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Entangled spin coherent states are a type of quantum states that involve two or more spin systems that are
correlated in a nonclassical way. These states can improve metrology and information processing, as they can
surpass the standard quantum limit, which is the ultimate bound for precision measurements using coherent
states. However, finding entangled coherent states in physical systems is challenging because they require precise
control and manipulation of the interactions between the modes. In this work we show that entangled unique
coherent states can be found in the ground state of the spin-1/2 XX chain model with three-spin interaction,
which is an exactly solvable model in quantum magnetism. We use the spin squeezing parameter, the l1-norm of
coherence, and the entanglement entropy as tools to detect and characterize these unique coherent states. We find
that these unique coherent states exist in a gapless spin liquid phase, where they form a line that separates two
regions with different degrees of squeezing. We call this line the entangled unique coherent line, as it corresponds
to the almost maximum entanglement between two halves of the system. We also study the critical scaling of the
spin squeezing parameter and the entanglement entropy versus the system size.
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I. INTRODUCTION

Quantum coherence is a quantum phenomenon that allows
quantum systems to exist in superpositions of states, which
means that they can be in more than one state at the same time
[1–4]. This enables quantum interference, which is the con-
structive or destructive combination of quantum waves, such
as light or matter waves. Quantum coherence and interference
are essential features of quantum physics that distinguish it
from classical physics. They also have many applications in
fields such as quantum optics, quantum information, quantum
metrology, and quantum computing.

A way to quantify quantum coherence is to use the l1-norm
of coherence, which is a theoretical measure of coherence
that is based on the concept of quantum distinguishability
[5,6]. The l1-norm of coherence is defined as the sum of the
absolute values of the off-diagonal elements of the density
matrix of the quantum system. The off-diagonal elements of
the density matrix indicate the coherence between different
basis states of the system. The l1-norm of coherence can be
used to compare the coherence of different quantum ground
states of complicated many-body systems. The l1-norm of
coherence is defined as

Cl1 (ρ̂) =
∑
i �= j

|ρi j |, (1)

where ρ̂ is the density operator of the quantum state and ρi j =
〈ψi|ρ̂|ψ j〉. Here {|ψm〉} are basis kets of the Hilbert space. It
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is important to note that density matrices that are diagonal in
this basis are considered incoherent.

Coherent states are also defined based on the spin-
squeezing parameter (SSP). Spin squeezing is a way of
reducing the quantum noise in one direction of the collec-
tive spin of a system of particles, making it more sensitive
to rotations around that axis [7–10]. This can improve the
accuracy of measurements and the performance of quantum
information protocols. Spin squeezing has many applica-
tions in quantum physics, such as quantum metrology [3,11–
15], which is the science of measuring physical quanti-
ties with quantum-enhanced precision; quantum entanglement
[16–22], which is the phenomenon of having quantum cor-
relations between two or more systems; and quantum phase
transitions [3,23–32], which are abrupt changes in the proper-
ties of a system due to quantum fluctuations.

The SSP measures how much the quantum noise in one
direction of the total spin of a system of particles is reduced
and is given by the Kitagawa-Ueda parameter as [8]

ξ 2
s = 4(�J�n⊥ )2

N
, (2)

where �n⊥ is the axis perpendicular to the average spin direc-
tion �n0 and the variance (�J )2 is minimized. The total spin
components Jα of N particles satisfy [Jα, Jβ ] = ih̄Jγ , where
α, β, γ are cyclic permutations of x, y, z. Another SSP is
ξ 2

R = N (�J�n⊥ )2

|〈J�n〉|2 , which was introduced by Wineland et al. [9].
For spin systems with a well-defined mean spin direction and
many particles, the Kitagawa-Ueda parameter is a good way
to measure spin squeezing. On the other hand, the parameter
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from Wineland et al. is good for spin systems that are affected
by SU(2) rotations and have few particles. A nonsqueezed
state has ξ 2

s > 1 and a spin squeezed state has ξ 2
s < 1. In this

context, a coherent state is characterized by ξ 2
s = 1 and we

call it a unique coherent state.
Thus, squeezed states and unique coherent states are two

types of quantum states that have different uncertainties in
the angular momentum of a system of particles. Squeezed
states have less noise in one direction, but more noise in
the other direction. Unique coherent states have equal noise
in all directions. In other words, unique coherent states
have the smallest possible uncertainty for any pair of per-
pendicular components of the angular momentum, such as
Jx and Jy.

The coherent states are also divided into the entangled and
nonentangled states [2,33–38]. The entangled states are states
that cannot be described by the individual properties of their
components, but only by their correlations. Entangled coher-
ent states have some interesting properties and applications in
quantum information. They can be used to test the violation of
local realism, which is the assumption that physical reality is
independent of observation and that information cannot travel
faster than light. They can also be used for quantum teleporta-
tion, which is the process of transferring the quantum state of
one system to another without sending any physical particles.
Furthermore, they can be used for quantum dense coding,
which is the process of sending more than one classical bit
of information using a single quantum bit.

As we have mentioned, the SSP is a useful tool to study the
entanglement and quantum criticality of complex many-body
systems at zero temperature, which has been a topic of great
interest in recent years. Some of the interesting results are that
the SSP can be minimal at the critical point even when another
entanglement measure, the concurrence, is not maximal [23]
and that there can be a phase where the ground state is entan-
gled but not spin squeezed [24]. The scaling behavior of the
SSP with system size at the quantum critical point has also
been explored in various models [39–42].

In this paper, we investigate the SSP in the ground-state
phase diagram of the one-dimensional (1D) spin-1/2 XX
model with three-spin interaction (TSI). This is a type of clus-
ter interaction, where a group of spins interacts collectively. In
particular, TSI is when three spins are coupled by a term that
depends on the product of their spin components [43–60]. The
TSI can cause frustration, entanglement, and quantum phase
transitions in spin systems. We study how such interactions
affect the ground-state phase diagram of the 1D spin-1/2
XX model by looking at the SSP, the l1-norm of coherence,
and the entanglement entropy (EE). We find that there is
an entangled unique coherent line in the gapless spin liquid
phase [see Fig. 1(b)]. The entangled unique coherent line is
a concept that refers to a type of quantum state that is both
entangled and coherent. By using the quantum correlations
and superpositions of the system, an entangled unique coher-
ent line can improve the efficiency and reliability of quantum
protocols.

The paper is structured as follows. In the next section we
present the model and tools. In Sec. III we show our results on
the SSP, the l1-norm of coherence, and the EE. We summarize
and discuss our results in Sec. IV.

(a)

(b)

FIG. 1. (a) Schematic picture of the ground-state phase diagram
of the spin-1/2 XX chain model with three-spin interaction [44].
(b) Same as in (a) but from the viewpoint of the spin squeezing
parameter and the entanglement entropy.

II. MODEL AND TOOLS

The Hamiltonian of the spin-1/2 XX chain model with
TSI interaction in the presence of a uniform magnetic field
is defined as

H = −J
N∑

n=1

(
Sx

nSx
n+1 + Sy

nSy
n+1

)

− J∗
N∑

n=1

Sz
n+1

(
Sx

nSx
n+2 + Sy

nSy
n+2

) − Jh
N∑

n=1

Sz
n, (3)

where Sn is the spin operator on the nth site, J > 0 is the
ferromagnetic exchange coupling, J∗ and h are the strength of
the TSI and the uniform magnetic field, respectively, N is the
system size (or number of spins), and we consider the periodic
boundary condition Sμ

N+1 = Sμ
1 (μ = x, y, z). Here α = J∗

J is
defined without loss of generality.

The exact ground-state phase diagram of this model is
known [44]. When h = 0, there is a second-order quantum
phase transition at αc = 2 between two gapless spin liquid
(SL) phases SL-I and SL-II. This quantum phase transition
corresponds to the doubling of Fermi points in the spinless
fermions representation. The magnetic and thermodynamic
properties of the system show anomalous behavior at this
critical point. The critical index of the transverse spin-spin
correlation function also changes at this point. When h �=
0, a spin-saturated paramagnetic (PM) phase appears in the
ground-state phase diagram as shown in Fig. 1(a). There are
three critical lines: hc = 1 + α

2 , which separates PM and SL-I
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phases; hc = −(1 − α
2 ), which separates PM and SL-I phases

in the region α � 0.5 and also separates SL-I and SL-II phases
in the region α > 0.5; and hc = − 2α2+1

4α
, which separates PM

and SL-II phases in the region α > 0.5. It should be noted
that quantum correlations between pair spins (as the quantum
discord) in the SL-I phase are stronger than in the SL-II phase
[50,57].

The Hamiltonian can be diagonalized. First, applying the
Jordan-Wigner transformation

S+
n = c†

n exp

(
iπ

n−1∑
m=1

c†
mcm

)
,

S−
n = exp

(
−iπ

n−1∑
m=1

c†
mcm

)
cn,

Sz
n = c†

ncn − 1

2
, (4)

where c†
n and cn are the fermionic operators, the fermionized

form of the Hamiltonian is obtained as

H = −J

2

N∑
n=1

(c†
ncn+1 + c†

n+1cn)

− J∗

4

N∑
n=1

(c†
ncn+2 + c†

n+2cn) − Jh
N∑

n=1

c†
ncn. (5)

Then performing a Fourier transformation cn = ∑
k e−iknck

yields the diagonalized Hamiltonian

H =
∑

k

εk c†
kck, (6)

with the energy spectrum

εk = −J

(
h + cos(k) − α

2
cos(2k)

)
. (7)

It should be noted that the summation in Eq. (6) runs
over k = 2πm/N , with m = 0,±1, . . . ,± 1

2 (N − 1) and m =
0,±1, . . . ,±( 1

2 N − 1), 1
2 N for N odd and N even, respec-

tively (having imposed periodic boundary conditions on
the Jordan-Wigner fermions). In the thermodynamic limit
N → ∞, the ground state of the system corresponds to the
configuration where all the states with εk < 0 are filled and
those with εk > 0 are empty.

Considering the symmetries of the model as the unbroken
Z2 invariance for finite N implies that

〈Jx〉 = 〈Jy〉 = 0, (8)

and similarly

〈JαJz〉 = 〈JzJα〉 = 0, α = x, y. (9)

The magnetization for h > 0 is always along the z axis, with
full polarization developing in the PM phase. As a result,
J�n⊥ = cos(�)Jx + sin(�)Jy, with � to be chosen to minimize

(�J�n⊥ )2 = 〈(J�n⊥ )2〉 − 〈J�n⊥〉2

= 〈[cos(�)Jx + sin(�)Jy]2〉. (10)

We can easily show that

ξ 2
s = 2

N
min

�

[〈
J2

x + J2
y

〉 + cos(2�)
〈
J2

x − J2
y

〉
+ sin(2�)〈JxJy + JyJx〉

]
= 2

N

(〈
J2

x + J2
y

〉 − √〈
J2

x − J2
y

〉2 + 〈JxJy + JyJx〉2
)
.

(11)

Finally, using the definition of the total spin of the particles,
the SSP is obtained as

ξ 2
s = 1 + 2

N−1∑
n=1

(
Gxx

n + Gyy
n

)

−2

√√√√(
N−1∑
n=1

(
Gxx

n − Gyy
n

))2

+
(

N−1∑
n=1

(
Gxy

n + Gyx
n

))2

,

(12)

where Gαβ
n denotes the two-point correlation function. Intro-

ducing An = a†
n + an and Bn = a†

n − an, a direct calculation
shows that

Gxx
n = 〈

Sx
1Sx

1+n

〉 = 1

4
〈B1A2B2 · · · AnBnAn+1〉,

Gyy
n = 〈

Sy
1Sy

1+n

〉 = (−1)n

4
〈A1B2A2 · · · BnAnBn+1〉,

Gxy
n = 〈

Sx
1Sy

1+n

〉 = −i

4
〈B1A2B2 · · · AnBnBn+1〉,

Gyx
n = 〈

Sy
1Sx

1+n

〉 = i(−1)n

4
〈A1B2A2 · · · BnAnAn+1〉. (13)

These equations may be written in the generic form

Gαβ
n = Dαβ

n 〈φ1φ2φ3 · · · φ2n−2φ2n−1φ2n〉, (14)

with

Dxx
n = 1

4
, Dyy

n = (−1)n

4
,

Dxy
n = −i

4
, Dyx

n = i(−1)n

4
, (15)

where each operator φ j , j = 1, 2, . . . , 2n, is identified with
either an An or a Bn operator. Using the Wick theorem [61],
the 2n-point functions can be expressed as Pfaffians

Gαβ
n = Dαβ

n pf

⎛
⎜⎜⎜⎜⎜⎜⎝

〈φ1φ2〉 〈φ1φ3〉 〈φ1φ4〉 · · · 〈φ1φ2n〉
〈φ2φ3〉 〈φ2φ4〉 · · · 〈φ2φ2n〉

〈φ3φ4〉 · · · 〈φ3φ2n〉
. . .

...

〈φ2n−1φ2n〉

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(16)

where we have written the skew-symmetric matrix in the
standard abbreviated form.

One way to study fermionic systems is to use the correla-
tion matrix, which captures the single-particle properties and
the correlations of the many-body wave function [62–66]. The
ground-state density matrix is another matrix that shows the
probability distribution of the system states when the energy is
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minimized. The same ground state gives rise to both matrices,
and they have the same eigenvalues. However, this does not
mean that the density matrix and the correlation matrix have
the same off-diagonal elements. The l1-norm of coherence is
the sum of absolute values of the off-diagonal elements of
the density matrix. A nonzero l1-norm means that the ground
state has coherence. However, the exact value of the l1-norm
is not important, only the nonzero property. That is why we
use the sum of absolute values of off-diagonal elements of
the correlation matrix to approximate the l1-norm of coher-
ence in the basis of the z component of the total spin. Next we
show that this approximation reveals some key features of the
system.

The correlation matrix of the ground state is a matrix of
expectation values of fermionic operators

ρN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈c†
1c1〉 · · · 〈c†

1cN 〉 〈c†
1c†

1〉 · · · 〈c†
1c†

N 〉
〈c†

2c1〉 · · · 〈c†
2cN 〉 〈c†

2c†
1〉 · · · 〈c†

2c†
N 〉

...
...

...
...

...
...

〈c†
l c1〉 · · · 〈c†

l cN 〉 〈c†
l c†

1〉 · · · 〈c†
l c†

N 〉
〈c1c1〉 · · · 〈c1cN 〉 〈c1c†

1〉 · · · 〈c1c†
N 〉

〈c2c1〉 · · · 〈c2cN 〉 〈c2c†
1〉 · · · 〈c2c†

lN 〉
...

...
...

...
...

...

〈cl c1〉 · · · 〈cl cN 〉 〈clc
†
1〉 · · · 〈clc

†
N 〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(17)

where

〈c†
ncm〉 = 1

N

∑
k∈λ

ei[k(m−n)],

〈c†
nc†

m〉 = 0, (18)

with λ denoting a k-space region with εk < 0. From this
correlation matrix, the l1-norm of coherence is approximated
as

Cl1 (ρ̂ ) �
∑
m �=n

|〈c†
ncm〉|. (19)

We can also easily find

〈AnAm〉 = δ(m − n),

〈BnBm〉 = −δ(m − n),

〈AnBm〉 = δ(m − n) − 2

N

∑
k∈λ

cos[k(m − n)],

〈BnAm〉 = −δ(m − n) + 2

N

∑
k∈λ

cos[k(m − n)]. (20)

It is known that when a quantum state is entangled the
entropy arises. This entropy is called entanglement entropy
[67]. In fact, the EE is a measure of the total entanglement
of bipartite pure states and it is widely used in quantum
information theory. It is defined as the von Neumann entropy
of a reduced density matrix of a subsystem [68–73]. For a
bipartite system, EE in the pure ground state |ψ〉, with the
density matrix ρ = |ψ〉〈ψ |, is defined as the von Neumann

entropy of subsystem A as

SA = −Tr[ρA log2(ρA)], (21)

where

ρA = TrB(ρ) (22)

is the reduced density matrix of A obtained by tracing over the
rest of the system B. The EE usually grows like the boundary
area of the subsystem A and not like its volume, which is
different from an expected extensive behavior. This is known
as the area law for the EE and has been studied extensively
in recent years. Noncritical ground states of spin chains with
a finite correlation length have a constant EE. At a quantum
critical point, when subsystem A is a finite interval of length
l , the EE slightly violates the area law by a logarithmic cor-
rection as SA(l ) ∼ ceff

3 log(l ), where ceff is the central charge
[74,75]. The EE of a finite block of l sites in an infinite system
of free spinless fermions can be computed by [62,66]

SA = −
2l∑

γ=1

Cγ log(Cγ ), (23)

where Cγ is one of the 2l eigenvalues of the correlation
matrix ρl .

III. RESULTS

We investigated how the SSP depends on the TSI and the
magnetic field in the ground state of our chain system. We
considered different chain sizes up to N = 1000 and calcu-
lated the SSP for all ground-state phases shown in Fig. 1(a).
Figure 2 shows the results for different chain sizes N = 500,
700, and 1000. Without the TSI, Fig. 2(a) reveals the quantum
critical points in the SSP. One of the eigenstates of the z
component of the total spin is the ground state in the PM
phase, which gives Gxx

n = Gyy
n = 0 and thus ξ 2

s = 1. However,
the ground state is strongly nonsqueezed in the SL-I phase.
An increasing size effect is seen in the SL-I phase. With
the TSI, α = 2.0, Fig. 2(b) displays three critical points, in
particular between the SL-I and SL-II phases. The ground
state becomes squeezed when entering the SL-II phase from
the PM phase and reaches a coherent state at a certain value
of the magnetic field. Beyond that value, the ground state is
nonsqueezed again in the SL-II phase. It should be noted that
there is no size effect on this squeezed region. A sudden jump
in the SSP occurs when transitioning to the SL-I phase, where
the ground state is strongly nonsqueezed. Figure 2(c) shows
the density plot of the SSP as a function of the magnetic field
and the TSI interaction for a chain size N = 200. The SSP
indicates that the ground state is coherent in the PM phase,
which is typical for saturated spin phases and is squeezed in a
part of SL-II phase bordered between a saturated critical line
and a unique coherent line. These results also show that the
minimum uncertainty does not always occur at the quantum
critical lines. However, in the SL-II phase, there is a line of
coherence with ξ 2

s = 1.
To better understand the nature of the unique coherent line,

we have computed the scaled l1-norm of coherence (Cl1/N) as
a function of TSI and magnetic field. We present the results
for α = 2.0 and a chain size N = 1000 in Fig. 2(d). We find
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(b)

(a)

(d)

FIG. 2. The SSP as a function of the magnetic field for three
different chain sizes N = 500, 700, and 1000 (a) in the absence of
TSI, α = 0, and (b) in the presence of TSI, α = 2. (c) Density plot of
the SSP for a chain size N = 200. (d) The l1-norm of coherence as a
function of the magnetic field for a chain size N = 1000 and α = 2.
The inset shows the local minima at exactly the coherent point for
three chains lengths N = 500, 700, and 1000.

that the system has a coherent ground state in the gapless
SL-II and SL-I phases. However, the coherence is stronger in
the SL-II phase than in the SL-I phase. Moreover, the ground
state is not coherent in the polarized PM phases, as expected.
The coherence function has a discontinuity at the quantum
critical points, where it jumps to a higher value, signaling the
quantum phase transitions. As we mentioned, when ξ 2

s = 1,
the ground state is a unique coherent state with equal noise in
magnetization in all directions. Therefore, we investigated the
coherence function to identify these special coherent states.
We show the results in the inset of Fig. 2(d) for different chain
sizes N = 500, 700, and 1000 at α = 2.0. Interestingly, we
observe a minimum in the coherence function at a specific
magnetic field value hcoh = −0.5. Thus, we conclude that the
coherence function can effectively detect these unique coher-
ent states with ξ 2

s = 1, as they correspond to local minima in
the coherence measurement. Besides the one at hcoh = −0.5,
there are other minima in the coherence function in Fig. 2(d).
We believe that these minima are related to the quantum corre-
lations, which are the nonclassical correlations that a quantum
system can show (see the Appendix).

We are interested in the nature of the system’s ground state,
especially the coherent line that we mentioned before. To
study this, we use the EE as a tool [76–79]. The EE measures
how much information we lose when we look at only part of
the system and ignore the rest. It can also tell us how entangled
different regions of the system are and how this changes
across different phases and quantum phase transitions. En-
tanglement is important for quantum metrology, which uses
Ramsey interferometers to measure physical quantities with
high precision. By controlling the interactions among the
particles, we can create entangled states that improve the
interferometric sensitivity. The EE can help us distinguish
between different types of entangled states. We split the sys-
tem into two equal parts and calculate the EE of one part
SA(l = N/2). For systems with a gap, this EE quickly reaches
a constant value, which follows the area law. When there is
no TSI, α = 0, the system becomes the isotropic XX model,
which has a quantum critical point with a central charge of
ceff = 1 [64,80,81].

We show our results on SA(l = N/2) in Fig. 3. When
α = 0, the two equal parts of the system are not entangled
in the PM phase. Without the TSI, the system is entangled
across the SL-I phase, as Fig. 3(a) shows for chain sizes
N = 500, 700, and 1000. However, the entanglement drops to
zero at the quantum critical points that separate the PM and SL
phases. With the TSI, the quantum critical points are visible
in the EE as dips in Fig. 3(b). The entanglement is stronger
in the SL-II phase than in the SL-I phase, which agrees with
the opposite behavior of the SSP. The entanglement of the
system is nearly maximal at the coherent point where ξ 2

s = 1.
This shows that the unique coherent ground state is not an
eigenstate of Jz. Figure 3(c) shows the density representation
of the EE versus the TSI interaction and the magnetic field
for a chain size N = 200. Our results show that the EE in
the ground-state phase diagram is a useful way of exploring
how the entanglement between different regions varies across
different phases and phase transitions.
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(a)

(b)

FIG. 3. The EE as a function of the magnetic field for three
different chain sizes N = 500, 700, and 1000 (a) in the absence of
TSI, α = 0, and (b) in the presence of TSI, α = 2. (c) Density plot
of the EE parameter for a chain size N = 200.

A system near a critical point, where it undergoes a phase
transition, exhibits scaling behavior, which reflects its self-
similarity and universality. This behavior is manifested by
the appearance of scaling laws and functions, which involve
important parameters such as scaling exponents and variables.
These scaling laws and functions are essential for describing
how the system’s physical properties vary as it approaches a
critical point. They reveal the critical behavior of the system,
emphasizing the common features and patterns that are inde-
pendent of specific details, making them useful tools in the
study of phase transitions and critical phenomena. We study
how the system size affects the SSP and the EE functions
in the following. We analyze the scaling behavior of these
quantities, which is crucial for revealing the universal features

(a)

(b)

FIG. 4. (a) The SSP with respect to the size of the system on
the critical line separating SL-I and SL-II phases for α = 0 and
hc = 0. (b) Linear fit of the form Y = mX + b applied to the function
3SA(N/2)/log(N ) = ceff + m/log(N ) on the critical line separating
SL-I and SL-II phases and also in these gapless phases for for
α = 2. Chain sizes are considered up to N = 1000. Logarithms are
calculated using base 2.

related to quantum phase transitions and quantum criticality.
The practical usefulness of these scaling analyses in quanti-
fying quantum phase transitions is a fascinating and active
research topic.

The SSP scaling has important applications in quan-
tum metrology and quantum sensing. These fields deal with
quantum measurements in spin systems, which have two fun-
damental limits on their precision: the standard limit and
the Heisenberg limit. The standard limit, also known as the
shot-noise limit or standard quantum limit, is the precision
that can be achieved using coherent or uncorrelated spin states
[82,83]. It depends on the number of spins N as 1/

√
N . The

Heisenberg limit, also known as the ultimate limit or quantum
Cramér-Rao bound, is the precision that can be achieved using
squeezed or entangled spin states. It depends on the number
of spins N as 1/N [11,84,85]. The Heisenberg limit is the
highest possible precision for any quantum state and it beats
the standard limit by a factor of 1/

√
N .

We show our scaling results in Fig. 4, focusing on the
SSP and the EE of the ground state of the system at the
critical points and the gapless SL-I and SL-II phases. Our
results reveal that the SSP is not scalable on the critical lines
separating the PM and the gapless phases. On the critical
line separating the gapless SL-I and SL-II phases, we see a
square root divergence ξ 2

s ∝ √
N of the SSP with increasing
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system size in Fig. 4(a). Moreover, we find the same square
root behavior in the gapless SL-I phase, which indicates that
the SL-I phase is a critical region from the SSP perspective.
This can be related to the scaling behavior of the transverse
two-point correlation functions Gxx

n and Gyy
n . It was shown

that in the SL-I phase the transverse two-point correlation
functions behaves as [44]

Gxx
n = Gyy

n = A(α)

n1/2
+ B(α) cos(2kF n)

n5/2
, (24)

where A(α) and B(α) are smooth functions of TSI. In this
region, the SSP can be rewritten as

ξ 2
s = 1 + 4

N−1∑
n=1

(
A(α)

n1/2
+ B(α) cos(2kF n)

n5/2

)
. (25)

By considering only the first term in the thermodynamic limit,
it can be shown that ξ 2

s ∼ 1 + 8A(α)
√

N .
Finally, we studied the scaling of EE on the critical lines

and the gapless phases of the model. We used linear fits to
the function 3SA(N/2)/log(N ) = ceff + m/log(N ) for chain
sizes up to N = 1000, as shown in Fig. 4(b) for α = 2.0,
to extrapolate the central charge in the thermodynamic limit.
We did not observe any deviation from the area law in the
PM phase and on the critical lines separating the PM and the
gapless phases since in the paramagnetic phase the system is
in a disordered state where the spins are randomly aligned and
do not exhibit long-range order. The system is also gapped,
meaning that there is a finite energy gap between the ground
state and the first excited state. Therefore, the paramagnetic
phase satisfies the conditions for the area law of entanglement
entropy and no deviation is expected. On the critical line sepa-
rating the gapless SL-I and SL-II phases, we found the central
charge to be ceff = 1.0, which is the same as for the isotropic
spin-1/2 XX chain model. However, from the EE perspective,
we found that the SL-I and SL-II phases are critical with
different central charges. In particular, in the SL-II phase,
we obtained ceff = 2.0, which is twice as large as the SL-I
phase. The quantum correlations and the spin-spin correlation
patterns in the two gapless phases can explain the difference
in the central charge. Figure 3(b) shows that the EE in the
SL-II phase is almost double that in the SL-I phase. Also, the
transverse spin-spin correlation functions in the SL-II phase
decay faster than in the SL-I phase [44].

IV. CONCLUSION

In this paper, we investigated the entanglement properties
of the spin-1/2 XX chain model with TSI, which is an exactly
solvable model that has a rich ground-state phase diagram
consisting of three phases: a gapped PM phase and two gap-
less SL phases called SL-I and SL-II. We were motivated by
the possibility of finding an entangled spin coherent state in
this model, which is a special state that does not belong to
an eigenstate of Jz. We used three tools to study this model:
the SSP, the l1-norm of coherence, and the EE. The l1-norm
of coherence indicates whether or not the ground state is a
superposition of states. The SSP measures how much spin
coherence there is in the system, while the EE measures how

much entanglement there is between different parts of the
system.

First, we computed the SSP for the whole phase diagram
and showed that it can detect all the quantum critical lines
that separate different phases.

Second, we discovered a unique coherent line in the SL-
II phase where the SSP becomes one, which indicates that
this line corresponds to the coherent state. We also found
that the system is squeezed between this line and another
quantum critical line, while it is nonsqueezed in the rest of
the SL-II phase and in the SL-I phase. Moreover, we found
that the system is more nonsqueezed in the SL-I phase than
in the SL-II phase. Additionally, we detected the signature of
the mentioned special coherent line as a local minimum in the
l1-norm of coherence.

Third, we divided the system into two equal parts and com-
puted the EE between them. We showed that this quantity can
also detect all the quantum critical lines in the phase diagram.
Furthermore, we found that the two halves are entangled in
both SL phases, but they have almost maximum entanglement
on the coherent line. We called this line the entangled unique
coherent line. We also presented a density plot of the EE as
a function of both the TSI interaction and the magnetic field.
We can think of this plot as a map of the entanglement land-
scape of the system, where different regions have different
levels of entanglement. Our results demonstrate that studying
this landscape can help us understand how entanglement be-
haves across different phases and phase transitions in quantum
systems.

Fourth, we studied the scaling behavior of the SSP and the
EE with respect to the system size. We discovered that the
SSP is scalable and has a square root behavior in the gapless
SL-I phase and on the critical line separating it from the SL-II
phase. We also noticed that the EE does not follow the area
law in the entire range of the gapless SL-I and SL-II phases.
The central charge in the SL-II phase is twice as large as the
SL-I phase.

For future works, we suggest to investigate the effect of
thermal noise or dynamical noise on the spin squeezing and
coherence of this model, as these factors can limit the per-
formance and sensitivity of the spin-based magnetic sensors
[86–90]. We also suggest to study the spin-noise spectroscopy
of this model, as this technique can provide insight into the
dynamics and fluctuations of the spin system, even in regimes
where the macroscopic atomic coherence is lost. We hope that
our paper will stimulate further research on the spin squeezing
phenomenon and its applications in quantum physics.

APPENDIX

In Fig. 2(d) we observe that the coherence function has
multiple minima, not only at hcoh = −0.5. We have argued
in the main text that these minima reflect the presence of
quantum correlations, which are correlations that go beyond
the classical realm. In this Appendix we provide the evidence
for our argument and demonstrate our findings.

We calculated the concurrence and the one-tangle. The
concurrence is a measure of quantum entanglement, which
is the phenomenon of two or more quantum systems being
correlated in such a way that their quantum states cannot be
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described independently. Concurrence quantifies the degree of
entanglement between two spin-1/2 particles [91–93].

The concurrence between two spins at site n and m can be
achieved from the corresponding reduced density matrix ρn,m

as [94]

ρn,m =

⎛
⎜⎜⎜⎜⎝

X +
n,m 0 0 0

0 Y +
n,m Z∗

n,m 0

0 Zn,m Y −
n,m 0

0 0 0 X −
n,m

⎞
⎟⎟⎟⎟⎠, (A1)

where

X +
n,m = 〈P↑

n P↑
m〉,

Y +
n,m = 〈P↑

n P↓
m〉,

Y −
n,m = 〈P↓

n P↑
m〉,

Zn,m = 〈S+
n S−

m 〉,
X −

n,m = 〈P↓
n P↓

m〉, (A2)

with P↑ = 1
2 + Sz, P↓ = 1

2 − Sz, and S± = Sx ± iSy. It should
be noted that the matrix is written in the standard basis {|↑↑〉,
|↑↓〉, |↓↑〉, |↓↓〉} and its elements are expectation values on
the ground state of the system. By using the Jordan-Wigner
transformations, the density matrix elements can be obtained
as

X +
n,m = 〈nnnm〉,

X −
n,m = 〈1 − nn − nm + nnnm〉,

Y +
n,m = 〈nn(1 − nm)〉,

Y −
n,m = 〈nn(1 − nm)〉,

Zn,m = 〈c†
ncm〉. (A3)

We have used the occupation number operator ni = c†
i ci in the

above expressions. Finally, the concurrence is obtained as

Cn,m = max{0, 2(|Zn,m| −
√

X +
n,mX −

n,m)}. (A4)

Here we have studied the concurrence between the first-,
second-, and third-neighbor spins denoted by 1N , 2N , and 3N ,
respectively [95–97]. We can obtain the expectation values of
the density matrix elements for these cases as

X +
n,n+1 = f 2

0 − f 2
1 ,

X +
n,n+2 = f 2

0 − f 2
2 ,

X +
n,n+3 = f 2

0 − f 2
3 ,

Zn,n+1 = f1,

Zn,n+2 = f2 − 2 f0 f2 + 2 f 2
1 ,

Zn,n+3 = 4
(

f 3
1 − 2 f0 f1 f2 + f 2

2 f1 + f 2
0 f3

− f 2
1 f3 + f1 f2 − f0 f3

) + f3, (A5)

and

Y +
n,m = Y −

n,m = f0 − X +
n,m,

X −
n,m = 1 − 2 f0 + X +

n,m, (A6)

where the function fr (r = m − n) is defined as

fr = 〈c†
ncm〉 = 1

N

∑
k∈λ

ei[k(m−n)]. (A7)

We show the concurrence of spin pairs at different distances in
Figs. 5(a)–5(c). For 1N and 2N pairs, Figs. 5(a) and 5(b) show
that they are separable in PM and SL-II phases. The magnetic
field does not affect this state until h = 0.0, where the SL-II
phase transitions to the SL-I phase. The entanglement then

(a) (b)

(d)(c)

FIG. 5. Concurrence C as a function of the magnetic field between (a) 1N , (b) 2N , and (c) 3N pairs of spin. (d) Plot of the one-tangle as a
function of the magnetic field, for chain sizes N = 500, 700, and 1000 in the presence of TSI, α = 2.
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drops to zero again at the boundary between SL-I and PM
phases. For 3N pairs, Fig. 5(c) shows that the magnetic field
can entangle them at h = 1.25. This value of the magnetic
field corresponds to one of the minima in the l1-norm diagram.

In order to explore the entanglement between one spin and
the rest of the chain, the quantity one-tangle is calculated. It is
defined as [98]

τ
(
ρ1

n

) = 4 det
(
ρ1

n

) = 1
4 − 〈

Sz
n

〉2
, (A8)

where ρ1
n is the one-site reduced density matrix

ρ1
n =

(
1
2 + 〈

Sz
n

〉
0

0 1
2 − 〈

Sz
n

〉
)

(A9)

and 〈Sz
n〉 is the magnetization along the z component. We

show the one-tangle calculated analytically as a function of

the magnetic field in Fig. 5(d). We see that the one-tangle
reaches its maximum value of one at h = −0.25, which co-
incides with a minimum in the l1-norm diagram. A value
of one for the one-tangle means that the one spin is maxi-
mally entangled with the rest of the system and its reduced
density matrix is a maximally mixed state. This implies that
the one spin has no local information and its quantum state
is completely determined by its correlations with the other
spins. Another minimum in the l1-norm diagram occurs at
h = 0.65, indicating a distinct type of quantum correlation in
the system that is not captured by concurrence and one-tangle
measures.

Our results suggest that the l1-norm can reveal important
features of the quantum critical points, quantum correlations,
and coherence of the system by detecting minimum points in
its value.
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