaneous fission, for instance), and β is the delayed neu-
tron fraction (per unit time), such that βN is the instantaneous
production rate of precursors. These equations are believed
to encapsulate the main features of the average temporal
behavior of the neutron and precursors populations evolving
in a fissile medium. As such, they constitute an invaluable
tool for understanding the mean temporal behavior of a nu-
clear reactor. In addition, these equations have been shown to
play an important role in elucidating the structure of random

fluctuations in the neutron and precursors populations, which
can be of two very different origins.

A first source of random fluctuations (zero power noise)
has its origin in the stochastic nature of the interactions of
the neutrons with the medium in which they propagate. The
complete description of the problem can be achieved using the
tools of stochastic branching processes [4]. In this setting, the
point kinetic equations are but the mean equations associated
with an underlying stochastic process [2,3].

It is the other source of randomness, i.e., power noise that
will mostly be considered in the present paper. It originates
from the mechanical and thermal constraints applying on
an operating nuclear reactor. Any source of mechanical or
thermal-hydraulic fluctuations in a nuclear reactor can cause
random changes in the properties of the medium in which the
neutrons propagate. These fluctuations affect the parameters ρ

and S of Eq. (1) [12]. These parameters are therefore promoted
to random variables [2] and they can be decomposed as the
sum of a reference, noiseless, value, and a random fluctuating
component: ρ(t ) = ρ + σξ (t ) and S(t ) = S + γ ζ (t ). With
these, the point kinetic equations are transformed into a pair
of coupled stochastic differential equations (SDEs):

dN (t )

dt
= ρN (t ) + λDM(t ) + S + σN (t )ξ (t ) + γ ζ (t )

dM(t )

dt
= βN (t ) − λDM(t ). (2)

Both noise sources are colored noises, i.e., they possess a
nontrivial time autocorrelation function, the system of equa-
tion should therefore be understood in the Stratonovich sense
[2,13].

Solutions to the system of equations Eq. (2) in different
approximation regimes have already been presented in the
literature [2]. The approach proposed in this section offers
another perspective on these old results: starting from the
system of equations Eq. (2), it is proposed to built a statistical
field theory of the system. This formalism has the decisive
advantage that it comes equipped with all of the powerful
machinery of field theory, enabling us to derive all of the main
observables of interest for the problem with relative ease. The
approach we propose is that of the MSRJD path integral,
applied here to power noise. It directly comes as an extension
of the original and pioneering results obtained in Ref. [10]
in the case of zero power noise. We show how the MSRJD
formalism proves to be particularly adapted for neutron noise
analysis, concretely allowing for an (almost) unprecedented
unified description of both types of neutron noises.

A. Model without precursors

As a first step towards a complete description of the
problem, we start in a simplified setting by forgetting about
the existence of precursors altogether. Setting M(t ) = 0 in
Eq. (2), one is thus interested in the solution of

dN (t )

dt
= ρN (t ) + S + σN (t )ξ (t ) + γ ζ (t ). (3)

Any averaged observable 〈O[N]〉 can be formally writ-
ten as the result of a functional integral over all possible
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realizations of the noise terms:

〈O[N]〉 ∝
∫

Dξ (t )Dζ (t )O[N]P[ξ ]P[ζ ]. (4)

Introducing the constraint,

C[N] ≡ dN (t )

dt
− ρN (t ) − S − σN (t )ξ (t ) − γ ζ (t ) = 0, (5)

one can insert into Eq. (4) the following resolution of the
identity:

1 =
∫

DN det

(
δC[N (t ′)]

δN (t )

) ∏
t

δ(C[N])

=
∫

D[iÑ]
∫

DN det

(
δC[N (t ′)]

δN (t )

)
e− ∫

dtÑC[N]. (6)

Assuming that both noises follow a Gaussian distribution,
the functional integrations over ξ and ζ in Eq. (4) can be
explicitly carried out. This approach would lead to a MSRJD
field theory, expressed as a path integral over the realizations
of the field N (t ) and its associated response field Ñ (t ) [14].
One, however, has to pay special attention to the functional
determinant appearing in Eq. (6) because here it plays a
prominent role: it is usually associated with auxiliary fields
in the theory, the Fadeev and Popov ghost fields [14,15].

It is possible to greatly simplify the handling of these
auxiliary fields in the white noise hypothesis (but still sticking
to Stratonovich’s interpretation). If the noises are independent,
and if they both have zero mean and a variance given by

〈ξ (t )ξ (t ′)〉 = δ(t − t ′) and 〈ζ (t )ζ (t ′)〉 = δ(t − t ′), (7)

then it has been shown that the auxiliary fields appearing in
the functional determinant can also be directly integrated over
[16]. As a result, Eq. (4) can be shown to read

〈O[N]〉 = N
∫

D[iÑ]
∫

DN O[N] e−S[N,Ñ], (8)

where the so-called response functional has been introduced:

S[N, Ñ] =
∫ {

Ñ (t )

(
d

dt
− ρ − σ 2

2

)
N (t )

− ÑS − σ 2

2
Ñ2N2 − γ 2

2
Ñ2

}
dt . (9)

From the response functional, one can directly read off the
propagator of the theory [H(t ′ − t ) being the Heaviside step
function],


(t ′ − t ) = e(ρ+ σ2

2 )(t ′−t )H(t ′ − t ), (10)

as well as the Feynman rules:

S ,
γ2

2
and

σ2

2
. (11)

Imposing an initial condition of the form N (0) = N0 [17],
one readily obtains

〈N (t )〉 = + S

= N0e(ρ+ σ2

2 )t + S
∫ t

0
e(ρ+ σ2

2 )(t−t ′ )dt ′

= N0e(ρ+ σ2

2 )t + S

ρ + σ 2/2
(e(ρ+ σ2

2 )t − 1). (12)

This expression and the associated diagramatics to which it
is associated directly mirror those obtained in Ref. [10] for
zero power noise. The difference in the power noise case
originates from both the multiplicative noise term and the
Stratonovich interpretation associated to Eq. (3). These two
ingredients induce a shift in the true reactivity which then
becomes θ = ρ + σ 2/2. This particularity is well-known and
has already been discussed in the context of neutronics in, for
instance, Ref. [2].

The calculation of the variance is much more interesting,
as the structure of the fluctuations is of a radically different
nature than that associated with zero power noise, which is
dominated by the branching structure of the fission process.
The multiplicative noise term, in particular, profoundly alters
the dynamics of temporal fluctuations. By allowing couplings
of the type σ 2Ñ2N2, the diagrammatics of the problem is
indeed greatly enriched. The variance of the neutron popula-
tion can be decomposed as the sum Var(N ) = 〈N2〉 − 〈N〉2 =
Vγ + VN + VS + VNS , with

(13)

(14)

(15)

These three terms correspond to the contribution of pure multiplicative noise, i.e., the total contribution associated to
fluctuations affecting the reactivity of the reactor. The last term corresponds to the stochastic part of the external neutron

044145-3



BENJAMIN DECHENAUX PHYSICAL REVIEW E 109, 044145 (2024)

source,

(16)

In each case, one can observe that infinite series are generated
by a feedback mechanism associated with the multiplicative
noise term that tend to amplify any preexisting fluctuation,
whatever its origin. The first series VN can quite trivially be
summed over and yields (recall that we set θ = ρ + σ 2/2)

VN = N2
0 e2θt (eσ 2t − 1), (17)

in agreement with the literature [2]. The other series can be
shown to involve the function

In(α, t ) =
(

σ 2

α

)n
( ∞∑


=n

(αt )



!

)
(18)

=
(

σ 2

α

)n

eαt

(
1 − �(n, αt )

�(n)

)
, (19)

where �(n) and �(n, αt ) are, respectively, the gamma and
upper incomplete gamma functions. One then finds

VS =
(

S

θ

)2

e2θt
∞∑

n=1

{
In(−2θ, t ) − 2In(−θ, t ) + (σ 2t )n

n!

}
,

(20)

VNS = 2N0S

σ 2
e2θt

∞∑
n=2

In(−θ, t ), (21)

and

Vγ =
(γ

σ

)2
e2θt

∞∑
n=1

In(−2θ, t ). (22)

These theoretical predictions are in good agreement with
the results of a numerical integration of Eq. (3), performed us-
ing the Milstein method, as described in Ref. [18] and shown
in Fig. 1. Note, in particular, the rapid convergence of the
variance, which although being built upon infinite sums over a
parameter n, seems to converge quite rapidly after n = 3 or so.
Equally remarkable is the role played by the terms VS and VNS ,
which dominate, in the present case, the total variance. This
is due to the cumulative role played by the steady external
source, which introduces S new neutrons per second in the
system and thus dominates the overall dynamic. A crossover
is expected to occur with the term VN , which will eventually
dominate the long-time behavior of the variance.

B. Inclusion of zero power noise

The zero-power noise model used in Ref. [10] is based
on the use of a SDE whose noise term possesses an ampli-
tude proportional to

√
N (ignoring the presence of external

sources). In the previous section, it was argued that fluctua-
tions of the neutron population occurring in a power nuclear
reactor can be interpreted as multiplicative noise, i.e., a noise
term whose amplitude is proportional to N (again, ignoring the
presence of external sources).

At high power, N 	 1, which, in turn, implies N 	 √
N :

intrinsic fluctuations of the neutron population (i.e., zero
power noise) are indeed negligible compared to the external
sources of fluctuations (i.e., power noise). A contrario, in the
low-power regime, these external sources of fluctuation are
nonexistent because the thermomechanical vibrations from
which they originate cease to exist as soon as the heat gen-
erated by the power level drops below a certain threshold.

This is the origin of the separation between the two sources
of neutron noise: there exist only few situations where a uni-
fied treatment of the two distinct sources would be necessary.
One notable exception would be reactor startup: there, the
reactor power transiently and continuously passes through
all possible values between zero and the nominal operating
power.

In any case, it would appear quite satisfactory, if only
from an academic point of view, to dispose of a truly unified
description of both types of neutron noise (on the model
of Ref. [11]). The SDE approach—and by extension the
MSRJD response functional formalism—seems to be a good

FIG. 1. Comparison of the theoretical results obtained for both
the mean number of neutrons and its variance with a numerical inte-
gration of Eq. (3). The calculations are performed with the following
set of parameters: N0 = 1000, S = 10, ρ = −4.10−5, σ = 0.03 (so
θ = 49.10−5), and γ = 0.02.
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candidate in this direction, but one must first solve an inter-
pretation problem associated with these equations. Indeed,
the two types of noise can both be described by SDEs,
but they formally follow different prescriptions as for their
interpretations:

(1) Zero power noise finds its origin in a microscopic jump
process. To derive a stochastic differential equation from this
stochastic, discrete process requires the use of a dedicated
expansion method as, for instance, the Van Kampen’s system
size expansion technique [19]. The resulting equation is to be
formally interpreted in the Itô sense.

(2) The power noise used in the present paper is a white
noise idealization of a colored noise. As such, its associated
SDE must be interpreted in the sense of Stratonovich.

A simple way of understanding the impact of differing in-
terpretations would be to explore, for example, what happens
to zero-power theory in Stratonovich’s interpretation. Apply-
ing again the method proposed in Ref. [16] to the response
functional found in Ref. [10], then one can easily show that the
only effect brought by this prescription is a term proportional
to Ñ2. This term can be harmlessly absorbed by a redefini-
tion of the constant γ in the response functional of Eq. (9).
Apart from this innocuous reinterpretation of the parameter
γ , including a square root term into the functional Eq. (9)
is a straightforward operation. Another Feynman rule of the
type λÑ2N must be added. This rule adds, for instance, two
supplementary terms in the calculation of the variance of the
neutron population,

(23)

and

(24)

The two terms appear, as before, in the form of two infinite series of diagrams. The first infinite series yields

V λ
N = λN0

σ 2
e2θt

∞∑
n=1

In(−θ, t ), (25)

which has exactly the same form as the term VNS derived earlier, modulo the substitution 2S → λ. The parameter λ being
associated to the variance of the number of neutrons emitted by fission, it is expected that this constant is much lower than the
intensity S of the steady source term. It is therefore expected that, in general, this term is much lower than VNS . The second series
of diagrams gives

V λ
S = λS

θσ 2
e2θt

{ ∞∑
n=1

In(−θ, t ) −
∞∑

n=1

In(−2θ, t )

}
. (26)

Likewise, this term will only give an appreciable contribution to the variance if λ can be compared with either the steady source
term S or the initial neutron population N0.

The main conclusion to be drawn from the above analysis is that a unified description of both zero power and power noise
seems to be achievable through the MSRJD path integral formalism, at least in the present simplified setting where the power is
modeled as a white noise but is still interpreted in the Stratonovich interpretation. In a more realistic scenario, i.e., taking into
account for the noises’ temporal autocorrelation functions, the mixed interpretations associated with both types of noises could
complicate the overall diagrammatics (via couplings with the ghosts fields) and would thus require a dedicated analysis. Such a
detailed investigation will not be pursued any further in the present paper.

C. With precursors

One can now set M(t ) �= 0 in Eq. (2) and write a field theory associated to this pair of equations. The general procedure
associated to the system has already been described in Ref. [10]. Because the precursor population is not directly associated
with any kind of random fluctuations (in the power noise case), the Feynman rules of the theory are the same as in the previous
section. The only difference with before is that a generalized family of propagators must now be employed,

(27)

(28)

(29)

(30)
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for which analytical expressions have been derived in
Ref. [10].

Equipped with this set of propagators, the calculation of
the physical observables can be straightforwardly adapted.
The mean number of neutrons and precursors [with initial
condition (N (0), M(0)) = (N0, 0)], for instance, reads

〈N〉 = N0�NN (t ) + S
∫ t

0
�NN (u)du, (31)

〈M〉 = N0�NM (t ) + S
∫ t

0
�NM (u)du. (32)

These expressions are compared, like before, to a numerical
integration of Eq. (2) in Fig. 2. An excellent agreement is
found for both the neutron and the precursor populations.

III. STOCHASTIC DIFFUSION EQUATION

Refining upon the point kinetic model, the simplest route
towards a modeling that includes a spatial dimension is to re-
sort to the diffusion approximation. Neglecting the precursor
population and the eventual existence of an external source
term S, the equation describing the evolution of the neutron
population takes the form of a SHE to which a multiplicative
noise term is supplemented:

∂

∂t
N (�x, t ) = ρN (�x, t ) + D
N (�x, t ) + σN (�x, t )ξ (�x, t ). (33)

Introducing an arbitrary momentum scale κ and measuring
time in terms of distance squared (i.e., scaling time with the

FIG. 2. Comparison of the theoretical mean numbers of neu-
tron and precursor derived with the MSRJD approach with a direct
numerical integration of Eq. (2) using the Milstein technique. The
calculation is performed using the following set of parameters: N0 =
1000, S = 10, ρ = −400.10−5, β = 600.10−5, σ = 0.03, γ = 0.02,
and λD = ln 2.

diffusion coefficient), one can write (in d dimension)

[x] = κ−1, [t] = κ−2, [N] = κd . (34)

From this, we conclude that [σ ] = κ2−d , so the critical di-
mension of the problem is dc = 2. In dimensions d > 2, no
deviations from the mean-field behavior are therefore to be
expected. The perturbative calculation of the vertex function
of the problem can be readily adapted from a similar calcula-
tion performed in Ref. [20]. The renormalized vertex function
indeed presents no departure from mean field, at least in the
present perturbative setting.

It is, however, well-known that there exists a nontrivial
connection between the SHE and the celebrated KPZ equa-
tion (in this case, with an additive term C):

∂

∂t
h(�x, t ) = ν
h + λ

2
( �∇h)2 + η ξ (�x, t ) + C. (35)

Performing the so-called Cole-Hopf transformation
N (�x, t ) = exp[ λ

2ν
h(�x, t )], one can indeed easily show that

N is a solution of Eq. (33), provided the identification (see
Appendix)

ρ = λC

2ν
,

D = ν,

σ = λ

2ν
η.

(36)

Equation (33) therefore corresponds to a whole one-parameter
family of KPZ equations, parameterized by either the parame-
ter λ or C. This finding establishes an interesting link between
the dynamical behavior of the neutron population in a fissile
medium and the dynamics of surface growth, which is the
most common application of the KPZ equation.

The most spectacular consequence of this nontrivial bridge
between the two domains is most certainly to be found in the
existence of a so-called roughening transition associated to
the KPZ equation: for a sufficiently high value of the noise
amplitude η in Eq. (35), the solution h(�x, t ) might transition
to a state associated to substantial deviations from the mean
field behavior.

Extensive studies relying on nonperturbative renormaliza-
tion group methods [21] have indeed shown the existence of
two fixed points in the phase diagram associated to the KPZ
equation, which depend crucially on the noise intensity:

(1) The weak, low noise, fixed point, is Gaussian and
corresponds to a regime where no deviations from the
mean-field behavior is expected.

(2) The strong coupling fixed point associated to substan-
tial deviations from the mean field equation.

Since it is directly related to the KPZ equation, via the
Cole-Hopf transformation explicited above, it is expected that
the SHE describing power neutron noise behaves similarly.
A good way to hint at this peculiar behavior is to reconsider
the calculation of Eq. (13) performed in the context of the
zero-dimensional, point kinetic model. The infinite series of
loop diagrams appearing in the calculation can be absorbed
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into the definition of a renormalized noise parameter σR:

(37)

I is the integral of the one loop diagram, evaluated at zero
external frequency and momenta. In dimension d > 2, I is
finite. Then, when σ is such that σ 2I > 1, the perturbative
expansion ceases to be meaningful [22]. It has been shown
[23] that in this case, the value of σR flows towards a non-
perturbative fixed point, whose critical exponents necessarily
share similarities with those of the KPZ strong noise fixed
point.

The noise value at which a change of behavior can be
expected is controlled by the value of the parameter σR, which
ultimately corresponds to the typical variations in reactivities
observed in a reactor [recall that we defined ρ(t ) = ρ + δρ(t ),
with δρ = σξ (t )]. The value at which the system might tran-
sition would require detailed numerical investigations on the
model on the analysis carried out, for instance, in Ref. [24],
and remains to be precisely done in the specific context on
reactor physics.

A. A pinning (depinning) phase transition?

A complete picture of the problem, as applied to reac-
tor physics, must include the addition of counter-reaction
mechanisms, which are a key element of any nuclear reactor
modeling. The most prominent feedback mechanism occur-
ring in an operating reactor is the Doppler broadening of
the heavy nuclei cross sections. Any increase in the overall
neutron population implies an increase in temperature of the
surrounding media (simply because the number of fissions
tends to increase), which, in turn, tends to enhance neutron
absorptions by heavy nuclei, such as 238U. Such a feedback
mechanism can generically be captured by the inclusion of
a restoring force of the type −αN (N − Nref. ) [1,25,26]. With
this supplementary term, the equation of the problem can be
written (absorbing the αNref.N term in a redefinition of ρ)

∂

∂t
N = ρN + D
N − αN2 + σNξ (�x, t ). (38)

This equation can be mapped to a KPZ-type equation through
the same Cole-Hopf transformation as earlier: Writing
N (�x, t ) = exp[ λ

2ν
h(�x, t )], one can readily show that the

function h is solution of the equation

∂

∂t
h(�x, t ) = ν
h + λ

2
( �∇h)2 + η ξ (�x, t ) + C − αe

λ
ν

h. (39)

This equation is known in the literature as the KPZ equa-
tion with an upper wall. Such type of model has been
extensively studied in the literature [22,24]. When ρ varies, it
is found that the system presents a dynamical phase transition
from an inactive (N = 0) to an active (N �= 0) state. Through
the link between Eq. (38) and the KPZ equation with wall, the
transition would fall in the class of the pinning (depinning)
phase transition.

A complete characterization of the consequences of that
transition would far exceed the scope of the present paper.
This would in particular require dedicated and careful calcula-
tions of observables near criticality. For applications in reactor
physics, it is still unclear how one could find evidence of the
appearance of such a transition in an operating nuclear reactor.
A good hope might lie in a careful derivation of the power’s
temporal autocorrelation function (or equivalently the power
spectral density [2]). This would require a much more refined
modeling, including in particular to move from the idealized
white noise hypothesis (see, for instance, Ref. [27]) and the
inclusion of precursors.

IV. CONCLUSION

A field theoretic formulation, along the lines of the MSRJD
response functional formalism, has been successfully derived.
Building upon the groundwork laid for zero-power noise in
Ref. [10], it has been shown that the field theoretical approach
enables a unified treatment of both power and zero-power
noise, allowing us, in particular, to deal with the different
integration prescriptions of the SDEs associated with each
type of noise (which is unprecedented in the realm of neutron
noise analysis, to the author’s knowledge). The versatility of
the MSRJD approach, and the powerful tools associated with
field theory, allow for a straightforward and easy calculation
of the most relevant observables in reactor physics.

The decisive advantage of an approach based on statistical
field theory lies in its unique relevance to the physics of phase
transitions (see, for instance, Refs. [28,29]). Along this line,
evidence has been found, suggesting the possible existence
of noise-induced transitions associated to the realm of reactor
physics. Relying on well-established results, we were able to
relate reactor physics and the rich phenomenology of the KPZ
equation, thus suggesting the possible existence of deviations
from the expected behavior of a reactor core in high noise
regimes.

The precise characterization of these deviations, their
dependence on the noise intensity, and their tangible man-
ifestation in a reactor still remain to be properly studied.
This endeavor will require the consideration of more refined
theoretical and numerical models than those presented in this
paper. Possible refinements include incorporating zero-power
noise, external neutron sources, precursors, colored noise
sources, multigroup diffusion (i.e., taking into account the en-
ergy dependence of the neutron field), etc. These refinements
are largely unexplored in the literature and could funda-
mentally alter the phenomenology of the problem. Further
exploration of these avenues is essential for a complete and
comprehensive understanding of noise-induced transitions in
reactor physics.
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APPENDIX

To emphasize its importance, the connection relating
Eqs. (33) and (35) is explicitly derived in the present
Appendix. The relation is most easily seen starting from
the inverse Cole-Hopf transformation: h(�x, t ) = 2ν

λ
ln N (�x, t ).

Denoting the time derivative by a dot and the spatial derivative
with a prime, one has

(1) ḣ = 2ν
λ

Ṅ
N ,

(2) h′ = 2ν
λ

N ′
N ,

(3) h′′ = 2ν
λ

( NN ′′−(N ′ )2

N2 ).
Equation (35) then reads

2ν

λ

Ṅ

N
= 2ν2

λ

(
NN ′′ − (N ′)2

N2

)
+ λ

2

(
2ν

λ

N ′

N

)2

+ ηξ + C

(A1)

or

2ν

λ
Ṅ = 2ν2

λ
N ′′ + ηNξ + CN. (A2)

From this, we conclude that N (�x, t ) is the solution of Eq. (33),
provided that relations Eq. (36) are satisfied.
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