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Conformally invariant free-parafermionic quantum chains with multispin interactions
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We calculate the spectral properties of two related families of non-Hermitian free-particle quantum chains
with N-multispin interactions (N = 2, 3, . . .). The first family have a Z (N ) symmetry and are described by free
parafermions. The second have a U (1) symmetry and are generalizations of XX quantum chains described by
free fermions. The eigenspectra of both free-particle families are formed by the combination of the same pseudo-
energies. The models have a multicritical point with dynamical critical exponent z = 1. The finite-size behavior
of their eigenspectra, as well as the entanglement properties of their ground-state wave function, indicate the
models are conformally invariant. The models with open and periodic boundary conditions show quite distinct
physics due to their non-Hermiticity. The models defined with open boundaries have a single conformal invariant
phase, while the XX multispin models show multiple phases with distinct conformal central charges in the
periodic case.
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I. INTRODUCTION

Exactly integrable quantum chains with a free-particle
eigenspectrum plays an important role in the understanding
of many body physics. They are simple models and in gen-
eral are solved by the standard Jordan-Wigner transformation
[1,2]. Due to this transformation most of these models are
mapped into an effective Hamiltonian formed by the addi-
tion of bilinear fermionic operators, whose solutions follows
from a generalized Fourier transformation (Bogoliubov trans-
formation). Recently a large class of free-particle quantum
chains that are not bilinear after the Jordan-Wigner transfor-
mation were introduced. These are models defined in terms
of Z (N ) parafermionic operators (N = 2, 3, . . .), containing
multispin interactions involving (p + 1)-spins (p = 1, 2, . . .).
The exact solutions are known only when the quantum chains
are defined in a lattice with an open boundary condition
(OBC). In the case p = 1 and N = 2 they recover the standard
free-fermionic quantum chain with two spin interactions. The
simplest case, where p = 2 and N = 2, is the free fermionic
Fendley three-spin multispin interacting model [3]. The cases
where p = 1 and N > 2 are the free-parafermionic Baxter
models [4–11]. The general cases where p and N are arbi-
trary were solved in [12,13]. This was done by extending the
Fendley solution [3] for the fermionic case N = 2 and p = 2.
The fermionic cases (N = 2) with general values of p are
particular cases of free-fermion models defined in frustration
graphs [14,15]. A more general related free-fermion model
was also introduced recently [16].

Although the eigenenergies are exactly known for OBC the
eigenfunctions are not known in a direct form. Interestingly
the models show a phase diagram with a multicritical point
with dynamical critical exponent z = p+1

N [12,13], indicating
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that in general z �= 1, and these models are not conformally
invariant. Since most of the known critical quantum chains are
conformally invariant, these exactly quantum chains provide
an interesting laboratory to explore more general physical
behaviors.

A natural question concerns the cases where p + 1 = N
and z = 1. Are the models conformally invariant in this case?
Since conformal invariance imply, in the finite-size geometry,
the existence of conformal towers in the eigenspectra, it is
possible, from the exactly known eigenspectra, to verify this
symmetry. It is interesting to mention that the ground-state
energy of those non-Hermitian quantum chains (N > 2) is real
and the eigenenergies of the excited states appear in complex
conjugated pairs. Also these quantum chains have no chiral
symmetry, but in some cases they have a parity-time (PT)
reversal symmetry. This PT symmetry, however, is broken
since the eigenenergies appear in complex conjugated pairs
[17].

In Ref. [18] it was shown that for N > p there ex-
ist a set of XX quantum chains with OBC that share the
same quasi-energies that give the eigenenergies of the Z (N )
symmetric-free quantum chains. The Hamiltonian besides
two-body interactions also contains (p + 1)-multispin inter-
actions. The equivalence happens up to overall degeneracies,
mainly because the quasi-energies appear in distinct com-
binations in both models. These XX models have a U (1)
symmetry and are also non-Hermitian. Although sharing
the eigenspectrum with a parafermionic model they are de-
scribed by fermionic operators through the Jordan-Wigner
transformation.

The spectral equivalence among the Z (N ) and XX Hamil-
tonians is valid for the OBC case. In the case of periodic
boundary conditions (PBCs) where the exact solution for
the exact eigenspectrum of the Z (N ) model is unknown for
N > 2, the solution for the related XX model is simple due
to its free fermionic formulation. In this paper we explore the
equivalence of the Z (N ) and XX models to verify if indeed
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for the models where N = p + 1 (z = 1) the eigenspectrum is
the one expected for quantum chains conformally invariant.

The paper is organized as follows. In Sec. II we present
the free-particle models described in terms of fermionic and
parafermionic operators. We present the models with Z (N )
symmetry and the related XX models with the larger U (1)
symmetry. In Sec. III we consider the solution of the models
with OBC. The finite-size scaling of the eigenspectra of the
models with OBC is given in Sec. IV. In Sec. V the eigen-
spectra of the periodic XX model are studied. In Sec. VI we
present the entanglement properties of the XX models with
multispin interactions and PBC. Finally in Sec. VII we draw
our conclusions.

II. FREE-FERMIONIC AND FREE-PARAFERMIONIC
QUANTUM CHAINS

Recently in [12,13] it was shown that a large family of
quantum chains have a free-particle spectra. These are Hamil-
tonians written as the sum of M generators {hi},

H (N,p)
M (λ1, . . . , λM ) = −

M∑
i=1

λihi, (1)

where N = 2, 3, . . ., and p = 1, 2, . . . are integers, and λi are
arbitrary coupling constants. The free-particle eigenspectra
are a consequence of the Z (N ) exchange algebra, satisfied by
the generators

hihi+m = ωhi+mhi for 1 � m � p; ω = ei2π/N ,

[hi, h j] = 0 for | j − i| > p, (2)

with the closure relation

hN
i = 1. (3)

Any representation of {hi} (i = 1, . . . , M) will have a
free-particle eigenspectrum. The eigenenergies, apart from
an overall representation-dependent degeneracy (produced by
zero modes), are given by

Es1,...,sM
= −

M∑
i=1

ωsiεi, (4)

where

M ≡ int

(
M + p

p + 1

)
=
⌊M + p

p + 1

⌋
, (5)

and si = 0, 1, . . . , N − 1 and εi (i = 1, . . . , M) are the
quasienergies of the pseudoparticles forming the eigenspectra.

In Fig. 1 we show schematically some eigenenergies for
the Z (3) model [Figs. 1(a) and 1(b)] and for the Z (5) model
[Figs. 1(c) and 1(d)], in the case M = 3. Figures 1(a) and
1(c) give a real eigenvalue and correspond in (4) to the
ground-state energy of the chains. The 33 and 53 energies
for the Z (3) and Z (5) models are obtained by considering
all the three or five allowed positions in the circles of radius
ε1, ε2, and ε3, respecting a “circle exclusion principle” that
allows one and only one excitation in each circle. This is
the Z (N ) parafermionic generalization of the standard Z (2)
Fermi-exclusion principle. The pseudo-energies εi = 1/z1/N

i

FIG. 1. Representation in the complex plane of the eigenenergies
(4) with M = 3, for the Z (N ) models with N = 3 (a), (b) and N = 5
(c), (d). The circles have the radius εi, and the possible values
(open circles) are the intercepts with the Z (N ) circles. Each circle
contributes with one and only one of the possible N intercepts (black
circles).

are obtained from the roots zi of a polynomial PM (z), gener-
ated by the recurrence relation

Pj (z) = Pj−1(z) − zλN
j Pj−(p+1)(z), j = 1, 2, . . . , (6)

with the initial condition

Pj (z) = 1, j � 0. (7)

From (4), the representation of (2) with N = 2 will give us the
Hamiltonian (1) with a free-fermion eigenspectrum, while for
N > 2 we have the Z (N ) free-parafermionic ones.

An interesting general representation of (2) is given in
terms of its independent words (word representation) (see
Refs. [12,13]). The Hamiltonian is given by

H (N,p)
M = −

p∑
i=1

λi

⎛
⎝ i−1∏

j=1

Zj

⎞
⎠Xi

−
M∑

i=p+1

λi

⎛
⎝ i−1∏

j=i−p

Z j

⎞
⎠Xi, (8)

where Z and X are the generalized N × N Pauli matrices
satisfying

XZ = ωZX, X N = ZN = 1, Z+ = ZN−1. (9)

The models contain p + 1 multispin interactions and, except
for N = 2, are non-Hermitian. We stress that, for N > 2, the
integrability is known only for OBC. For N = 2 and p = 1 we
have the M-sites Ising-like model

H (2,1)
M = λ1σ

x
1 − λ2σ

z
1σ x

2 + · · · + λMσ z
M−1σ

x
M, (10)

where σ x, σ z are the standard spin- 1
2 Pauli matrices. Another

representation for N = 2, p = 1, and M odd is the standard
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quantum Ising chain with inhomogeneous couplings {λi} and
OBC

HIsing = −
L∑

i=1

λ2i−1σ
x
i −

L−1∑
i=1

λ2iσ
z
i σ z

i+1, (11)

with L = (M + 1)/2 sites. We can show that the Hamiltonians
(10) and (11) share the same eigenenergies and degeneracies.

The case where N = 2 and p = 2 in (8) is the three-spin
interacting Fendley model:

H (2,2)
M = −λ1σ

x
1 − λ2σ

z
1σ x

2 − λ3σ
z
1σ z

2σ x
3 − λ4σ

z
2σ z

3σ x
4

− · · · − λM−1σ
z
M−3σ

z
M−2σ

x
M−1 − λMσ z

M−2σ
z
M−1σ

x
M .

(12)

The phase diagram of this model, in the homogeneous case
λ1 = . . . , λM was studied in [3] and [19].

For p = 1 and arbitrary N the Hamiltonian (8) is given by
(10) with the change σ x

i → Xi, σ z
i → Zi [satisfying (9)].

Another representation in the case p = 1, sharing the same
eigenspectra is given by the known Z (N ) free-parafermionic
Baxter model [4–6]

H (N )
Baxter = −

L∑
i=1

λ2i−1Xi −
L−1∑
i=1

λ2iZiZ
+
i+1, (13)

with L = (M + 1)/2 sites.
Another special model we are going to study in this paper is

the Z (3) version of the Fendley model, i.e., p = 2 and N = 3
in (8):

H (2,3)
M = −λ1X1 − λ2Z1X2 − λ3Z1Z2X3 − λ4Z2Z3X4 − · · ·

− λM−1ZM−3ZM−2XM−1 − λMZM−2ZM−1XM . (14)

It was shown for N = 2, p = 1, 2 in [3] and for general N, p
in [12,13] that the isotropic point λi = 1 (i = 1, . . . , M) is a
multicritical point with the energy gap vanishing as ∼M−z,
with the dynamical critical exponent value z = (p + 1)/N .
This means that in general z �= 1 and the long-distance physics
of the critical spin is not described by a conformal field theory
(CFT). However, for the special set of models where p + 1 =
N , the dynamical critical exponent z = 1, and the underlying
field theory is relativistic and possibly conformal invariant.
This is the case for p = 1 and N = 2, that we recover the
standard critical Ising quantum chains [(11) with λi = 1].
However, for N = p + 1 > 2 the time-evolution operator (the
Hamiltonian) is non-Hermitian.

In the following sections we are going to compute the
finite-size spectrum of these Hamiltonians with N = p + 1 >

2 and verify the appearance of conformal towers as happens
in the conformally invariant quantum chains.

III. GENERALIZED XX QUANTUM CHAINS
WITH MULTISPIN INTERACTIONS

In [18,20] it was introduced a family of XX quantum
chains with two- and N-multispin interactions, with a free-
fermion eigenspectrum whose quasienergies are the same as
the N-multispin interacting Z (N ) models discussed in the

previous section. The Hamiltonian is given by

HXX
N =

L−1∑
i=1

σ+
i σ−

i+1

+
L−N+1∑

i=1

λN
i σ−

i

⎛
⎝i+N−2∏

j=i+1

σ z
j

⎞
⎠σ+

i+N−1, (15)

where σ± = (σ x ± σ y)/2 are the standard raising/lowering
spin-1/2 operators, {λN

i } are the coupling constants, and the
lattice size is L = M + N − 1.

It is interesting to observe that (15) under the parity sym-
metry (PT), where i → L − i + 1, the Hamiltonian transforms
as HXX

N → (HXX
N )†, and from [17], the Hamiltonian although

non-Hermitian can produce a unitary evolution. The Hamil-
tonian (8) with p = 1 has a PT symmetry [21], but not for
general values of p.

Differently from the Z (N ) models of last section the XX
Hamiltonians have a U (1) invariance, since

∑L
j=1 σ z

j is a good
quantum number. In the simplest case where N = 2 the model
recovers the dimerized version of the standard two-body XX
model:

HXX
2 ({λi}) =

L−N+1∑
i=1

σ+
i σ−

i+1 +
L−N+1∑

i=1

λ2
i σ

−
i σ+

i+1, (16)

whose eigenspectrum is well known to be related with the
quantum Ising chain [22].

The model (15), differently from (1) and (2), is bilinear in
terms of fermionic operators {ci} obtained from the Jordan-
Wigner transformation [1]

ci = σ−
i

i−1∏
j=1

σ z
j , c†

i = σ+
i

i−1∏
j=1

σ z
j , (17)

for i = 1, . . . , L, that satisfy the anticommutation relations

{ci, c†
j } = δi, j, {ci, c j} = {c†

i , c†
j } = 0. (18)

Since σ z
j = 2c†

j c j − 1, the U (1) symmetry is translated into
the conservation of the total number of fermions NF =∑L

i=1 c†
i ci, and the z magnetization of the XX multispin model

is given by

mz =
L∑

j=1

σ z
j = 2NF − L. (19)

In terms of {ci} the Hamiltonian (15) has the bilinear form

H = −
L∑

i, j=1

c†
i Ai, jc j, (20)

where

Ai, j = δ j,i+1 + λN
j δ j,i+1−N (21)

are the elements of the matrix formed by the hopping coupling
constants.
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The matrix A for N > 2 is nonsymmetric but nevertheless
can be diagonalized,

H = −
L∑

k=1

	kη
†
kηk, (22)

through the canonical transformation {ci, c†
i } → {ηk, η

†
k},

ηk =
L∑
i

Li,kci, η
†
k =

L∑
i

Ri,kc†
i , (23)

where in (22) 	k are the eigenvalues of A and Li,k,Ri,k are
the components of the left and right eigenvectors with the
normalization RLT = 1, respectively.

From (22) the eigenenergies of HXX
N have the free-fermion

structure

H = −
M+N−1∑

k=1

sk	k, sk = 0, 1. (24)

The quasienergies {	k} are obtained from the roots of
det(A − 	k1) = 0. Apart from the zero modes they are given
by 	k = 1/z1/N

k , where zk are the roots (P(N )
M (zk ) = 0) of the

characteristic polynomial

P(N )
M (z) ≡ det(1 − zA). (25)

From the Laplace cofactor’s rule for determinants, these poly-
nomials satisfy the recurrence relations:

P(N )
M (z) = P(N )

M−1(z) − zλN
MP(N )

M−N (z), (26)

with the initial condition

P(N )
M (z) = 1, for M � 0, (27)

and zk = (1/	k )N . Comparing (6) and (7) and (26) and (27)
we see that the polynomials P(N )

M (z) are the same as those
fixing the eigenspectra of the Z (N ) multispin chains with N =
p + 1. Namely, the same roots {zk} that give the quasienergies
εk = 1/z1/N

k of the Z (N ) free-parafermionic multispin models
also give the ones of the XX chains with N-multispin interac-
tions,

	 j,i = e
2π
N jεi, (28)

where i = 1, . . . , � L
N � and j = 0, 1, . . . , N − 1. Since the di-

mension of HXX
N is 2L and the total number of nonzero

quasienergies {εi} is L, we should have Nz = L − N� L
N � zero

modes, producing a 2Nz -global degeneracy of the whole eigen-
spectra of the Hamiltonian

E{si, j ,ri, j } = −
� L

N �∑
i=1

⎛
⎝N−1∑

j=0

ri, jω
si, j

⎞
⎠εi, (29)

where for each i = 1, . . . , � L
N �, we have a possible si, j =

0, 1, . . . , N − 1 and ri, j = 0, 1.
The schematic representations, similarly as shown in Fig. 1

for the Z (3) model, are in circles of radius εi, but now in a
given circle we have 2N possible occupations of pseudoparti-
cles. All the eigenenergies represented in Fig. 1 for the Z (3)
model are also presented in the three-multispin XX model,
including the ground-state energy. The eigenlevels shown in

FIG. 2. Representation of configurations that are present in the
N = three-multispin XX quantum chains (29) but not present in the
multispin Z (3) quantum chain (4), in the case M = 2. The circles
have the radius εi, and the possible values (open circles) are the
intercepts with the Z (N ) circles. Distinct from the configurations in
Fig. 1, each circle may have multiple contributions (black circles),
and do not satisfy the Z (N ) circle exclusion constraint.

Fig. 2 are present in the XX multispin model, but not in the
corresponding Z (3) p = 2 model with M = 2, since they do
not obey the circle exclusion constraint. The circle exclusion
in the Z (N ) models is not a constraint for these U (1) XX
models.

IV. THE EIGENSPECTRA OF THE N-MULTISPIN
INTERACTION MODELS WITH OPEN

BOUNDARY CONDITIONS (OBC)

In this section we calculate the eigenenergies of the model
with N-multispin interactions with Z (N ) and U (1) symme-
tries presented in Secs. II and III, with OBC. We restrict
ourselves to the isotropic couplings case where λi = λ (i =
1, . . . , M). In this case the roots zi(λ) of the polynomial
(6) that fix the quasienergies obey zi(λ) = zi(1)/λN and the
quasienergies εi(λ) = λεi(1). This implies that the eigenspec-
tra of the Hamiltonian satisfy

HOBC(λ) = λHOBC(1). (30)

This also follows directly from (1) in the case of the Z (N )
multispin models. In the case of the N-multispin XX model it
is not direct, but in Sec. V we give a canonical transformation
of the spin variables that also show (30) directly.

At their isotropic point the models are critical with a dy-
namical critical exponent z = 1. They are given by (8) with
p = N + 1 in the Z (N ) case and by (15) in the XX case.

The multispin Z (N ) Hamiltonian with M sites have the
energies

E{s1,...,sM } = −
M∑

i=1

ωsiεi, si = 0, 1, . . . , N − 1, (31)
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while the XX model with L = M + N − 1 sites have the en-
ergies

E{ti, j ,ri, j } = −
M∑

i=1

⎛
⎝N−1∑

j=0

ri, jω
ti, j

⎞
⎠εi, (32)

with ri, j = 0, 1, ti, j = 0, 1, . . . , N − 1, and from (5) M =
� L

N �.
The pseudo-energies εi (i = 1, . . . , M) are the same for

both models and can be evaluated from the roots zi of the
polynomial (26), since εi = 1/z1/N

i , or directly from the di-
agonalization of the hopping matrix A given by (21). In the
critical region the low-lying quasiparticles {εi} give the rele-
vant excitations, and we should expect that as M → ∞ they
should vanish. This means that in this limit, the large roots of
the polynomial (26) should diverge.

The roots {zi} are all real, and the eigenenergies of (31) and
(32) are in general complex, due to the non-Hermicity of the
Hamiltonian (8) and (15).

For convenience we order the quasienergies ε1 < ε2 <

· · · < εM , while the eigenenergies of the Hamiltonian we or-
der in increasing order of their real part:

	(E0) � 	(E1) � 	(E2) � · · · . (33)

The lowest eigenenergy, that gives the ground-state energy, is
real and is given by

E0(M ) = −
M∑

i=1

εi. (34)

The ground-state energy can be derived using the results of
[13] and is given by

e∞ = lim
M→∞

E0

M
= − 1

Nπ

∫ π

0

sin x

sin
1
N
(

x
N

)
sin

N−1
N
( (N−1)x

N

)
= − N sin

(
π
N

)
(N − 1)π

, (35)

with the values

− 2

π
,−3

√
3

4π
,−2

√
2

3π
,−

√
5 − √

5

8π
, (36)

for N = 2–5, respectively.
In order to verify the conformal invariance of the models at

their critical points, we are going to explore the consequences
of the underlying conformal symmetry in the finite-size eigen-
spectrum of the quantum chains with OBC.

The finite-size amplitudes of the excited states will give us
the surface exponents of the model. To each surface exponent
xs of the infinite system [23] we should expect, at the critical
point, a tower of eigenenergies

	(Es(M, r)) = E0(M ) + πvs(xs + r)

M
+ o(M−1), (37)

where r = 0, 1, 2, . . ..
Since the pseudo-energies {εi = 1/z1/N

i } in (31) and (32)
depend on the roots {zi} of the polynomials (6) or (26) it
is convenient to observe their asymptotic finite-size depen-
dences. In the cases where the model is critical we should

expect that the large roots diverge with the order of the
polynomial. In [20] was introduced a method that allows us
to evaluate these large roots for huge lattice sizes (∼109)
by using standard quadruple-precision numerical calculations.
The coefficients of the polynomial have quite small and large
numbers. The method works if we have a good initial guess
for the roots. For the largest root, the Laguerre bound (see
Corollary 6.2.4 in [24]) is the initial value. After the evaluation
of the largest root we produce good initial guesses for the
other roots by exploring the size dependence of the largest
root. With this procedure we evaluate the largest 10–12 roots
for polynomials up to the order M = 109. The method was
also tested in the random formulation of free-fermion models
(N = 2), with p = 1 [20] and more recently for p = 2 models
[25].

The prediction (37) indicates the leading behavior for the
roots of the polynomial P(N )

M (z) given in (26) and (27):

1

z1/N
i

= εi = π
A(N )

i

M
= π

A(N )

M

(
x(N )

s + i − 1
)
, (38)

for i = 1, 2, . . .. The amplitude A(N ) is proportional to the
sound velocity and x(N )

s is a surface exponent.
Our numerical solutions for polynomial roots with M up to

109 corroborate the conformal invariance prediction (38) for
the roots. The stability of the numerical values induces us to
determine the exact values for N = 2, 3, 4, and 6:

A(2) = 2, A(3) = 2
√

3, A(4) = 4
√

2, A(6) = 12, (39)

and for the case N = 5 the approximate numerical value

A(5) = 8.506283. (40)

The surface exponent values depend on the particular se-
quence of lattice sizes [mod(M, N ) fixed], used to obtain the
bulk limit M → ∞. The results we obtain for N = 2 and
N = 3 are

x(2)
s = 1, [mod(M, 2) = 0 or 1],

x(3)
s = 7/6 [mod(M, 3) = 0], x(3)

s = 1/6 [mod(M, 3) = 1],

x(3)
s = 5/6 [mod(M, 3) = 2], (41)

while for N = 4,

x(4)
s = 5/4 [mod(M, 4) = 0], x(4)

s = 1/2 [mod(M, 4) = 1],

x(4)
s = 3/4 [mod(M, 4) = 2], x(4)

s = 1 [mod(M, 4) = 3].

(42)

In order to illustrate the numerical results we show in
Table I the ratios A(N )

i /A(N ), a conformal tower of the model
with N = 2 − 5, for M = 109 − N − 1 [mod(M, N ) = 0].

The finite-size dependence of the mas gaps (37) of the
Z (N ) and XX models with N-multispin interactions can be
obtained directly from the relations (38)–(40).

Let us consider initially the Z (N ) free-parafermionic mod-
els. The ground-state energy (real) is obtained [see (34)]
by considering all the roots in the branch ω0 = 1 [as in
Fig. 3(a)]. A sequence of mass gaps with lower real part is
obtained by changing a root εi (i = 1, 2, . . .) in the ground
state [see Fig. 3(a)] to the ω1 = ei2π/N or ωN−1 = e−i2π/N
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TABLE I. Examples of estimates for the ratios A(N )
i /A(N ) for some conformal towers of the models with N = 2–5. The ratios are the ones

of the lattice sizes M = 109 − N − 1, where mod(M, N ) = 0.

i A(2)(i)/A(2) A(3)(i)/A(3) A(4)(i)/A(4) A(5)(i)/A(5)

1 1 1.1669439 1.24987070 1.333553
2 2 2.1666355 2.24998504 2.333366
3 3 3.1666632 3.24997209 3.333367
4 4 4.1666613 4.24995483 4.333357
5 5 5.1666589 5.24993348 5.333337
6 6 6.1666562 6.24990804 6.333328
12 12 12.1666314 12.24966964 12.332937

branches [see Figs. 3(b) and 3(c)]

	(Gi ) = 	(εi − ωεi ) =
[

1 − cos

(
2π

N

)]
εi (43)

(i = 1, 2, . . .). The relations (39) and (40) give us the sound
velocity, in (37), for the models

v(2)
s = 2A(2) = 4,

v(3)
s = 3A(3)/2 = 3

√
3, v(4)

s = 4
√

2,

v(5)
s = A(5)[1 − cos(2π/5)] ≈ 0.69098300,

v(6)
s = A(6)[1 − cos(2π/6)] = 1/2, (44)

and the conformal towers

x(N )
s + i − 1, i = 1, 2, . . . , (45)

given in (41) and (42).
The conformal anomaly c is also predicted from the leading

finite-size behavior of the ground-state energy E0(L). At a
critical point, this should behave asymptotically as [26]

E0

L
= e∞ + fsL − πcvs

24L
+ o(L−1), (46)

where e∞ and fs are, respectively, the bulk limits of the
ground-state and surface energy per site, and vs and c are
the sound velocity and the conformal anomaly. The use of
the above prediction is not simple because L is the effective

FIG. 3. Representation in the complex plane of the eigenenergies
for the Z (N ) multispin model with N = 3. The configuration of the
ground-state energy is (a), and (b) and (c) are the configurations that
produce the lowest gaps (43).

number of sites of the space discretization of the underlying
conformal field theory, and the relation with the number M in
our models, except for the case N = 2, is not direct. To better
explain this point we show below the expansions (46) up to
order o(M−2) for the cases N = 2, 3. For the case N = 2:

E0 = − 2

π
M +

(
1 − 4

π

)
+ π

6M
, mod(M, 2) = 0,

E0 = − 2

π
M +

(
1 − 4

π

)
− π

12M
, mod(M, 2) = 1, (47)

while for N = 3:

E0 = −3
√

3

4π
M − 0.46909 + 1.9615

M
, mod(M, 3) = 0,

E0 = −3
√

3

4π
M − 0.46909 − 0.5610

M
, mod(M, 3) = 1,

E0 = −3
√

3

4π
M − 0.46909 + 1.6985

M
, mod(M, 3) = 2.

(48)

The expansion for N = 2 was calculated analytically and
the one for N = 3 was obtained by a cubic fitting, considering
60 < M < 600. The expansion in (47) with M odd recovers
(46) if we identify the Ising quantum chain representation
(11) with M = 2L − 1, vs = 2 and c = 1/2. This is not the
case for the expansion for N = 2 and M even, where the
O(1/M ) term is positive instead of negative as in (46). The
expansions for the N = 3 cases also give us terms that we
cannot compare directly with (46). We leave the conformal
anomaly calculations for the next section where we consider
the periodic lattices.

We have also, in the Z (N ) models, the excited states
formed by replacing � (� = 2, 3, . . .) quasienergies in the
branch ω0 by quasienergies in the branches ω1 or ωN−1 (see
Fig. 4). From (38) and (45) the mass gaps associated with
these states give us the conformal dimensions

�x(N )
s + j, (49)

with �, j ∈ Z and � � 1 and j � �(� + 1)/2.
For N > 3 we can produce several other conformal dimen-

sions since we can consider the eigenstates where the particles
are in larger number of branches ωn (n = 0, . . . , N − 1).

For the case of the XX models with N-multispin inter-
actions, we have the same quasienergies εi, considered in
the Z (N )-parafermionic models, but their possible combina-
tions are not restricted to the Z (N ) circle exclusion. This
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FIG. 4. Representation in the complex plane of the energies of
some excited states for the N = 3 XX multispin model.

implies that a given quasienergy εi can appear up to N times
(ωnεi, n = 0, . . . , N) in a given eigenenergy of the Hamil-
tonian. The model has now a U (1) symmetry, and we can
separate the associated eigenvector space according to its
magnetization, or equivalently, to the number NF of fermionic
quasienergies. The magnetization is given by (19). For N � 4
the ground state is formed by taking all the M = � L

N � roots
a single time in the branch ω0 = 1. It belongs to the sec-
tor where m(0)

z = 2M − L. This energy coincides with the
ground-state energy of the corresponding Z (N ) parafermionic
quantum chain. Actually all the eigenenergies we consider
previously in the Z (N ) model are also present in the sector
with magnetization m(0)

z , giving us the same sound velocity
and conformal dimensions given in (41)–(45). The absence of
the Z (N ) circle exclusion gives additional conformal dimen-
sions, inside the m(0)

z sector. They are formed by neglecting an
arbitrary number of roots forming the ground state (branch
ω0) and inserting them in the other branches, keeping the
number of fermions NF fixed (some examples of excitations
are shown in Fig. 4).

The conformal dimensions coming from the eigensectors
with other magnetizations are obtained by neglecting and
inserting distinct number of particles in the ground-state pseu-
doparticles configuration. It is simple to verify that some of
the produced gap will give the same conformal dimensions
(44)–(49), but with a distinct sound velocity that depends on
the particular magnetization sector. This means that distinct
from the Z (N ) parafermionic model, the XX multispin model
in the bulk limit, is a combination of distinct theories with
unequal sound velocities.

For N > 4 the ground-state energy of the related Z (N )
parafermionic quantum chain is in the sector m(0)

z , but in the
XX model it is an excited state. The energy with lowest real
part in the XX model is obtained by adding all the roots in the
branches ω±� (� = 0, 1, . . . , �N−1

2 �) (see Fig. 5) and gives

E0 = −
⎡
⎣1 + 2

� N−1
4 �∑

�=1

cos

(
2π

N
�

)⎤⎦ M∑
i=1

εi. (50)

V. THE N-MULTISPIN XX MODELS WITH PERIODIC
BOUNDARY CONDITIONS (PBC)

The eigenspectral equivalence among the Z (N ) multispin
models and the XX multispin quantum chains holds only in
the case of OBC. Previous numerical studies [11] of the Z (3)

Re

Im

ε

ε

ε

ε

ε
1

2

3

FIG. 5. Representation in the complex plane of the ground-state
eigenenergy of the N = 5 multispin XX model.

parafermionic Baxter model (p = 1, N = 3 in (8)) show us
that the quantum chain with PBC have quite distinct properties
from the chain with OBC. The energy per site of the ground-
state energy of the different boundary conditions are distinct.
We should expect a similar effect for the more general Z (N )
parafermionic quantum chains with multispin interactions (8).

In this section we are going to study the N-multispin XX
models with isotropic couplings and PBC. The Hamiltonian
has L = M + N − 1 sites and is given by

HPBC(λ) = HOBC(λ) + H (L)
s + H (R)

s , (51)

where

HOBC(λ) =
L−1∑
i=1

σ+
i σ−

i+1

+ λN
L−N+1∑

i=1

σ−
i

⎛
⎝i+N−2∏

j=i+1

σ z
j

⎞
⎠σ+

i+N−1 (52)

is the XX Hamiltonian with OBC and

H (L)
s = σ+

L σ−
1 , (53)

H (R)
s = λN

N−1∑
�=1

σ−
L+�−N+1

×
⎛
⎝ L∏

k=L+2+�−N

σ z
k

⎞
⎠(�−1∏

t=1

σ z
t

)
σ+

� (54)

are the left and right surface terms.
It is interesting to consider the site-dependent canonical

transformation,

σ±
i → (λ)∓(i−1)σ±

i ; σ z
i → σ z

i (i = 1, . . . , L), (55)

that transforms the Hamiltonian (51) into

HPBC(λ) = λHOBC(1)

+ 1

λL−1
H (L)

s + λL+1H (R)
s (1). (56)

This result tell us that the spectral symmetry (30) holds only in
the OBC case, and for λ �= 1 we may expect distinct behavior
for the PBC. This happens even in the bulk limit since the
surface terms gave contributions that are exponentially large
with the system’s size.

The U (1) symmetry of the model allows us to split the
associated vector space of the Hamiltonian (51) into sectors
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labeled by the z magnetization mz. In each sector, where
the number of fermion is NF = (mz + L)/2, we can perform
the Jordan-Wigner transformation given in Sec. III, and the
Hamiltonian (51) takes the form

HOBC(λ) = −
(

L−1∑
i=1

c†
i ci+1 + λN

N∑
i=1

c†
i+N−1ci

)
, (57)

H (L)
s = −(−)L+NF +1c†

Lc1,

H (r)
s = −(−)L+NF +1

N−1∑
�=1

c†
�cM+�, (58)

so that

HPBC(λ) = −
(

L∑
i=1

c†
i ci+1,+λN

L∑
i=1

c†
i+N−ici

)
, (59)

with the boundary condition

cL+� = (−)L+NF +1c� (� = 1, 2, · · · ). (60)

The fermionic model is periodic or antiperiodic depending if
L + NF + 1 is even or odd, respectively.

In order to diagonalize (59) we perform the Fourier trans-
formation {ci} → {ηk}, where

ηk = 1√
L

L∑
j=1

eik jc j, c j = 1√
L

∑
{k}

e−ik jηk . (61)

It follows from the algebraic relations of {c j} (18) that {η j} are
also fermionic operators:

{ηk, η
†
k′ } = δk,k′ , {ηk, ηk′ } = 0. (62)

Inserting (61) in (60) we obtain the sets

k j =
⎧⎨
⎩

2π j
L , if L + NF + 1 even

2π ( j+ 1
2 )

L , if L + NF + 1 odd
, (63)

and {k j} are chosen inside one of the Brillouin zones, e.g.,
−π < k j � π .

The Hamiltonian (56) in terms of {ηk} is diagonal

H =
∑
{k j}

ε(k j )η
†
k j
ηk j , (64)

where

ε(k j ) = −(
e−ik j + λN ei(N−1)k j

)
, (65)

and the momentum of a given state is P = ∑
{k j} η

†
k j
ηk j .

As in the OBC we order the eigenvalues in increasing order
of their real part. The effective dispersion relation is

	(k) = 	[ε(k)] = −{cos k + λN cos[(N − 1)k]}. (66)

This is also the dispersion relation of an extended Hermitian
XX model, considered in [27]. The momentum and the real
part of the eigenenergies for a given set of quasimomenta {k j}
are given by

P =
∑
{k j}

k j, (67)

	(E ({k j}) =
∑
{k j}

	(k j ). (68)

-3 -2 -1 0 1 2 3

k

-4

-2

0

2

Λ
(k

)

N=3

λ=1/4

λ=1

λ=3/2

FIG. 6. Dispersion relation 	(k), given in (66), for the multispin
XX quantum chain with N = 3 and some values of λ. The Fermi
points are the ones where 	(kF ) = 0.

The ground-state energy is formed by the combination of the
quasienergies with negative values of 	(k),

	(E0) =
∑

k∈{	(k)<0}
	(k). (69)

We see directly from (66) that in the simplest case N =
2, 	(λ) = λ2+1

2 	(1), and from (64) the symmetry (30) that
happens in the OBC is not present in the case of PBC if λ �= 1.
This means that for λ �= 1 the ground-state energy per site has
an anomalous behavior, being distinct for different boundary
conditions.

Let us consider separately the quantum chains with distinct
values of N .

1. N = 3. In Fig. 6 we show the dispersion relations 	(k)
for the cases λ = 2, λ = 1 and λ = 1/2. The Fermi points
(	(kF ) = 0) are given by

kF = arccos

(
−1 ± √

1 + 8λ6

4λ3

)
. (70)

We can show that for λ � 1 (see Fig. 6) we have two
Fermi points (k(1)

F , k(2)
F ) while for λ > 1 we have four of them

(k(1)
F , . . . , k(4)

F ). The ground-state energy is real and obtained
from the addition of the quasienergies with 	(k j ) < 0,

E0 = −
NFP/2∑
�=1

∑
k(2�−1)

F �k j�k(2�)
F

[cos k j + λ3 cos(2k j )], (71)

where the number of Fermi points NFP = 2 if λ � 1 and 4 if
λ > 1. Since �k = k j+1 − k j = 2π

L we have in the bulk limit

e∞(λ) = lim
L→∞

E0

L

= − 1

2π

NFP/2∑
�=1

∫ k(2�)
F

−k(2�−1)
F

[cos k + λ3 cos(2k)] dk

= − 1

2π

NFP∑
�=1

(−)�
[

sin k(�)
F + λ3 sin

(
2k(�)

F

)]
. (72)
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At λ = 1, k(1)
F = −π

3 , k(2)
F = π

3 and

e∞ = − 1

2π

∫ π
3

− π
3

[cos k + λ3 cos(2k)] dk = −3
√

3

4π
, (73)

which coincides with the conjectured value obtained in the
OBC case. For λ �= 1 the values obtained from (71) and (72)
are distinct from the prediction −λ 3

√
3

4π
of the OBC [see (30)],

similarly as happens with the Z (3) free-parafermionic Baxter
model [11].

In order to verify the conformal invariance of the model,
let us compute the conformal towers that should appear in the
leading L → ∞ finite-size behavior of the eigenenergies of
the Hamiltonian.

Conformally invariant critical systems, with PBC, should
have a ground-state energy E (0)

0 (L), with the asymptotic finite-
size behavior [26,28]

E (0)
0 (L)

L
= e∞ − πvsc

6L2
+ o(L−2), (74)

where e∞ is the ground-state energy per site in the bulk
limit, c is the conformal anomaly, and vs is the sound veloc-
ity, obtained from the energy-momentum dispersion relation.
Moreover, for each operator [23] Oα with dimension xα in
the operator algebra of the underlying conformal field theory,
there exists an infinite tower of eigenstates in the quantum
chain, that for L sites and PBC should behave as

Eα
j, j′ (L) = E (0)

0 + 2πvs

L
(xα + j + j′) + o(L−1). (75)

Let us consider initially the case λ = 1. We take the
finite-size sequences of even lattice sizes: L = 2�, � ∈ Z. The
Fermi momentum are kF = ±π

3 , and the ground-state energy
is obtained by taking the symmetric distribution of NF =
L
3 fermions (even) and quasimomenta k j = 2π

L ( j + 1
2 ), j =

− L
6 , . . . , L

6 − 1. This will give us from (67) a zero momentum
state (P = 0), and the sums in (68) give us the exact result:

E (0)
0

L
= −

√
3

4 sin(π/L)

(
2 + 1

cos(π/L)

)
. (76)

The expansion for L → ∞ gives

E (0)
0

L
= −3

√
3

4π
−

√
3π

4L2
− 7

√
3π3

80L4
+ O(L−6). (77)

Comparing this result with the prediction (74) we obtain
vsc = 3

√
3

2 . On the other hand, the sound velocity can be
obtained from the energy-momentum dispersion at the Fermi
momentum

vs = ∂E (0)
0

∂k

∣∣∣∣∣
k=kF

= d	(k)

dk

∣∣∣∣
k=kF

= sin kF + 2λ3 sin(2kF ), (78)

which for λ = 1 gives vs = 3
√

3/2.
We see from (77) and (36) that the ground-state energy

per site is the same for the PBC and OBC at λ = 1, dif-
ferently from the case of the Z (3) p = 1 free-parafermionic
Baxter chain, where they depend on the particular boundary
condition [11]. However, even for λ = 1 the sound velocity

vs = 3
√

3/2 for the PBC is half of the value obtained for the
OBC (44). This anomalous behavior, even at λ = 1, for the
distinct boundaries is a consequence of the non-Hermiticity
of the Hamiltonian.

The eigensector containing the ground state have NF = L
3

fermions and magnetization mz = −L/3. We label the U (1)
symmetry charges relative to the ground state as

Q = NF − L

3
, (79)

so that the ground state has zero momentum and charge Q =
0. In the ground-state sector (Q = 0) we can create a state with
momentum P = 2π

L (or P = − 2π
L ) by changing in the ground-

state energy the quasimomentum k�−1 (or −k�) to the one with
k� (or k�+1), producing the mass gap

	(G(±p)) = E (0)
0 − 	(k�−1) + 	(k�)

= E (0)
0 − 	(−k�) + 	(−k�+1), (80)

whose L-large expansion gives

	[G(±p)] = 2πvs

L
− 3

√
3π3

2L2
+ O(L−4). (81)

Excited states with other momentum values, in the ground-
state sector, are obtained by changing quasiparticles from
below to above the Fermi momentum.

The lowest eigenenergy with NF = L
3 + 1 (NF = L

3 − 1)
belonging to the sector Q = 1 (Q = −1) is obtained by taking
in (67) k j = 2π

L , j = − L
6 , . . . , L

6 − 1, L
6 ( j = − L

6 , . . . , L
6 − 1)

and is given by

E (±1)
0

L
=

√
3

4L

[
tan

(π

L

)
− 3/ tan

(π

L

)]
, (82)

with the large-L dependence

E (±1)
0

L
= −3

√
3

4π
+

√
3π

2L2
+

√
3π3

10L4
+ O(L−6), (83)

giving us the gap

E (±1)
0 − E (0)

0 = 3
√

3π

4L
+ O(L−2) = 2πvs

L

(
1

4

)
+ O(L−2).

The prediction (75) indicates the existence of a conformal
operator with dimension x = 1

4 . The descendants of the oper-
ator will be related to the eigenenergies obtained by exciting
the quasienergies that produce the lowest energy E (±1)

0 . The
lowest eigenenergies with U (1) charge Q (or −Q) will have
a zero momenta and are obtained by inserting (neglecting)
symmetrically the quasiparticles forming the lowest energy
configuration E (0)

0 or E (1)
0 , depending if Q is even or odd. A

simple calculation give us the mass gap

E (Q)
0 − E (0)

0 = 2πvs

L

Q2

4
+ O(L−2), (84)

and from (75) the related conformal dimensions are Q2/4.
For a given sector Q, with a certain distribution {k j}, the

excitation where we take β quasienergies near the Fermi mo-
mentum from the positive (negative) branch and insert them
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in the negative (positive) branch will give a set of mass gaps

	(E (Q,β )
0

) − E (0)
0 = 2π

L
vs

(
Q2

4
+ β2

)
, (85)

giving us the conformal dimension Q2/4 + β2. The de-
scendants of these dimensions are obtained by exciting the
particles in the positive and negative branches.

These results imply that the model is described by a Gaus-
sian conformal field theory with wave number Q and vorticity
β [29,30], and dimensions given by

xQ,β = 2π

L
vs

(
Q2xp + β2

4xp

)
, (86)

where xp = 1/4 and Q, β = 0,±1,±2, . . .. This is precisely
the same operator content of the standard N = 2 XX model
(λ = 1) [31,32]. The only differences are the nonuniversal
quantities e∞, vs and the z-magnetization associated with the
Q = 0 sector, which is zero in the standard XX model and L/3
in the model with N = 3 (λ = 1).

For λ < 1 we obtain a similar operator content as is the
case λ = 1, but with a sound velocity vs(λ) that depends
on the Fermi momentum 	(kF ) = 0, and given by (78). For
example, for

λ3 =
√

5 − 1

1 + √
5

≈ 0.618034, kF = π

5
, (87)

the ground state belongs to the sector of magnetization mz =
m(0)

z = −3L/5, with the leading finite-size behavior

E0

L
= e∞ − πvs

6L2
+ O(L−4), (88)

where

e∞ = −2
√

5 + √
5 + λ3

√
5 − √

5

4
√

2π
,

vs =
√

5 + √
5 + 2λ3

√
5 − √

5

4
√

2
. (89)

The first excited state in the sector of magnetization mz =
m(0)

z ± 1, similarly as in (80) and (81), gives the energy gap

E (±1) − E0 = 2πvs

L

1

4
. (90)

The results (88) and (90) indicate we have for λ < 1 the
same conformal towers that appeared in the λ = 1 case, only
differing in the sound velocity vs(λ).

For λ > 1 we have now four Fermi points (see Fig. 6).
Our results indicate that we have a composition of two central
charge c = 1 theories. The sound velocities v(1)

s and v(2)
s in

the branches k(1)
F and k(4)

F are distinct from the ones v(2)
s in k(2)

F

and k(3)
F . The ground-state energy has the leading finite-size

behavior
E0

L
= e∞ − π

6L2

(
v(1)

s + v(2)
s

) + O(L−4). (91)

The excitations that will give the dimensions xp will
give the same value xp = 1

4 in all branches. For example,
for λ = [sin(3π/14)/ sin(π/14)]1/3, k(2)

F = −k(2)
F = −2π/7,

and k(1)
F = −k(4)

F ≈ −0.7961934π . The contribution to the
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FIG. 7. Dispersion relation 	(k), given in (66), for the multispin
XX quantum chain with N = 4, and some values of λ. The Fermi
points are the ones where 	(kF ) = 0.

ground-state energy for the branch 2π
7 < k < 2π

7 has the lead-
ing behavior

E (1)
0

L
= cos

( π

14

)λ3 − 2 + 4 cos( π
7 )

2π
− πv(1)

s

6L2
+ O(L−4),

with

v(1)
s = cos

(
3π

14

)
+ 2λ3 cos

( π

14

)
≈ 4.74437,

while the contribution from −π � k � k(1)
F and π − k(4)

F �
k < π gives

E (2)
0

L
≈ −0.683626 − πv(2)

s

6L2
+ O(L−4),

with

v(2)
s ≈ 6.24521.

The excitations that contribute to the dimension xp give
2πv(i)

s /4 (i = 1, 2), implying xp = 1/4.
These results imply that for λ > 1 we have a mixture of two

central charge c = 1 theories with distinct sound velocities,
giving an effective theory with central charge c = 2. Con-
sequently we have at λ = λc = 1 a phase transition from an
effective theory with c = 1 (λ � 1) to another one with c = 2
(λ > 1).

2. N = 4. In Fig. 7 we show the dispersion relation 	(λ)
for the cases λ = 0.25, 1. and 1.25. From (66) it follows that
for λ < λc = 1

31/4 ≈ 0.7598 there exist only two Fermi points
kF = ±π

2 in the Brillouin zone −π � k < π . The ground
state belongs to the sector with mz = L/2 and has the leading
finite-size behavior:

E0

L
= e∞ − πvs

6L2
+ O(L−4),

e∞ = λ4 − 3

3π
,

vs = 3λ4 − 1. (92)
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The first excited state in the sector with magnetization mz =
L/2 ± 1 gives the dimension xp = 1/4, like in the former
cases N = 2 and 3.

For λ > λc appear four new Fermi points, and an analysis
similar as in the case N = 3 shows us that we have the finite-
size leading behavior for the ground-state energy:

E0

L
= e∞ − π

6L2

(
6∑

i=1

v(i)
s

)
+ O(L−2), (93)

where

v(i)
s = ∣∣ sin k(i)

F − 3λ4 sin
(
3k(i)

F

)∣∣, (94)

and k(i)
F (i = 1, . . . , 4) are the Fermi momenta (	(k(i)

F ) = 0).
We then have a quantum chain ruled by an effective c = 3

central charge theory, formed by the composition of three
central charge c = 1 theories, all of them with the polariza-
tion operator with dimension xp = 1/4. Actually these ground
states are indeed excited states of the standard XX quantum
chains, and the appearance of central charges proportional to
the number of Fermi points (disjoint sectors of quasimomenta)
was observed in [33], and also more recently in [34].

At λ = 1 the Fermi points are −3π/4,−π/2, π/2, 3π/4

and the value of e∞ = − 2(1+2
√

2)
3π

. This is distinct from the

value − 2
√

2
3π

given in (36) for the OBC. We see that the
anomalous behavior verified numerically for the p = 1 Z (3)
free-parafermionic Baxter model [11] is observed analytically
(even at λ = 1) for the N = 4-multispin XX model.

3. N > 4. We conjecture that for small values of λ < λ(1)
c

we have always a c = 1 conformal spectrum and for large val-
ues λ > λ(2)

c the spectra if given by a mixture of (N − 2) c = 1
theories, giving us conformal towers of effective c = N − 1
conformal theories. The dimension that generates all the con-
formal dimensions (compactification ratio in the Coulomb
gas language, or Luttinger parameter in spin liquid language)
is always xp = 1/4, as in the standard XX quantum chain.
Actually, as we shall see in the next section, for the cases
of the odd values of N > 3, there exist intermediate phases
with smaller central charges [see (104) and (105)]. Again, we
verified that the energy per site e∞, even at λ = 1 is distinct
for the PBC and OBC cases.

VI. THE ENTANGLEMENT ENTROPIES OF THE XX
MULTISPIN INTERACTION QUANTUM CHAINS

A direct test of the conformal invariance of a given critical
quantum chain is the evaluation of the entanglement entropy
obtained from the pure state density matrix

ρ = |�L〉〈�R|, (95)

where |�L〉 and 〈�R| are the left and right ground-state wave
functions of the Hamiltonian. We split the chain of L sites
in two disjoint sublattices A and B containing � and L − �

contiguous sites, respectively. The reduced density matrices
of the subsystems A and B are obtained from the partial trace
of the complementary subsystem, i.e., ρA = TrBρ and ρB =
TrAρ. The α-Rényi entanglement entropy (α = 1, 2, . . .) of

subsystem A is defined as

Sα (�, L) = 1

1 − α
ln[Tr (ρA)α]. (96)

The limit α → 1 gives the von Neumann entanglement
entropy

S1(�, L) = −Tr (ρA ln ρA). (97)

The conformal invariant quantum chains, i.e., the ones ruled
by an underlying conformal field theory, have a leading be-
havior as L → ∞ ( �

L fixed) for the α-Rényi entropy [35–38]

Sα (L, �) = c

6η

(
1 + 1

α

)
ln

[
ηL

π
sin

(
π�

L

)]
+ a(α)

η , (98)

for α = 1, 2, . . ., c is the central charge, η = 1 (η = 2) for
PBC (OBC), and a(α)

η is a nonuniversal constant.
The models we are considering have a free-fermion eigen-

spectra. In this case there exists a standard method [39–41]
to calculate the entropies Sα (L, �). The method is based on
the evaluation of the eigenvalues ν j ( j = 1, . . . , �) of the
correlation matrix C, with elements

Cm,n = 〈�L|c†
mcn|�R〉, m, n = 1, . . . , �. (99)

The Rényi entanglement entropies are given by

Sα (L, �) = 1

1 − α

�∑
j=1

ln
[
να

j + (1 − ν j )
α
]
, (100)

and for the case α = 1 we have

S1(L, �) = −
�∑

j=1

[ν j ln ν j + (1 − ν j ) ln(1 − ν j )].

(101)

For simplicity we are going to present only the cases where
the quantum chains are in a periodic lattice. In this case, from
Sec. V, the left and right eigenvectors are given by

〈�L| = 〈0|
∏

k∈{k}0

ηk, |�R〉 = |0〉
∏

k∈{k}0

η
†
k , (102)

where {ηk} are the fermionic Fourier modes given in (61). The
set {k}0 are formed by the quasimomenta in (63) defining the
ground state, namely, the ones that give negative values for the
quasienergies 	(k), given in (66).

Inserting (63) in (99) we obtain the elements of the corre-
lation matrix

Cm,n = 1

4L

∑
k∈{k}0

e−ik(m−n), (103)

the sets {k}0 depend on the value of N and the lattice size
parity. The eigenvalues ν j ( j = 1, . . . , �) of the subsystem
correlation matrices with elements C(�)

m,n (m, n = 1, . . . , �)
give the entanglement entropies Sα (L, �) in (100) and (101).

In Fig. 8 we show the von Neumann entropy S1(L, �) as
a function of ln[ L

π
sin( �π

L )]/3 for the quantum chain with
N = 3 and L = 600 sites for some values of λ. The results
for S2(L, �) and S3(L, �) for the values λ = 1/2 and λ = 2
are also shown in Fig. 9. The estimated values of the cen-
tral charge shown in these figures are obtained from the fit
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0.5 1 1.5

ln[L/πsin(π l/L)]/3

1

2

3

4

S
1(L

,l)

λ=1    c=1.0000
λ=1/2 c= 1.0000
λ=1/4 c=1.0000 
λ=3/2 c=2.0002
λ=2    c=2.0002
λ=3    c= 2.0002

N=3, L=600

λ=1/4,1/2,1

λ=3/2,2,3

FIG. 8. Von Neumann entanglement entropy S1(L, �), as a func-
tion of ln[ L

π
sin( �π

L )]/3, for some values of λ. The data are for the
XX multispin quantum chain with N = 3, L = 600 sites and PBC.

(50 � � � 300) with the expected form (98) quantum chains
with L = 600 sites. The data in Figs. 8 and 9 show a clear
agreement with the prediction (98) with c = 1 for λ � 1 and
c = 2 for λ > 1. This is even clear with the results of Fig. 10
where we show the estimates of the central charge c as a
function of λ. The values in this figure are obtained from the
fit of S1(300, �) with (98) by considering 50 � � � 150. We
clearly see a phase transition separating at λ = λc = 1 the
critical phases with c = 1 and c = 2, in agreement with the
predictions of previous sections. In computing the entropies
we should take into account that for λ � λc we have only
two Fermi points, and for λ > λc we have four of them. For

1 2 3 4 5

ln[Lsin(πl/L)π]

0.5

1

1,5

2

2.5

3

3.5

S
α(L

,l)

α=2 λ=1/2,  c=1.0000
α=2 λ=2,     c=1.9999
α=3 λ=1/2,  c=1.0000
α=3 λ=2,     c=2.0002

N = 3, L=600

α=3, λ=1/2

α=2, λ=1/2

α=3, λ=2

α=2, λ=2

FIG. 9. Rényi entanglement entropies S2(L, �) and S3(L, �), as a
function of ln[ L

π
sin( �π

L )]. The data are for the XX multispin quantum
chain with N = 3, L = 600 sites and PBC.

0 0.5 1 1.5 2 2.5

 λ 

1

1.5

2

2.5

c

 N=3 

FIG. 10. Estimated values of the central charge c as a function of
λ for the multispin XX quantum chain with N = 3 and PBC.

general values of N > 3 we also found a quite good agreement
with the conformal invariance predictions (98).

In Fig. 11 we show our results for the central charge c, as a
function of λ for the model with N = 4 and N = 6. For N = 4
(open circles) the phase transition happens at λ = λc = 1

31/4 ≈
0.7598, separating a phase where c = 1 from a phase where
c = N − 1 = 3. For N = 6 (asterisks) the phases are c = 1
and c = N − 1 = 5, and the transition parameter is λ = λc1 ≈
0.9634.

In Fig. 12 we show the central charge estimates for N = 5
and N = 7. We obtain the estimates from the fit of S1(900, �)
(50 < � < 450) with the expression (98). The model with

0 0.5 1 1.5 2 2.5

 λ

1

2

3

4

5

6

c

 N=4
 N=6

 0.7596 0.9634

FIG. 11. Estimated values of the central charge c as a function of
λ for the multispin XX quantum chains with N = 3 and N = 6, with
PBC.
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λ
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c

N=5
N=7

FIG. 12. Estimated values of the central charge c as a function of
λ for the multispin XX quantum chains with N = 5 and N = 7 with
PBC.

N = 5 (open circles) shows three phases: a phase for 0 <

λ � λc1 where the model has a central charge c = 1, an in-
termediate phase for λc1 < λ � λc2 where c = 3, and a phase,
for λ > λc2 where c = N − 1 = 4. In the case N = 7 (open
squares) the model has four phases: for 0 < λ � λc1 the model
has c = 1, for λc1 < λ � λc2 the phase has c = 3, for λc2 <

λ � λc3 the phase has c = 5, and for λ > λc4 the phase has a
central charge c = N − 1 = 6. The phase transition points are

λc1 = 0.92645, λc2 = 1, (104)

for N = 5, and for N = 7

λc1 = 0.89975 λc2 = 0.97899 λc3 = 1. (105)

Actually the phase transition points, separating conformal
phases with distinct central charges, are precisely the ones
where the number of Fermi points NFP changes in the disper-
sion relation. The central charge is c = NFP/2, in agreement
with the results of Sec. V.

VII. CONCLUSIONS

In this paper we study the spectral properties of two large
families of free-particle quantum chains with multispin in-
teractions. They are considered free because their energies
are given by the sum of independent (free) pseudo-energies.
In the first family we have parafermionic quantum chains
with Z (N ) symmetry and (p + 1)-multispin interactions (p =
1, 2, . . .). The pseudo-energies forming the eigenenergies of
the Hamiltonians satisfy a Z (N ) circle exclusion constraint
that generalizes the fermion exclusion principle for Z (2). In
the second family the models are N-multispin XX models
with a U (1) symmetry and described by a free-fermionic
eigenspectrum.

The eigenspectra of both models with OBC are described
in terms of the same pseudo-energies. These energies are

exactly calculated from the roots of special polynomials. In
their phase diagram there exists a multicritical point with a
dynamical critical exponent z = (p + 1)/N . In the particular
case where N = p + 1 we have z = 1, as in conformally in-
variant quantum chains. Our studies, when both models are in
the OBC geometry, indicate that at those multicritical points
the quantum chains are conformally invariant. The conformal
invariance was tested by exploiting its consequences to the
leading finite-size properties of the quantum chains in the
finite geometry. These tests were done either analytically or
with high numerical precision. The pseudo-energies for the
OBC case are obtained from the roots of special polynomials
with a known recursion relation. We use a powerful method
[20] that allows us to calculate the low-lying energies up to
lattice sizes ∼109. The numerical tests was done for the Z (N )
and XX models with several values of N .

For arbitrary N our results indicate that indeed the models
are described at the multicritical points by a conformal field
theory. The sound velocity and some of the surface exponents
were evaluated exactly.

For the case of a periodic lattice (PBC) the situation is dis-
tinct. Due to the non-Hermiticity of the models we have quite
distinct physics in the different geometries. For the isotropic
models (λ1 = λ2 = · · · = λ) the parameter λ is just a harmless
overall scaling factor for the models with OBC. However, in
the PBC case by changing λ the model, although being critical
as in the OBC, undergoes phase transitions.

It is difficult to calculate the eigenspectra of the Z (N )
parafermionic quantum chains with PBC. This is not the case
for the related N-multispin interacting XX models, since in
this case, due to the standard Jordan-Wigner transformation,
the Hamiltonian is a sum of bilinear fermion operators. In
the case where the chain is translational invariant, as happens
for the isotropic model with PBC, the diagonalization follows
from a Fourier transform, and all eigenfunctions are given
by the composition of Fourier modes. This implies a quite
general result: All the translational invariant Hamiltonians
(Hermitian or not) that can be expressed after a Jordan-
Wigner transformation in a bilinear form will share the same
eigenfunctions (not the eigenvalues), and consequently they
commute among themselves. The commutation follows di-
rectly from the fact that the general Hamiltonian has the form

HL =
L∑

�=1

A�h�, h� =
L∑

ı=1

c†
i c�+1, (106)

with {A�} ∈ C, � = 1, . . . , L, ci+L = ci, and [h�, hm] = 0.
This means that the study of all the wave functions of

a simple model, like the standard two-body XX model, is
equivalent to the study of all the eigenfunctions of the general
free-fermion quantum chain (106).

The N-multispin XX models with PBC and isotropic cou-
pling λ, considered in this paper, are particular cases of (106).
Our results in Secs. V and VI indicate that for the periodic
lattices the models undergo phase transitions as we change
the value of λ. The finite-size behavior of the eigenspectra, for
the models with N = 3, 4, 5, and 6, indicates that in general
the models are critical and conformally invariant. In each
phase the models have distinct central charges, whose values
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depend on the value of λ and N . These phases appear because
the models, although non-Hermitian, are described by Fermi
surfaces and the number of Fermi points NFP depends on
the particular value of λ for a given N-multispin XX quan-
tum chain. The central charge has the value c = NFP/2. It
is important to mention that the energy per site e∞ of the
homogeneous models is the same for the periodic and open
boundary cases, only when N = 2 where the Hamiltonian is
Hermitian. For N � 3 they show distinct values for the dif-
ferent boundary conditions, similarly as happens for the Z (N )
free-parafermion Baxter quantum chains, for N � 3 [11].

As a general scenario our results indicate that for small
values of λ << 1 the models are always in a phase with
the central charge c = 1, and for λ � 1 the models are in a
phase with central charge c = N − 1. For general values of
N the models show intermediate phases with integer values

of the central charge (1 < c < N − 1), that are formed by
independent compositions of c = 1 theories, all of them with
the lowest conformal dimension xp = 1/4 (see Secs. V and
VI).

We conclude by stressing that all these ground states with
distinct values of the central charge are also excited states
of the general models (106) with {A�} arbitrary. An inter-
esting question for the future concerns the phase diagram of
the Z (N ) N-multispin models with PBC. Are these multiple
phases also present?
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