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Fluctuation-response relation as a probe of long-range correlations in nonequilibrium
quantum and classical fluids
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The absence of a simple fluctuation-dissipation theorem is a major obstacle for studying systems that are not in
thermodynamic equilibrium. We show that for a fluid in a nonequilibrium steady state characterized by a constant
temperature gradient the commutator correlation functions are still related to response functions; however, the
relation is to the bilinear response of products of two observables, rather than to a single linear response function
as is the case in equilibrium. This modified fluctuation-response relation holds for both quantum and classical
systems. It is both motivated and informed by the long-range correlations that exist in such a steady state and
allows for probing them via response experiments. This is of particular interest in quantum fluids, where the
direct observation of fluctuations by light scattering would be difficult. In classical fluids it is known that the
coupling of the temperature gradient to the diffusive shear velocity leads to correlations of various observables,
in particular temperature fluctuations, that do not decay as a function of distance, but rather extend over the
entire system. We investigate the nature of these correlations in a fermionic quantum fluid and show that the
crucial coupling between the temperature gradient and velocity fluctuations is the same as in the classical case.
Accordingly, the nature of the long-ranged correlations in the hydrodynamic regime also is the same. However,
as one enters the collisionless regime in the low-temperature limit the nature of the velocity fluctuations changes:
they become ballistic rather than diffusive. As a result, correlations of the temperature and other observables are
still singular in the long-wavelength limit, but the singularity is weaker than in the hydrodynamic regime.
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I. INTRODUCTION

In a classical fluid in equilibrium at a temperature Teq and
far from any critical point, correlations are generically short-
ranged, i.e., they decay exponentially on an atomic scale. In
a coarse-grained description this corresponds to a δ-function
correlation. Specifically, the correlations of the spatial tem-
perature fluctuations δT (x) = T (x) − Teq, with T (x) the local
temperature, have the form [1]

〈δT (x)δT (x′)〉 = T 2
eq

cV
δ(x − x′). (1.1a)

Here 〈. . .〉 denotes an equilibrium statistical mechanics aver-
age, and cV is the specific heat per volume at constant volume.
In wave-vector space, the same result is

〈δT (k1)δT (k2)〉 = V δk1,−k2

T 2
eq

cV
, (1.1b)

where V is the system volume.
In a nonequilibrium steady state (NESS) characterized

by a constant temperature gradient ∇T the nature of this
correlation changes drastically. There is a nonequilibrium
contribution quadratic in ∇T that diverges as 1/k4 in the limit
of small wave numbers k = |k| [2–4],

1

V
〈δT (k)δT (−k)〉 = T 2

cV
+ (k̂⊥ · ∇T )2 T

ρ DT (ν + DT ) k4
. (1.2)

Here T is the spatially averaged temperature, and ρ, DT , and
ν are the spatially averaged mass density, thermal diffusion
coefficient, and kinematic viscosity, respectively, of the fluid
[5]. k̂⊥ is the unit wave vector perpendicular to k in the plane
spanned by k and ∇T . In the configuration sketched in Fig. 1,
T = (T2 + T1)/2, and ∇T = ẑ ∂zT with ∂zT = (T2 − T1)/L
and ẑ the unit vector in the z direction, so (k̂⊥ · ∇T )2 =
(∂zT )2(k2

x + k2
y )/k2; see Eq. (A2a) [6].

FIG. 1. A fluid subject to a constant temperature gradient in the
z direction between two parallel confining plates a distance L apart.

The three vectors k̂, k̂⊥, and k̂
(2)
⊥ form a right-handed system that

spans the wave-vector space.
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We note at this point that an arguably more physical choice
of fluctuations than δT to discuss in the presence of a tem-
perature gradient would be the fluctuations of the entropy
per particle, δ(S/N ), which constitute the hydrodynamic heat
mode in both classical [7] and quantum [8] fluids. However,
in the absence of pressure fluctuations δ(S/N ) is proportional
to δT , and historically the correlations of δT have been
considered. See Appendix A for the relation between these
fluctuations.

The remarkably strong singularity expressed by Eq. (1.2)
has been derived theoretically using various techniques, in-
cluding kinetic theory [2,9], mode-coupling theory [2,9], and
fluctuating hydrodynamics [4,10]. This effect, as well as
closely related ones, have been observed by many experi-
ments; see Ref. [11] and references therein. It has various
physical consequences and interpretations. In real space, it
implies that correlations in a bulk fluid scale with the linear
system size L and decay on the same scale; see the discussion
in Ref. [4]. This in turn implies a generalized rigidity of the
fluid that is reminiscent of the effects of a spontaneously
broken continuous symmetry in an equilibrium system, where
Goldstone modes lead to long-ranged correlations [12]. By
contrast, in a NESS rigidity is present even in the absence of
any broken symmetries. This has been discussed in Ref. [13].
This reference also showed that the second spatial moment of
a localized temperature perturbation that is accompanied by a
perturbation of the shear velocity spreads ballistically, rather
than diffusively, as a result of the generalized rigidity. That is,
the root-mean-square displacement of a temperature perturba-
tion grows linearly with time for long times t , rather than as
t1/2 as for a diffusive process. The time scale associated with
this ballistic spread is inversely proportional to the product of
the temperature gradient and the initial shear velocity [14].

The goal of the current paper is twofold. First, we will
explore the question of how these effects manifest themselves
in a quantum fluid. Second, we will show, for both quantum
and classical fluids, that the long-ranged correlations can be
probed via the system’s response to macroscopic external
perturbations, even though the usual fluctuation-dissipation
theorem does not hold in the NESS. This is of particular
interest at low temperatures, where fluctuations become small,
or in systems where the nonequilibrium correlations dominate
over the equilibrium contributions only at very small wave
numbers.

For the first goal, we will restrict ourselves to fermionic
quantum fluids, but we note that analogous effects must
be present in bosonic fluids [15], as the equations of hy-
drodynamics apply to those as well; see, e.g., Ref. [16].
There are several crucial differences between the classical
and quantum cases. First, in the quantum regime one needs
to distinguish between symmetrized, or anticommutator, and
antisymmetrized, or commutator, time correlation functions.
If Â and B̂ are operators that correspond to two observables,
then these two types of correlation functions are defined as

Ssym
AB (x, x′; t − t ′) = 1

2
〈[δÂ(x, t ), δB̂(x′, t ′)]+〉, (1.3a)

χ ′′
AB(x, x′; t − t ′) = 1

2h̄
〈[Â(x, t ), B̂(x′, t ′)]−〉. (1.3b)

Here [, ]∓ denotes a commutator or anticommutator, respec-
tively, the average includes a quantum mechanical average in
addition to the statistical mechanics one, and δÂ = Â − 〈Â〉.
χ ′′ is the customary notation for the commutator correla-
tion function [7], with the double prime indicating that it is
the spectrum, or spectral density, of a causal function. Ssym

AB
describes the correlations of spontaneous fluctuations. In equi-
librium, χ ′′

AB describes the linear response of the system to
external perturbations, and the temporal Fourier transforms of
the two correlation functions are related by [7,17]

Ssym
AB (x, x′; ω) = h̄ coth(h̄ω/2T ) χ ′′

AB(x, x′; ω), (1.3c)

which is a manifestation of the fluctuation-dissipation theo-
rem [18,19]. For nonequilibrium systems Eq. (1.3c) does not
hold, no exact relation between the two correlation functions
is known, and χ ′′

AB in general is not a linear response function.
Despite this lack of a relation, one expects any long-range
correlations that are present in Ssym to also be displayed in
χ ′′. In particular, in a NESS Ssym

T T and χ ′′
T T should both contain

the quantum analogs of the long-range correlations present in
Eq. (1.2). Indeed, to leading order in the effects of the tem-
perature gradient Eq. (1.3c) still holds with T representing the
spatially averaged temperature [5]. If a method for observing
χ ′′

T T can be identified, then this will provide an independent
way of observing the long-range correlations. Identifying such
a method is our second goal. In Sec. IV we will show that
at least for the special case of the NESS considered here the
commutator correlations describe the bilinear response of the
system to a field conjugate to the shear velocity and is thus
measurable via response or relaxation experiments.

In addition to these considerations, in a quantum fluid one
needs to distinguish between the hydrodynamic regime that
is dominated by collisions between quasiparticles and the
collisionless regime at asymptotically low temperatures where
all collision processes are frozen out [20].

For an educated guess of the results for the correlation
functions in the quantum regime we recall the origin of the
effect in the classical case. The crucial term, in this context, in
the Navier-Stokes equations is the streaming term that couples
the spatial temperature fluctuations to the fluid velocity u be
means of a bilinear term u · ∇T . In an equilibrium system this
term is quadratic in the fluctuations. However, in a NESS that
is characterized by an externally fixed temperature gradient
it is linear in the fluctuating quantity u. The transverse, or
shear, velocity is diffusive, and the solution of the coupled
equations effectively results in a product of two diffusive
contributions to the temperature correlation function, each of
which scales as 1/k2. In the quantum hydrodynamic regime
the structure of the equations of motion is the same as in
the classical case [21], which implies that the anticommu-
tator, or symmetrized, temperature correlation function will
still diverge as 1/k4. The commutator, or antisymmetrized,
correlation function in the hydrodynamic regime, to leading
order in the effects of the temperature gradient, is proportional
to the anticommutator one [see Eq. (1.3c) and the comments
following that equation] and will also diverge as 1/k4. In the
collisionless regime there are two modifications. First, the
relevant velocity mode is ballistic rather than diffusive, which
changes the 1/k4 divergence to 1/k2. Second, one needs to re-
member that the temperature prefactor in the nonequilibrium
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term in Eq. (1.2) is actually (h̄ω/2) coth(h̄ω/2T ), which
essentially is the greater of the temperature and the shear
mode energy. In the part of the collisionless regime where
the temperature is greater than the ballistic mode energy the
anticommutator correlation function is thus expected to still
show the 1/k2 behavior, whereas in the regime where the
temperature is the smallest energy scale it should diverge as
1/k. The commutator correlation function, which to leading
order in the effects of the temperature gradient is related to the
anticommutator one by means of the same factor, is expected
to diverge as 1/k2 everywhere in the collisionless regime.
Since these effects are due to the shear velocity coupling
to the temperature they will be present in both neutral and
charged Fermi fluids, as the Coulomb interaction affects only
the longitudinal fluid velocity.

As we will show below, these expectations are borne out.
For the technical derivation we will use a generalization of the
fluctuating quantum kinetic theory developed in Ref. [21].

The organization of this paper is as follows. In Sec. II
we consider the nonlinear version of the fluctuating
Landau-Boltzmann equation that was discussed in Ref. [21]
and derive nonlinear fluctuating Navier-Stokes equations for
a fermionic quantum fluid. In Sec. III we simplify these quan-
tum kinetic theories and use them to describe a Fermi liquid
subject to a fixed temperature gradient. In Sec. IV we establish
a relation between the commutator correlation functions and
the bilinear response of the fluid to external perturbations and
we discuss the anomalously fast propagation of a temperature
perturbation in a NESS. We conclude in Sec. V with a dis-
cussion of our results. Various technical details are relegated
to appendices. A brief account of some of our results has
previously been given in Ref. [22].

II. QUANTUM HYDRODYNAMICS

In this section we derive and discuss the relevant kinetic
equations for our problem. Underlying all of them is the
Boltzmann-Landau kinetic equation for the single-particle
phase space distribution function, or μ-space distribution
function in the terminology of Ehrenfest [23], from which one
can derive Navier-Stokes equations by means of a Chapman-
Enskog expansion. The Navier-Stokes equations are valid in
the hydrodynamic regime, which is dominated by collisions.
In order to study the collisionless regime one has to consider
the underlying kinetic equation directly [24]. To calculate dy-
namic correlation functions Langevin forces need to be added
to all of these equations.

A. Kinetic equations for averaged variables

1. The Boltzmann-Landau and Uehling-Uhlenbeck equations

Consider the single-particle phase space or μ space
spanned by the position x and the momentum p of a par-
ticle [23] (we will consider only fermions). Let f̂ (p, x, t )
be the operator-valued single-particle distribution function
[25], let fp(x, t ) = 〈 f̂ (p, x, t )〉 be its average, where 〈. . .〉
denotes a quantum mechanical expectation value plus a sta-
tistical mechanics average, and let δ fp(x, t ) = fp(x, t ) − f eq

p
be its deviation from the equilibrium distribution. Further,
let ε̂(p, x, t ) be the single-particle energy, and εp(x, t ) =

〈ε̂(p, x, t )〉 its average. The time evolution of fp is governed
by the Boltzmann-Landau kinetic equation [26]

∂t fp + (∇x fp) · ∇pεp − (∇p fp) · ∇xεp = C( f )p. (2.1)

Here and in the remainder of this subsection we drop the real-
space and time arguments as long as they are the same for
all quantities in a given equation. The terms on the left-hand
side of Eq. (2.1) represent the total time derivative dfp/dt ,
which is balanced by the collision integral on the right-hand
side, i.e., the temporal change of fp due to collisions between
quasiparticles. The latter is given by [26]

C( f )p = 1

V 3

∑
p′,p1,p′

1

W (p, p1; p′, p′
1) δ(εp + εp1 − εp′ − εp′

1
)

× δ(p + p1 − p′ − p′
1)

× [ fp′ fp′
1
(1 − fp)(1 − fp1

) − fp fp1
(1− fp′ )(1− fp′

1
)]

(2.2)

with V the system volume. The transition rate W is positive
and has the symmetry properties

W (p, p1; p′, p′
1) = W (−p,−p1; −p′,−p′

1) (2.3a)

= W (p′, p′
1; p, p1) (2.3b)

= W (p1, p; p′
1, p′), (2.3c)

which express invariance under spatial inversions, time rever-
sal, and interchange of particles.

In order to fully define Eq. (2.1) we also need to specify εp.
Within Landau Fermi-liquid (LFL) theory one has [17]

εp(x, t ) = εp + 1

V

∑
p′

F (p, p′) δ fp′ (x, t ), (2.4)

where εp = p2/2m, with m the bare fermion mass, is the equi-
librium single-particle energy [27] and F (p, p′) is Landau’s
interaction function. At zero temperature it can be expanded in
spherical harmonics on the Fermi surface and parameterized
in terms of the LFL parameters F0, F1, etc. LFL theory relies
on linear variational arguments and in general is compatible
only with the linearized version of the kinetic equation (2.1).
If one uses the full nonlinear equation one obtains a consistent
theory only if one replaces the function F (p, p′) by a constant.
This is tantamount to keeping only the Landau parameter F0

and is equivalent to treating the quasiparticle interaction in
Hartree-Fock approximation. For our purposes the interaction
makes no qualitative difference since it does not change the
nature of the crucial soft modes. For our explicit calculation
we will therefore ignore the interaction altogether, which
amounts to dropping the last term on the left-hand side of
Eq. (2.1) and replacing ∇pεp by p/m ≡ vp. We then have

∂t fp + vp · (∇x fp) = C( f )p. (2.5)

In this form the kinetic equation is known as the Uehling-
Uhlenbeck equation [16,28,29]. Consistent with these simpli-
fications, we ignore the spin degree of freedom.

2. The local Fermi-Dirac distribution

The Boltzmann-Landau equation (2.1) allows for an H-
theorem in analogy to the classical Boltzmann equation; see,
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e.g., ch. 10.3.5. in Ref. [16], or Appendix D in Ref. [21]. The
H-theorem shows that the entropy change as a function of
time is positive semidefinite, and zero if and only if the distri-
bution fp is equal to the equilibrium Fermi-Dirac distribution

f eq
p = 1

e(εp−μ)/T + 1
, (2.6)

with μ the chemical potential. (We use units such that kB = 1.
We will also put h̄ = 1; however, see Ref. [30].) This form
of the equilibrium distribution results from the fact that the
entropy production vanishes if and only if log( fp/(1 − fp)) is
a collision invariant and hence a linear combination of the five
basic collision invariants, viz., particle number, momentum,
and energy. The equilibrium distribution solves the kinetic
equation since it is independent of space and time and has
the property C( f eq) = 0. The latter property remains true if
we consider a local Fermi-Dirac distribution

f (0)
p (x, t ) = 1

exp
[( (p−mu(x,t ))2

2m − μ(x, t )
)/

T (x, t )
] + 1

.

(2.7a)

Note that f (0)
p is not a solution of either Eq. (2.1) or (2.5). It

satisfies C( f (0) ) = 0 for arbitrary functions u, μ, and T , but
the concept of a local equilibrium distribution is most useful if
one chooses these functions to be the physical fluid velocity,
chemical potential, and temperature, respectively. That is, we
require

1

V

∑
p

f (0)
p (x, t ) = n(x, t ) (2.7b)

with n(x, t ) the physical number density, and

1

V

∑
p

p f (0)
p (x, t ) = ρ(x, t ) u(x, t ), (2.7c)

with ρ(x, t ) = m n(x, t ) the physical mass density.

3. Balance equations

The kinetic equation yields balance equations, in complete
analogy to the classical case, for the five collision invariants:
particle number or mass, momentum, and energy [4,16,31].
For a discussion of these balance laws in terms of conservation
laws, the fluid flow, and forces acting on a volume element in
the fluid, see Ref. [4].

Mass balance. By summing Eq. (2.5) over the momentum
p we obtain the mass balance equation

∂t ρ(x, t ) + ∇ · [ρ(x, t )u(x, t )]w = 0, (2.8)

which expresses the local conservation of mass.
Momentum balance. By multiplying Eq. (2.5) with a com-

ponent pi of the momentum and summing over p we obtain
the velocity equation

∂t ui(x, t ) + [u(x, t ) · ∇]ui(x, t ) = −1

ρ(x, t )
∂ jP

i j (x, t ),

(2.9a)

with

Pi j (x, t ) = m

V

∑
p

[
vi

p − ui(x, t )
][

v j
p − u j (x, t )

]
fp(x, t )

(2.9b)

the kinetic part of the pressure tensor. Here ∂ j ≡ ∂/∂x j , and
summation over repeated indices is implied.

Energy balance. Finally, by multiplying with m[vp −
u(x, t )]2/2 and summing over p we obtain a balance equa-
tion for the kinetic energy density

e(x, t ) = m

2

1

V

∑
p

[vp − u(x, t )]2 fp(x, t ) (2.10)

in the form

∂t e(x, t ) + u(x, t ) · ∇e(x, t )

= −e(x, t )∇ · u(x, t ) − ∇ · je(x, t ) − Pi j (x, t )∂iu j (x, t ),

(2.11a)

with

je(x, t ) = m

2

1

V

∑
p

[vp − u(x, t )][vp − u(x, t )]2 fp(x, t )

(2.11b)

the kinetic energy current density or heat flux.
It is useful to rewrite the energy balance equation as an

equation for the temperature T . To this end we consider T a
function of e and n. Then variations of these three quantities
are related by

δT =
(

∂T

∂e

)
N,V

δe +
(

∂T

∂n

)
E ,V

δn. (2.12)

But (∂T/∂e)N,V = 1/cV , and general thermodynamic identi-
ties yield [32]

cV

(
∂T

∂n

)
E ,V

= −μ + T

(
∂μ

∂T

)
N,V

≡ −μ̃. (2.13)

We thus have

cV δT (x, t ) = δe(x, t ) − μ̃ δn(x, t ). (2.14)

Together with the mass balance equation (2.8) this yields

[∂t + u(x, t ) · ∇]e(x, t )

= cV [∂t + u(x, t ) · ∇]T (x, t ) − μ̃ n(x, t )∇ · u(x, t ),

(2.15)

which can be used to rewrite Eq. (2.11a) as an equation for T
instead of e. Note that all thermodynamic derivatives, and in
particular μ̃, are in principle space and time dependent. If we
replace the derivatives by their average values [5], as is usually
done in nonlinear hydrodynamics [4], we can make use of
another thermodynamic identity that relates μ̃ to the average
energy density e and pressure p and another derivative:

n μ̃ = e + p − T (∂ p/∂T )N,V . (2.16)

Finally, we drop all other nonlinearities except for the crucial
coupling between the temperature fluctuations and the fluid
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velocity. We then obtain the temperature equation in the form

cV (∂t + u(x, t ) · ∇)T (x, t )

= −∇ · je(x, t ) − T

(
∂ p

∂T

)
N,V

∇ · u(x, t ), (2.17)

where T in the second term on the right-hand side is the
average temperature.

B. Navier-Stokes equations

The Navier-Stokes equations can be derived from very
general arguments, and hence clearly are valid for quantum
fluids as well as for classical ones. However, for completeness
we derive them in this section from the quantum kinetic equa-
tion. As in the classical case, the Navier-Stokes equations are
actually more generally valid then the derivation suggests; see
Appendix D.

1. Chapman-Enskog expansion

To derive closed fluid-dynamics equations we employ the
Chapman-Enskog method in the same way as in classical
fluids [16,33]. The basic idea is to introduce a small parameter
α = O(
/L) on the order of the ratio of the mean-free path
between collision, 
, and a macroscopic length L that scales as
the inverse spatial gradient in the kinetic equation. This small
parameter does not appear explicitly in the kinetic equation;
rather, it is introduced by hand by multiplying the right-hand
side of the kinetic equation (2.1) by 1/α,

∂t fp + (∇x fp) · ∇pεp − (∇p fp) · ∇xεp = 1

α
C( f ). (2.1’)

Expanding fp in powers of α,

fp = f (0)
p + α f (1)

p + O(α2), (2.18)

yields a hierarchy of equations for the f (n)
p , order by order in

α. After truncating the expansion at the desired order one puts
α = 1.

2. Euler equations

To zeroth order in the Chapman-Enskog expansion we have

C
(

f (0)
p

) = 0. (2.19)

The solution of this equation is not unique: as we saw in
Sec. II A 2, both the global and the local equilibrium distribu-
tions satisfy Eq. (2.19). Following the usual procedure in the
classical case, we choose the latter [34]. From Eq. (2.9b) we
see that in this approximation the pressure tensor is diagonal
and given by

Pi j (x, t ) ≈ P(0)
i j = δi j p(x, t ) (2.20a)

with

p(x, t ) = 2
3 e(x, t ) (2.20b)

the hydrostatic pressure. Note that this is the exact relation
between the pressure and the energy for an ideal Fermi gas
(or any nonrelativistic ideal gas). This specifies the right-hand
side of the momentum balance equation (2.9a). For the heat
flux we obtain from Eq. (2.11b)

je(x, t ) ≈ 0. (2.21)

For the hydrodynamic equations at this order in the
Chapman-Enskog expansion we thus obtain Euler’s equa-
tions, viz., the mass equation as given by Eq. (2.8), the
momentum equation reads

∂t u(x, t ) + [u(x, t ) · ∇]u(x, t ) = −1

ρ(x, t )
∇p(x, t ), (2.22)

and the energy equation is

∂t e(x, t ) + [u(x, t ) · ∇]e(x, t ) = p(x, t ) ∇ · u(x, t ). (2.23)

Alternatively, we can write the energy equation as an equa-
tion for the temperature. From Eq. (2.17) we have

cV ∂t T (x, t ) + cV [u(x, t ) · ∇]T (x, t )

= −T

(
∂ p

∂T

)
N,V

∇ · u(x, t ). (2.24)

Note that the energy equation in the form of (2.23) is exact
to this order, whereas in the temperature equation (2.24) the
thermodynamic derivatives have been replaced by their aver-
age values, and this includes the T prefactor on the right-hand
side [5].

In addition to u(x, t ) and T (x, t ), which are governed by
the Euler equations, f (0)

p depends on μ(x, t ), which is given
implicitly by the requirement (2.7b).

3. Navier-Stokes equations

To first order in the expansion in powers of α we have

(∂t + vp · ∇x) f (0)
p (x, t ) = �(p) f (1)

p (x, t ), (2.25)

with �(p) a linearized collision operator that is given by
C( f )p expanded to linear order in f (1)

p . Note that the third
term on the left-hand side of Eq. (2.1’), which is omitted in
the Uehling-Uhlenbeck equation, does not contribute to this
order.

μ-space distribution to first order. f (0)
p depends on x and

t through u(x, t ) and T (x, t ), as well as μ(x, t ), which in
turn depends on u and T through Eq. (2.7b). By calculating
the derivatives of f (0)

p , Eq. (2.7a), with respect to u, T , and
μ, and using the Euler equations, we obtain a linear integral
equation for f (1)

p . If we define

c(x, t ) = p/m − u(x, t ), (2.26a)

the latter can be written

�(p) f (1)
p = f (0)

p

(
1 − f (0)

p

){m

T
cic j∂

jui − 1

cV

(
∂ p

∂T

)
N,V

[
1

T

(
m

2
c2 − μ

)
+

(
∂μ

∂T

)
N,V

]
∂iu

i − n

T (∂n/∂μ)T,V
∂ iui

+ 1

T

[
−1

n

(
∂ p

∂T

)
N,V

+ 1

T

(
m

2
c2 − μ

)
+

(
∂μ

∂T

)
N,V

]
(c · ∇)T

}
, (2.26b)
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where we have omitted the obvious dependences on space and time. In classical kinetic theory the equivalent of the relative
velocity c is sometimes called “peculiar velocity.”

Pressure tensor and heat flux to first order. The terms on the right-hand side of Eq. (2.26b) that are even in c yield the
first-order contribution to the pressure tensor via Eq. (2.9b). We find

P(1)
i j = m2

2T
(∂kul + ∂ l uk )

1

V

∑
p

cic j�
−1(p)

(
ckcl − 1

3
δklc2

)
f (0)

p

(
1 − f (0)

p

)
. (2.27)

Here we have used Eq. (2.20b) as well as the identity

μ − T (∂μ/∂T )N,V − 3
2 n(∂μ/∂n)T,V = 0, (2.28)

which follows from the fact that the chemical potential as a
function of n and T has the form μ = n2/3 fμ(T 2/n4/3), with
fμ a scaling function. Equation (2.27) can be cast in a more
standard form by realizing that P(1)

i j is a traceless symmetric
tensor that is linear in the symmetric tensor ∂iu j + ∂ jui and
therefore must be proportional to the traceless version of the
latter. Restoring the dependence on space and time we find, to
first order in the Chapman-Enskog expansion,

Pi j (x, t ) = δi j p(x, t ) − η
[
∂iu j (x, t ) + ∂ jui(x, t )

− 2
3 δi j ∇ · u(x, t )

]
, (2.29a)

where the shear viscosity η is given by

η = −m2

T

1

V

∑
p

c1c2 �−1(p) c1c2 f (0)
p

(
1 − f (0)

p

)
. (2.29b)

Note that f (0)
p , and hence also �, depend on p only via the

combination p/m − u = c, so the space-time dependence of c
drops out via the sum over p. However, η does depend on x
and t via μ and T ; we consider η in Eq. (2.29a) the averaged
value [5].

The terms on the right-hand side of Eq. (2.26b) that are
odd in c determine the heat flux to first order in the Chapman-
Enskog expansion. Equation (2.11b) yields

je(x, t ) = −κ ∇T (x, t ) (2.30)

with the thermal conductivity κ given by

κ = −m

3T 2

1

V

∑
p

c
m

2
c2 �−1(p) c ψh(c) f (0)

p

(
1 − f (0)

p

)
.

(2.31)

Here c = |c|, and

ψh(c) = m

2
c2 − μ − T s

n
, (2.32)

with s the entropy per volume, is the heat mode [35]. The
asymmetric form of the integrand in Eq. (2.31) is seemingly at
odds with the Kubo formula for the thermal conductivity. The
resolution of this problem is the observation that Eqs. (2.7b)
and (2.7c) imply

∑
p c f (1)

p = 0. One can therefore add an
arbitrary term independent of c to the factor of mc2/2 in
Eq. (2.31), and this allows us to rewrite the expression for κ

in the symmetric form

κ = −m

3T 2

1

V

∑
p

c ψh(c) �−1(p) c ψh(c) f (0)
p

(
1 − f (0)

p

)
.

(2.31’)

This argument leading to the symmetric expression for κ is
the same as in the classical case [16].

Navier-Stokes equations. We are now in a position to
assemble the hydrodynamic equations to first order in the
Chapman-Enskog expansion. The mass equation is still given
by Eq. (2.8), which is exact. For the velocity equation we have,
from Eqs. (2.9a) and (2.29a),

∂t ui(x, t ) + uj (x, t )∂ jui(x, t )

= −1

ρ(x, t )
∂i p(x, t ) + η

ρ(x, t )
∂ j

×
[
∂iu j (x, t ) + ∂ jui(x, t ) − 2

3
δi j ∇ · u(x, t )

]
, (2.33)

with p(x, t ) the hydrostatic pressure from Eq. (2.20b) and
η the shear viscosity from Eq. (2.29b). Finally, for the heat
equation we obtain, from Eqs. (2.17) and (2.30),

∂t T (x, t ) + u(x, t ) · ∇T (x, t )

= −T

cV

(
∂ p

∂T

)
N,V

∇ · u(x, t ) + κ

cV
∇2T (x, t ). (2.34)

Equations (2.8), (2.33), and (2.34) are simplified versions of
the standard Navier-Stokes equations familiar from classical
hydrodynamics [7,36,37]; the fermionic nature of the fluid
is reflected only in the explicit expressions for the transport
coefficients η and κ . This was to be expected, since the be-
havior of a fluid in the hydrodynamic regime depends only
on very general physical principles that are independent of
the microscopic nature of the fluid. We note again that we
have replaced the transport coefficients η and κ , as well as the
thermodynamic derivatives in Eqs. (2.33) and (2.34), by their
average values [5].

C. Fluctuating quantum Navier-Stokes equations

The Navier-Stokes equations contain many nonlinearities
that make them notoriously hard to solve. For fluctuations
about an equilibrium state, the bilinear u · ∇T term in
Eq. (2.34) is one of these nonlinearities. In a NESS charac-
terized by a constant temperature gradient, ∇T is no longer a
fluctuation, and the leading contribution to this term is linear
in the small fluctuation u. We can thus linearize the theory
by replacing ∇T (x, t ) in the u · ∇T term with the externally
fixed temperature gradient ∇T , which makes this term linear,
and also dropping all other nonlinearities. Furthermore, for
our purposes we are not interested in the coupling of the
temperature gradient to sound waves, which occur on a time
scale that is much faster than the slow fluctuations of the trans-
verse fluid velocity, whose dynamics are diffusive. The sound
modes are linear combinations of fluctuations of the longi-
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tudinal part of the fluid velocity u and pressure fluctuations;
see Eq. (A5), or Eq. (3.25) in Ref. [8]. Accordingly, we work
at constant pressure and keep only the diffusive transverse
components u⊥ of the fluid velocity in the u · ∇T coupling
term in Eq. (2.34). For the latter, the linearized Eq. (2.33)
simplifies to a diffusion equation

∂t u⊥(x, t ) = ν∇2u⊥(x, t ), (2.35a)

with ν = η/ρ the kinematic viscosity. The longitudinal part
of the fluid velocity scales linearly with the wave number, and
hence the ∇ · u term on the right-hand side of Eq. (2.34) is of
the same order in a gradient expansion as the ∇2T term. At
constant pressure it effectively turns the κ/cV coefficient of
the ∇2T term into κ/cp, and we find

∂t T (x, t ) + u⊥(x, t ) · ∇T = DT ∇2T (x, t ), (2.35b)

with DT = κ/cp the heat diffusivity; see Appendix C for a
derivation. We note that the heat equation (2.35b) can be
written as an equation for the entropy per particle, i.e., the
heat mode proper, using Eq. (2.2).

Equations (2.35), when supplemented by initial conditions
δT (x, t = 0) and u⊥(x, t = 0), describe the time evolution of
macroscopic perturbations about the NESS characterized by
∇T = const and u⊥ = 0. They remain valid if we replace
the averaged quantities T and u⊥ by their operator-valued
fluctuating counterparts T̂ and û⊥ that are moments of the
operator-valued μ-space distribution f̂ (p, x, t ) instead of its
average fp(x, t ), provided one adds appropriate fluctuating,
or Langevin, forces [38]. The linearized fluctuating quantum
Navier-Stokes equations in the absence of a temperature gra-
dient were derived in Ref. [21] from a linearized quantum
kinetic equation by means of projector techniques. The above
discussion provides the desired generalization to a NESS. Per-
forming Fourier transforms in space and time, and choosing
the coordinate system as in Appendix A (see Fig. 3), the
equations read

(−iω + νk2)û⊥(k, ω) = P̂⊥(k, ω),

(2.36a)

(−iω + DT k2)T̂ (k, ω) + (k̂⊥ · ∇T )û⊥(k, ω) = Q̂(k, ω).

(2.36b)

Here and in what follows we write k̂⊥ ≡ k̂
(1)
⊥ , with k̂

(1)
⊥

as defined in Appendix A, and u⊥ ≡ u⊥ · k̂⊥. The fluctuating
force operators P̂⊥ and Q̂ have zero mean and are assumed
to be Gaussian distributed. The second moments of the distri-
butions can be determined from the correlations of the more
general μ-space Langevin operator that were determined in
Ref. [21]. Q̂ is related to the fluctuating heat current q̂L defined
in Ref. [21] by

Q̂(k, ω) = −ik · q̂L(k, ω)/cp. (2.37a)

Similarly, the fluctuating force operator P̂⊥ is related to the
fluctuating stress tensor τ̂L in Ref. [21] by

P̂⊥(k, ω) = −i

ρ
k̂i
⊥k j (τ̂L)i j (k, ω). (2.37b)

The anticommutator ([, ]+) and commutator ([, ]−) cor-
relations, respectively, of Q̂ are obtained from Eq. (3.24b) in
that reference, and those of P̂⊥ from Eq. (3.24a). We find [30]

1

2
〈[Q̂(k1, ω1), Q̂(k2, ω2)]±〉

= 2πδ(ω1 + ω2)V δk1,−k2

DT

cp
k2

1 ω1T c±(ω1/2T ),

(2.38a)

1

2
〈[P̂⊥(k1, ω1), P̂⊥(k2, ω2)]±〉

= 2πδ(ω1 + ω2)V δk1,−k2

ν

ρ
k2

1 ω1c±(ω1/2T ), (2.38b)

where T is the spatially averaged temperature and

c±(�) =
{

coth � for +
1 for − . (2.38c)

The cross correlations vanish,

〈[Q̂(k1, ω1), P̂⊥(k2, ω2)]±〉 = 0. (2.39)

Here we assume that the fluctuating force correlations in a
NESS have the same form as in equilibrium. For arguments
supporting this assumption see, e.g., Refs. [39] and [40], and
the discussion in Sec. V.

D. Kinetic equation for the collisionless regime

As written, with frequency and wave-number independent
transport coefficients DT and ν, the linearized fluctuat-
ing quantum Navier-Stokes equations (2.36), together with
Eqs. (2.37)–(2.39), are valid in the hydrodynamic regime
vFk < 1/τ , with τ the relevant relaxation time, that is dom-
inated by collisions between the quasiparticles, as is made
explicit by the Chapman-Enskog expansion (see, however,
Appendix D). Since τ diverges as T → 0, the hydrodynamic
regime shrinks with decreasing temperature. In the collision-
less regime in the opposite limit, vFk > 1/τ , which governs
the asymptotic low-temperature behavior, we need to go back
to the Uehling-Uhlenbeck equation (2.5) with the right-hand
side replaced by zero. The corresponding equation for the
operator-valued distribution f̂ is

∂t f̂ (p, x, t ) + vp · ∇x f̂ (p, x, t ) = ˆ̃F L(p, x, t ). (2.40)

Here ˆ̃F L is an operator-valued Langevin force that is related
to the fluctuating force F̂L from Eq. (2.6a) in Ref. [21] by

ˆ̃F L(p, x, t ) = w(p) F̂L(p, x, t ) (2.41)

with

w(p) = −∂ f eq
p /∂εp = 1

4T cosh2(ξp/2T )
(2.42)

with ξp = εp − μ. F̂L is Gaussian distributed with zero mean;
the second moment of its distribution was determined in
Ref. [21] and is given again in Eqs. (2.48) below.

Now consider the local equilibrium distribution from
Eq. (2.7a) and write

f̂ (p, x, t ) = f (0)
p (x, t ) + δ f̂ (p, x, t ). (2.43)
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We next anticipate that (1) the full distribution function de-
pends on p only via the combination c(x, t ) = vp − u(x, t )
[see Eq. (2.26a)], and (2) we will eventually sum over p
in order to calculate observables. This suggests writing the
streaming term in Eq. (2.40) as

vp · ∇x f̂ (p, x, t ) = c(x, t ) · ∇x f̂ (m(c + u), x, t )

+ u(x, t ) · ∇x f̂ (m(c + u), x, t ).
(2.44)

The u · ∇ term is already linear in the fluctuations, so to linear
order we can replace f̂ in that term by the local equilibrium
distribution with u = 0, the fluctuating chemical potential
replaced by its average value μ, and T (x, t ) replaced by the
externally imposed linear temperature profile. If we again
neglect pressure fluctuations [41] the ∇x f̂ term evaluated at
constant pressure becomes

∇x
1

eξp/T (x) + 1
= w(p) as(p)

1

T
∇T, (2.45)

with as(p) = ξp − sT/n from Eq. (A1f). We see that the
kinetic equation contains the same u · ∇T term as the Navier-
Stokes equations, and we again keep only the coupling to the
transverse velocity fluctuations. That is, we ignore all other
effects of the temperature gradient and write f̂ (p, x, t ) =
f eq

p + δ f̂ (p, x, t ) in all other terms in the kinetic equation.
Defining a function φ̂ by

δ f̂ (p, x, t ) = w(p) φ̂(p, x, t ), (2.46)

and linearizing the kinetic equation, we find a linearized
version of Eq. (2.40) appropriate for a fluid in a NESS char-
acterized by a constant temperature gradient:

(∂t + vp · ∇x)φ̂(p, x, t )

= F̂L(p, x, t ) − û⊥(x, t )
(k̂⊥ · ∇T )

T
as(p). (2.47)

Equation (2.47) generalizes Eq. (2.6b) in Ref. [21] to the
case of a constant temperature gradient while neglecting the
LFL interaction. The correlations of the Langevin force F̂L

were given in Sec. II.C of Ref. [21], and we list them here
again for completeness:

1
2 〈[F̂L(p1, k1, ω1), F̂L(p2, k2, ω2)]±〉

= 2πδ(ω1 + ω2)V δk1+k2,0 �±(p1, p2; k1, ω1), (2.48a)

where

�±(p1, p2; k, ω) = −ω

2T
c±(ω/2T )[�(p1) + �(p2)]

×V δp1,p2

T

w(p1)
, (2.48b)

with c± from Eq. (2.38c). Here �(p) is the same linearized
collision operator as in Eq. (2.25).

III. A FERMI LIQUID IN A NESS I:
CORRELATION FUNCTIONS

We now are in a position to calculate the temperature
correlation functions for a quantum fluid subject to a con-
stant temperature gradient, i.e., the quantum counterparts of

FIG. 2. Relevant frequency/energy regimes.

Eq. (1.2). As mentioned in the Introduction, we need to
distinguish between anticommutator ([, ]+), or symmetric,
correlation functions Ssym that are also referred to as fluctu-
ation functions, and commutator ([, ]−), or antisymmetric,
correlation functions χ ′′; see Appendix B for a summary of
definitions. They are defined by

1
2 〈[δÂ(k1, ω1), δB̂(k2, ω2)]+〉

= V δk1,−k2 2πδ(ω1 + ω2) Ssym
AB (k1, ω1), (3.1a)

1

2h̄
〈[δÂ(k1, ω1), δB̂(k2, ω2)]−〉

= V δk1,−k2 2πδ(ω1 + ω2) χ ′′
AB(k1, ω1), (3.1b)

where the observables Â and B̂ can stand for either T̂ or
û⊥. For the purpose of Eq. (3.1b) we have restored h̄ (see
Ref. [30]). Within the approximations that we are employing
throughout this paper [5], Ssym and χ ′′ are related by the factor
from Eq. (2.38c):

Ssym
AB (k, ω) = χ ′′

AB(k, ω) coth(ω/2T ). (3.2)

The symmetrized correlation functions Ssym
AB are observable by

means of scattering experiments [7]. The physical meaning
of the antisymmetrized correlation functions χ ′′

AB is a priori
less obvious. In an equilibrium system, where the correlations
are generically short-ranged, they describe the linear response
of the system to external fields. That is, the equilibrium
fluctuations determine the linear response, which to second
order in the external field yields the energy dissipated by
the system. This is the content of the fluctuation-dissipation
theorem [18,19]. In a NESS, the relation (3.2) between com-
mutator and anticommutator correlations still holds, but the
commutator correlations functions no longer describe the lin-
ear response and the usual fluctuation-dissipation theorem
breaks down. We will discuss the physical meaning of the
commutator correlation functions in Sec. IV B.

In addition, we need to distinguish between the hydrody-
namic regime ωτ < 1 (or, equivalently, vFkτ < 1), where the
Chapman-Enskog derivation of the quantum Navier-Stokes
equations is valid, and the collisionless regime ωτ > 1, where
one has to work with the μ-space kinetic equation [24].
Figure 2 illustrates the various frequency/energy regimes. In
an ordinary Fermi liquid the relaxation rate is 1/τ ∼ T 2/εF

[17], with εF the Fermi energy. In more exotic Fermi systems
the rate can scale as a smaller power of T , but there are
good arguments for T being an upper bound on 1/τ [42], so
1/τ � T always. The collisionless regime thus is divided into
two subregimes where ω < T and ω > T , respectively. The
frequency scales quadratically with the wave number k in the
hydrodynamic regime, and linearly in the collisionless regime.
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A. Correlation functions in the hydrodynamic regime

To find the desired correlations in the hydrodynamic
regime we solve Eqs. (2.36) for δT̂ and û⊥ in terms of the
fluctuating forces. This yields

û⊥(k, ω) = 1

−iω + νk2
P̂⊥(k, ω), (3.3a)

δT̂ (k, ω) = 1

−iω + DTk2

[
Q̂(k, ω) − (k̂⊥ · ∇T )

−iω + νk2
P̂⊥(k, ω)

]

= 1

−iω + DTk2
Q̂(k, ω) − (k̂⊥ · ∇T )

−iω + DTk2
û⊥(k, ω).

(3.3b)

We see that the equilibrium contribution to the temperature
fluctuations is given by the fluctuating force Q̂, whereas the
nonequilibrium contribution is given in terms of the shear-
velocity fluctuations. The correlation functions of the latter
are given by their equilibrium expressions [43], viz.,

Ssym
u⊥u⊥ (k, ω) = 2T

ρ

νk2

ω2 + (νk2)2
, (3.4a)

Ssym
u⊥u⊥ (k) =

∫ ∞

−∞

dω

2π
Ssym

u⊥u⊥ (k, ω) = T/ρ, (3.4b)

χ ′′
u⊥u⊥ (k, ω) = 1

ρ

ωνk2

ω2 + (νk2)2
, (3.4c)

χu⊥u⊥ (k) =
∫ ∞

−∞

dω

π
χ ′′

u⊥u⊥ (k, ω))/ω = 1/ρ. (3.4d)

Here we have used Eq. (2.38b) as well as the fact that in
the hydrodynamic regime the coth in Eq. (3.2) is effectively
coth(ω/2T ) ≈ 2T/ω. Using Eq. (2.38a) we find for the tem-
perature correlation functions

Ssym
T T (k, ω)

= 2T

ω2 + D2
Tk4

[
T

cp
DTk2 + (k̂⊥ · ∇T )2

ρ

νk2

ω2 + (νk2)2

]
,

(3.5a)

χ ′′
T T (k, ω)

= ω

ω2 + D2
Tk4

[
T

cp
DTk2 + (k̂⊥ · ∇T )2

ρ

νk2

ω2 + (νk2)2

]
,

(3.5b)

Equations (3.5) demonstrate the ω ∼ k2 scaling that is
characteristic of the hydrodynamic regime. The corresponding
static correlation functions are

Ssym
T T (k) =

∫ ∞

−∞

dω

2π
Ssym

T T (k, ω) = T 2

cp
+ T (k̂⊥ · ∇T )2

ρDT(ν + DT) k4
,

(3.6a)

χT T (k) =
∫ ∞

−∞

dω

π
χ ′′

T T (k, ω)/ω = T

cp
+ (k̂⊥ · ∇T )2

ρDT(ν + DT) k4
.

(3.6b)

This is the same result as in the classical case [2–4], where
the symmetrized correlation function Ssym

T T becomes identical
with the van Hove function ST T [7]. This was to be expected
since the structure of the quantum Navier-Stokes equations is
the same as that of the classical ones. Note that the equilib-
rium contribution to Ssym

T T is T 2/cp, rather than T 2/cV [see
Eqs. (1.1)], since we have neglected the pressure fluctuations.
If one keeps the latter, then the Brillouin, or sound-wave,
peaks in the structure factor contribute to the sum rule and
change cp to cV , just as in the classical case [7].

For the mixed correlation functions we obtain [6]

Ssym
u⊥T (k, ω) = −(k̂⊥ · ∇T )

1

ρ

νk2

ω2 + (νk2)2

2T

iω + DTk2
,

(3.7a)

Ssym
Tu⊥ (k, ω) = Ssym

u⊥T (−k,−ω), (3.7b)

Ssym
u⊥T (k) = Ssym

Tu⊥ (−k) = −(k̂⊥ · ∇T )
T

ρ

1

(ν + DT)k2
,

(3.7c)

χ ′′
u⊥T (k, ω) = −(k̂⊥ · ∇T )

1

ρ

ωνk2

ω2 + (νk2)2

1

iω + DTk2
,

(3.7d)

χ ′′
Tu⊥ (k, ω) = −χ ′′

u⊥T (−k,−ω), (3.7e)

χu⊥T (k) = χTu⊥ (−k) = −(k̂⊥ · ∇T )
1

ρ

1

(ν + DT)k2
.

(3.7f)

Equations (3.7b) and (3.7e) reflect a general symmetry
property of anticommutator and commutator correlation func-
tions, respectively [44].

In all cases the static correlation functions are related by

Ssym
AB (k) = T χAB(k) (A, B = T, u⊥), (3.8a)

as must be the case given Eq. (3.2). For later reference we
write the left-hand side more explicitly, using Eq. (3.1a),

1

2V

∫
dω

2π

dω′

2π
〈[δÂ(k, ω), δB̂(−k, ω′)]+〉 = T χAB(k).

(3.8b)

One important consequence of the structure of Eqs. (3.3)–
(3.7) is the following: Since the u⊥-correlation functions are
the same as in (local) equilibrium [see Eqs. (3.4)] χ ′′

u⊥u⊥
determines the linear response of the system to a field conju-
gate to u⊥. Since the shear fluctuations completely determine
the nonequilibrium part of the temperature fluctuations, this
implies that all of the nonequilibrium effects expressed in
Eqs. (3.6)–(3.7) can be probed via the linear response to an
initial shear perturbation. We will elaborate on this observa-
tion in Sec. IV.

B. Correlation functions in the collisionless regime

1. Approximate solution of the kinetic equation

We determine the behavior in the collisionless regime
by solving the linearized kinetic equation (2.47). A Fourier
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transform in space and time yields [see Eq. (2.46)]

δ f̂ (p, k, ω) = w(p) φ̂(p, k, ω)

= w(p) G0(p, k, ω)

[
F̂L(p, k, ω)

− û⊥(k, ω)
(k̂⊥ · ∇T )

T
as(p)

]
(3.9a)

with

G0(p, k, ω) = i

ω − k · p/m + i0
(3.9b)

a Green function. Here i0 indicates a positive infinitesimal
imaginary quantity. The temperature fluctuations are given
by Eq. (A4d). Substituting the solution (3.9a) of the kinetic
equation, we have

δT̂ (k, ω) = 1

cV

1

V

∑
p

w(p) a5(p) G0(p, k, ω) F̂L(p, k, ω)

− (k̂⊥ · ∇T ) û⊥(k, ω) τ (k, ω), (3.10a)

where

τ (k, ω) = 1

cV T

1

V

∑
p

w(p) a5(p) as(p) G0(p, k, ω).

(3.10b)

In the low-temperature limit this becomes

τ (k, ω) = NFT

cV

π2

6

−i

vFk
log

(
1 − ω/vFk − i0

−1 − ω/vFk − i0

)
+ O(T 3),

(3.10c)

with NF the density of states at the Fermi surface. The func-
tions a5 and as are defined in Eqs. (A.1), and in Eq. (3.10c)
we have evaluated the integral to leading order for T → 0.
Again the equilibrium part of the δT -correlation function is
given by the correlation of the fluctuating force, whereas the
nonequilibrium part is given by the correlation of the trans-
verse velocity; see Eq. (3.3b) for the analogous structure in
the hydrodynamic regime. To calculate the latter we combine
Eqs. (A4c), (2.46), (3.9a), and (II.48). To leading order as
T → 0 we find

1

2
〈[û⊥(k1, ω1), û⊥(k2, ω2)]±〉

= 2πδ(ω1 + ω2)V δk1,−k2

π

ρ2
ω1

1

V

∑
p

w(p) (k̂1⊥ · p)2

× δ(ω1 − k1 · p/m) c±(ω1/2T ). (3.11)

Here we have used the low-temperature limiting procedure
given in Eqs. (3.7) of Ref. [21]. For the temperature-
temperature correlations this yields

χ ′′
T T (k, ω) = π

c2
V

1

V

∑
p

w(p) [a5(p)]2ω δ(ω − k · p/m)

+ω
π

4

[(k̂⊥·∇T )]2

v2
Fk2

k2
F

ρ2

1

V

∑
p

w(p)(1−(k̂ · p̂)2)

×
[
log2

∣∣∣∣∣1 − k̂ · p̂

1 + k̂ · p̂

∣∣∣∣∣ + π2

]
δ(ω − k · p/m)

(3.12a)

and

Ssym
T T (k, ω) = χ ′′

T T (k, ω) coth(ω/2T ). (3.12b)

2. Static correlation functions

We can now determine the desired static correlation func-
tions. From (3.12a) we find, using the first equality in
Eq. (3.6b), and after some algebra,

χT T (k) = 1

NF

3

π2

[
1 + π2

12
(2π2 − 3)

(k̂⊥ · ∇T )2

ε2
Fk2

]
. (3.13)

Here we have used the fact that in the low-temperature limit
the specific heat is cp ≈ cV ≈ (π2/3) NFT .

The nonequilibrium contribution has a weaker singularity
than in the hydrodynamic regime (1/k2 rather than 1/k4) since
the transverse velocity modes are now ballistic rather than
diffusive.

For the symmetrized correlation function the additional
factor of coth(ω/2T ) forces us to distinguish between two
subregimes:

1/τ < vFk < T . This regime exists provided 1/τ � T .
Here coth(ω/2T ) ≈ 2T/ω, and we obtain the same relation
between Ssym and χ as in the hydrodynamic regime,

Ssym
T T (k) = T χT T (k)

= T

NF

3

π2

[
1 + s(a) (k̂⊥ · ∇T )2

ε2
Fk2

]
(3.14a)

with

s(a) = π2

12
(2π2 − 3). (3.14b)

T < vFk. Here coth(ω/2T ) ≈ sgn ω, and we find

Ssym
T T (k) = vFk

NF

3

π2

[
1 + s(b) (k̂⊥ · ∇T )2

ε2
Fk2

]
, (3.15a)

where

s(b) = π2

128
(3π2 + 16 log 2 − 4). (3.15b)

We see that in this asymptotic low-temperature regime
the relation between Ssym and χ is, apart from factors of
O(1), Ssym

T T (k) ≈ vFk χT T (k). Consequently, the nonequilib-
rium contribution to Ssym

T T diverges as 1/k.
As mentioned in Sec. II C, these results reflect the cou-

pling of the temperature fluctuations to the transverse velocity
fluctuations only. All other soft modes in the low-temperature
limit are also ballistic and hence cannot change the leading
scaling behavior, but they change the prefactor of the k → 0
singularity. How many soft modes exist at zero temperature
depends on the values of the Landau Fermi-liquid parameters;
see the discussion in Ref. [8]. In particular we note that the
longitudinal velocity fluctuations are soft in a neutral Fermi
liquid (where they constitute longitudinal zero sound), but not
in a charged Fermi liquid, where they turn into the massive
plasmon. Our procedure, which ignores pressure fluctuations,
is thus better justified for conduction electrons in a metal than
for a neutral Fermi liquid.
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In Appendix D we show that the results obtained from the
Navier-Stokes equations are consistent with Eqs. (3.13) and
(3.15) if one uses the fact that the diffusion coefficients DT

and ν effectively scale as 1/k in the collisionless regime. We
note, however, that in the hydrodynamic regime the Navier-
Stokes equations capture all of the relevant soft modes, while
in the collisionless regime they do not (and neither does our
approximate solution of the kinetic equation).

Static correlation functions that diverge in the limit of zero
wave number are familiar from systems with a spontaneously
broken continuous symmetry, where they represent Goldstone
modes [7]. Here, they appear as a property of the NESS, in the
absence of any symmetry breaking. In either case they signal
a generalized rigidity of the system that results in long-ranged
spatial correlations [12]. In the next section we discuss con-
sequences of this generalized rigidity, namely, the response to
an initial applied shear and the anomalous propagation of a
localized temperature perturbation.

IV. A FERMI LIQUID IN A NESS II:
RESPONSE FUNCTIONS

The symmetrized correlation functions discussed in
Sec. III are measurable by light scattering. This is how the
classical prediction expressed in Eq. (1.2) was confirmed ex-
perimentally; see, e.g., Ref. [11] and references therein. These
are difficult experiments even in classical fluids because of the
very small scattering angles required. As the temperature is
lowered, the fluctuation effects become weaker, which makes
the experimental task even more difficult. It therefore is de-
sirable to consider the effects of the long-range correlations
on the response of the system to external perturbations. In a
NESS this is a more difficult task than in equilibrium, since
there is no simple fluctuation-dissipation theorem that relates
the correlation functions to the response functions. In this
section we show that, remarkably, the commutator correlation
functions in a NESS are still related to response functions via
the bilinear response of products of observables to an external
field conjugate to the transverse velocity. This shows in par-
ticular that the long-range correlations discussed in Sec. III,
and the related generalized rigidity of the NESS, are encoded
in the averaged hydrodynamic equations and are not related to
fluctuating forces.

We then discuss another manifestation of the generalized
rigidity, namely, the anomalous propagation of a temperature
pulse that results from an initial shear and temperature pertur-
bation.

We finally discuss how response experiments allow for
the measurement of the commutator correlation functions via
macroscopic driving terms that are experimentally control-
lable and independent of the temperature.

A. Linear response to an external shear velocity perturbation

In order to study the linear response of the system we
consider the simplified Navier-Stokes equations (2.36) for the
averaged quantities u⊥ = 〈û⊥〉 and δT = 〈δT̂ 〉. The averaged
fluctuating forces vanish, and we add an external field hu⊥
conjugate to the shear velocity u⊥. This amounts to simply
shifting the transverse velocity by the field times the static u⊥

susceptibility, which equals 1/ρ [45]. The equations then are

(−iω + νk2)u⊥(k, ω) = ν

ρ
k2hu⊥ (k, ω), (4.1a)

(−iω + DT k2)δT (k, ω) + (k̂⊥ · ∇T )u⊥(k, ω)

= 1

ρ
(k̂⊥ · ∇T )hu⊥ (k, ω). (4.1b)

They are easily solved to obtain response functions XTu⊥
and Xu⊥u⊥ defined by (see also Appendix B)

u⊥(k, ω) = Xu⊥u⊥ (k, ω) hu⊥ (k, ω), (4.2a)

δT (k, ω) = XTu⊥ (k, ω) hu⊥ (k, ω). (4.2b)

We find

Xu⊥u⊥ (k, ω) = 1

ρ

νk2

−iω + νk2
, (4.3a)

XTu⊥ (k, ω) = 1

ρ
(k̂⊥ · ∇T )

1

−iω + DTk2

−iω

−iω + νk2
.

(4.3b)

In equilibrium the spectra, or spectral densities, of these
response functions, X ′′(k, ω) = [X (k, ω + iε) − X (k, ω −
iε)]/2i, would be identical with the commutator correlation
functions χ ′′

Tu⊥ (for XTu⊥ ) and χ ′′
u⊥u⊥ (for Xu⊥u⊥ ). For Xu⊥u⊥ this

still holds in a NESS, as we see by comparing Eqs. (4.3a) and
(3.4c). We have

X ′′
u⊥u⊥ (k, ω) = χ ′′

u⊥u⊥ (k, ω) = 1

ρ

ωνk2

ω2 + ν2k4
, (4.4a)

Xu⊥u⊥ (k) = χu⊥u⊥ (k) = 1/ρ. (4.4b)

However, the spectrum of XTu⊥ ,

X ′′
Tu⊥ (k, ω) = −(k̂⊥ · ∇T )ω

νDTk2 − ω2(
ω2 + D2

Tk4
)
(ω2 + ν2k4)

,

(4.5a)

is not identical with χ ′′
Tu⊥ , although the two functions show

the same scaling behavior. In particular, the static response
function vanishes,

XTu⊥ (k) =
∫

dω

π

X ′′
Tu⊥ (k, ω)

ω
= 0, (4.5b)

whereas χTu⊥ (k) is nonzero; see Eq. (3.7f).
As we will see, it is also useful to define an observable

T̃ (k, ω) = T (k, ω) − 1

ρ
(k̂⊥ · ∇T )

1

−iω + DTk2
hu⊥ (k, ω)

(4.6)

that obeys the equation

(−iω + DT k2)δT̃ (k, ω) + (k̂⊥ · ∇T )u⊥(k, ω) = 0. (4.7)

Comparing Eqs. (4.7) and (4.1b) we see that this is the
heat equation with a streaming term that contains the absolute
shear velocity, whereas the streaming term in the equation for
δT contains the shear velocity relative to the external field
hu⊥ . The response of T̃ to the external field hu⊥ is given by
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a response function

XT̃ u⊥ (k, ω) = 1

ρ
(k̂⊥ · ∇T )

−1

−iω + DTk2

νk2

−iω + νk2
. (4.8)

Finally, we define the shear velocity relative to the field hu⊥ ,

ũ⊥(k, ω) = u⊥(k, ω) − 1

ρ
hu⊥ (k, ω), (4.9)

which obeys

(−iω + νk2)ũ⊥(k, ω) = iω
1

ρ
hu⊥ (k, ω), (4.10)

and whose response to the field is given by

Xũ⊥u⊥ (k, ω) = 1

ρ

iω

−iω + νk2
. (4.11)

Note that the field hu⊥ can be experimentally realized by
means of an imposed initial shear velocity. Suppose the field
is switched on adiabatically in the distant past and switched
off discontinuously at time t = 0:

hu⊥ (k, t ) = hu⊥ (k) eεt �(−t ) (4.12a)

with ε > 0 infinitesimal. Then the field produces a shear ve-
locity at t = 0 [see Eqs. (2.5) and (4.4b)]

u⊥(k, t = 0) = 1

ρ
hu⊥ (k). (4.12b)

B. A relation between response functions
and correlation functions in a NESS

We now show that in a NESS there still is a relation
between the response functions and the antisymmetric, or
commutator, correlation functions. In this subsection we re-
strict ourselves to the hydrodynamic regime.

Consider the product of a temperature fluctuation and a
shear-velocity fluctuation, and its response to the external field
hu⊥ . We have

δT (k, ω) u⊥(−k,−ω)

= XTu⊥ (k, ω) Xu⊥u⊥ (−k,−ω)|hu⊥ (k, ω)|2

= 1

ρ2
(k̂⊥ · ∇T )

1

−iω + DTk2

−iω νk2

ω2 + ν2k4
|hu⊥ (k, ω)|2

= i

ρ
χ ′′

Tu⊥ (k, ω) |hu⊥ (k, ω)|2. (4.13)

Here we have used Eqs. (4.3) and (3.7). The product δT̃ ũ⊥
yields the same result, except for an overall minus sign. We
see that the commutator correlation function χ ′′

Tu⊥ describes
the bilinear response of δT u⊥ to the field hu⊥ . Similarly, we
have

δT̃ (k, ω) δT (−k,−ω)

= XT̃ u⊥ (k, ω) XTu⊥ (−k,−ω)|hu⊥ (k, ω)|2

= 1

ρ2
(k̂⊥ · ∇T )2 1

ω2 + D2
Tk4

iωνk2

ω2 + ν2k4
|hu⊥ (k, ω)|2

= i

ρ
χ

′′ neq
T T (k, ω) |hu⊥ (k, ω)|2, (4.14)

with χ
′′ neq
T T the nonequilibrium part of the correlation function

χ ′′
T T from Eq. (3.5b). We finally observe that the bilinear

response of the product ũ⊥ u⊥ is given by

ũ⊥(k, ω) u⊥(−k,−ω)

= Xũ⊥u⊥ (k, ω) Xu⊥u⊥ (−k,−ω)|hu⊥ (k, ω)|2

= 1

ρ2

iωνk2

ω2 + ν2k4
|hu⊥ (k, ω)|2

= i

ρ
χ ′′

u⊥u⊥ (k, ω) |hu⊥ (k, ω)|2. (4.15)

That is, although χ ′′
u⊥u⊥ is, of course, equal to the spectrum of

the linear response function Xu⊥u⊥ , it can also be written as a
bilinear response. We also note that the products on the left-
hand sides of Eqs. (4.13)–(4.15) all involve one observable
(δT , or ũ⊥) whose hydrodynamic equation contains a shear
velocity relative to the external field, and one (u⊥, or δT̃ )
whose equation contains an absolute shear velocity.

Equations (4.13)–(4.15) contain one of our main results:
The commutator correlation functions in a NESS can be ex-
pressed as products of linear response functions, and hence are
observable, as we anticipated in the remarks after Eqs. (3.7).
Note that the Eqs. (4.13) and (4.14) involve the nonequilib-
rium parts of the commutator correlation functions only. In
the limit of a vanishing temperature gradient χ ′′

Tu⊥ vanishes
and χ ′′

T T reduces to its equilibrium part that obeys the usual
fluctuation-dissipation theorem.

The field hu⊥ can be realized by enforcing an initial shear
flow on the system. Alternatively, one can eliminate the
field in favor of initial conditions and express the correlation
functions in terms of the response of the system to initial
perturbations δT (k, t = 0) and u⊥(k, t = 0); see Eqs. (B.8)
and Sec. IV C below.

C. Time evolution of external perturbations

Another way to probe the generalized rigidity of the system
is via the relaxation of initial perturbations of the temperature
and the shear velocity. In this subsection we determine the
relevant relaxation functions, and in the following one we dis-
cuss the resulting propagation of a temperature perturbation.
We note that the response to initial conditions is equivalent to
the response to external fields, and the relaxation functions
can be expressed in terms of the response functions; see
Eqs. (B8).

1. Hydrodynamic regime

We consider again the averaged simplified Navier-Stokes
equations, but in the absence of external fields. We then have
homogeneous equations

(∂t + νk2) u⊥(k, t ) = 0, (4.16a)

(∂t + DTk2) δT (k, t ) + (k̂⊥ · ∇T )u⊥(k, t ) = 0, (4.16b)

where we have transformed back to time space. They are eas-
ily solved by means of a temporal Laplace transform defined
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as in Eq. (B4a). With z as the complex frequency we find [46]

u⊥(k, z) = Mu⊥u⊥ (k, z) u⊥(k, t = 0), (4.17a)

δT (k, z) = MTu⊥ (k, z) u⊥(k, t = 0)

+ MT T (k, z) δT (k, t = 0). (4.17b)

The response or relaxation functions M are related to the
functions that describe the linear response of the system to
fields conjugate to the shear velocity and the temperature,
respectively; see Eqs. (B.8). For Im z > 0, they are given by

Mu⊥u⊥ (k, z) = 1

−iz + νk2
, (4.18a)

MTu⊥ (k, z) = −(k̂⊥ · ∇T )
1

−iz + νk2

1

−iz + DTk2
,

(4.18b)

MT T (k, z) = 1

−iz + DTk2
. (4.18c)

Note that Mu⊥u⊥ and MT T are the same response func-
tions as in equilibrium; [43] they are simple diffusion poles.
MTu⊥ vanishes in equilibrium, but is nonzero in a NESS due
to the coupling of the shear velocity to the temperature in
Eq. (4.16b). It is a product of diffusion poles or, equivalently,
a linear combination of diffusion poles with a prefactor pro-
portional to 1/k2. There is no response of the shear velocity to
an initial temperature perturbation since the temperature does
not couple into Eq. (4.16a). Transforming back to time space
we have

Mu⊥u⊥ (k, t ) = e−νk2t , (4.19a)

MTu⊥ (k, t ) = (k̂⊥ · ∇T )

(ν − DT)k2
(e−νk2t − e−DTk2t ), (4.19b)

MT T (k, t ) = e−DTk2t . (4.19c)

2. Collisionless regime

In the collisionless regime we need to consider the kinetic
equation (2.47) for the averaged distribution function φ =
〈φ̂〉. Here the procedure is more involved, and we consider the
equilibrium and nonequilibrium contributions to the response
separately.

Equilibrium contribution. Consider Eq. (2.47), averaged
and in the absence of the temperature gradient. It can be solved
by a Fourier-Laplace transform:

φ(p, k, z) = G0(p, k, z) φ(p, k, t = 0), (4.20a)

with

G0(p, k, z) = i

z − k · vp
. (4.20b)

Transforming back to time space yields

φ(p, k, t ) = G0(p, k, t ) φ(p, k, t = 0), (4.21a)

with

G0(p, k, t ) = e−ik·vpt (4.21b)

a real-time Green function. In terms of this solution the tem-
perature fluctuations are given by [8,21]

δT (k, t ) = 1

cV

1

V

∑
p

w(p) a5(p) φ(p, k, t )

≡ 1

cV
〈a5(p)|φ(p, k, t )〉 (4.22)

with a5(p) from Eq. (A1d) and

〈g(p)|h(p)〉 = 1

V

∑
p

w(p) g(p) h(p) (4.23)

the scalar product from Ref. [8] with w the weight function
defined in Eq. (2.42). If we multiply Eq. (4.21a) from the
left with 〈a5(p)| and project the initial condition onto the
temperature by inserting a projector

P5 = |a5(p)〉〈a5(p)|
〈a5(p)|a5(p)〉 , (4.24)

we obtain for the equilibrium part of the temperature fluctua-
tions

δTeq(k, t ) = 〈a5(p)|e−ik·vpt a5(p)〉
〈a5(p)|a5(p)〉 δT (k, t = 0). (4.25)

Nonequilibrium contribution. For the nonequilibrium con-
tribution we consider again the kinetic equation (2.47) without
the fluctuating force, but with the temperature-gradient term
taken into account. The solution now reads

φ(p, k, t ) = G0(p, k, t ) φ(p, k, t = 0) − 1

T
as(p)(k̂⊥ · ∇T )

×
∫ t

0
dτ G0(p, k, t − τ ) u⊥(k, τ ). (4.26)

The transverse velocity u⊥ is given by Eq. (A4c), which can
be written

u⊥(k, t ) = 1

ρ
〈a3(p)|φ(p, k, t )〉, (4.27)

Multiplying Eq. (4.26) from the left with 〈a5(p)| we obtain
the temperature fluctuation in a NESS,

δT (k, t ) = 1

cV
〈a5(p) e−ip·k t |φ(p, k, t = 0)〉 − (k̂⊥ · ∇T )

cV T

×
∫ t

0
dτ

〈
a5(p) e−ip·k(t−τ )|as(p)

〉
u⊥(k, τ ). (4.28)

The first term, if projected onto δT (k, t = 0), is the equi-
librium contribution given in Eq. (4.25). The second term is
the nonequilibrium contribution. It is explicitly proportional
to ∇T , so we can take the equilibrium expression for u⊥.
The latter is obtained by multiplying Eq. (4.21a) from the left
with 〈a3(p)|. Projecting the initial condition on the transverse
velocity, as we did for the temperature in Eqs. (4.22)–(4.25),
we find

u⊥(k, t ) = 1

ρ
〈a3(p)|e−ik·vpt a3(p)〉 u⊥(k, t = 0). (4.29)

Here we have used the fact that the projection operations that
lead to Eqs. (4.25) and (4.29), respectively, reflect the fact
that we restrict the space of modes to the temperature and
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transverse velocity fluctuations. Using Eq. (4.29) in (4.28)
yields the nonequilibrium contribution to δT :

δTneq(k, t ) = (k̂⊥ · ∇T )

ρT

1

V 2

∑
p1,p2

w(p1) w(p2) a5(p1)as(p1)

× (a3(p2))2 e−ip1·kt − e−ip2·kt

k · (
vp1

− vp2

) u⊥(k, t = 0).

(4.30)

Comparing Eqs. (4.30) and (4.25) we see that the nonequi-
librium contribution scales as the equilibrium one with a 1/k
prefactor, in analogy to the behavior in the hydrodynamic
regime, where the extra prefactor scaled as 1/k2.

Combining our results we now know the response func-
tions defined by Eqs. (4.17) in the collisionless regime:

Mu⊥u⊥ (k, t ) = 1

ρ

〈
a3(p)

∣∣e−ik·vpt a3(p)
〉
, (4.31a)

MTu⊥ (k, t ) = (k̂⊥ · ∇T )

ρT

1

V 2

∑
p1,p2

w(p1) w(p2) a5(p1)

× as(p1)[a3(p2)]2 e−ip1·kt − e−ip2·kt

k · (vp1
− vp2

)
, (4.31b)

MT T (k, t ) = 1

cV T

〈
a5(p)

∣∣e−ik·vpt a5(p)
〉
. (4.31c)

D. Propagation of a temperature perturbation

As another illustrative example of the dynamical conse-
quences of the long-range correlations discussed in Sec. III
we consider the response of the system to initial perturbations
as expressed by Eqs. (4.17)–(4.19). For a classical fluid this
problem has been discussed in Ref. [13]. Suppose the temper-
ature in a small subvolume V is changed, at time t = 0, by
an amount δT (0), and the transverse velocity u⊥ is changed
from zero to a value u(0)

⊥ . Let V be small enough that these
initial perturbations can be described by spatial δ functions
in a coarse-grained macroscopic description. The initial con-
ditions in Fourier space are then independent of the wave
number [47]:

δT (k, t = 0) ≡ V δT (0), (4.32a)

u⊥(k, t = 0) ≡ V u(0)
⊥ , (4.32b)

and we are interested in δT (x, t ) at times t > 0. As a measure
of the propagation of the perturbation we consider the second
spatial moments of δT (x, t ), which we define by

〈
x2

i

〉 = 1

T V

∫
dx x2

i [δTeq(x, t ) + |δTneq(x, t )|]

= 〈x2
i 〉eq + 〈x2

i 〉neq, (4.33)

where x1, x2, x3 ≡ x, y, z. Here we have split 〈x2
i 〉 into an

equilibrium contribution and a nonequilibrium contribution,
determined by Eqs. (4.19c) and (4.19b), respectively. For the
nonequilibrium contribution we take the absolute value, since
δTneq can be either positive or negative, which has no physical
significance.

1. Hydrodynamic regime

In the hydrodynamic regime we use Eqs. (4.19). They are
based on the Navier-Stokes equations, which have the same
form as in the classical case. We therefore obtain the same
result as in Ref. [13]: The propagation of the temperature
perturbation is given by

δT (k, t ) = V δT (0) e−DTk2t

+ (k̂⊥ · ∇T )V u(0)
⊥

(ν − DT)k2
(e−νk2t − e−DTk2t ). (4.34)

The first term is the equilibrium contribution, which has the
usual diffusive form and is isotropic in k space. The second
term is the nonequilibrium contribution, which is anisotropic.
It is given by a linear combination of diffusive terms with
a prefactor that scales as 1/k2. This is consistent with the
scaling of the nonequilibrium part of the commutator corre-
lation χT T ; see Eqs. (3.5b) and (3.6b). Since the wave number
squared scales as k2 ∼ 1/t , this must lead to an extra power
of t , compared to the equilibrium contribution, in 〈x2

i 〉. Indeed,
the calculation yields, with ∇T in the z direction,

〈x2〉eq = 〈y2〉eq = 〈z2〉eq = 2DT
δT (0)

T
t, (4.35a)

〈x2〉neq = 〈y2〉neq = 1

24
(ν + DT)

t2

t0
, (4.35b)

where

t0 = T/|u(0)
⊥ ∂zT | (4.35c)

is a timescale characteristic of the NESS, and

〈z2〉neq = 0. (4.35d)

The equilibrium contribution has the form expected for
a perturbation that spreads diffusively and isotropically. The
nonequilibrium contribution, in the plane perpendicular to
∇T , grows quadratically as a function of time, as expected
from the above scaling argument. This anomalously fast prop-
agation, which is consistent with a propagating transport
process rather than a diffusive one, is a consequence of the
same generalized rigidity that causes the long-ranged corre-
lations in the static correlation functions, Eqs. (3.6). 〈z2〉neq

vanishes as a result of the angular dependence of the nonequi-
librium term in Eq. (4.34).

2. Collisionless regime

In the collisionless regime we must use Eqs. (4.31). The
equilibrium contribution is again isotropic and we find

〈x2〉eq = 〈y2〉eq = 〈z2〉eq = −1

3TV ∇2
k

∣∣∣∣
k=0

δTeq(k, t )

= 1

3T
δT (0) 1

〈a5(p)|a5(p)〉 〈a5(p)|v2
pa5(p)〉 t2. (4.36)

In the low-temperature limit this becomes

〈r2〉eq ≈ (δT (0)/T ) v2
F t2, (4.37)

where r2 = x2. This is the expected result for a ballistic mode
with velocity vF.
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The nonequilibrium contribution scales as the equilibrium
one with a 1/k prefactor; see Eq. (4.30). Since k ∼ 1/t in the
collisionless regime we again expect this to result in an extra
power of t in the nonequilibrium contribution to 〈r2〉. Indeed,
the calculation yields

〈x2〉neq = 〈y2〉neq = 1

3cV ρT

1

V 2

∑
p1,p2

w(p1) w(p2)

× a5(p1) as(p1)
(
py

2

)2

⎛
⎝(

vx
p1

)3 − (
vx

p2

)3

vx
p1

− vx
p2

⎞
⎠ t3

t0

(4.38a)

with t0 from Eq. (4.35c), and

〈z2〉neq = 0. (4.38b)

We see that the temperature perturbation in a NESS prop-
agates faster than ballistically as a result of the generalized
rigidity that is reflected in the long-ranged spatial correlations.
vx

p and py in Eq. (4.38a) are the x and y components of vp and
p, respectively, in an arbitrarily chosen cartesian coordinate
systems. 〈z2〉neq vanishes for the same reason as in the hydro-
dynamic regime.

E. Response versus fluctuations: The absolute size of the effect

A very interesting aspect of the response formulas derived
in this section is that they allow for the observation of the
commutator correlation functions with a prefactor that is, (1)
much larger than the one in the corresponding fluctuation
formulas, and (2) does not go to zero as T → 0. To make
this point, consider the fluctuation formula (3.8a). Ssym is
directly observable by light scattering, while χ is not, and
the proportionality factor between the two is a microscopic
energy, viz., the temperature. We wish to compare this with
the response formulas given by Eqs. (4.13)–(4.15). Since the
driving field hu⊥ is proportional to the shear velocity pertur-
bation [see Eqs. (4.12)], a properly defined bilinear response
function must be proportional to the anticommutator correla-
tion with the proportionality factor given by a macroscopic
kinetic energy. To find the response function analogous to
the symmetrized correlation function, consider the linear re-
sponse to an initial shear-velocity perturbation, Eqs. (4.17).
The initial condition u⊥(k, t = 0) = ∫

dx e−ik·xu⊥(x, t = 0)
is a Fourier transform of a macroscopic velocity and hence
scales as a macroscopic volume, and its square scales as a
volume squared. Now consider the corresponding equations of
motion (2.36) for microscopic fluctuations and write them as
an initial-condition problem. The initial microscopic velocity
û(k, t = 0) vanishes on average, and the average of its sym-
metrized square is

1
2 〈[û⊥(k, t = 0), û(−k, t = 0)]+〉 = V T/ρ; (4.39)

see Eq. (3.4b), which scales as a volume. If we want to com-
pare the response formulas with the fluctuation formulas we
therefore should divide the bilinear products in Eqs. (4.13)–
(4.15) by a volume to compensate for this difference in the
scaling of the initial conditions with the volume. Accordingly,

we define bilinear response functions analogous to the corre-
lation functions Ssym as

�T T (k) = −i

V

∫
dω

π
ω δT̃ (k, ω) T (−k,−ω), (4.40a)

�Tu⊥ (k) = −i

V

∫
dω

π
ω δT (k, ω) u⊥(−k,−ω), (4.40b)

�u⊥u⊥ (k) = −i

V

∫
dω

π
ω ũ⊥(k, ω) u⊥(−k,−ω). (4.40c)

The volume factor is motivated by the above consider-
ations, and the frequency factor in the integrand replaces
one of the frequency integrations in the fluctuation formula
(3.8b). From Eqs. (4.13)–(4.15) together with (4.12) we see
that the energy that replaces T in the fluctuation formula
is T = ρ 1

V |u⊥(k, t = 0)|2. But the Fourier transform of the
initial shear velocity is on the order of u⊥(k, t = 0) ≈ V u(0)

⊥ ,
with V the volume affected by the external perturbation and
u(0)

⊥ the magnitude of the externally imposed shear velocity.
We thus obtain response formulas

�T T (k) = T χ
neq
T T (k), (4.41a)

�Tu⊥ (k) = T χTu⊥ (k), (4.41b)

�u⊥u⊥ (k) = T χu⊥u⊥ (k). (4.41c)

Here χ
neq
T T (k) is the nonequilibrium part of the static an-

ticommutator correlation function χT T , Eq. (3.6b), and χTu⊥
and χu⊥u⊥ are given by Eqs. (3.7f) and (3.4d), respectively.
The energy factor is

T = M (u(0)
⊥ )2(V/V )2, (4.42)

with M the total mass of the fluid. T thus is the kinetic energy
added to the fluid by the perturbation times a factor of V/V .

There are several remarkable aspects of this result. First,
T is a macroscopic kinetic energy, which is large compared
to the microscopic energy T (roughly the internal energy per
particle) by many orders of magnitude. Second, Eq. (4.41a)
provides a way to measure the nonequilibrium part of χT T

directly, with no equilibrium background. Third, Eq. (4.41b)
shows that the mixed correlation function χTu⊥ is observable.
Finally, Eq. (4.41c) provides a way to measure χu⊥u⊥ via a
response experiment, even though it has the same form as in
equilibrium.

V. SUMMARY AND DISCUSSION

In this section we first summarize our procedures and re-
sults, with an emphasis on how the various sections of the
paper are connected. We then discuss various points that re-
ceived only cursory mention in the main text.

A. Summary

The main purpose of this paper has been to consider the
quantum analogs of the extraordinarily long-ranged correla-
tions that are known to generically exist in a classical fluid
in a nonequilibrium steady state (NESS) characterized by a
constant temperature gradient, and to identify methods for
observing them. The main challenges were, (1) the different
nature of soft modes that cause the long-range correlations in
the hydrodynamic and collisionless regimes, respectively, of a
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quantum fluid, (2) the necessity to distinguish between com-
mutator and anticommutator correlation functions, and (3) the
lack of an established relation between correlation functions
and response functions. Conceptually, the most interesting and
consequential point is the last one, which applies to classical
fluids as well as quantum fluids.

In Sec. II we considered a fluctuating quantum kinetic
theory for fermions and used an adaptation of the classical
Chapman-Enskog method to derive fluctuating Navier-Stokes
equations for the hydrodynamic regime. This was done mostly
for completeness, as the Navier-Stokes equations must have
the same structure as in a classical fluid. In order to describe
the collisionless regime we used the underlying kinetic equa-
tion. In equilibrium this theory reduces to the one developed in
Ref. [21]. We simplified both the Navier-Stokes equations and
the kinetic equation by keeping only the essential fluctuations,
namely, the heat mode and the shear velocity, and linearizing
about the NESS.

In Sec. III we calculated the temperature and shear velocity
correlation functions in both the hydrodynamic and collision-
less regimes. In the hydrodynamic regime the temperature
correlations display the same long-rangedness as in a classical
fluid. In the collisionless regime they are still long-ranged,
but the singularity is weaker due to the ballistic nature of
the soft velocity modes, in agreement with an educated guess
presented in the Introduction. The shear velocity fluctuation
functions have the same form as in equilibrium. All of these
results rely on the premise that the correlations of the fluctuat-
ing forces are the same as in equilibrium. We will discuss this
point in Sec. V B.

In Sec. IV we added a force conjugate to the shear velocity
and calculated the related response functions. We then showed
that, for the problem under consideration, all of the commuta-
tor correlation functions can be expressed in terms of products
of response functions. That is, the long-range correlations
can be observed by probing the system’s linear response to
a macroscopic external perturbation, as an alternative to mea-
suring correlation functions. The resulting response formulas
relate a product of linear responses to a commutator correla-
tion function via a macroscopic energy that is on the order
of the kinetic energy transferred to the fluid by the perturba-
tion. By contrast, the energy in the corresponding fluctuation
formulas is the temperature, which is smaller by many orders
of magnitude. We also discussed another manifestation of the
long-ranged correlations, namely, the anomalous propagation
of an initial temperature perturbation that is accompanied by
an initial shear perturbation. The temperature perturbation
spreads faster than expected for diffusive processes in the
hydrodynamic regime, or ballistic ones in the collisionless
regime, which is indicative of the generalized rigidity that
accompanies the long-ranged correlations.

B. Discussion

1. The relative size of the effect

In Sec. IV E we discussed the absolute size of the long-
ranged correlations in the framework of either spontaneous
fluctuations, or the response to a macroscopic perturbation.
Here we give a semiquantitative discussion of the size of
the effect relative to the equilibrium correlations for various

systems. We consider the hydrodynamic regime and rewrite
Eq. (3.6b) as [60]

χT T (k) = T

cp
[1 + (k∗/k)4], (5.1a)

where

k∗ = (kexpkmat)
1/2. (5.1b)

Here

kexp = (k̂⊥ · ∇T )/T (5.1c)

is a wave number that can be controlled experimentally, and

kmat = [cpT/ρDT(ν + DT)]1/2 (5.1d)

is a wave number that is material dependent. For T2 − T1 ≈
T (see Fig. 1) and L ≈ 1 cm, one has kexp ≈ 1 cm−1. In the
collisionless regime we have [see Eq. (3.13)]

χT T (k) = 1

NF

3

π2
[1 + s(a) (T/εF)2(kexp/k)2] (5.2)

with s(a) ≈ 13.8 from Eq. (3.14b).
In what follows we give rough estimates for the values of

kmat and k∗ in various materials. The relevant parameters are
listed in Table I.

a. n-hexane. This is the fluid used in the experiment in
Ref. [48]. kexp ranged from 0.2 to 0.5 cm−1. With the pa-
rameters given in Table I one finds kmat ≈ 4 × 107 cm−1 and
k∗ ≈ 4, 430 cm−1. For the smallest wave number in that ex-
periment, k = 1, 607 cm−1, this yields (k∗/k)4 ≈ 58. That is,
the nonequilibrium contribution to χT T is larger than the equi-
librium one by a factor of about 60, in agreement with Fig. 6
in Ref. [48] [see, e.g., Eq. (8b) in Ref. [13] for an expression
of the factors Aν and AT in terms of the material parameters].

The numbers for other classical liquids (e.g., water; see
Table I) at room temperature are similar.

b. Classical gases. The corresponding parameters for
air and Ar, respectively, at room temperature yield k∗ ≈
300 cm−1. This smaller value compared to liquids is largely
due to the transport coefficients being larger by a factor of
about 100, which reflects the larger mean-free path.

c. Liquid He3. In liquid He3 at T = 1 K the specific heat
per mass and the transport coefficients are comparable to
those in classical liquids, which leads to k∗ ≈ 1500 cm−1.
The smaller value of k∗ is due to the lower temperature. For
k ≈ k∗ this still means that the nonequilibrium contribution
is on the same order as the equilibrium one. However, one
needs to remember that a scattering experiment measures ST T ,
which is suppressed by an overall factor of T due to the low
temperature, which makes a response experiment attractive. In
the collisionless regime the relative size of the nonequilibrium
effect is still smaller; see Eq. (5.2) (εF ≈ 1.5 K for He3.)

d. Solid metals. It is interesting to estimate k∗ in met-
als, even though χT T in metals cannot be measured by light
scattering. In a typical good metal the Fermi wave number
is kF ≈ 108 cm−1, the Fermi velocity is vF ≈ 108 cm/s, and
εF ≈ 105 K. At temperatures low enough that electron-phonon
scattering can be neglected, the electrons are well modeled as
free fermions. The specific heat is cp/ρ = π2T/2mεF, with m
the fermion mass, and the diffusion coefficient and the shear

044140-16



FLUCTUATION-RESPONSE RELATION AS A PROBE OF … PHYSICAL REVIEW E 109, 044140 (2024)

TABLE I. Material parameters relevant for the long-range correlations.

System Temperature Mass density Specific heat Thermal diffusion Kinematic kmat (cm−1) k∗ (cm−1)
T (K) ρ (g/cm3) cp/ρ (erg/g K) coefficient viscosity [1] [2]

DT (cm2/s) ν (cm2/s)

n-hexane 298 0.655 [3] 2.264×107 [3] 8.195×10−4 [3] 4.517×10−3 [3] 3.93×107 4,432
H2O 298 0.997 [4] 4.19×107 [4] 1.45×10−3 [4] 0.89×10−2 [4] 2.88×107 3,795

Air 300 1.16×10−3 [4] 1.00×107 [4] 0.23 [4] 0.160 [4] 1.82×105 302
Ar 300 1.60×10−3 [4] 5.21×106 [4] 0.21 [4] 0.142 [4] 1.4×105 267

Liquid He3 1 8.17×10−2 [5] 1.43×107 [6, 5] ≈7×10−4 [7, 6] 3.49×10−4 [8, 5] 4.4×106 1,485
Liquid Hg 298 13.53 [4] 1.40×106 [4] 4.3×10−2 [4] 1.1×10−3 [4] 4.69×105 484
Liquid Ga 303 6.09 [9] 3.99×106 [10] 0.17 [10] 3.23×10−3 [9] 2.02×105 318

Solid Al 298 2.70 [4] 8.97×106 [4] 0.98 [4] 200 [11] 3,900 60

Cold atoms ≈5×10−8 [12] 1.7×10−9 [13] 1.0×106 [13] 6.7×10−4 [13] 4.0×10−4 [13] 270 12

Graphene 300 2.25 [14] 3×106 [14] 30 [14] 500 [15] 238 11

References [1] From Eq. (5.1d); [2] for kexp = 0.5 cm−1; [3] Ref. [48]; [4] Ref. [49] [5] Ref. [50]; [6] Ref. [51].
and [7] From thermal conductivity data at various pressures, Ref. [52], extrapolated to T = 1K.
Notes [8] Ref. [53]; [9] Ref. [54]; [10] at 313 K, Ref. [55].

[11] Calculated as ν = vF
/5 with vF ≈ 2×108 cm/s and 
 ≈ 50 nm [56].
[12] Ref. [57]; [13] calculated values, Eq. (5.3), for noninteracting K40 atoms with εF ≈ 0.5 µK.
[14] Measured valued from Ref. [58]; [15] calculated value from Ref. [59].

velocity are DT = v2
Fτ/3 and ν = v2

Fτ/5, respectively, with
τ = 2εF/πT 2 the relaxation time. This yields

kmat = π2 3
√

5

211/2

(
T

εF

)3

kF ≈ 0.15 (T/εF)3kF. (5.3)

With the parameters given above, and at, say, T = 1 K, kmat

and k∗ are too small to be observable by many orders of
magnitude.

At higher temperatures (say, T = 300 K) the system can be
considered a two-component fluid, consisting of the electrons,
which are still highly degenerate, and phonons. A typical elec-
tronic mean-free path then is 
 ≈ 10−5 cm [56]. To estimate
kmat we use the observed values of the specific heat and the
thermal diffusion coefficient; the values for Al are given in
Table I. The kinematic viscosity one expects to be dominated
by the electrons, so we use ν ≈ vF
/5 ≈ 200 cm2/s. With
kexp ≈ 0.5 cm−1 as in n-hexane this yields k∗ ≈ 60 cm−1.

This relatively small value of k∗ brings up a complication
that has to do with impurities. The electron-impurity scatter-
ing rate 1/τi = vF
i gives the velocity a mass, and in order for
the shear velocity to remain diffusive one must have 1/τe-i <

νk2 ≈ v2
Fτe-ek2, with τe-e the electron-electron scattering time.

This implies that the relation

k2
i 
 > 1 (5.4)

is a necessary condition for the Navier-Stokes equations to be
valid in an electron fluid. Together with the general condition
k
 < 1 this means that the Navier-Stokes equations are appli-
cable only in a wave-number window

1/
√


 
i < k < 1/
. (5.5)

The existence of the window requires only 
i > 
, but the
lower bound is quite restrictive even for ultraclean metals.
A residual resistivity ρi ≈ 10−4µ� cm [61] corresponds to

i ≈ 0.1 cm. With 
 as above this yields the requirement k �

1000 cm−1. At lower temperatures the lower bound is smaller,
but so is kmat and hence k∗.

e. Liquid metals. The lower limit on the hydrodynamic
window does not exist in a liquid metal, which can be consid-
ered a two-component plasma, with the electrons again highly
degenerate. The parameters for mercury at room temperature
and gallium just above the melting point yield k∗ ≈ 500 cm−1

and k∗ ≈ 300 cm−1, respectively.
f. Cold atoms. In a typical fermionic cold-atom system,

kF ≈ 105 cm−1 and T/εF ≈ 0.1 [57]. Equation (5.3) then
yields kmat ≈ 250 cm−1 and k∗ ≈ 10 cm−1; see Table I. The
low density of these systems leads to a small kF, which sup-
presses the effect.

g. 2D electron systems. An interesting 2D electron system
is provided by graphene, where the hydrodynamic condition
(5.4) is easier to satisfy than in metals. Using the observed
values for the specific heat of graphene at T ≈ 300 K [58] and
the calculated value for the kinematic viscosity [59] one finds
kmat ≈ 240 cm−1, and k∗ ≈ 11 cm−1, which is about the same
as in a cold-atom system.

These rough estimates indicate that the effect in quantum
systems becomes sizable only at substantially smaller
wave numbers than in classical ones, with liquid He3 and
liquid metals the most promising systems. This makes the
manifestations of the effect as a response to macroscopic
perturbation that were discussed in Secs. IV B–IV E attractive
for experimental purposes. In this context we mention again
that the response formula (4.41a) allows for measurements
of the nonequilibrium part of the correlation function χT T

separately, with no background provided by the equilibrium
contributions.

2. General discussion

We finally discuss in more detail several aspects of our
procedure and our results.
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(1) An important question that has not been emphasized
in the past is whether the long-ranged correlations we have
discussed throughout this paper are due to thermal fluctuation
effects, or whether they are more generic and reflect a gen-
eralized rigidity, in the sense of Ref. [12], that is inherent to
the NESS. Recent work on classical fluids [13] suggested the
latter. This conclusion is supported by the fact that the corre-
lation functions are long-ranged even though the correlations
of the fluctuating forces are not; see Eqs. (2.38) [62]. This is
consistent with the fact that the results for classical fluids are
the same irrespective of whether they are obtained, as in the
original derivations [2,9], by using kinetic theory and mode-
coupling theory, or by using fluctuating hydrodynamics with
short-ranged random-force correlations [10,63]. This implies
that the long-rangedness is encoded in the averaged hydrody-
namic equations. Indeed, as we have shown in Sec. IV, the
solution of the initial-value problem for the latter contains the
long-rangedness and the related generalized rigidity.

(2) A related issue is the use of random-force correlations
that are the same as in local equilibrium. Strictly speaking
this represents an assumption, although various plausibility
arguments have been given; see Refs. [39,40]. The calcula-
tion of the correlation functions nevertheless reveals strong
long-ranged correlations and associated generalized rigidity.
This is true both classically and quantum mechanically, and it
indicates that long-ranged correlations are an inherent aspect
of hydrodynamics in a NESS; see above. The experimental
results in classical fluids are in very good agreement with the
theory, which lends further credence to the assumption. Mea-
suring the response functions, in addition to the correlation
functions, would provide another check on the validity of the
assumption. The development in Sec. IV makes such a check
possible; previously a direct connection between long-ranged
correlation functions and some type of response theory had
been lacking.

(3) A major obstacle for establishing a relation between
correlations and response had been the absence, in any
system that is not in thermodynamic equilibrium, of a sim-
ple fluctuation-dissipation theorem that relates correlation
functions to response functions. Specifically, commutator cor-
relation functions no longer are equal to response functions
and their physical meaning is a priori unclear. Substantial
work has been done on fluctuations in systems far from
equilibrium (see Refs. [64,65] and references therein), on
nonequilibrium linear response [66], and on the relation be-
tween these topic [65,67,68]. However, there has been no
prescription for probing fluctuations via the system’s response
to external perturbations. We have studied a very simple
nonequilibrium state, viz., a fluid in a NESS characterized
by a constant temperature gradient, and have employed var-
ious simplifications [5]. For this system we have shown, in
Sec. IV, that there still is a connection between the correlation
functions and the response functions: The former are related
to the bilinear response of products of observables to a field
conjugate to the shear velocity. The fluid’s response to exter-
nal perturbations thus contains the same information about the
generalized rigidity as the correlation functions. This unex-
pected relation between correlations and response opens an
alternative way for experimentally probing the long-ranged
correlations. It is important to keep in mind that the relation

holds due to the structure of the hydrodynamic equations in
the NESS, and in particular to the fact that the shear-velocity
correlation functions still describe the linear response to a
conjugate field, as they do in equilibrium; see the remarks
after Eqs. (3.7). We also note that it is true for causal functions
that represent simple resonances, in particular diffusion poles,
but not for causal functions in general.

(4) It is illustrative to compare Eqs. (4.2, 4.3) and (3.3).
The expression for δT in Eq. (4.2b), with the response func-
tion given by Eq. (4.3b), is the same as the nonequilibrium
contribution in the first line of (3.3b), with the fluctuating
force P⊥ replaced by a macroscopic driving force proportional
to the field hu⊥ . This makes it plausible that the nonequi-
librium part of the commutator correlation function χ ′′

T T is
related to the bilinear response of a product of two δT factors,
as Eq. (4.14) demonstrates. In some sense this is a more
plausible structure than in equilibrium, where the commutator
correlation function is a linear response function.

(5) The light-scattering experiments that have been used
to experimentally confirm the long-range correlations in clas-
sical fluids in a NESS (see Ref. [11] and references therein)
are difficult since they require very small scattering angles.
This is even more relevant in quantum fluids, since the fluc-
tuation effects become weaker with decreasing temperature.
Our predictions in Sec. IV B open another route to measuring
the long-ranged correlations, namely, via the response of the
system to macroscopic perturbations. Alternatively, they can
be probed via the propagation of an initial temperature pulse
that is accompanied by an initial perturbation of the shear
velocity, as was discussed for classical fluids in Ref. [13] and
in the present context in Secs. IV C, IV D. Such experiments
will also test the prediction of the theory that, while the fluctu-
ation effects become weaker with decreasing temperature, the
generalized rigidity does not.

(6) Light-scattering experiments actually measure the cor-
relation function of the fluctuations of the dielectric function,
which are largely proportional to the density fluctuations (the
contribution of the temperature fluctuations is small); see,
e.g., Appendix A.4 of Ref. [7]. The fluctuations of interest,
namely, those of the temperature or the entropy per particle,
are reflected in the central Rayleigh peak of the density-
density correlation function. The sound modes are reflected
in the Brillouin peaks. Neglecting the latter, as we have done,
changes the specific heat cV in Eqs. (1.1) and (1.2) to cp, as
the sound modes give an additional contribution to the sum
rule; see Ref. [7] for a discussion. This is why the equilibrium
contributions to Eqs. (III.5) contain cp.

(7) Our results hold a fortiori for charged Fermi liquids,
i.e., for conduction electrons in metals, since the Coulomb
interaction renders massive the longitudinal sound modes,
which we have neglected, but has no effect on the other soft
modes. In particular, for a metal in the collisionless regime our
results hold without the caveat that the pressure fluctuations,
which we have neglected, have an effect that is qualitatively
the same as the effect of the shear modes, which we have
kept; see the remarks after Eqs. (3.15). However, all other
zero modes, to the extent that they exist (this depends on
the values of the Landau Fermi-liquid parameters), still yield
contributions that scale the same as those from transverse zero
sound.
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FIG. 3. The three vectors spanning k-space and the temperature
gradient.

APPENDIX A: FLUCTUATIONS OF OBSERVABLES
AND HYDRODYNAMIC MODES

Here we recall how various observables are represented in
the kinetic theory. For derivations see Ref. [8]. The notation is
the same as in that reference unless noted otherwise.

Define the functions

a1(p) = 1, (A1a)

a2(p) = k̂ · p, (A1b)

a3,4(p) = k̂
(1,2)
⊥ · p, (A1c)

a5(p) = εp − μ + T

(
∂μ

∂T

)
N,V

, (A1d)

as in Ref. [8], and in addition

ap(p) = 1

cV

(
∂ p

∂T

)
N,V

a5(p) +
(

∂ p

∂n

)
T,V

a1(p), (A1e)

as(p) = εp − μ − sT/n = a5(p) − T

n

(
∂ p

∂T

)
N,V

a1(p).

(A1f)

Here k̂, k̂
(1)
⊥ , and k̂

(2)
⊥ form a right-handed orthogonal sys-

tem of unit vectors, with k̂ = k/k the unit wave vector. All
other quantities are as defined in Sec. II. For our purposes

it is convenient to choose a coordinate system such that k̂
(2)
⊥

is orthogonal to both k̂ and ∇T , and k̂
(1)
⊥ lies in the plane

spanned by k̂ and ∇T ; see Fig. 3. With this convention only

k̂
(1)
⊥ ≡ k̂⊥ and u⊥ = k̂⊥ · u contribute to the scalar product

∇T · u⊥. If we choose ∇T to point in the z direction we have
explicitly

k̂
(1)
⊥ = 1

k
√

k2
x + k2

y

(−kxkz,−kykz, k2
x + k2

y ), (A2a)

k̂
(2)
⊥ = 1√

k2
x + k2

y

(ky,−kx, 0). (A2b)

We will also need the normalizations [8]

〈a1(p)|a1(p)〉 = (∂n/∂μ)T,V , (A3a)

〈a2(p)|a2(p)〉 = 〈a3(p)|a3(p)〉 = 〈a4(p)|a4(p)〉 = ρ,

(A3b)

〈a5(p)|a5(p)〉 = cV T, (A3c)

〈as(p)|as(p)〉 = cpT, (A3d)

with 〈 | 〉 the scalar product from Ref. [8] (see also Eq. (4.23).
Equations (A3a) and (A3b) hold for noninteracting electrons
only.

The fluctuations of the particle number density n, the lon-
gitudinal fluid velocity uL, the relevant component of the
transverse velocity, u⊥, and the temperature T are given by

δn(x, t ) = 1

V

∑
p

a1(p) δ fp(x, t ), (A4a)

δuL(x, t ) = 1

ρ

1

V

∑
p

a2(p) δ fp(x, t ), (A4b)

δu⊥(x, t ) = 1

ρ

1

V

∑
p

a3(p) δ fp(x, t ), (A4c)

δT (x, t ) = 1

cV

1

V

∑
p

a5(p) δ fp(x, t ), (A4d)

and those of the pressure p and the entropy per particle s/n by

δp(x, t ) = 1

V

∑
p

ap(p) δ fp(x, t ), (A4e)

δ(s/n)(x, t ) = 1

T n

1

V

∑
p

as(p) δ fp(x, t ). (A4f)

The complete transverse velocity fluctuation is

δu⊥(x, t ) = 1

ρ

1

V

∑
p

[a3(p)k̂
(1)
⊥ + a4(p)k̂

(2)
⊥ ]δ fp(x, t ).

(A4g)

Of these fluctuations, only δ(s/n) and δu⊥ are hydro-
dynamic modes, viz., the heat mode and the shear modes,
respectively. They are all diffusive. The remaining hydrody-
namic modes are two propagating longitudinal sound modes,
given by the linear combinations

δp(x, t ) ± c1ρ δuL(x, t ) (A5)

with c1 the speed of (first) sound. The temperature fluctuations
can be written as linear combinations of entropy fluctuations
δ(s/n) and pressure fluctuations δp by combining Eqs. (A1d),
(A1e), and (A1f). After using some thermodynamic identities
we find [69]

a5(p) = cV

cp

[
as(p) − T

n

(
∂n

∂T

)
p,V

ap(p)

]
(A6a)

or

δT (x, t ) = T n

cp
δ(s/n)(x, t ) − T

ncp

(
∂n

∂T

)
p,V

δp(x, t ). (A6b)

Note that the two contributions to the longitudinal sound
modes in Eq. (A5) are mutually orthogonal, so Eq. (2.2)
expresses the temperature fluctuation as a linear combination
of two hydrodynamic modes plus a contribution that is orthog-
onal to both of these modes. Similarly, we can write density
fluctuations as linear combinations of entropy and pressure
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fluctuations. We find [69]

δn(x, t ) = T n

cp

(
∂n

∂T

)
p,V

δ(s/n)(x, t )

+ cV

cp

(
∂n

∂ p

)
T,V

δp(x, t ). (A7)

APPENDIX B: CORRELATION FUNCTIONS, RESPONSE
FUNCTIONS, THE FLUCTUATION-DISSIPATION

THEOREM, AND THE INITIAL-VALUE PROBLEM

Here we recall the definitions of various correlation
and response functions, with emphasis on a crucial differ-
ence between equilibrium and nonequilibrium systems. See
Refs. [44] and [7] for detailed discussions of the equilibrium
case. In contrast to the main text, we explicitly keep h̄. We also
discuss the equivalence between linear response to an external
field and an initial-value problem.

1. Correlation functions

Let Âi(x, t ) (i = 1, 2, . . .) be observables. Then the van
Hove function

SAiAj (x, x′; t − t ′) = 〈δÂi(x, t ) δÂ j (x′, t ′)〉 (B1)

with δÂi = Âi − 〈Âi〉 describes correlations between the fluc-
tuations of two observables at different points in space-time.
Related correlation functions are the symmetrized or anticom-
mutator correlation function

Ssym
AiA j

(x, x′; t − t ′) = 1
2 〈[δÂi(x, t ), δÂ j (x′, t ′)]+〉 (B2a)

and the antisymmetrized or commutator correlation function

χ ′′
AiA j

(x, x′; t − t ′) = 1

2h̄
〈[Âi(x, t ), Â j (x′, t ′)]−〉. (B2b)

Here [, ]± denotes an anticommutator and commutator,
respectively, and 〈. . .〉 indicates a quantum mechanical expec-
tation value plus a statistical mechanics average. The relation
between the symmetrized and antisymmetrized correlation
functions in nonequilibrium systems is not known in general.
However, for the particular NESS we consider in this paper
one can, to leading order in the effects of the temperature
gradient, replace the temperature by its spatially averaged
value everywhere except in the crucial coupling term between
the temperature gradient and the shear velocity. Within this
approximation, the temporal Fourier transforms two correla-
tion functions are related by the same factor as in equilibrium,

Ssym
AiA j

(x, x′; ω) = h̄ coth(h̄ω/2T ) χ ′′
AiA j

(x, x′; ω). (B2c)

We stress, however, that this does not imply that χ ′′ is a
linear response function.

2. Response functions and the fluctuation-dissipation theorem

Let hAi be an external field conjugate to Âi. Then the re-
sponse function XAiAj is defined via

δ〈Âi(x, t )〉 =
∫ t

−∞
dt ′ XAiAj (x, x′, t − t ′) hAj (x

′, t ′). (B3)

Let

XAiAj (x, x′; z) = ±
∫ ∞

−∞
dt �(±t ) eizt XAiA j (x, x′, t )

[± for Im(z) >

<
0], (B4a)

with � the step function, be the temporal Laplace transform
of XAiAj , with z the complex frequency [70], and

X ′′
AiA j

(x, x′; ω) = 1

2i
[XAiAj (x, x′; ω + i0)

− XAiAj (x, x′; ω − i0)] (B4b)

its spectral density, which is related to the Laplace transform
via the Hilbert-Stieltjes relation

XAiAj (x, x′; z) =
∫ ∞

−∞

dω

π

X ′′
AiA j

(x, x′; ω)

ω − z
. (B4c)

The response functions in Eqs. (4.2) and (4.3) are

XAiAj (x, x′; ω) = lim
ε→0+

XAiAj (x, x′; z = ω + iε). (B4d)

The spectral densities X ′′
AiA j

determine, at bilinear order
in the external fields, the energy dissipated due to the work
done by the fields [7]. In equilibrium, X ′′

AiA j
= χ ′′

AiA j
, and hence

Eq. (B2c) implies

Ssym
AiA j

(x, x′; ω) = h̄ coth(h̄ω/2T ) X ′′
AiA j

(x, x′; ω). (B5)

This is a manifestation of the fluctuation-dissipation theorem
[18,19], which relates correlations of the equilibrium fluctua-
tions, described by Ssym

AiA j
, to the energy dissipated, described

by X ′′
AiA j

. It holds only in equilibrium, where Eq. (B2c) is
exact, and X ′′

AiA j
= χ ′′

AiA j
. In a nonequilibrium system χ ′′

AiA j

and X ′′
AiA j

are in general not the same, and there is no simple
general relation between correlation functions and response
functions.

3. Linear response as an initial-value problem

Now consider a spatially homogeneous system for sim-
plicity, perform a spatial Fourier transform in Eq. (2.8), and
consider an external field that is adiabatically switched on at
time t = −∞ and discontinuously switched off at t = 0:

hAj (k, t ) = hAj (k) eεt �(−t ), (B6)

where ε > 0 is infinitesimal and positive. Then at time t = 0
the field leads to a nonzero expectation value of Âi given by

δ〈Âi(x, t = 0)〉 = XAiAj (k) hAj (k), (B7)

with XAiAj (k) = XAiAj (k, z = 0) the static response functions.
Now one can use Eq. (2.5) to eliminate the fields from
Eq. (2.8). Let X (k, z) be the matrix of response functions
XAiAj (k, z), and let X (k) = X (k, z = 0) be the corresponding
matrix of static response functions. Then a straightforward
calculation yields

δ〈Âi(k, z)〉 =
∑

j

Mi j (k, z) δ〈Â j (k, t = 0)〉, (B8a)

where

Mi j (k, z) = 1

iz
[X (k, z)X −1(k) − 1]i j (B8b)
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with 1 the unit matrix. This result, and its derivation, is verba-
tim the same as for equilibrium systems, where X = χ ; see,
e.g., Sec. 3.1 in Ref. [7]. It holds in complete generality as
long as X is taken to be the response function; with X replaced
by χ it holds only in equilibrium.

4. Nonhydrodynamic initial condition for the shear velocity

In the case of the initial condition for the shear velocity,
Eq. (4.17a), the following complication occurs, which was
noted in Ref. [71]. The pressure tensor for the fluid is

Pi j (k, t ) = δi j p(k, t ) − σi j (k, t ), (B9a)

with p(k, t ) the hydrostatic pressure and

σi j (k, t ) = −η
[ − ikiu j (k, t ) − ik jui(k, t )

+ 2
3 δi j ik · u(k, t )

]
(B9b)

the stress tensor. Note that Eq. (B9b) is just a fancy version
of Hooke’s law: the generalized force (stress) equals a gener-
alized elastic constant (shear viscosity) times the generalized
displacement (strain). Consequently, an initial shear velocity
u⊥(k, t = 0) leads to a nonzero initial shear stress, viz.,

σ⊥(k, t = 0) = k̂i k̂ j
⊥ σi j (k, t = 0) = η i k u⊥(k, t = 0).

(B10)

This is not true at strictly t = 0, as one can, in principle, pre-
pare initial conditions for the velocity and the stress tensor that
are independent of each other. However, after a few collision
times the relation will get established and Eq. (B10) will hold
as an effective initial condition with t = 0 to be interpreted
as t = a few collision times. The shear velocity is part of the
hydrodynamic subspace, but the shear stress is not. To see how
it enters the hydrodynamic equations one must consider the
underlying kinetic equation as an initial-value problem and
project onto the hydrodynamic subspace. This procedure was
carried out in Ref. [71]. The result is that Eq. (4.17a) becomes

u⊥(k, z) = Mu⊥u⊥ (k, z) (1 + νk2τ )u⊥(k, t (0) ) (B11)

with t (0) on the order of a few collision times and τ a relax-
ation time associated with the shear viscosity via η ≈ nμτ .
Here we have ignored factors of O(1) as well as a temperature
dependence of the nonhydrodynamic initial condition. Note
that the latter is small compared to the hydrodynamic one by
a factor of νk2τ � 1, but of the same order in the gradient
expansion as the viscous term in the equation for the shear
velocity.

APPENDIX C: THE HEAT DIFFUSION COEFFICIENT

Here we show how to obtain Eq. (2.35b) from Eq. (2.34).
Consider fluctuations of the pressure,

δp(x, t ) =
(

∂ p

∂T

)
N,V

δT (x, t ) +
(

∂ p

∂ρ

)
T,V

δρ(x, t ). (C1)

If we ignore the fast pressure fluctuations, δp = 0, density
fluctuations become proportional to temperature fluctuations,

and if we use the mass balance equation (2.8) we have

∇ · u(x, t ) = −1

ρ
[∂t + u(x, t ) · ∇]ρ(x, t )

= − (∂ p/∂T )N,V

(∂ p/∂ρ)T,V
[∂t + u(x, t ) · ∇]T (x, t ). (C2)

Using this in Eq. (2.34) we find that the coefficient of the ∇2T
term becomes

κ

[
cV + T

ρ

(
∂ρ

∂ p

)
T,V

(
∂ p

∂T

)2

N,V

]−1

. (C3)

Finally, if we use the thermodynamic identities [see
Eqs. (A20b) and (A27b) in Ref. [8]]

1

ρ

(
∂ρ

∂ p

)
T,V

= −1

V

(
∂V

∂ p

)
T,N

, (C4a)

cV − cp = T

V

(
∂V

∂ p

)
T,N

(
∂ p

∂T

)2

V,N

, (C4b)

we obtain Eq. (2.35b).

APPENDIX D: THE COLLISIONLESS REGIME AS
DESCRIBED BY THE NAVIER-STOKES EQUATIONS

The Chapman-Enskog derivation of the Navier-Stokes
equations is valid only in the hydrodynamic regime, vFk <

1/τ . However, the Navier-Stokes equations can, and histori-
cally have been, derived from much more general arguments
[4,7], which suggests that they are more generally valid. Here
we show how the results in the collisionless regime can be
obtained from those in the hydrodynamic regime, at least in a
scaling sense.

As one enters the collisionless regime from the hydrody-
namic one, a crucial change is that the diffusive modes, i.e.,
heat and shear diffusion, get replaced by pairs of propagating
modes, see the discussion in Ref. [8]. That is, a generic diffu-
sion coefficient D that can represent either DT or ν effectively
becomes a singular function of the wave number, D → ±ic/k,
which turns a generic diffusion pole D into a propagating
mode,

D(k, ω) = 1

ω + iDk2
→ 1

ω ∓ ck
, (D1)

with c ≈ vF the propagation speed. In what follows we per-
form a power-counting analysis, assuming that the diffusion
coefficients scale as D ∼ vF/k. A much more complete anal-
ysis, especially of the fluctuating force correlations, is needed
to resolve issues regarding reality and signs.

Consider the commutator correlation χT T from Eq. (3.6b),
which has the structure

χT T (k) ∼ T

cp
+ (k̂⊥ · ∇T )2

ρ (Dk2)2
. (D2a)
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Using D ∼ vF/k, dropping all constants of O(1), and using
the low-temperature result for the specific heat, we obtain

χT T (k) → 1

NF

[
1 + (k̂⊥ · ∇T )2

ε2
Fk2

]
, (D2b)

which is Eq. (3.13).
For analogous arguments concerning Ssym

T T , consider the
integral in Eq. (3.6b):

Ssym
T T (k) =

∫ ∞

−∞

dω

2π
Ssym

T T (k, ω) = Ssym
T T,eq(k) + Ssym

T T,neq(k),

(D3a)

where

Ssym
T T,eq(k) = DTk2

cp
T

∫ ω0

0

dω

π

ω coth(ω/2T )

ω2 + D2
Tk4

, (D3b)

Ssym
T T,neq(k) = (k̂⊥ · ∇T )2 νk2

ρ

∫ ∞

0

dω

π

× ω coth(ω/2T )

(ω2 + D2
Tk4)(ω2 + ν2k4)

. (D3c)

The equilibrium contribution requires an interpretation: the
integral diverges logarithmically in the ultraviolet and must
be cut off. The integrand is diffusive only up to frequencies

ω � DTk2, so as written the cutoff should be ω0 ≈ DTk2.
At larger frequencies the integrand should be replaced by
the free-electron propagator from Sec. III B that leads to the
first term in Eq. (3.15a). Combining these arguments, we
see that in the long-wavelength limit, DTk2 � T , we recover
Eqs. (3.14). In the opposite limit, the two contributions men-
tioned above yield, apart from prefactors of O(1),

Ssym
T T,eq(k) = T

cp
DTk2 + vFkT

cV
{1 + O[(vFkτ )2]}. (D4)

Upon using DT ∼ 1/k, both contributions are of the same
order and we have

ST T,eq(k) → vFk/NF, (D5)

in agreement with Eqs. (3.15). For the nonequilibrium part we
find, in the same limit,

Ssym
T T,neq(k) = (k̂⊥ · ∇T )2

πρ

ν

ν2 − D2
T

log(ν/DT)
1

k2
, (D6)

and the scaling argument yields

Ssym
T T,neq(k) → vFk

NF

(k̂⊥ · ∇T )2

ε2
Fk2

, (D7)

again in agreement with Eqs. (3.15).
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