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Transient temperature dynamics of reservoirs connected through an open quantum system
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The dynamics of open quantum systems connected with several reservoirs attract great attention due to
their importance in quantum optics, biology, quantum thermodynamics, transport phenomena, etc. In many
problems, the Born approximation is applicable, which implies that the influence of the open quantum system
on the reservoirs can be neglected. However, in the case of long-time dynamics or mesoscopic reservoirs,
the reverse influence can be crucial. In this paper, we investigate the transient dynamics of several bosonic
reservoirs connected through an open quantum system. We use an adiabatic approach to study the temporal
dynamics of temperatures of the reservoirs during relaxation to thermodynamic equilibrium. We show that
there are various types of temperature dynamics that strongly depend on the values of dissipative rates and
initial temperatures. We demonstrate that temperatures of the reservoirs, including the hottest and coldest ones,
can exhibit nonmonotonic behavior. Moreover, there are moments of time during which the reservoir with an
initially intermediate temperature becomes the hottest or coldest reservoir. The obtained results pave the way for
managing energy flows in mesoscale and nanoscale systems.

DOI: 10.1103/PhysRevE.109.044144

I. INTRODUCTION

Open quantum systems have gained a lot of attention over
several decades. A system can be treated as an open quan-
tum system if it consists of a subsystem (qubit, molecule,
etc.) that we are interested in that interacts with its environ-
ment, e.g., photons of free space, phonons of host medium.
If the interaction between the subsystem and its environ-
ment is weak, one can exclude the environmental degrees
of freedom from the consideration using Born approxima-
tion [1–3] that assumes that the state of the environment
is not changed due to interaction with the subsystem. If
one additionally uses Markov approximation that implies
that the open quantum system dynamics is local in time
[1–5], one obtains master equation for the subsystem density
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matrix in Gorini-Kossakowsky-Sudarshan-Lindblad (GKSL)
form [6–8]. Different ratios between relaxation rates and
open quantum system eigenfrequencies require different ap-
proaches for GKSL master equation application, namely, local
approach [9–12], global approach [13–16], partial-secular ap-
proach [17–20], modified local approach [21,22]. Some of
these works have been dedicated to the thermodynamics of the
open quantum system and to the dynamics of the energy flows
[10,12,13,16,20]. These approaches have shown to be appro-
priate for the description of the dissipation in weak coupling
limit. Usually these are applied to the description of qubits
[23–26], quantum dots [27], molecules [28], nanostructures
[29–31], nanolasers [32–34].

The Born-Markov approximation assumes that the state
of the reservoir—it is the Gibbs state with the given
temperature—does not change [33,35,36]. This approxima-
tion is natural when one considers a single reservoir with a
large number of degrees of freedom. However, there are many
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situations when the subsystem is connected to two reservoirs
with different temperatures. Such an approximation can not
be valid, at least at long-time dynamics. Indeed, in such a
case the reservoirs interact through the subsystem, and their
temperatures should get asymptotically equal.

The evolution of energy flows through the open quantum
system as well as the evolution of the environment, especially
when logical elements, diodes, or transistors are considered,
are very important in phononics and photonics [37–40] to
prevent undesired energy flows. This evolution plays a sig-
nificant role also for circuit elements of thermal computing
needed for the realization of artificial intelligence [41–44]. In
addition, it is important to optimize the temperature regime
of coupled qubits due to the existence of an optimal coupling
constant between them, which maximizes their stationary en-
tanglement at a given temperature [45]. Thus, understanding
of the reservoirs’ temperatures dynamics at nanoscale is very
important.

The direct solving (in particular, numerical) of the von
Neumann equation for the reservoir is complicated and can
be done only in the case of not too many modes (usually
less than 100) [46–49]. Another possibility for solving this
problem is to use the Zwanzig projection operator method to
construct the master equation for the reservoir density matrix
[50–52]. This approach implies solving complicated integral-
differential equations. One more option is to get equations on
a number of quanta in the reservoir at some frequency under
non-Markovian approaches, which are usually used in the
limit of strong coupling with the reservoir. This can be done
via the Zwanzig projection operator method [53,54] or via
time evolving density operator with orthogonal polynomi-
als (TEDOPA mapping) [55–58]. The first approach implies
solving the integral-differential master equation for the open
quantum system along with finding the number of quanta in
a mode of the reservoir. The second approach implies solving
a system of a large number of equations that describe a set of
connected oscillators. Both mentioned approaches do not take
into account the processes of thermalization of the reservoirs.
Because the terms of the reservoirs’ Hamiltonians that are re-
sponsible for the thermalization usually are not directly taken
into account. The absence of these terms leads to a non-Gibbs
distribution of excitations in the reservoir [59,60]. However,
if dynamics of an open quantum system and thermalization of
reservoirs occur at different time scales [18,33], it is possible
to effectively exclude thermalization processes from consid-
eration.

In this paper, we consider an open quantum system cou-
pled to n bosonic reservoirs in the weak coupling limit. We
study the transient behavior of the reservoirs’ temperatures
in the framework of developed adiabatic approximation. In
this approximation, we suppose the existence of short, in-
termediate, and long time scales. At the short time scale,
internal thermalizations of the reservoirs happen and temper-
atures of the reservoirs are established. At the intermediate
time scale, the dynamics of the open quantum system take
place, while the temperature of the reservoirs is considered
fixed. On this time scale, the open quantum system reaches
its nonequilibrium stationary state with nonzero energy flow
through it. At the long time scale, the energy flow through the
open quantum system results in a change in the reservoirs’

temperatures. Thus, each reservoir is in thermal equilibrium
at the intermediate time scale, and their temperatures are
changed due to the energy flow through the open quantum
system at the long time scale. We develop a general theory
for the description of the reservoirs’ temperatures dynamics
and apply it to the case of an open quantum system consisting
of a set of quantum harmonic oscillators. We show that at
certain values of dissipative rates and initial temperatures of
reservoirs, nonmonotonic dynamics of reservoirs’ tempera-
tures take place. This involves the ability of a reservoir with
an intermediate initial temperature to become the hottest or
the coldest reservoir. We calculate the thermal conductivity
of the open quantum system in the case of two reservoirs,
find characteristic time of temperature equilibration, and show
that this characteristic time can be minimized by adjusting the
ratio of open quantum system eigenfrequencies to reservoirs’
initial temperatures. We show that nonmonotonic dynamics of
temperatures can take place.

II. MODEL

We consider n bosonic reservoirs describing by the Hamil-
tonians ĤR j, j = 1, . . . , n interacting with a open quantum
system (hereinafter, the open system) with Hamiltonian ĤS .
The total Hamiltonian reads

Ĥ = ĤS +
n∑

j=1

ĤR j +
n∑

j=1

ĤSR j, (1)

ĤSR j = ε j Ŝ j R̂ j . (2)

Here Ŝ j and R̂ j are operators of the open system and the
jth reservoir, respectively. The operator ĤSR j describes in-
teraction between them with coupling constant ε j . In the
Born-Markov approximation, the open system dynamics are
governed by the GKSL master equation [6–8,16]

∂ρ̂S

∂t
= −i[ĤS, ρ̂S] +

n∑
j=1

� j[ρ̂S], (3)

where h̄ = 1, � j[ρ̂S] is Lindblad superoperator describing
interaction with jth reservoir. In the Born approximation, the
state of each reservoir is constant during the evolution of
the open system, and it is thermal equilibrium with temper-
ature Tj (Gibbs distribution). For this assumption to be valid,
the temperature and chemical potential of the reservoir should
be constant at the time scale τS: characteristic dissipation time
of the open system. From this, it follows that τS should be
much greater than τR j ∼ h̄/kBTj : characteristic time of jth
reservoir thermalization (Markov approximation [1]), and the
initial energy of the open system should be much smaller than
the initial energies of reservoirs. Otherwise, the dissipation of
the open system will affect the temperatures of the reservoirs.
Furthermore, τS should be much smaller than teq: characteris-
tic time of the temperature equilibration between the different
reservoirs due to energy flows Jj through the open system.

Let us first discuss the conditions needed for the Born
approximation to be used. The first condition implies that
the reservoirs have a large number of modes. The energy ex-
change between the open system and reservoirs happens when
the open system transits from one eigenstate to another. The
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energy quantum with the frequency that equals the difference
of the mentioned eigenstates’ eigenfrequencies is consumed
by the reservoir. This means that the energy exchange between
the open system and reservoir happens only at some set of
frequencies, defined by the difference between eigenstates
of the open system with allowed transitions. Thus, for the
reservoir to be considered to consist of an infinite number of
modes, it is sufficient that the density of states of the reservoir
to be dense near the mentioned frequencies. The characteristic
difference between eigenfrequencies of the reservoir is of the
order �ν = c/L, where L is the characteristic size of the
reservoir (i.e., cavity size). If the open system has the minimal
transition frequency ω, then the mentioned condition can be
written as �ν/ω = (c/L)/ω ∼ λ/L � 1, where λ is maximal
radiation wavelength.

The second condition implies that the reservoirs have suffi-
cient energies. The energy of the jth reservoir is proportional
to the number of particles NRj in the reservoir and its tem-
perature Tj : Ej ∼ NRj kBTj . The energy of an open system is
proportional to the number of particles in the open system NS

and its characteristic frequency ω: ES ∼ NSh̄ω. Thus, condi-
tion NRj kBTj � NSh̄ω guarantees that the dissipation of the
open system will not affect the reservoirs. Hence, the influ-
ence of open system initial states on the states of the reservoirs
can be neglected, if the mentioned condition is satisfied.

Now, let us discuss the conditions needed for the Markov
approximation to be used. The characteristic time of the open
system evolution τS ∼ 1/γmax where γmax is the largest dis-
sipative rate of the open system. For τS � τRj (τR ∼ 1/Tmin)
it is sufficient kBTmin/h̄ � γmax, where Tmin is minimal tem-
perature among reservoirs. Thus, if kBTmin/h̄ � γmax, the
establishment of the Gibbs distributions in reservoirs happens
faster than the open system dissipates. Hence, it is natural to
consider reservoirs to be in Gibbs states at every moment of
time. Mathematically, this means that the derivative in the left
side of Eq. (3) is a coarse-grained derivative with step �t such
that τS � �t � τRj .

For the condition teq � τS to be satisfied, the following
condition should be fulfilled. The energy flow from a reservoir
(through the open system) is proportional to the coupling
strength between the reservoir and open system γ and the
energy of a quantum ω that can be absorbed by the open sys-
tem. If reservoirs have a difference in energies proportional to
�(NkBT ), the time of thermal equilibrium establishment can
be evaluated as teq ∼ �(NkBT )/(h̄ωγ ). Using that τS ∼ 1/γ

we arrive at the conclusion that the condition teq/τS � 1 im-
plies �(NkBT )/h̄ω � 1. This expression has clear physical
meaning: to the condition for teq � τS be satisfied, the differ-
ence in energies between reservoirs should be much greater
than the energy of a quantum they are exchanging.

Summing up, for the Eq. (3) with fixed reservoirs’ tem-
peratures to be applicable four conditions should be satisfied:
kBTmin/h̄ � γmax, λ/L � 1 and Ej � ES , |�Ek j |/h̄ω � 1,
where �Ek j is difference in energies between kth and
jth reservoir. All of them are usually fulfilled in optic
region.

The fulfillment of established conditions implies that there
are three time scales mentioned in the description to Eq. (3)
that are in the following relation τR � τS � teq. Using Eq. (3),
the total energy flow into the open system can be defined as

follows [13,16,20]

〈 ˙̂HS〉 = d

dt
〈ρ̂SĤS〉 = 〈 ˙̂ρSĤS〉

=
n∑

j=1

tr(� j[ρ̂S]ĤS ) ≡
n∑

j=1

Jj, (4)

where Jj = tr(� j[ρ̂S]ĤS ) is energy flow from jth reservoir to
the open system. If the open system losses energy via Jj then
Jj < 0, if the open system gains energy via Jj then Jj > 0.

As τR � τS � teq, the temperatures of reservoirs are con-
stant on the time scale τS . Consequently, the energy flows
Jj are the functions of reservoirs’ temperatures Tj , Jj =
Jj (T1, . . . , Tn, t ) (in this work we are focused on the case
of reservoirs with fixed volumes and zero chemical poten-
tials). On this time scale the density matrix tends to the
stationary state for given temperatures of the reservoirs, ρ̂S =
ρ̂S (T1, . . . , Tn) (the overline denotes the stationary value of the

overlined expression). Thus 〈 ˙̂HS〉 = ∑
j J j = 0. The energy

of each reservoir is conserved on this time scale, but stationary
energy flows from the reservoirs are not zero after the open
system reaches ρ̂S = ρ̂S (T1, . . . , Tn).

In turn, on the time scale teq, the energy flow from jth reser-
voir to the open system changes the energy of the reservoir Ej

as follows:
dEj

dt
= −J j (T1, . . . , Tn). (5)

Thus, dEj = (dEj/dTj )|Tj dTj = Cj (Tj )dTj where Cj (Tj ) is
the heat capacity of the jth reservoir. As reservoirs are con-
sidered in thermal equilibrium with temperatures Tj , their
heat capacities can be derived, when reservoirs’ Hamiltonians
are determined. The heat capacity of the jth reservoir is a
function of Tj . Thus, we get the equations on the reservoirs’
temperature dynamics

dTj

dt
= −J j (T1, . . . , Tn)/C(Tj ). (6)

The stationary solution to these equations implies that all
Jj should be zero. Generally, the equilibrium temperatures, as
well as their time dependencies, strongly depend on the type
of interaction of the open system with each reservoir. In the
subsequent section, we investigate time dynamics of Tj for
the case of a set of harmonic oscillator interacting with reser-
voirs consisting of bosonic quasiparticles.

III. CASE OF BOSONIC RESERVOIRS

In this section, we apply the general Eq. (6) for the case
of n bosonic reservoirs interacting with a set of harmonic
oscillators (see Fig. 1). Such an open system may be consid-
ered as model of a multimode cavity [61,62], surface or bulk
plasmons [63,64], polaritons [65], vibrational modes in solid
bodies and molecules [66,67], magnons [68,69], modes of
separated resonators [70]. For these systems, the Hamiltonians
of the open system and the bosonic reservoirs have the form

ĤS =
∑

κ

ωκ â†
κ âκ , (7)

ĤR j =
∑

m

ω̃m j ê
†
m j êm j, (8)
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FIG. 1. The system considered in Sec. III: n bosonic reservoirs of
quasiparticles at temperature T1, . . . , Tn interacting through an open
system represented by a set of oscillators. Oscillators’ frequencies
are indexed with ωκ [see Eq. (7)]. The interaction between jth reser-
voir and oscillator with frequency ωκ is described via function γ j (ωκ )
[see Eq. (13)].

ĤSR j =
∑

κ

∑
m

χωκ, j (ω̃m j )(â
†
κ + âκ )(ê†

m j + êm j ). (9)

Here, ωκ are oscillator frequencies, âκ is the annihilation
operator for the oscillator in the open system with frequency
ωκ . Reservoirs are represented as sets of oscillators, êm j is
annihilation operator of the mth oscillator in the jth reservoir,
ω̃m j is the frequency of the mth oscillator in the jth reservoir.
Coefficients χωκ, j (ω̃m j ) describe the strength of interaction
between oscillator with frequency ωκ in the open system and
mth oscillator in the jth reservoir.

Hereinafter, we assume that there are three time scales,
τR � τS � teq (see Sec. II). Therefore, the dynamics of the
system with Hamiltonian (7)–(9) on the time scale τS obey
Eq. (3) with the following Lindblad superoperators [18]

� j[ρ̂S] =
∑

κ

�κ, j[ρ̂S],

�κ, j[ρ̂S] = Gj (−ωκ, Tj )

2
L̂[âκ , â†

κ ] + Gj (ωκ, Tj )

2
L̂[â†

κ , âκ ].

(10)

Here L̂[X̂ , Ŷ ] = 2X̂ ρ̂SŶ − Ŷ X̂ ρ̂S − ρ̂SŶ X̂ , and ω denote the
frequency of one of the oscillators from the open system. The
coefficients Gj (±ωκ, Tj ) determine the rates of transitions
between eigenstates of the harmonic oscillator with frequency
ωα due to its interaction with jth reservoir. For the considered
Hamiltonian Eqs. (7)–(9), they equal [52]

Gj (±ω, Tj ) = γ j (ω)[n j (ω, Tj ) + 1/2 ∓ 1/2]. (11)

Here

nj (ω, Tj ) = 1/[exp(ω/Tj ) − 1], (12)

it is the mean occupancy of the jth reservoir’s states with
eigenfrequency ω, and

γ j (ω) = πg j (ω)|χω, j (ω)|2, (13)

where g j (ω) is the jth reservoir’s density of states at
the frequency ω, j = 1, . . . , n. From Eq. (11) the ful-
fillment of Kubo-Martin-Schwhinger condition, namely,
Gj (ω)/Gj (−ω) = e−ω/Tj follows [52]. Thus, the first term in
�κ, j[ρ̂S] is responsible for the downward transitions and the
second term is responsible for the upward transitions in the
oscillator with frequency ωκ .

Note, that such dependence of Gj (±ω, Tj ) coefficients on
ω and Tj strongly relies on that τR � τS . These coefficients
are calculated considering, that each of the reservoirs is in a
Gibbs state, which is valid only if τR � τS [52,71].

The equations for the dynamics of the mean number of
quanta can be found through the identity d〈Â〉/dt = tr( ˙̂ρSÂ).
Using commutation relation [âκ , â†

κ ] = 1̂ we obtain the fol-
lowing equation for the mean number of quanta 〈â†

κ âκ〉 in
oscillator:

∂〈â†
κ âκ〉
∂t

=
n∑

j=1

−Gj (−ωκ, Tj )〈a†
κaκ〉

+ Gj (ωκ, Tj )(1 + 〈a†
κaκ〉). (14)

The stationary solution to this equation is

〈a†
κaκ〉 =

∑n
j=1 Gj (ωκ, Tj )∑n

j=1[Gj (−ωκ, Tj ) − Gj (ωκ, Tj )]
. (15)

Using the notations γ j (ω), n j (ω, Tj ), Eq. (15) can be rewritten
in the form

〈a†
κaκ〉 =

∑n
j=1 γ j (ωκ )n j (ωκ, Tj )∑n

j=1 γ j (ωκ )
. (16)

From general expression (4), the stationary energy flow, J j ,
that is formed on the timescale τS is found to be

J j =
∑

κ

ωκ{[Gj (ωκ, Tj )−Gj (−ωκ, Tj )]〈a†
κaκ〉+Gj (ωκ, Tj )}

=
∑

κ

ωκ

∑n
q=1 γ j (ωκ )γq(ωκ )[n j (ωκ, Tj ) − nq(ωκ, Tq )]∑n

q=1 γq(ωκ )

=
∑

κ

ωκγ j (ωκ )

⎛
⎝n j (ωκ, Tj ) −

n∑
q=1

pq(ωκ )nq(ωκ, Tq)

⎞
⎠.

(17)

Here pq(ωκ ) = γq(ωκ )/
∑n

m=1 γm(ωκ ). In other words, the ab-
solute value of the energy flow from jth reservoir is defined by
the difference between the n j (ωκ, Tj ), occupancy of the state
with frequency ωκ in the jth reservoir, and mean occupancy
of the state with frequency ωκ among all reservoirs: according
to Eq. (17), normalized dissipation rates per unit time, pj (ω)
can be interpreted as probabilities of absorption of the energy
quantum ω by the jth reservoir.

Now, using the dependence of the stationary energy flows
on the reservoirs’ temperatures, we can apply Eq. (6) to
determine the dynamics of the reservoirs’ temperatures on
the time scale teq � τS . For the n D-dimensional bosonic
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reservoirs with zero chemical potential, spectrum ε(p) = cpd ,
and density of states g(ε) = SDεD/d−1/(2π h̄)D, where SD =
DπD/2/�(D/2 + 1) is the surface area of unit sphere, the
energy of each reservoir reads [72]

E =
∫

�

dDxdD p

(2π h̄)D

ε

exp(ε/T ) − 1
= AV T α+1. (18)

Here A = SD�(α + 1)ζ (α + 1)/(2π h̄)D is a constant (ζ is the
Riemann zeta function), α = D/d (dimensionless), and V is
the volume of the reservoir: length, area, or volume depending
on the D.

On the time scale teq � τS , energy flows Eq. (17) suffi-
ciently change the energies of reservoirs. On this time scale,
Eq. (5) represent temperatures’ dynamics

dEj

dt
= (α j + 1)AjVjT

α j

j

dTj

dt
= Cj (Tj )

dTj

dt
= −J j, (19)

or, alternatively,

dTj

dt

=−
∑

κ

ωκγ j (ωκ )
(
n j (ωκ, Tj ) − ∑n

q=1 pq(ωκ )nq(ωκ, Tq )
)

(α j + 1)AjVjT
α j

j

.

(20)

From Eq. (20) it follows that the hottest reservoir is al-
ways cooling down. For that, consider a moment of time
with reservoirs having certain temperatures, and Tm to be
a maximal temperature among all of them at this mo-
ment of time. As ∂n j (ω, Tj )/∂Tj > 0, from Tm = max Tj

it follows that nm(ω, Tm) � n j (ω, Tj ). Thus, nm(ω, Tm) �∑
k pk (ω)nk (ω, Tk ), because the maximal number nm(ω, Tm)

from the set {n1(ω, T1), . . . , nn(ω, Tn)} is greater or equal than
the average value of this set. Thus, from Eq. (20) it follows
that dTm/dt � 0. If there are some not equal reservoirs’ occu-
pancies (i.e., temperatures of some reservoirs are not equal),
then nm(ω, Tm) >

∑
k pk (ω)nk (ω, Tk ), and dTm/dt < 0. Thus,

in general, the hottest reservoir is cooling down at all moments
of time. Analogously, the coldest reservoir is heating up at all
moments of time.

Let us consider a function that represents the maximal
instant temperature difference between the reservoirs: f (t ) =
max j Tj (t ) − min j Tj (t ). By definition, f (t ) � 0. Also, be-
cause the coldest reservoir is heating up and the hottest
reservoir is cooling down, f (t ) is a decreasing function of
time, if there are reservoirs with different temperatures. We
are interested in the limit of f (t ) when t → ∞.

Next, we prove by contradiction that f (t ) → 0, when t →
∞. Let us suppose that f (t ) tends to a finite value δ > 0. Then
max j n j (ω, Tj ) >

∑
k pk (ω)nk (ω, Tk ) > min j n j (ω, Tj ) when

t → ∞. Thus, the energy flows out of the hottest reservoir and
in the coldest reservoir should tend to a finite value according
to Eq. (20) when t → ∞. This means that the heat capacities
of these reservoirs should tend to infinity at some temper-
atures. Because, by consideration, the reservoirs have finite
heat capacities at all temperatures, this is impossible. Thus,
f (t ) → 0, when t → ∞. Consequently, in the stationary state,
all reservoirs’ temperatures are the same. From the arguments
presented above, it follows that the stationary state of Eq. (20)
is stable with respect to small perturbations.

An easy way to find the equilibrium temperature is to es-
tablish some integrals of motion of the Eq. (20). From Eq. (20)
and the definition of pq(ωκ ) it follows that total energy of
reservoirs is conserved∑

j

dE j

dt
=

∑
j

(α j + 1)AjVjT
α j

j

dTj

dt
= 0. (21)

Thus, the equilibrium temperatures can be found from total
energy conservation

n∑
j=1

AjVjT
α j+1
j =

n∑
j=1

AjVjT
α j+1

eq . (22)

Note, that from ∂Ej (Tj )/∂Tj > 0 it follows that Eq. (22) has
only one positive real solution Teq.

If α j is the same for all reservoirs, then the equilibrium
temperature can be found as

Teq = α j +1

√√√√ n∑
j=1

AjVjT
α j+1
j (0)/

n∑
j=1

AjVj . (23)

IV. TRANSIENT DYNAMICS OF RESERVOIRS’
TEMPERATURES

A. Evaluation of time of temperature equalization

Let us consider the case of two reservoirs. In this case,
Eqs. (16)–(17) are reduced to

〈a†
κaκ〉 = γ1(ωκ )n1(ωκ, T1) + γ2(ωκ )n2(ωκ, T2)

γ1(ωκ ) + γ2(ωκ )
(24)

J1 =
∑

κ

ωκ�(ωκ )[n1(ωκ, T1) − n2(ωκ, T2)], (25)

where �(ω) = γ1(ω)γ2(ω)/[γ1(ω) + γ2(ω)].
It is possible to define the energy flow through the equality

J̄ = −κ�T , where κ(T1, T2) is the thermal conductivity and
�T = T2 − T1. A characteristic time of the establishment of
thermal equilibrium is teq = C(T )/κ. Using Eqs. (24) and
(25), the thermal conductivity κ(T1, T2) is found to be

κ(T1, T2) = −
∑

κ

ωκ�(ωκ )

T1 − T2

eωκ/T1 − eωκ/T2

(eωκ/T1 − 1)(eωκ/T2 − 1)

= −
∑

κ

2ωκ�(ωκ )

T1 − T2

sinh

(
ωκ

2T1
− ωκ

2T2

)

sinh

(
ωκ

2T1

)
sinh

(
ωκ

2T2

) . (26)

If �T = T2 − T1 � T1 ≡ T , then

ω�(ω)[n(ω, T ) − n(ω, T + �T )]

= −ω�(ω)
∂n(ω, T )

∂T
�T

= −�(ω)
eω/T ω2/T 2

(eω/T − 1)2 �T = −�(ω)
(ω/2T )2

sinh2(ω/2T )
�T .

(27)
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Thus, the thermal conductivity κ(T1, T2) = κ (T ) equals

κ(T ) =
∑

κ

�(ωκ )
eωκ/T ω2

κ/T 2

(eωκ/T − 1)2

=
∑

κ

�(ωκ )
(ωκ/2T )2

sinh2(ωκ/2T )
=

∑
κ

κ(ωκ, T ). (28)

Here κ(ωκ, T ) is thermal conductivity at the tempera-
ture T associated with the contribution of oscillator with
the frequency ωκ . For ωκ/T � 1 we have κ(ωκ, T ) ≈
�(ωκ )(ω2

κ/T 2)e−ωκ/T , while for ωκ/T � 1 we obtain
κ(ωκ, T ) ≈ �(ωκ ).

Consequently, the characteristic time of temperature equal-
ization between two reservoirs with |�T (0)|/T1,2(0) � 1 can
be estimated as

teq(T ) = Cmin(T )

κ(T )

= Cmin(T )

(∑
κ

�(ωκ )
(ωκ/2T )2

sinh2(ωκ/2T )

)−1

, (29)

where Cmin(T ) = min[C1(T ),C2(T )].
For a certain frequency ω from the set ωκ

teq(ω, T ) = Cmin(T )

�(ω)

sinh2(ω/2T )

(ω/2T )2
. (30)

For T � ω, the characteristic time of temperature equaliza-
tion can be evaluated as teq(ω, T ) � [Cmin(T )/�(ω)][eω/T /

(ω/T )2], and thus, teq(ω, T ) increases with decrease of T . For
T � ω, we have teq(ω, T ) � Cmin(T )/�(ω), and teq(ω, T ) in-
creases with an increase in T . Thus, there is a value ω/T that
minimizes the time of temperature equalization determined by
the equation

ω/T

αmin + 2
= tanh

(
ω

2T

)
, (31)

where αmin equals α of the reservoir with minimal heat capac-
ity.

The dependence of teq(ω, T ) from Eq. (30) on the ratio
ω/T is shown on Fig. 2. It is a function with the minimum
at the ratio ω/T � 5 and a wide flat range near this minimum.

Thus, teq(T ) � minκ teq(ωκ, T ) provides a good upper
bound approximation for teq(T ). This approximation works
well unless oscillators’ frequencies in the open system are
concentrated in the frequency region corresponding to the flat
region in Fig. 2, because outside the flat region teq(ωκ, T )
grows fast. In the case of oscillators’ frequencies concentra-
tion in the flat region, temperature equilibration speeds up
proportionally to the number of such oscillators due to the
mentioned reason.

Note that τS ∼ �(ω)−1. For the model to be applicable,
the condition teq/τS � 1 should be satisfied. This means that
Cmin[T (t )] � 1. For the considered reservoirs of quasiparti-
cles with zero chemical potential, this condition means that
the number of quasiparticles in the reservoir should be much
greater than 1. This matches the energy condition discussed in
Sec. II.

FIG. 2. The dependence of teq(ω, T ) on the ratio ω/2T . Param-
eters of the reservoirs are set to A1 = A2 = 1, V1 = 1, V2 = 1, α1 =
α2 = 3 [product AV is not dimensionless, however, here and after we
consider A and V to be measured in such units, that temperature in
Eq. (18) is measured in units of energy].

B. Variation of temperatures’ sequence

In this section, we model Eq. (20) in the case of three
reservoirs. We use a numerical method with stiffness detection
(explicit midpoint method with double-harmonic extrapola-
tion as a nonstiff solver, implicit Euler method with harmonic
extrapolation as a stiff solver [73]).

The developed model predicts that the hottest and coldest
reservoirs may cease to be so during evolution. As has been
mentioned, from the Eq. (17) it follows that if n j (Tj ) is greater
than the mean occupancy, the reservoir is cooling down, and
if n j (Tj ) is smaller than the mean occupancy, the reservoir
is heating up. Thus, the coldest reservoir can never become
the hottest reservoir, and vice versa. However, other pairs of
reservoirs do not obey this restriction. For example, if the
dissipative rate of the open system in the first reservoir is
much less than the dissipative rates of the open system in
the second and third reservoirs, then the second and third
reservoirs become to have equal temperatures, and only after
that, they become to have equal temperatures with the first
reservoir. As a result, the temperature of the first reservoir,
being initially intermediate, becomes the highest before tem-
perature equalization with the second and third reservoirs, see
solid blue line in Fig. 3.

Finally, the temperatures of all reservoirs get equal to the
temperature that can be found as the real positive solution of
Eq. (22) that lies between the maximal and minimal initial
temperatures of the reservoirs. For the considered case, the
equilibrium temperature is determined by Eq. (23) with n =
3 and is depicted with a horizontal dot-dashed gray line in
Fig. 3.

C. Transient nonmonotonic temperature behavior

In this section, we model Eq. (20) in the case of five
reservoirs using the same numerical method. The developed
theory also predicts the possibility of nonmonotonic evolution
of reservoirs’ temperatures. For example, the temperature of
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FIG. 3. The time dependence of temperature of three reservoirs
connected through a set of seven oscillators with frequencies ω1 = 1,
ω2 = 1.1ω1, ω3 = 1.5ω1, ω4 = 0.9ω1, ω5 = 2ω1, ω6 = 2.2ω1, ω7 =
3ω1. The parameters: α j = α = 3, γ1/ω1 = 10−4(ω/ω1)α , γ2/ω1 =
2 × 10−2(ω/ω1)α , γ3/ω1 = 2 × 10−2(ω/ω1)α , Aj = 1, Vj = 1. Ini-
tial temperatures of the reservoirs are T1/ω1 = 0.105, T2/ω1 =
0.085, T3/ω1 = 0.107. The horizontal dot-dashed gray line depicts
Teq from Eq. (23).

the second reservoir in Fig. 3 exhibits nonmonotonic behavior
(dashed orange line).

In general, such behavior is possible in the following case.
Different pairs of reservoirs can have different teq time. As we
consider n reservoirs, then we have n(n − 1)/2 values of teq

times. The set of reservoirs that have a minimal value of time
of temperature equalization, teq, among these n(n − 1)/2 teq

values, become with equal temperatures first. Suppose that
there are m reservoirs in this set. All of these m reservoirs have
the same temperature after their temperatures become equal
to each other and can be considered as a single reservoir with
effective heat capacity. This reduces the number of reservoirs
in the system. Now we have (n − m + 1)(n − m)/2 values of
teq times, and the process repeats until only one reservoir is
left. Thus, temperature equalization between all rese rvoirs
can be divided into the consequent temperature equalization
of reservoirs in each subset.

In the case when initial subsets of reservoirs have suffi-
cient differences in initial temperatures and teq, nonmonotonic
dynamics of temperatures are possible. An example of such
behavior is represented in Fig. 4 (solid blue line). Here,
the first and second reservoirs become to have equal tem-
peratures first. The initial temperature of the first reservoir
is higher than the initial temperature of the second reser-
voir. As a result, the temperature of the first reservoir
decreases.

After the first and second reservoirs become to have equal
temperatures, they both become to have equal temperatures
with the third reservoir having a greater initial temperature
than they both. Thus, the equal temperature of these three
reservoirs is greater than the equal temperature of the first
two reservoirs. As a consequence, the temperature of the first
reservoir, which initially decreased, has increased now. In
other words, nonmonotonic temperature dynamics take place.
Note that not only the first reservoir exhibits nonmonotonic
behavior. Temperatures’ dynamics of the second and third
reservoirs are also nonmonotonic (see Fig. 4, dashed orange
line starting from T/ω = 0.07 and dot-dashed green line start-
ing from T/ω = 0.1155).

FIG. 4. The time dependence of temperatures of the five
reservoirs connected through a set of seven oscillators with fre-
quencies ω1 = 1, ω2 = 1.1ω1, ω3 = 1.5ω1, ω4 = 0.9ω1, ω5 = 2ω1,
ω6 = 2.2ω1, ω7 = 3ω1. The parameters: α j = α = 3, γ1/ω1 =
10−2(ω/ω1)α , γ2/ω1 = 10−3(ω/ω1)α , γ3/ω1 = 10−6(ω/ω1)α ,
γ4/ω1 = 10−7(ω/ω1)α , γ5/ω1 = 3 × 10−9(ω/ω1)α , Aj = 1, Vj = 1.
Initial temperatures of the reservoirs are T1/ω1 = 0.1, T2/ω1 = 0.07,
T3/ω1 = 0.1155, T4/ω1 = 0.055, T5/ω1 = 0.127. The horizontal
dot-dashed gray line depicts Teq from Eq. (23).

After all stages of nonmonotonic dynamics, the tempera-
tures of all reservoirs get equal. The equilibrium temperature
can be found similarly to the case of three reservoirs. For
the considered case of five reservoirs, the equilibrium tem-
perature is determined by Eq. (23) with n = 5 and is depicted
with the horizontal dot-dashed gray line in Fig. 4.

V. DISCUSSION AND CONCLUSION

In this work, we considered an open quantum system con-
sisting of an arbitrary set of oscillators connected to several
reservoirs. We studied the transient temperature regimes of
reservoirs during temperature equalization via the open quan-
tum system. We showed that the interplay between dissipative
rates and occupancies of reservoirs results in various transi-
tional temperature regimes. We showed that it is possible to
achieve nonmonotonic dynamics of the reservoir temperature
by right choosing the initial temperatures and dissipative rates
of the reservoirs. Moreover, by lowering the dissipative rate of
one reservoir, one can increase the time that is needed for this
reservoir to equalize temperature with other ones. This can
make a reservoir with an intermediate temperature the hottest
or the coldest one after some moment of time.

The explicit expression for the stationary energy flow from
a reservoir to the open quantum system, revealing the inter-
play between dissipative rates and occupancies of reservoirs,
was derived using the GKSL equation. The energy flow from
the jth reservoir was shown to be proportional to the dif-
ference between the occupancy of the jth reservoir at the
eigenfrequency of the open quantum system and the mean
occupancy at this eigenfrequency among all reservoirs. The
mean occupancy is equal to the sum of the reservoirs’ occu-
pancies, with weights equal to normalized dissipative rates.

In the case of two reservoirs, we calculated the thermal
conductivity of the considered open quantum system, with
the help of which we estimated the time needed for the
temperature equalization of these reservoirs. Moreover, we
showed that there exists an optimal ratio of the transitional
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frequency to reservoir temperature that minimizes the time of
temperature equalization between reservoirs.

The proposed model enables the use of different methods
for calculating energy flows in an open quantum system.
Namely, the heat flow from a reservoir can be calculated with
the aid of Green’s functions [74–77] instead of the GKSL
equation. For example, in the case of an open quantum system
consisting of one bosonic or fermionic mode, one can obtain
an equation on the energy flow from jth reservoir similar
to Eq. (17) by using the convolution of energy flow from
Eq. (17) with the Lorentzian transmission function [74,78].

The careful comparison of energy flows obtained in the GKSL
approach and Green’s function formalism we leave for future
works.
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