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Trapping of deformable active particles by a periodic background potential
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The dynamic behaviors, specifically trapping and sorting, of active particles interacting with periodic sub-
strates have garnered significant attention. This study investigates numerically the trapping of soft, deformable
particles on a periodic potential substrate, which can be experimentally verified through optical tweezers. The
research demonstrates that multiple factors, including the relative size of traps, self-propelled velocity, shape
parameters, ratio of particles to traps, and translational diffusion, can influence the trapping effect. Within
certain parameter boundaries, it is shown that all particles can be consistently trapped. The research reveals
that stable trapping typically occurs at median values of the relative trap size. An increase in the self-propelled
velocity, the shape parameter, and the translational diffusion coefficient tends to facilitate the escapement of the
particles from the traps. It is noteworthy that particles with larger shape parameters can escape even when the
restoring force exceeds the self-propelled force. In addition, as the ratio of particles to traps grows, the fraction of
trapped particles steadily reduces. Notably, rigid particles are consistently divided and trapped by traps closely
approximating an integer multiple of the particles’ area, up until the ratio reaches the aforesaid integer value.
These findings can potentially enhance the understanding of the interactive effects between active deformable
particles and periodic substrates. Moreover, this work suggests a different experimental approach to sort active
particles based on rigidity disparities.
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I. INTRODUCTION

Active particle systems, due to the injection of intrinsic
energy, are far from equilibrium, thereby presenting a plethora
of behavioral possibilities [1]. Over the years, a broad range
of effects and dynamics, including the ratchet effects [2–7],
collective motion [8,9], glasslike dynamics [10,11], and phase
separation [12,13], have been extensively reported. Recently,
significant attention has been directed towards the phe-
nomena arising from the coupling of active particles with
periodic substrates. These substrates may either resemble
a periodic obstacle array or may replicate the egg-carton
substrate observed in an optical tweezers’ lattice. Notewor-
thy phenomena in this domain include dynamic locking or
guidance in specific directions [14–16], anomalous diffu-
sion [17,18], and trapping [19–22]. Of particular interest is
the trapping phenomenon, as it paves the way for innova-
tive approaches to segregate and sort particles based on their
properties.

Prior research on particle trapping has largely focused on
active disk particles, with relatively little attention granted
to deformable particles constrained by deformation [19–22].
Nevertheless, these deformable particles are commonly ob-
served in a range of settings, including cell monolayers [23],
developing tissues [24], compressed foams [25], and emul-
sions [26]. The deformability of these particles notably
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influences system behavior [27–36]. Questions remain as to
whether a deformable particle can be adequately trapped by
the periodic potential substrates and how its deformability
might affect its trapping behaviors. These represent important
open questions in the field.

To answer these open questions, we conducted a numerical
investigation focusing on the trapping of active, deformable
particles within a periodic potential substrate. Our findings
illustrate that several factors significantly affect trapping out-
comes, including the relative trap size, the self-propelled
velocity of particles, shape parameters, ratio of particles to
traps, and translational diffusion. Our investigation concludes
that all the particles can be stably trapped within a specifically
tailored parameter regime. Moreover, moderate values of trap
size are quite conducive to stable particle trapping. Interest-
ingly, we found that increasing the self-propelled velocity,
shape parameters, and translational diffusion coefficient facil-
itates particle escape from traps, with particles possessing a
larger shape parameter still able to escape traps, even when the
self-propelled force is smaller than the restoring force. Strik-
ingly, stiffer particles can be evenly distributed and securely
maintained within traps that have an area close to an integral
multiple of the particle area, until the ratio between the num-
ber of particles and traps increases to the above-mentioned
integer value. Conversely, softer particles might escape when
the ratio of particles to traps is lower. Our findings offer valu-
able insights into the dynamic behaviors of soft, deformable
particles within a periodic potential substrate. Moreover, they
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FIG. 1. (a) Illustration of the active deformable particles featur-
ing repulsive interaction. (b) Contour plot showcasing the periodic
potential substrate resembling an egg-carton shape.

present a different possibility for sorting active particles based
on rigidity differences.

II. MODEL AND METHODS

We consider N deformable particles in a L × L box where
a periodic array of attractive wells exists (shown in Fig. 1).
Each deformable particle is a polygon consisting of Nv ver-
tices which represents Nv − 1 shape degrees of freedom, and
each vertex is a small disk with fixed diameter. The cen-
ter of mass of the particle m is rm,c ≡ {xm,c, ym,c}, obtained
by the positions of the vertex, and rm,i ≡ {xm,i, ym,i} for the
vertex i. lm,i = (rm,i+1 − rm,i )=lm,i l̂m,i denotes the bond vec-
tor between vertex i + 1 and vertex i. The perimeter of the
polygon is pm = ∑Nv

i=1 lm,i. The internal interaction of such a
soft, particulate system is governed by a general shape-energy
function [32],

E = klNv

2

N∑

m=1
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i=1
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2
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× �(l0 − |rm,i − rn, j |), (1)

which includes three terms. The first term resists distance
fluctuations between two adjacent vertices with moduli kl

FIG. 2. (a) Contour plot illustrating the potential of the substrate,
U (x, y), over a period for B = 0.025. (b) Contour plot showcasing
the restoring force field derived from (a). (c) Contour plot illustrating
the potential of the substrate, U (x, y), over a period for B = 0.475.
(d) Contour plot showcasing the restoring force field derived from
(c). The other parameters are V0 = 0.33, C = 5.0, and λ = 3.68.

and equilibrium length l0 (also the diameter of each vertex).
The second term is a compressibility term quadratic in am,
resisting area fluctuations with area stiffness moduli ka, and a0

is the target area. The last term means a repulsive interaction
between polygons when they overlap (i.e., overlapping disks
exist on contacting polygons), where kr is the strength of the
repulsive interactions, rm,i is the position of the ith vertex in
polygon m, and �(·) is the Heaviside step function. A di-
mensionless preferred shape parameter A = (Nvl0)2/(4πa0) is
introduced to describe the amount of excess perimeter above a
regular polygon with area a0 and to control the deformability
of particles [32,37]. Geometrically, A = 1 is for a regular cir-
cle and A = 1.16 is for a regular pentagon. If a polygon with
Nv → ∞ vertices is rigid (regular), Av = Nv tan(π/Nv )/π →
1. A significant increase in the excess perimeter (the differ-
ence between the perimeter and the equilibrium perimeter
of the convex hull of each polygon) occurs when A/Av >

1.16 [32], for which the surface tension of the deformable
particle decreases as A/Av increases and the tension is zero at
A/Av = 1.16. Therefore, the larger the shape parameter A/Av ,
the softer the particles.

The deformable particles are put in a force field (mimic
the lattice of optical tweezers) which arises from a two-
dimensional (2D) periodic potential [38],

U (x, y) = −V0

1 + exp
{−C

[
cos

(
2πx
λ

) + cos
( 2πy

λ

) − 2B
]} . (2)

V0 controls the depth of the wells, C controls the steepness,
and B controls the relative size of a well with respect to the
spatial period λ (shown in Fig. 2).
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FIG. 3. (a) The self-diffusivity Ds as a function of the parameter B for different shape parameter A/Av at v0 = 0.55 and N/Ntrap = 1. (b) The
MSD of the centers of mass of the particles for different B at A/Av = 1.16.

To simulate the active deformable particle, we consider
a self-propulsion speed v0,m added on the center of mass,
and the polarity vector is nm = (cos θm, sin θm). For conve-
nience, we assume that all the deformable particles have
the same self-propulsion speed, which is set to be v0. The
self-propelled velocity needs to be transferred to each vertex
because the dynamics equation will be built on the vertices.
There are three steps to get the self-propelled velocities on
the vertices: (i) calculating the angle between rm,c and rm,i by
φm,i = arctan( �ym,i

�xm,i
), where �ym,i = ym,i − ym,c and �xm,i =

xm,i − xm,c; (ii) calculating the difference �φm,i = φm,i − θm

and getting its remainder to 2π ; (iii) using formula v0,i =
0.99v0 exp(−�φm,i

2

2D2 ) + 0.01vmin to get the self-propelled ve-
locity component on vertex i. D is the parameter that regulates
the precision of the velocity transfer to nearby vertices, and
vmin = 0.01v0 ensures that the vertices are active.

The evolution of orientation θm is governed by the equation

dθm

dt
=

√
2Dθ ξm(t ), (3)

where Dθ is the rotational diffusion coefficient. ξm(t ) is a
Gaussian white noise with unit variance and zero mean.

In an overdamped regime, the motion of the vertex i of the
deformable particle m obeys the following Langevin equation:

drm,i

dt
= v0,inm,i − μ(∇m,iE + ∇m,iU ) +

√
2Dtζm,i(t ), (4)

where nm,i = (�xm,i/
√

�x2
m,i+�y2

m,i, �ym,i/
√

�x2
m,i+�y2

m,i )
is the orientation of vertex i, and μ is the mobility. ζm,i(t ) is
also a Gaussian white noise.

To study the dynamics behavior of the system,
we use the mean square displacement MSD(t ) =
〈[rm,c(t + t0) − rm,c(t0)]2〉, where 〈·〉 denotes an average
over all the deformable particles. For the long-time limit,
one can obtain the self-diffusivity Ds = limt→∞ MSD(t )

4t . The
appearance of a plateau in the MSD and a very small Ds

suggest the disappearance of diffusion, which can be used to
distinguish whether deformable particles are trapped in the
potential wells qualitatively.

III. RESULTS AND DISCUSSION

A. Zero translational diffusion

In order to investigate the trapping effect of the deformable
particles more directly, we first consider the minimal model
without translational diffusion (Dt = 0). We numerically
solved Eqs. (3) and (4) using a stochastic Euler algorithm.
The integration time step δt is set to be 0.005 and the total
integration time is more than 105. Unless otherwise stated,
we set N = 625, Nv = 12, μ = 1, D = 1, Dθ = 0.01, ka = 5,
kl = 1, kr = 20, V0 = 0.33, C = 5, and λ = 3.68.

Figure 3(a) illustrates the dependence of self-diffusivity
Ds on parameter B for different shape parameter A/Av at
v0 = 0.55. When B increases, Ds first decreases and then in-
creases, and there is a value of parameter B where Ds takes its
minimum. Therefore, the deformable particles can be trapped
by the wells under intermediate values of parameter B. To
obtain the detail information of the evolution of dynamics,
we show the MSD as a function of time for different pa-
rameter B at A/Av = 1.16. For intermediate values of B (e.g.,
B = 0.25), the MSD exhibits ballistic diffusion (slope close
to 2 on a log-log plot) at short times and weak subdiffusion
(slope ≈0.2) at t > 102. The subdiffusion indicates that many
deformable particles have been caged by the wells. When the
B is too small or too large (e.g., B = 0.025 or B = 0.475),
the dynamic behavior of the particles changes from ballistic
motion to normal diffusion (slope close to 1 on a log-log plot),
so few particles are trapped.

The MSD and Ds can only show a rough picture of the
system, but they are difficult to quantitatively identify how
many particles are trapped. Therefore, we introduce the frac-
tion of trapped particles (FTP) to accurately evaluate this. The
details of the FTP calculation and its robustness are provided
in Appendix A. A particle is considered stably trapped if it
remains in the same potential well for the last 100τ of the
simulation, where τ = 1/Dθ is the persistent time. Figure 4
displays the FTP as a function of parameter B for different
shape parameter A/Av at v0 = 0.55. When the shape param-
eter is large (e.g., A/Av � 1.16), the FTP first increases and
then decreases with the parameter B, getting its maximum at
the intermediate value of B. When the shape parameter is very
small (e.g., A/Av = 1.02 and A/Av = 1.10), all of the particles
can be stably trapped (FTP = 1) for the intermediate values
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FIG. 4. The fraction of trapped particles (FTP) as a function of
the parameter B for different shape parameter A/Av at v0 = 0.55 and
N/Ntrap = 1.

of parameter B. In particular, there are two additional peaks at
either side of the maximum peak.

Now we provide a physical interpretation for the aforemen-
tioned phenomena. In order for a particle to cross a potential
well, it typically needs to satisfy two conditions: first, the
persistence length must exceed the width of the well, and
second, the self-propulsion force must surpass the restoring
force of the well: in this case, with a persistence length lp =
v0/Dθ = 55 that is significantly larger than the size of the
wells and a self-propulsion force Fs = v0/μ = 0.55 that is in
close proximity to the restoring force at the boundary of the
well. When the parameter B is extremely small, the relative
size of the wells becomes significantly larger, resulting in a
rhombus-shaped potential well with substantial gaps near its
four apexes. The particles readily escape from such wells [as
shown in Fig. 5(a)] and even exhibit normal diffusion behavior
(MSD ∝ t) after stabilization (e.g., A/Av = 1.16), resulting
in a large self-diffusivity (Ds) and small fractional trapping
probability (FTP). When the parameter B is significantly in-
creased, the wells noticeably contract, eliminating any gaps
and resulting in a slightly higher restoring force near the
boundary compared to Fs. Even so, particles still have a slight
chance to cross the potential well due to their deformation
characteristics. The size of the trap is slightly larger than that
of a single particle, but significantly smaller than that of two
particles, making it more likely for a trap to be occupied by
only one particle. When most of the potential wells already
contain one particle each, it becomes difficult for other free
particles to find an empty well to occupy. However, if a free
particle accidentally enters an occupied well, the collision
with the existing trapped particle causes it to be excited out
of the trap. As a result, the particles cannot be stably trapped
[as shown in Fig. 5(b)] and the FTP is small, leading to normal
diffusion after stabilization (e.g., A/Av = 1.16). For interme-
diate values of parameter B, where the trap size is moderate
and the gaps at the top corners are relatively small, the traps
can often stably accommodate one or two particles. This re-
sults in the maximum FTP and the disappearance of particle
diffusion. However, when the shape parameter A/Av is small

FIG. 5. Typical snapshots of the dynamic behaviors of the active
deformable particles for different parameter B: (a),(b) at A/Av =
1.16 and (c)–(f) at A/Av = 1.10. The other parameters are v0 = 0.55
and N/Ntrap = 1.

(A/Av < 1.16), two additional peaks of trapping efficiency are
observed. In the subsequent analysis, let us consider the case
of A/Av = 1.10 as an example. In the case of the additional
peak on the left side, the gaps at the top corners of the traps
become narrower as parameter B increases. This narrowing
of the gaps facilitates easier trapping of particles [e.g., B =
0.075, as shown in Fig. 5(c)]. By further increasing parameter
B, smaller gaps allow the traps to transiently accommodate
multiple particles (two or three) within certain size limits
[e.g., B = 0.125, as shown in Fig. 5(d)]. However, the high
collision rate among these trapped particles can cause them to
become unbound, resulting in a slight decrease in FTP. For the
additional peak on the right side, as the parameter B increases
[e.g., B = 0.35, as shown in Fig. 5(e)], the size of the traps
decreases and each trap can no longer stably accommodate
multiple particles. The presence of multiple particles within a
trap leads to squeezing and collision, causing the particles to
escape from the trap and resulting in a slight decrease in the
trapping efficiency. With further increases in parameter B, the
gaps in the traps narrow, causing the traps to preferentially
capture one particle stably, thereby slightly increasing the
FTP [e.g., B = 0.375, as shown in Fig. 5(f)]. In cases where
A/Av � 1.16, the particles are sufficiently soft that multiple
particles within the same trap tend to be compatible through
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deformation rather than being excluded. As a result, there are
no additional peaks observed in the FTP.

According to Eq. (2), the size of the trap monotonically
decreases with an increase in parameter B, but the Ds and FTP
exhibit peak functions (nonmonotonic) of parameter B, which
is contrary to intuition. This is the result of the combined
effects of the degree of fit between particle size and trap size,
and the interactions among particles. When the traps are very
large, so are the gaps at their top corners (shown in Fig. 2),
allowing the trap to accommodate multiple particles, but not
effectively confine them. Conversely, when the traps are very
small (for example, only able to accommodate one particle),
the high occupancy rate of the traps and the excitation among
particles make them difficult to trap a majority of particles.
For stiff particles, the FTP even exhibits multiple peaks under
the influence of more intense collisions among particles. In
short, for intermediate values of parameter B, where the gaps
at the top corners of the traps are small and the trap size is
moderate, the particles can be more stably trapped.

To gain a more intuitive understanding of the behavior of
the aforementioned system, we also calculated the results of
active pointlike particles (shape neglected) without repulsive
interactions under the same periodic background potential for
comparison (shown by the brown lines in Figs. 3 and 4). The
details are described in Appendix B. One can observe that the
FTP (or Ds) monotonically increases (or decreases) with the
increase of parameter B, which is not difficult to envisage.
The reduction of the traps (accompanied by the narrowing of
the apex gap) causes the boundary restoring force to exceed
the self-propulsion force of the pointlike particles. Since the
pointlike particles neither have deformation characteristics
nor can they overcome the restoring force through interac-
tions with other particles (even though multiple particles may
simultaneously exist in a trap), they cannot escape. For in-
stance, when B = 0.15, the Ds abruptly transitions to a very
small value, and the MSD also exhibits a plateau, indicat-
ing a complete disappearance of diffusion behavior. This is
compellingly confirmed by FTP = 1. Subsequently, further
increasing parameter B, the FTP also remains stably fixed at
the value of 1.

Figure 6(a) illustrates the self-diffusivity Ds as a function
of the self-propelled velocity v0 for different values of A/Av

at B = 0.25. As v0 → 0, the Ds is very small and the MSD
exhibits a plateau [e.g., the curve for v0 = 0.20 and A/Av =
1.16 shown in Fig. 6(b)]. This is because the self-propelled
force of the particles is too weak to overcome the restoring
force of the traps, resulting in most of the particles being
trapped. The FTP displayed in Fig. 7 further confirms that all
the particles are stably trapped (FTP = 1). As v0 increases,
the self-propelled force also increases, leading to more intense
collisions between multiple particles within the same trap.
These collisions help the particles escape from the traps and
ultimately diffuse freely. Consequently, the self-diffusivity Ds

monotonically increases with v0. When v0 is very large (e.g.,
v0 = 0.80), the MSD scales with time as MSD ∝ t , indicating
normal diffusion behavior. This is also supported by FTP = 0,
indicating that none of the particles are trapped.

Figure 8(a) presents the dependence of the self-diffusivity
Ds on the shape index for different values of v0 at B = 0.25.
When the self-propelled velocity is very low (e.g., v0 = 0.30),

FIG. 6. (a) The self-diffusivity Ds as a function of the self-
propelled velocity v0 for different shape parameter A/Av at B = 0.25
and N/Ntrap = 1. (b) The MSD of the centers of mass of the particles
for different v0 at A/Av = 1.16.

the particles are unable to overcome the restoring force of
the traps. Consequently, regardless of the specific values of
A/Av , the particles remain trapped and no diffusion occurs.
For suitable self-propelled velocities, Ds increases monoton-
ically with an increase in the shape index A/Av . When A/Av

is extremely small (e.g., A/Av = 1.02), there is no diffusion
in the system (Ds → 0) and the MSD exhibits a plateau [as
shown in Fig. 8(b)]. The FTP as a function of the shape index
A/Av is depicted in Fig. 9. When A/Av is very small, the
FTP approaches 1, indicating that only a few particles can
escape from the traps. When A/Av becomes very large (e.g.,
A/Av � 1.30), only a small number of particles gets trapped,
leading to normal diffusion behavior over long-time regimes
(FTP → 0). Interestingly, even though the restoring force of
the trap boundary under B = 0.25 is slightly larger than 0.55
(as shown in Fig. 10), particles with v0 = 0.55 (i.e., Fs =
0.55) are still able to escape from the wells. This phenomenon
can be explained as follows: as the shape parameter A/Av

increases, the particles become softer and are more likely to
undergo deformations. When a particle near the trap boundary
deforms such that a part of itself extends outside the trap, the
portion outside the trap may exert a dragging force, pulling
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FIG. 7. The FTP as a function of the self-propelled velocity v0

for different shape parameter A/Av at B = 0.25 and N/Ntrap = 1.

FIG. 8. (a) The self-diffusivity Ds as a function of the shape
parameter A/Av for different self-propelled velocity v0 at B = 0.25
and N/Ntrap = 1. (b) The MSD of the centers of mass of the particles
for different A/Av at v0 = 0.55.

FIG. 9. The FTP as a function of the shape parameter A/Av for
different self-propelled velocity v0 at B = 0.25 and N/Ntrap = 1.

the entire particle away from the trap. It is worth noting that
there is a sharp small valley in the FTP curve when A/Av =
1.16 at large self-propelled velocities (e.g., v0 = 0.60). This
is because a zero tension condition allows the particles to
rapidly adjust their shape during a vigorous interaction with
the trap boundary, facilitating escape from regions with low
restoring force. For particles with small v0, their interactions
with the trap boundary are more gentle, making this effect less
noticeable.

In the case of pointlike particles, the loss of deformation
characteristics implies that they can only escape from the
trap when the self-propulsion force exceeds 0.55 (the bound-
ary restoring force of the traps at B = 0.25). Hence, when
v0 � 0.55, the FTP remains constantly at 1 [shown by the
brown line in Fig. 6(b)], and the corresponding MSD also
displays a plateau (shown by the brown line in Fig. 7). When
v0 > 0.55, the FTP gradually decreases. Note that the FTP
cannot decrease to a very small value because the motion of
each pointlike particle (i.e., each vertex) is independent and
cannot be driven by other pointlike particles (or vertices).
Those particles that receive a self-propulsion speed that is
less than 0.55 during the transformation of the self-propulsion
speed remain in the trap forever.

In order to provide more detailed information regarding the
dependence of FTP on the self-propelled velocity v0 and shape

FIG. 10. Contour plots of (a) the potential and (b) the derived
restoring force field over a period at B = 0.25. Other parameters are
V0 = 0.33, C = 5.0, and λ = 3.68.
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FIG. 11. Phase diagram of the FTP in the v0 − A/Av represen-
tation at B = 0.25 and N/Ntrap = 1. The background represents the
value of FTP according to the color bar on the right.

index A/Av , we have plotted the phase diagram of FTP on
the v0 − A/Av panel at B = 0.25, as shown in Fig. 11. The
phase diagram reveals that decreasing v0 and A/Av favors
the stable trapping of particles. Additionally, at smaller shape
indices, particles require a larger self-propelled velocity to
effectively escape from the traps.

Furthermore, we investigate the influence of the ratio of
particles to traps, N/Ntrap, on trapping behaviors. Figure 12(a)
illustrates the self-diffusivity Ds as a function of the N/Ntrap

ratio for different A/Av values at B = 0.25. When N/Ntrap is
very small, Ds tends to approach zero, indicating that the par-
ticles are trapped. This is supported by the plateau observed
in the MSD curve in Fig. 12(b), which signifies the absence of
diffusion (e.g., N/Ntrap = 0.5). As N/Ntrap increases, Ds mono-
tonically increases, indicating that it becomes progressively
more difficult for particles to become trapped. When N/Ntrap

is very large (e.g., N/Ntrap = 2.4), the particles are completely
free and exhibit normal diffusion behavior (MSD ∝ t). To fur-
ther quantify the trapping effect, we plot FTP as a function of
N/Ntrap in Fig. 13. For very small values of N/Ntrap, FTP tends
to approach 1, which demonstrates that all particles are stably

FIG. 13. The FTP as a function of the ratio of the number of
particles to traps, N/Ntrap, for different shape parameter A/Av at B =
0.25 and v0 = 0.55.

trapped. As the N/Ntrap ratio increases, FTP monotonically
decreases from 1 to 0. The above phenomena can be inter-
preted as follows. When N < Ntrap, there are enough traps for
each particle to occupy individually. Without the assistance
of collisions between multiple particles in a trap, it becomes
difficult for an individual particle to escape. As the number of
particles increases (i.e., when N/Ntrap � 1), multiple particles
start occupying a single trap. For stiff particles (e.g., A/Av =
1.05), their limited deformation characteristics make it diffi-
cult for them to escape the traps on their own. Additionally,
each trap can only accommodate a maximum of two particles
due to the trap area being close to the area of two particles.
The collision between two particles in a trap does not provide
enough force to free the particles when the deformation is
weak. Therefore, FTP remains equal to 1 until N/Ntrap � 2.
In the case of soft particles (e.g., A/Av � 1.16), significant
deformations occur, with parts of particles extending outside
the traps. This allows the entire particle to be pulled out. On
the other hand, the presence of more soft particles within a
trap leads to violent collisions between particles that aid in

FIG. 12. (a) The self-diffusivity Ds as a function of the ratio of the number of particles to traps N/Ntrap for different shape parameter A/Av

at B = 0.25 and v0 = 0.55. (b) The MSD of the centers of mass of the particles for different N/Ntrap at A/Av = 1.05.
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FIG. 14. (a) The self-diffusivity Ds as a function of the translational diffusion coefficient Dt for different shape parameter A/Av at B = 0.25
and v0 = 0.55. (b) The MSD of the centers of mass of the particles for different Dt at A/Av = 1.16.

their escape. Hence, a significant decrease in FTP does not
require a large N/Ntrap ratio for soft particles. When N/Ntrap

is very large, many particles are floating around due to a lack
of empty traps. Some of the free particles outside the traps
force their way into occupied traps and excite the trapped
particles to be released. Consequently, few particles can be
stably trapped.

B. The effect of translational diffusion

Translational diffusion is ubiquitous and can have nontriv-
ial effects on the behavior of systems, which should not be
neglected. In this section, we study the influence of trans-
lational diffusion on trapping of the deformable particles at
v0 = 0.55 and B = 0.25.

Figure 14(a) depicts the dependence of self-diffusivity Ds

on the translational diffusion coefficient Dt for different shape
parameter A/Av . It is found that Ds monotonically increases
with an increase in Dt . We analyze the details of the system’s
dynamic behavior using the case of A/Av = 1.16 as an ex-
ample, as presented in the MSD shown in Fig. 14(b). When
Dt = 0, the system exhibits weak subdiffusion over long-time
scales, whereas for finite Dt values (e.g., Dt = 0.10 and Dt =
0.22), the system exhibits normal diffusion. Further calcula-
tions of the FTP, plotted as a function of Dt in Fig. 15, show a
monotonic decrease with increasing Dt , explicitly indicating
that the enhancement of diffusion is caused by the escape of
particles from traps. The presence of translational diffusion
provides additional kinetic energy for deformable particles
to overcome the potential barriers at the trap boundaries.
Therefore, the larger the translational diffusion coefficient, the
easier it is for particles to escape the confinement of traps.

IV. CONCLUDING REMARKS

In this study, we conducted a numerical investigation into
the trapping of active deformable particles in a periodic sub-
strate potential. The findings of our research show that by
tailoring parameters such as B (which determines the relative
size of wells), self-propelled velocity (v0), shape parameter
(A/Av), ratio of particles to traps (N/Ntrap), and translational

diffusion coefficient (Dt ), deformable particles can be effec-
tively and stably trapped. The optimal trapping effect occurs
with intermediate values of parameter B, as traps that are
either too large or too small hinder effective particle trapping.
Self-propelled velocity grants particles the necessary active
force to resist the restoring force of the traps. Consequently,
the higher the self-propelled velocity, the easier particles can
escape the traps. Interestingly, softening of the particles can
be achieved through an increase in the shape parameter, which
facilitates particle escape from the traps, even when the self-
propelled force is less than the restoring force. An increase
in the translational diffusion coefficient facilitates the escape-
ment of the particles from the traps. Furthermore, our study
found that the FTP diminishes monotonically as the ratio of
particles to traps increases. For rigid particles, even distribu-
tion occurs within traps that have an area close to an integer
multiple of the particle area. These particles remain stably
trapped until N/Ntrap reaches that multiple. However, with

FIG. 15. The FTP as a function of the translational diffusion
coefficient Dt for different shape parameter A/Av at B = 0.25 and
v0 = 0.55.
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softer particles, escape from traps transpires at smaller N/Ntrap

ratios. This research contributes to advancing our understand-
ing of how active deformable particles can be manipulated
through a periodic substrate. Additionally, it proposes a differ-
ent strategy for segregating active particles based on rigidity
disparity.
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APPENDIX A: THE CALCULATION OF FTP

The definition of the fraction of trapped particles (FTP)
is the ratio of the number of particles stably trapped to the
total number of particles, which reads FTP = Nt/N . Particles
that remain trapped in the same traps during the final 100τ

(τ = 1/Dθ ) of the simulation time are considered to be stably
trapped particles. To confirm that particles stay in the same
trap, we need to define a distance �rc from the trap center to
the trap boundary, where the restoring force at the boundary is
equal to the particle’s self-propulsion force (Fs = v0/μ). Due
to the shape of the trap not being a regular circle (in fact, it
is more akin to a rhombus), we calculate �rc by selecting
the point that satisfies the restoring force requirement and
is the farthest from the trap center within a period. Particles
whose displacement is less than �rc during the final 100τ are
considered to be stably trapped particles. In our simulations,
the persistent length lp = v0τ � 20 is significantly greater
than �rc ∼ 1, hence it is reasonable to determine whether the
particles are trapped by selecting the last 100τ .

To ensure the reliability of our simulation results, we ver-
ify the robustness of the FTP in Fig. 16. Figure 16 shows
the dependence of FTP on time t for different A/Av , which
indicates that the simulation time of 105 is sufficient for the
results of the FTP to converge. In other words, our results are
not simulation-time dependent.

FIG. 16. The FTP as a function of simulation time for different
shape parameter A/Av at B = 0.25 and v0 = 0.55.

APPENDIX B: THE SIMULATIONS
OF POINTLIKE PARTICLES

To gain a deeper understanding of the system’s behavior,
we calculate the motion of vertex particles by ignoring the
shape constraints of the particles themselves and the repulsive
interactions between particles on the basis of the original
model, which is equivalent to a simple pointlike particles
model. The initial self-propulsion velocity of the point par-
ticles is obtained from the velocity transmission mentioned
in the main text. Subsequently, the dot particles satisfy the
following equations:

dri

dt
= v0,ini − μ∇iU, (B1)

dθi

dt
=

√
2Dθ ξi(t ), (B2)

where ni = (cos θi, sin θi ) and i = 1, 2, . . . , N × Nv .
The parameters are consistent with those selected in Part A

of Sec. III in the main text for comparison with the results of
deformable particles.
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