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Kinetic glass transition in granular gases and nonlinear molecular fluids
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In this paper, we investigate, both analytically and numerically, the emergence of a kinetic glass transition
in two different model systems: a uniformly heated granular gas and a molecular fluid with nonlinear drag.
Despite the profound differences between these two physical systems, their behavior in thermal cycles share
strong similarities, which stem from the relaxation time diverging algebraically at low temperatures for both
systems. When the driving intensity—-for the granular gas—or the bath temperature—for the molecular fluid—is
decreased to sufficiently low values, the kinetic temperature of both systems becomes “frozen” at a value that
depends on the cooling rate through a power law with the same exponent. Interestingly, this frozen glassy state
is universal in the following sense: for a suitable rescaling of the relevant variables, its velocity distribution
function becomes independent of the cooling rate. Upon reheating, i.e., when either the driving intensity or
the bath temperature is increased from this frozen state, hysteresis cycles arise and the apparent heat capacity
displays a maximum. The numerical results obtained from the simulations are well described by a perturbative
approach.
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I. INTRODUCTION

As is well-known, crystallization of most liquids can be
prevented by cooling them sufficiently quickly. In that case,
the liquid enters into a metastable supercooled regime in
which a dramatic slowing down of the dynamics takes place.
On the one hand, above the melting point Tm, density fluc-
tuations of the liquid relax on a timescale of the order of
picoseconds. On the other hand, in the supercooled regime,
the relaxation times increase so fast that they become 14
orders of magnitude larger when the temperature is around
2
3 Tm [1]. At this point, the liquid does not flow anymore and
the glass transition occurs: configurational rearrangements
cease, the liquid structure becomes “frozen,” and the system
gets trapped in a nonequilibrium disordered yet solid state,
called the glassy state [2–15].

In spite of the great effort devoted to the investigation
of glassy systems in the last decades, the glass transition
continues to be an open problem. There is not yet a conclu-
sive answer to the fundamental question of whether the glass
transition is a purely dynamical, kinetic phenomenon or is
the consequence of an underlying ideal phase transition—as
predicted in certain theoretical frameworks [4,5,8,10,12,13].
Numerous studies have addressed the rich phenomenology
that accompanies the glass transition from different and com-
plementary viewpoints. For instance, spin models put the
accent on the characterization of potential energy landscapes
with a large number of energy minima connected by complex
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dynamics pathways [16–18], kinetically constrained models
emphasize the fact that relaxation events are cooperative be-
cause of the presence of geometric frustration [19,20], and so
on. But the development of a successful theory to explain all
the phenomenological observations in a unified and satisfac-
tory manner is still a challenge.

There are some key behaviors that are displayed by glass
formers when submitted to cooling protocols followed by re-
heating. In the following, we exemplify the observed behavior
with the average energy 〈E〉, but another physical quantity
might be the relevant one—depending on the context, for
example, the average volume for polymeric glasses [21,22].
When the system is cooled down to a low temperature, e.g.,
by lowering the bath temperature T at a constant rate rc, the
average energy 〈E〉 departs from equilibrium and gets frozen
when the system relaxation time τ exceeds the characteristic
cooling time r−1

c . This purely kinetic phenomenon is termed
the kinetic glass transition [23]. The temperature of the kinetic
glass transition—actually a range of temperatures—at which
the system departs from equilibrium and gets frozen decreases
with the cooling rate and, consequently, the properties of a
glass depend on the process by which it is formed. When the
system is reheated from the frozen state at a rate rh, in general
different from rc, 〈E〉 overshoots the equilibrium curve before
returning thereto. This entails that the apparent [24] heat ca-
pacity d〈E〉/dT displays a nontrivial behavior with a marked
peak at a certain temperature Tg, which can be employed to
characterize the kinetic glass transition [2,3,25–27].

This paper aims at analyzing how the kinetic glass tran-
sition emerges in two specific model systems: a uniformly
heated granular gas [28–33] and a molecular fluid with
nonlinear drag [34–40]. This analysis is carried out by a com-
bination of numerical simulations and singular perturbation
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theory tools. Granular gases and nonlinear molecular fluids
are largely different from a fundamental point of view. In
the molecular fluid with nonlinear drag, collisions between
particles are elastic and energy is thus conserved. Therefore,
the nonlinear molecular fluid tends in the long-time limit to an
equilibrium state, with a Gaussian—or Maxwellian—velocity
distribution function (VDF). In the granular gas, collisions
between particles are inelastic and thus energy is continuously
lost. Therefore, an energy injection mechanism is necessary
to drive the system to a steady state. The simplest one is the
so-called stochastic thermostat, in which a stochastic forcing
homogeneously acts on all the particles. In this uniformly
heated granular gas, the system remains spatially homoge-
neous and tends in the long-time limit to a nonequilibrium
steady state (NESS), in which the kinetic temperature is a cer-
tain function of the driving intensity. Moreover, the stationary
VDF has a non-Gaussian shape, which is well described by
the so-called first Sonine approximation. Therein, the non-
Gaussianities are accounted for by the excess kurtosis, which
is a smooth function of the inelasticity but independent of the
driving intensity [28,30].

Despite their apparent dissimilarities, uniformly heated
granular systems and nonlinear molecular fluids share some
features and characteristic behaviors. In both systems,
the system’s Hamiltonian has only the kinetic contribu-
tion, since interactions proceed via hard-core collisions.
Therefore, the so-called kinetic temperature T (t ) univo-
cally determines the average energy 〈E〉(t ), T (t ) ∝ 〈E〉(t ).
Notwithstanding, the two systems display aging and associ-
ated memory effects [41], both the Kovacs [33,39,41,42] and
the Mpemba [39,41,43] memory effects. The Kovacs memory
effect is especially characteristic of the complex response of
glassy systems [21,22,44–51]. It is interesting to note that the
Mpemba effect has also been observed in spin glasses, but
only in the spin glass phase—where it arises due to the aging
dynamics of the internal energy [52].

In addition, when quenched to a very low temperature,
both granular gases and nonlinear molecular fluids tend to
a time-dependent, nonequilibrium state, in which the kinetic
temperature presents a very slowly nonexponential, algebraic
decay over a wide intermediate time window. These nonequi-
librium attractors, the homogeneous cooling state (HCS)
for the granular gas [53–55] and the long-lived nonequi-
librium state (LLNES) for the molecular fluid [39,56], are
characterized by non-Gaussian VDFs. Afterward, for very
long times, both systems approach their respective station-
ary states, NESS and equilibrium state, for the granular and
molecular cases, respectively.

Since nonexponential relaxation and memory effects are
hallmarks of glassy behavior [21,22,41,44–52,57–60], it is
natural to pose the question as to whether granular gases and
nonlinear molecular fluids undergo a kinetic glass transition
when being subjected to a continuous cooling program. Of
course, these systems are not realistic models of glass-forming
liquids but one of the most interesting features of glassy
behavior is its ubiquity and universality: the glass transition
is found in systems with typical length and timescales very
different from molecular ones—such as colloidal suspensions
and granular materials [12]. More specifically, we would also
like to elucidate the possible role played by the HCS—for the

granular gas—and the LLNES—for the nonlinear molecular
fluid—in the kinetic glass transition.

The organization of the paper is as follows. In Sec. II,
we introduce the uniformly heated granular gas model and
write the evolution equations for the kinetic temperature and
the excess kurtosis in the first Sonine approximation that
we employ throughout our paper. Section III analyzes the
physical reasons behind the emergence of a kinetic glass
transition in the uniformly heated granular gas when the
driving intensity is continuously decreased to zero. For the
sake of concreteness, we consider a linear cooling program,
in which the bath temperature changes linearly in time. The
divergence of the characteristic relaxation time as the bath
temperature is lowered gives rise to a slowing down of the
dynamics that makes the granular temperature become frozen
at a certain value θFrz �= 0, and physical arguments for the
dependence of θFrz on rc are provided. In Sec. IV, we ana-
lytically investigate the kinetic glass transition in the granular
gas. Not only do we perform numerical simulations of the
system under this cooling program but also develop a singular
perturbation theory approach—specifically, of the boundary
layer type, which accurately accounts for the system evolution
and even characterizes the final glassy state. The hysteresis
cycle that emerges when the system is reheated from the final
glassy, frozen state is the subject of Sec. V. The molecular
fluid with nonlinear drag model is introduced in Sec. VI,
where—similarly to the framework developed in Sec. II for
the granular gas—the evolution equations of the model in
the first Sonine approximation are put forward. In Sec. VII,
we address the glass transition and hysteresis cycles in the
molecular fluid by again combining numerical simulations
and a boundary layer approach—this analysis is presented in
a simplified way, because of its formal similarity with the
granular gas. Finally, we present in Sec. VIII the main con-
clusions and a brief discussion of our results. The appendices
present the study of more general cooling programs and give
additional details on the boundary layer perturbation theory
employed at different points of our work.

II. MODEL: UNIFORMLY DRIVEN GRANULAR GAS

First, we consider a granular gas of d-dimensional hard
spheres of mass m and diameter σ . These hard spheres
undergo binary inelastic collisions, in which the tangential
component of the relative velocity between two particles re-
mains unaltered, while the normal component is reversed and
shrunk by a factor α. This parameter α is called the restitu-
tion coefficient, 0 � α � 1; elastic collisions—in which the
kinetic energy is conserved—are recovered for α = 1 [54,55].
In the uniformly heated granular gas, the system reaches a
steady state in the long term because the kinetic energy lost
in collisions is balanced on average by energy inputs, mod-
eled through independent white noise forces acting over each
particle [28].

For the sake of clarity, and also to keep our paper as
self-contained as possible, we briefly present the general
mathematical framework and the basic equations for the uni-
formly heated granular gas below. This framework is given for
(i) sufficiently dilute gases and (ii) spatially homogeneous and
isotropic situations. On the one hand, (i) implies that the state
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of the system is completely characterized at the one-particle
level, such that its dynamical evolution is accounted by a
Boltzmann-like kinetic equation for the one-particle distribu-
tion function f (r, v, t ) and, on the other hand, (ii) allows us
to further simplify the description, as the distribution func-
tion becomes independent of r. In the following, we refer to
f (v, t ) as the one-particle VDF. A more detailed account of
the mathematical framework described below can be found in
the literature—e.g., see Refs. [28–30,32,33,42].

In kinetic theory [61,62], the one-particle VDF is usually
normalized as

n =
∫

dv f (v, t ), (1)

with n being the number density, i.e., the number of particles
per unit volume. The average of any function of the velocity
h(v) is

〈h(v)〉 =
∫

dv h(v) f (v, t )∫
dv f (v, t )

= 1

n

∫
dv h(v) f (v, t ). (2)

The time evolution of the VDF is governed by the Boltzmann
equation with an additional Fokker-Planck term, known as the
Boltzmann-Fokker-Planck equation:

∂t f (v, t ) − ξ 2

2

∂2

∂v2
f (v, t ) = Jα[v| f , f ]. (3)

On the one hand, the Boltzmann collision operator Jα[v| f , f ]
accounts for the inelastic collisions between the particles. We
do not provide its full expression, since our approach starts
from the evolution equations for the cumulants, written be-
low [63]. On the other hand, the Fokker-Planck term accounts
for the effect of the stochastic thermostat, with the parameter
ξ measuring the intensity of the heating.

The kinetic (or granular) temperature T (t ) is defined as
usual in kinetic theory, proportional to the average kinetic
energy,

T (t ) = m

dkB
〈v2〉, (4)

where kB is the Boltzmann constant. To gain analytical in-
sights into the evolution of the granular temperature, it is
useful to introduce the scaled VDF φ(c, t ),

f (v, t ) = n

vd
T (t )

φ(c, t ), c ≡ v

vT (t )
, (5)

with vT (t ) ≡ √
2kBT (t )/m being the thermal velocity. For

isotropic states, such scaled VDFs may be expanded in a
complete set of orthogonal polynomials:

φ(c, t ) = e−c2

πd/2

[
1 +

∞∑
l=2

al (t ) L
d−2

2
l (c2)

]
. (6)

Herein, L(k)
l are the Sonine polynomials [54,55,64,65], and

the al (t ) coefficients are known as the Sonine cumulants.
The latter account for the deviations from the Maxwellian
equilibrium distribution φeq(c) = π−d/2e−c2

.
Throughout this paper, here for the granular gas—and later

for the molecular fluid, we work under the first Sonine ap-
proximation. Therein, we only need to monitor the kinetic

temperature T and the first Sonine cumulant a2, given by

a2 = d

d + 2

〈v4〉
〈v2〉2

− 1, (7)

which is also known as the excess kurtosis. For our analysis
below, it is useful to introduce a characteristic length λ and a
characteristic rate ν as

λ−1 = 2nσ d−1π
d−1

2

d �(d/2)
, (8a)

ν(T ) = (1 − α2)λ−1

(
kBT

m

)1/2

. (8b)

On the one hand, λ gives the mean-free path, i.e., the average
distance traveled by one particle between collisions. On the
other hand, ν(T ) gives the cooling rate of the granular gas,
i.e., the rate at which kinetic energy is dissipated in collisions.

In the absence of stochastic thermostat, the granular gas
reaches the spatially uniform nonsteady state known as the
HCS, for which the scaled VDF φ becomes stationary and
the granular temperature decays algebraically in time, T (t ) ∝
t−2, following Haff’s law [53–55,66]. Under the first Sonine
approximation, the stationary value of the excess kurtosis at
the HCS is given by

aHCS
2 = 16(1 − α)(1 − 2α2)

25 + 2α2(α − 1) + 24d + α(8d − 57)
. (9)

When the stochastic thermostat is present, the granular gas
reaches a NESS in the long time limit. The kinetic temperature
Ts at the NESS is given in terms of the stochastic strength ξ

via the relation [28]

kBTs

m
=

[
λ ξ 2

(1 − α2)
(
1 + 3

16 as
2

)
]2/3

, (10)

where as
2 is the NESS value of the excess kurtosis:

as
2 = 16(1 − α)(1 − 2α2)

73 + 56d − 24dα − 105α + 30(1 − α)α2
. (11)

Such value has the same sign as aHCS
2 , thus attaining a null

value at α = 1/
√

2.
From the Boltzmann-Fokker-Planck equation, the evolu-

tion equations for the temperature and the excess kurtosis are
derived [28,30,33,42],

dθ

dt∗ = θ3/2
s

(
1 + 3

16
as

2

)
− θ3/2

(
1 + 3

16
a2

)
, (12a)

da2

dt∗ = 2θ1/2

[(
1 −

(
θs

θ

)3/2
)

a2 + B
(
as

2 − a2
)]

, (12b)

where we have introduced dimensionless variables,

θ ≡ T

Ti
, θs ≡ Ts

Ti
, t∗ ≡ ν(Ti )t, (13)

Ti ≡ T (t = 0) being the initial temperature, and the parameter

B ≡ 73 + 8d (7 − 3α) + 15α[2α(1 − α) − 7]

16(1 − α)(3 + 2d + 2α2)
. (14)

With our choice of units, the initial value of the dimensionless
temperature is always θi = 1. Also, note that B may be written
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in terms of aHCS
2 and as

2, specifically B = aHCS
2 /(aHCS

2 − as
2) as

predicted by Eq. (12b) for θs = 0 [33,42].
To simplify our notation, we drop the asterisk in the di-

mensionless time in the remainder of the paper. Our definition
of the dimensionless time is equivalent to taking the time
unit roughly equal to the characteristic relaxation time of the
granular gas at the initial temperature.

III. WHY A KINETIC GLASS TRANSITION IN THE
GRANULAR GAS?

The possible emergence of a glass transition in a given
system is deeply connected with a slowing down of its dy-
namics, typically as the bath temperature is lowered. In the
granular gas, the role of the heat bath is played by the intensity
of the stochastic thermostat ξ , which controls the stationary
value of the energy of the gas—or, equivalently, the stationary
value of the kinetic temperature θs, as given by Eq. (10).
A time-dependent driving intensity ξ (t ), which continuously
decreases from its initial value ξi to zero, is thus considered.

The system is initially prepared in the NESS corresponding
to ξi, thus the initial value of the dimensionless temperature is
θi = θ (t = 0) = θs(t = 0) = 1. Therefrom, we apply a linear
cooling program with rate rc:

dθs

dt
= −rc, θs(t ) = 1 − rc t . (15)

The choice of a linear cooling program is done for the sake
of concreteness, but a more general family of protocols is
considered in Appendix A. The characteristic timescale for
the cooling process t0 corresponds to the time at which θs

vanishes, θs(t = t0) = 0, for the linear cooling program above,
t0 = r−1

c . The cooling process is assumed to be slow, i.e.,
the characteristic cooling time t0 is much longer than the
characteristic relaxation time of the system at the initial state.
Since the latter is of the order of unity in our dimensionless
variables, slow cooling entails that t0 
 1 or rc � 1.

Now we put forward a physical argument that supports the
emergence of a kinetic glass transition in the granular gas. For
time-independent strength of the stochastic thermostat ξ , the
granular gas relaxes to the steady state characterized by the
“bath” temperature θs and the stationary excess kurtosis as

2.
The characteristic timescale for this relaxation is is propor-
tional to ν−1(Ts) from Eq. (8b). Specifically, it is given by

τ (θs) = 1

c
θ−1/2

s , (16)

where c is a constant of the order of unity [67]—see
Appendix B—which is approximately equal to 3/2. In the
low bath temperature limit, τ algebraically diverges as θ

−1/2
s

and, despite our slow cooling, the characteristic timescale for
relaxation eventually becomes much longer than the cooling
time. Therefore, we expect the system to depart from the
stationary curve and get frozen—i.e., a kinetic glass transition
shows up.

To approximately quantify the above qualitative argument,
we may introduce the effective timescale

s =
∫ t0

t
dt ′τ−1(θs(t

′)) = 1

rc

∫ θs

0
dθ ′

s τ−1(θ ′
s ), (17)

which measures the number of effective relaxation times re-
maining from the current time t to the final time of the cooling
process t0. As long as s 
 1, we expect the system to be able
to follow the instantaneous NESS curve θ = θs [68]. When
s becomes of the order of unity, the system does not have
enough time to relax towards the instantaneous NESS curve
and thus it freezes. Following the usual terminology of glassy
systems, see, e.g., Ref. [69], we may introduce a fictive kinetic
temperature as the bath temperature at which the NESS kinetic
temperature equals the frozen value.

The above physical picture implies that we can estimate the
fictive temperature θ f by imposing

s(θs = θ f ) = 1, (18)

i.e.,

θFrz ≡ lim
θs→0

θ � θ f . (19)

Bringing to bear Eqs. (15) and (16):

s = c

rc

∫ θs

0
dθ ′

s

√
θ ′

s = 2c

3

θ
3/2
s

rc
. (20)

Then, the fictive temperature and the kinetic temperature at
the frozen state are estimated as

θ f =
(

3rc

2c

)2/3

, θFrz ∝ r2/3
c . (21)

Wrapping things up, the slowing down of the dynamics of the
granular gas, due to the algebraic divergence of the relaxation
time in Eq. (16), entails that the granular gas is expected
to depart from the instantaneous NESS curve θ = θs as the
the intensity of the stochastic thermostat is continuously de-
creased to zero. In other words, a kinetic glass transition is
expected to appear in this system when cooled down to low
bath temperatures, and our timescale argument suggests that
the system would get frozen for bath temperatures θs � θ f ,
where θ f follows the power law (21) with the cooling rate.
Moreover, the kinetic temperature at the frozen state is ex-
pected to be approximately equal to θ f , thus following the
same power law with the cooling rate. The correctness of
this physical image is supported by the detailed mathematical
theory that is developed in the next sections.

IV. DETAILED ANALYSIS OF THE GLASS TRANSITION

The physical discussion in the previous section suggests
that tools from singular perturbation theory are useful to tackle
the problem analytically. Our analysis below shows that, in-
deed, different regions emerge, which we will label with the
terminology of Ref. [70] for boundary layer problems. First,
one has the outer layer, inside which the kinetic temperature
θ does not deviate much from the bath temperature θs, and a
regular perturbation expansion is adequate. Second, one has
the inner layer, for which the regular perturbation expansion
breaks down and it is necessary to rescale the variables to
obtain an approximate solution. It is in the inner layer that
the kinetic temperature θ rapidly separates from θs and gets
frozen at θFrz. Finally, one has the matching region, over which
the solution continuously changes from the inner to the outer
solution.
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FIG. 1. Left: Dynamical evolution of the granular temperature θ as a function of the bath temperature θs. Symbols correspond to DSMC
data for the linear cooling protocol (15) with different cooling rates rc, namely, rc = 0.05 (red squares), 0.025 (green up triangles), 0.01 (orange
circles), 0.005 (blue down triangles), 0.0025 (black rectangles), and 0.001 (purple diamonds) for two values of the restitution coefficient:
α = 0.9 (empty symbols) and α = 0.3 (filled symbols). The dashed line corresponds to the instantaneous NESS curve θ = θs. Right: Limit
values of the kinetic temperature at the frozen state θFrz as a function of rc. The plotted points have been extracted from the DSMC data on the
left panel. The lines correspond to the best fits to the function θFrz =a rb

c , with a = 0.741 and b = 0.666 for α = 0.9 (dashed), and a = 0.781
and b = 0.666 for α = 0.3 (solid), both in excellent agreement with the theoretical prediction (25a). We have considered a granular gas in the
three-dimensional case d = 3. The same parameter values are employed in the remainder of the numerical simulations for the granular gas.

The generic framework described above is applied to the
evolution equations for the granular gas in the following
Secs. IV A and IV B. To improve their readability, some of the
details of the perturbative approach are omitted or relegated to
the appendices.

A. Regular perturbative expansion

We are interested in studying the behavior of the kinetic
temperature θ in terms of the bath temperature θs. Therefore,
we rewrite Eqs. (12) in terms of derivatives with respect to θs,

−rc
dθ

dθs
= θ3/2

s

(
1 + 3

16
as

2

)
− θ3/2

(
1 + 3

16
a2

)
, (22a)

−rc
da2

dθs
= 2θ1/2

[(
1 −

(
θs

θ

)3/2
)

a2 + B
(
as

2 − a2
)]

, (22b)

which must be solved with the conditions

θ (θs = 1) = 1, a2(θs = 1) = as
2. (23)

In the slow cooling limit rc � 1, a standard, regular
perturbative approach in powers of rc—for details, see
Appendix C—gives the outer solution:

θ = θs + rc
2

3θ
1/2
s

[
1 + 3

16
as

2

(
1 + 1

B

)]−1

+ O
(
r2

c

)
, (24a)

a2 = as
2 − rc

as
2

B θ
3/2
s

[
1 + 3

16
as

2

(
1 + 1

B

)]−1

+ O
(
r2

c

)
.

(24b)

This expansion breaks down for low bath temperatures θs �
1, for which the terms proportional to rc (i) first become
of the order of the leading, independent of rc, contributions
and (ii) later diverge in the limit as θs → 0. In particular,
(i) implies that Eq. (24) ceases to be valid when θs = O(r2/3

c ).
In other words, Eq. (24) is thus limited to high enough bath
temperatures, θs 
 r2/3

c .

Note that r2/3
c is precisely the dependence on rc of the

fictive temperature θ f derived in Sec. III by qualitative argu-
ments. From a physical standpoint, this marks the onset of
the kinetic glass transition: we expect the system to become
“frozen” as soon as θs = O(r2/3

c ). In this region of tempera-
tures, the terms in Eq. (24) for (i) θ are proportional to r2/3

c
and (ii) a2 are independent of rc. Therefore, we expect that

θFrz ≡ lim
θs→0

θ ∝ r2/3
c , (25a)

aFrz
2 ≡ lim

θs→0
a2 = O(1). (25b)

The latter suggests that all the cumulants of the Sonine expan-
sion become independent of the cooling rate, i.e., the frozen
state of the system is unique [71].

Let us now compare our analytical predictions with sim-
ulation results obtained from direct simulation Monte Carlo
(DSMC) integration [72] of the Boltzmann equation (3) that
governs the dynamics of the granular gas. Unless otherwise
specified, for all the simulations of the granular gas per-
formed, we have employed the system parameters d = 3, a
number of particles of N = 105, and two different values of
the restitution coefficient, α = 0.9 and α = 0.3, to test the
robustness of our theoretical approach.

Figure 1 presents numerical results for the linear cooling
program (15). On the left panel, we plot the behavior of the
kinetic temperature θ as a function of the bath temperature θs,
for different cooling rates. The emergence of a kinetic glass
transition is clearly observed. On the right panel, the final
granular temperatures θFrz at the frozen state are plotted as
a function of the cooling rate rc. They are very well fitted by
the power law θFrz = a rb

c with b = 0.666, thus numerically
confirming the scaling predicted by Eq. (25a).

In Fig. 2, we numerically prove that the frozen state is
indeed unique. On the left panel, the dimensionless VDFs at
the frozen state corresponding to different cooling rates over-
lap on a universal curve. Note that, although our theoretical

044137-5



PATRÓN, SÁNCHEZ-REY, AND PRADOS PHYSICAL REVIEW E 109, 044137 (2024)

FIG. 2. Universality of the frozen state. Left: VDF at the frozen state for different values of the cooling rate rc. The color code and symbols
are the same as in Fig. 1. For each value of α, its corresponding VDFs are superimposed over a unique, universal, curve independent of rc,
in agreement with our theoretical prediction. In the inset, we show the VDF at the frozen state divided by the equilibrium Maxwellian, with
the lines corresponding to the polynomials in Eq. (6) within the first Sonine approximation for α = 0.9 (blue dashed) and α = 0.3 (red solid),
respectively. Right: Excess kurtosis at the frozen state aFrz

2 as a function of the restitution coefficient α. Here, for the sake of clarity, we show
DSMC data corresponding to only two values of the cooling rate, rc = 0.01 (squares) and rc = 0.001 (circles). The numerical values of aFrz

2

are compared with both the NESS value as
2 (blue dashed line) and the HCS value aHCS

2 (red solid line), being very close to the latter.

argument for the universality of the frozen state above has
been carried out within the first Sonine approximation, the
numerical results show that this remarkable property holds
for the exact (numerical) VDF. To neatly visualize the non-
Gaussian character of the frozen state, we present (i) the ratio
of the VDFs over the equilibrium Maxwellian in the inset of
the left panel and (ii) the excess kurtosis at the frozen state
aFrz

2 as a function of the restitution coefficient α on the right
panel [73]. Point (i) allows us to illustrate in a neater way
the differences between the frozen states corresponding to
α = 0.9 and α = 0.3, since their respective excess kurtosis
have opposite signs—Eq. (6) tells us that the plotted ratio
is basically 1 + a2L1/2

2 (c2). Point (ii) allows us to check that
aFrz

2 —and thus the VDF—is indeed independent of rc for all
inelasticities. In addition, this graph shows that aFrz

2 is really
far from the steady-state kurtosis as

2 but very close to the HCS
values aHCS

2 , which suggests that the HCS has a key role in the
frozen state, as further discussed in Appendix A.

B. Boundary layer approach: Universality

We are now concerned with the behavior of the system for
very low bath temperatures, when the system is close to its
frozen state. To start with our boundary layer approach, we
define the scaled variables

Y ≡ r−2/3
c θ, X ≡ r−2/3

c θs, (26)

as suggested by Eqs. (25a) and (25b). Interestingly, the evo-
lution equations (12) become independent of the cooling rate
when written in terms of X and Y :

−dY

dX
= X 3/2

(
1 + 3

16
as

2

)
− Y 3/2

(
1 + 3

16
a2

)
, (27a)

−da2

dX
= 2Y 1/2

[(
1 − X 3/2

Y 3/2

)
a2 + B

(
as

2 − a2
)]

. (27b)

These equations provide us with the inner solution, which is
expected to be valid for (X,Y, a2) of the order of unity, i.e.,
close to the frozen state as discussed above. Equations (27)
are complemented with the boundary conditions (23), which
now read

Y
(
r−2/3

c

) = r−2/3
c , a2

(
r−2/3

c

) = as
2. (28)

Note that dependence of the inner solution on the cooling rate
rc takes place exclusively through the boundary conditions.

Figure 3 illustrates the glass transition on the left panel
of Fig. 1, but in terms of the scaled variables X and Y . For
each value of the restitution coefficient α, all the curves for

FIG. 3. Scaled granular temperature Y as a function of the scaled
bath temperature X . We have employed the linear cooling proto-
col (15) with different cooling rates and two values of the restitution
coefficient α. The color codes and symbols for the DSMC data are
the same as those employed in the left panel of Fig. 2. The dashed,
purple vertical line marks the fictive temperature Xf = θ f /r2/3

c = 1
from Eq. (21) for c = 3/2.
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different values of the cooling rate rc collapse onto a unique
master curve, independent of rc. The only difference appears
for large values of X , for which the different curves start from
different initial points, consistent with the boundary condi-
tions (28). Our theoretical prediction for the scaled fictive
temperature Xf is also plotted: it is independent of rc as well,
since θ f is proportional to r2/3

c , as given by Eq. (21), and
Xf = r−2/3

c θ f . Our theory thus gives an excellent estimate for
the actual fictive temperature of the system. Since the plotted
numerical data corresponds to the DSMC integration of the
kinetic equation (3), not to our perturbation approach, this
suggests that the exact solution to the problem presents a
universal behavior in scaled variables.

The universal behavior illustrated in Fig. 3 depends mildly
on α; the differences between the α = 0.9 (open symbols)
and α = 0.3 (filled symbols) data sets are very small. This
is due to the smallness of the values of the excess kurtosis
in the granular gas, where typically |a2| � 0.15. In addition,
note that the terms containing the excess kurtosis in the evo-
lution equation for the temperature (12a) are of the form
(1 + 3a2/16), and thus 3a2/16 � 0.03, so the differences be-
tween different values of α are expected to be of a few per
cents.

To understand such universal behavior in scaled variables,
it is useful to build approximate, to the lowest order, expres-
sions over the whole bath temperature range, not only in the
boundary layer. For the sake of having a clear, distinct nota-
tion, we denote such approximate expressions by (Y (0), a(0)

2 ).
In Appendix D, we show that these lowest order expressions
are given by the solution of Eq. (27) with the boundary condi-
tions

lim
X→∞

Y (0)(X ) = ∞, lim
X→∞

a(0)
2 (X ) = as

2, (29)

which are the limit as rc → 0 of Eq. (28). Although it is
not possible to write (Y (0)(X ), a(0)

2 (X )) in a simple closed
form, it is clear that (Y (0)(X ), a(0)

2 (X )) does not depend on rc,
since neither the evolution equations (27) nor the boundary
conditions (29) depend on rc.

From the lowest order solution, the frozen values of the
scaled variables are readily obtained:

Y Frz ≡ lim
X→0

Y (0)(X ), (30a)

aFrz
2 ≡ lim

X→0
a(0)

2 (X ). (30b)

Our above argument about the independence of Y (0)(X ) on
the cooling rate is immediately translated to θFrz = r2/3

c Y Frz,
which means that θFrz follows the power law behavior θFrz ∝
r2/3

c that we have already checked on the right panel of Fig. 1.
Also, the independence of aFrz

2 on rc has already been checked
on the right panel of Fig. 2. Moreover, the independence on
rc of the curves (Y (0), a(0)

2 ) as a function of X gives rise to
the universal cooling curve in Fig. 3. Therefore, our theory
explains the observed universal behavior of the simulation
data in scaled variables.

V. HYSTERESIS CYCLES

Now we turn our attention to a reheating protocol from the
frozen state with rate rh, dθs/dt = +rh. First, we consider the

paradigmatic case rh = rc = r. Second, we consider the more
general case rh �= rc. In both cases, we show that the system
does not follow backward the cooling curve, but crosses the
NESS line θ = θs and afterward tends thereto from below.
This is similar to the hysteresis cycle displayed by glassy sys-
tems in temperature cycles (cooling followed by reheating).

A. Universal hysteresis cycle with rc = rh

First, we consider the case rc = rh = r. In complete anal-
ogy with the cooling program, we define scaled variables as

Y ≡ r−2/3θ, X ≡ r−2/3θs. (31)

In terms thereof, the evolution equations in the reheating pro-
tocol become independent of r:

dY

dX
= X 3/2

(
1 + 3

16
as

2

)
− Y 3/2

(
1 + 3

16
a2

)
, (32a)

da2

dX
= 2Y 1/2

[(
1 − X 3/2

Y 3/2

)
a2 + B

(
as

2 − a2
)]

. (32b)

The above system must be complemented with the new
boundary conditions

Y (0) = Y Frz, a2(0) = aFrz
2 , (33)

which correspond to that of the frozen state from the previ-
ously applied cooling program, given by Eq. (30) to the lowest
order—recall that rc = rh = r.

A completely similar analysis to that carried out for the
cooling program shows that the solution to Eq. (32), i.e.,
the inner solution for the heating program, gives the uniform
solution to the lowest order again. The hysteresis cycle is
unique in the rescaled axes Y vs X , since the rate is nowhere
in Eqs. (32) and (33).

In Fig. 4, we numerically check our prediction on the
hysteresis cycle being independent of r. On the left panel, the
hysteresis cycle of the kinetic temperature is shown. DSMC
simulation data (symbols) are compared with the boundary
layer solution (blue lines) of Eq. (32) for different values
of the cooling/heating rate r = rc = rh, and again for two
values of the restitution coefficient α: 0.3 and 0.9. It is neatly
observed that the boundary layer solution captures very well
the numerical results throughout the whole cycle. Remark-
ably, the heating curve crosses the NESS line θ = θs (dashed
line) and tends thereto from below—this is further analyzed
in Sec. V B. On the right panel, we display the apparent heat
capacity dθ/dθs = dY/dX over the thermal cycle. In general,
the apparent heat capacity

C ≡ dθ

dθs
= dY

dX
(34)

is nonmonotonic in the heating process, with a marked
maximum at a certain value of θs (or X ) that can be em-
ployed to define the glass transition temperature θg (or
Xg) [2,3,26,27,74]. In this simple system, the value of the ap-
parent heat capacity has opposite signs in the limit of very low
bath temperatures. This is readily understood from Eqs. (27a)
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FIG. 4. Hysteresis cycles in the granular gas. The system is first cooled with rate rc and later reheated from the frozen state with rate
rh = rc = r. Top blue (bottom red) symbols and lines correspond to the cooling (heating) protocol, as explicitly stated in both panels. Left:
Scaled kinetic temperature Y = r−2/3θ as a function of the scaled bath temperature X = r−2/3θs. Specifically, we present results for r = 0.01
(squares) and r = 0.001 (diamonds), and for two values of α: 0.9 (open symbols) and 0.3 (filled symbols). Symbols are simulation results
of the Boltzmann equation (3), while the solid curves correspond to the numerical integration of Eqs. (27) and (32) for cooling and heating,
respectively. The dashed straight line corresponds to the instantaneous NESS curve Y = X . The purple vertical line marks the bath temperature
Xg at which the heat capacity reaches its maximum in the reheating program—see right panel. Both the solid curves and the purple vertical line
were obtained for α = 0.9, as they superimpose with the ones corresponding to the α = 0.3 case. Right: Associated apparent heat capacity
C = dθ/dθs = dY/dX . Again, the symbols have been obtained from the simulation data, and the lines correspond to the numerical integration
of Eqs. (27) and (32). Note the logarithmic scale used for the horizontal axis on both panels.

and (32a), since

C ∼ ±Y 3/2

(
1 + 3

16
a2

)
, X � 1, (35)

with the plus and minus signs corresponding to cooling and
reheating, respectively.

The behavior of the apparent heat capacity C in Eq. (35)
has a neat physical meaning. For very low bath temperatures,
the term coming from the stochastic driving in the evolution
equation for the temperature (12a) becomes negligible and

dθ

dt
∼ −θ3/2

(
1 + 3

16
a2

)
. (36)

That is, the granular gas freely cools, since θ mononotically
decreases with time. Note that, in fact, Eq. (36) is nothing but
Haff’s law, θ̇ ∝ −θ3/2, and it is equivalent to Eq. (35) for the
apparent heat capacity.

B. Normal heating curve

To deepen our understanding of the hysteretic behavior
in reheating, a regular perturbation expansion can be carried
out, analogous to the one for the cooling process. By simply
substituting rc with −rh in Eq. (24), we obtain

θ = θs − 2 rh

3θ
1/2
s

[
1 + 3

16
as

2

(
1 + 1

B

)]−1

+ O
(
r2

h

)
, (37a)

a2 = as
2 + rh as

2

B θ
3/2
s

[
1 + 3

16
as

2

(
1 + 1

B

)]−1

+ O
(
r2

h

)
. (37b)

These perturbative expressions are expected to be valid for
not too low temperatures θs 
 r2/3

h , i.e., over the outer layer,
using once more the terminology of boundary layer theory.

Equations (37) depend on the heating program rh, but not
on the previously applied cooling program with cooling rate

rc. In other words, if we start the heating process from differ-
ent initial frozen temperatures θFrz = Y Frzr2/3

c corresponding
to different values of rc but reheated with a common rate
rh, we expect to approach the behavior in Eq. (37) once the
system reaches the outer layer.

The behavior just described above is illustrated in Fig. 5:
despite having different cooling programs, all the reheating
curves tend toward a universal curve, independent of rc, for
high enough values of the bath temperature. Equation (37a)
explains why the kinetic temperature overshoots the NESS

FIG. 5. Hysteresis cycles for reheating with rate rh from the
frozen states corresponding to different cooling rates rc. All reheating
curves correspond to rh = 0.01, and the different cooling rates em-
ployed are symbols rc = red squares, 0.05; orange circles, 0.01; blue
diamonds, 0.005; and purple triangles, 0.001. Symbols correspond
to DSMC simulation data, whereas the solid line corresponds to the
perturbative expression for the normal curve in Eq. (37).
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curve θ = θs in reheating. The universal curve for the temper-
ature, as given by Eq. (37a) in the outer layer, is always below
the NESS curve, whereas the cooling curves always lie above
the NESS curve, as expressed by Eq. (24a) and illustrated by
Fig. 1.

From a physical standpoint, the overshoot of the instanta-
neous NESS curve may be understood by taking into account
that the kinetic temperature θ always lags behind the bath tem-
perature θs during the entire time evolution of the hysteresis
cycle. In the cooling protocol, this implies that the deviation
θ − θs increases as θs decreases, i.e., as the characteristic
relaxation time of θ increases. In the reheating protocol, θ

initially decreases, specifically as long as θs � θ . It is not
until θs � θ that θ starts to increase but, at the time it does,
as its characteristic relaxation time is still large compared
to the reheating time, we will have θs > θ until it reaches
the instantaneous NESS. The latter argument also explains
why the crossing points between the NESS curve and the
simulation data from Fig. 5 are very close to the minimum
—i.e., the point at which dθ/dθs = 0— of each data set.

Let us have a more detailed look at the dependence of
the reheating curves on the rate rc of the previous cooling
program. In Fig. 5, it is observed that the reheating curves
develop a neat dimple as the cooling rate rc is increased. This
can be understood by going back to the evolution equations for
the inner region (32), which continue to be valid for rc �= rh,
but with the new boundary conditions

Y (0) = (rc/rh)2/3Y Frz, a2(0) = aFrz
2 . (38)

The boundary conditions in Eq. (33) can be thus considered as
the particularization of Eq. (38) to the case rh = rc. As rc/rh

increases, we have that Y (0) = (rc/rh)2/3Y Frz also increases
and then the initial decrease predicted by Eq. (35) for the
heating curve becomes more noticeable, giving rise to the
neat minimum (the dimple) shown by the uppermost curve in
Fig. 5. For small values of rc/rh, this initial decrease is barely
noticeable, and the tendency towards the normal curve is
almost horizontal, as shown by the lowermost curve in Fig. 5.
Still, it must be noted that θ always presents a minimum as
a function of θs, because dθ/dθs is negative for very low
temperatures, as predicted by Eq. (35) for heating, whereas
it is positive, since dθ/dθs → 1, for high temperatures.

The approach to a unique curve, independent of the pre-
vious cooling program, of the granular gas upon reheating is
similar to the behavior found in models described by master
equations. Therein, it has been analytically proved that there
exists a universal normal curve that is the global attractor of
the dynamics for heating processes [74–78]. The expressions
in Eq. (37) may be thus regarded as the regular perturbation
expansions of a similar normal curve in the granular gas.

The tendency towards the normal curve is further illus-
trated in Fig. 6, in which we consider reheating with different
values of rh from a common frozen state, corresponding to one
value of rc. For all the values of rh, the hysteresis cycles cross
the instantaneous NESS curve θ = θs, since the corresponding
normal curves always lie below it. Moreover, the hysteresis
cycle is larger as rh increases because the normal curve is
more distant from the NESS curve. Note that the heating curve
develops a neat dimple as rh decreases, consistently with our

FIG. 6. Hysteresis cycles for reheating with different rates rh

from the common frozen state corresponding to a given value of
rc. Specifically, the plotted DSMC simulation data correspond to
rc = 0.01 with different reheating rates: symbols, rh = red squares,
0.05; orange circles, 0.1; blue diamonds, 0.005; and purple triangles,
0.001. The solid curves correspond to Eq. (37) for each value of rh,
from left to right rh increases from 0.001 to 0.05.

discussion above, which told us that the minimum gets more
marked as rc/rh increases.

The crossing of the instantaneous stationary curve θ = θs

stemming from the tendency towards the normal curve en-
tails that the apparent heat capacity C upon reheating always
displays a maximum at a certain bath temperature. The po-
sition of this maximum can be employed to define a glass
transition temperature θg—or a scaled one Xg = r−2/3

h θg. Our
theory predicts that Xg only depends on the ratio rc/rh, since
the evolution in scaled variables in reheating is governed by
Eqs. (32) with the boundary conditions in Eq. (38). Only the
latter introduce dependence on the rates; namely, on their ratio
rc/rh. In Fig. 7, we plot this theoretical prediction for Xg as
a function of the ratio rc/rh. Note that Xg = O(1) regardless
of the value of the ratio rc/rh, which entails that the glass
transition temperature θg = r2/3

h Xg is basically proportional to
r2/3

h in the granular gas. We also highlight that Xg is of the
same order as the fictive temperature Xf from Eq. (21), which
is consistent, as both temperatures give a qualitative account
of the glass transition.

VI. MOLECULAR FLUID WITH NONLINEAR DRAG

We now focus our attention on a second relevant physical
system: a molecular fluid with nonlinear drag [38,39,79–81].
The considered model arises when analyzing an ensemble of
Brownian particles of mass m immersed in an isotropic and
uniform background fluid [35,36], the particles of which have
mass mbf. In the mbf/m → 0 limit, the so-called Rayleigh
limit, the drag coefficient ζ becomes velocity independent
and thus the drag force is linear. However, in real physical
scenarios we have that mbf/m �= 0, and it is thus relevant to
consider the corrections to the Rayleigh limit. Specifically, by
introducing the first-order corrections thereto, i.e., by retain-
ing only linear terms in mbf/m, the drag coefficient is found
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FIG. 7. Scaled glass transition temperature Xg = r−2/3
h θg for the

granular gas as a function of the ratio rc/rh. Only plotted is the
theoretical prediction for Xg, obtained via the numerical integration
of the evolution equations for the scaled variables, in a hysteresis
cycle characterized by a cooling with rate rc followed by reheating
with rate rh. The dashed horizontal line marks the value for rc = rh,
which corresponds to the vertical line in both panels of Fig. 4.

to be quadratic on the velocities [35–37]. Interestingly, it has
recently been shown that this model accurately describes a
mixture of ultracold Cs and Rb atoms [37].

Let us consider a system of d-dimensional hard spheres of
mass m, diameter σ , and density n immersed in a background
fluid at temperature Ts. In the regime just explained above, the
Brownian particles are subjected to a nonlinear drag force of
the form [35–37]

F = −m ζ (v)v, (39)

where v is the particle velocity, and

ζ (v) = ζ0

(
1 + γ

mv2

kBTs

)
(40)

is a nonlinear drag coefficient. Therein, ζ0 is its zero-velocity
limit and the dimensionless parameter γ measures the de-
gree of nonlinearity. For hard spheres, it is found that ζ0 ∝
T 1/2

s —see, e.g., Refs. [37,38] for the complete expression.
The dependence of ζ0 on Ts is relevant here because the bath
temperature depends on time in cooling/heating processes.

Similarly to the granular gas, the system may be accu-
rately described by the one-particle VDF f (v, t ) if sufficiently
dilute. In this case, the dynamical evolution of the VDF is
governed by the Fokker-Planck equation (FPE)

∂t f (v, t ) − ∂

∂v
·
[
ζ (v)v + ξ 2(v)

2

∂

∂v

]
f (v, t ) = 0, (41)

where m2ξ 2(v) is the variance of a stochastic white noise
force. The coefficients ξ 2(v) and ζ (v) are related by means
of the fluctuation-dissipation relation

ξ 2(v) = 2kBTs

m
ζ (v), (42)

which ensures that the equilibrium Maxwellian VDF

fs(v) = n

(
m

2πkBTs

) d
2

e− mv2

2kBTs (43)

constitutes the unique stationary solution of the FPE (41).
The velocity dependence of the drag coefficient implies

that we have multiplicative noise in this problem [82,83].
By employing the Ito interpretation of stochastic integra-
tion [84,85], which is the most convenient one for numerical
simulations, the FPE is equivalent to the following Langevin
equation:

v̇(t ) = −ζeff (v) v(t ) + ξ (v) η(t ), (44)

where

ζeff (v) = ζ0

(
1 − 2γ + γ

mv2

kBTs

)
(45)

constitutes an effective drag coefficient, while η(t ) is a
Gaussian white noise of zero average 〈η(t )〉 = 0 and corre-
lations 〈ηi(t ) η j (t ′)〉 = δi, j δ(t − t ′).

The kinetic temperature is again defined as in Eq. (4) for
the granular gas, but understanding f (v, t ) as the solution
of the FPE. Inserting (4) into (41) leads to the following
evolution equation for the temperature:

Ṫ = ζ0

{
2(Ts − T )

[
1 + γ (d + 2)

T

Ts

]
− 2γ (d + 2)

T 2

Ts
a2

}
,

(46)

where a2 corresponds to the excess kurtosis, previously intro-
duced in Eq. (7) when studying the granular gas.

For nonlinear drag, γ �= 0, the evolution of the tempera-
ture is coupled to that of the excess kurtosis and, thus, we
need to consider the evolution equation for the latter too. In
turn, the evolution equation for the excess kurtosis involves
sixth-degree moments and, in general there emerge an infinite
hierarchy of equations for the moments. Under the first Sonine
approximation, we have the evolution equations [38,39]

θ̇ = θ1/2
s

[
2(θs−θ )+2γ (d + 2) θ−2 γ (d+2)(1+a2)

θ2

θs

]
,

(47a)

ȧ2 = θ1/2
s

{
8γ

(
1 − θ

θs

)
−

[
4θs

θ
−8γ + 4γ (d + 8)

θ

θs

]
a2

}
,

(47b)

where we have introduced the dimensionless variables

θ ≡ T

Ti
, θs ≡ Ts

Ti
, t∗ ≡ ζ0(Ti ) t, (48)

with Ti ≡ T (t = 0) being the initial temperature. We have also
taken into account that ζ0(Ts) = ζ0(Ti )θ

1/2
s .

In previous work [39,41], we have shown that the nonlinear
fluid approaches a nonequilibrium state, the LLNES, over a
wide intermediate timescale, when instantaneously quenched
to low enough values of the bath temperature, i.e., Ti/Ts 
 1.
The VDF at the LLNES is given by a delta peak; in terms of
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the scaled variables in Eq. (5), it reads

φL(c) = �−1
d

(
2

d

) d−1
2

δ

(
c −

√
d

2

)
, (49)

with �d being the d-dimensional solid angle [41]. The exact
value of the excess kurtosis at the LLNES will be useful,
which is

aL
2 = − 2

d + 2
. (50)

It is worth remarking that the VDF for the LLNES, and thus
aL

2 , does not depend on the nonlinearity parameter γ [41].
The LLNES state corresponds to the extreme scenario that

comes about when the system is instantaneously quenched to
a very low temperature. In this case, for a system relaxing
from equilibrium at Ti to equilibrium at Ts � Ti, the system
first reaches the LLNES and afterward tends to equilibrium
from it. Note the strong similarity with the HCS for granular
gases, which also appears when the intensity of the stochastic
thermostat is instantaneously quenched to a very low value.
In such a protocol, the granular gas first approaches the HCS
and afterwards tends to the stationary state imposed by the
stochastic thermostat. Thus, it is worth investigating the role
played by the LLNES in the possible emergence of a kinetic
glass transition in fluids with nonlinear drag.

VII. GLASSY BEHAVIOR OF THE NONLINEAR
MOLECULAR FLUID

Now, to investigate a possible glass transition in the molec-
ular fluid, we decrease the bath temperature following the
same cooling program as in Eq. (15) for the granular gas.
The physical reason for the emergence of a kinetic glass
transition is completely similar to that for the granular gas:
in the nonlinear molecular fluid, the characteristic timescale
for relaxation is determined by ζ−1

0 , which also diverges as
T −1/2

s for low bath temperatures. Therefore, we expect the
same scalings with the cooling rate as in the granular gas,
derived by physical arguments from this divergence in Sec. III.

In fact, as we follow the same perturbative approach
in the cooling rate, we leave the mathematical details for
Appendix E. Up to order O(rc), the regular perturbation so-
lution reads

θ = θs + rc

2θ
1/2
s

1 + γ (d + 6)

[1 + γ (d + 4)]2 − 2γ 2(d + 4)
, (51a)

a2 = − rc

θ
3/2
s

γ

[1 + γ (d + 4)]2 − 2γ 2(d + 4)
. (51b)

Thus, we have θ − θs ∝ rc/θ
1/2
s and a2 ∝ rc/θ

3/2
s . Our regular

perturbative approach fails when the O(r0
c ) and the O(r1

c )
terms become comparable, i.e., again when θs = O(r2/3

c ),
which implies that θ = O(r2/3

c ) and a2 = O(1). Let us re-
mark that, regardless of the intrinsic differences between the
molecular fluid and granular gas systems, they lead to the
same scaling for both the kinetic temperature and the excess
kurtosis.

The above discussion entails the necessity of introducing
again a boundary layer approach. We define scaled variables,
analogous to those for the granular gas in Eq. (26), Y ≡ r−2/3

c θ

TABLE I. Comparison between the numerical (simulation) and
theoretical (boundary layer) values of the scaled kinetic temperature
and the excess kurtosis at the frozen state. Specifically, we have
considered a molecular fluid with nonlinearity parameter γ = 0.1 in
the three-dimensional case d = 3. The same values of the parameters
are employed in the remainder of the numerical simulations for the
nonlinear fluid presented in this paper.

Y Frz aFrz
2

Boundary layer 0.397 −0.154
Sim. (rc = 0.05) 0.402 −0.146
Sim. (rc = 0.01) 0.403 −0.147
Sim. (rc = 0.005) 0.403 −0.144
Sim. (rc = 0.001) 0.404 −0.148

and X ≡ r−2/3
c θs. In terms of the scaled variables, the evolu-

tion equations (47) become independent of rc:

−dY

dX
= X 1/2

{
2 (X − Y )

[
1 + γ (d + 2)

Y

X

]

−2γ (d + 2)
Y 2

X
a2

}
, (52a)

−da2

dX
= X 1/2

{
8γ

(
1 − Y

X

)

−
[

4X

Y
− 8γ + 4γ (d + 8)

Y

X

]
a2

}
. (52b)

It is the boundary conditions that absorb all the dependence
on rc:

Y
(
r−2/3

c

) = r−2/3
c , a2

(
r−2/3

c

) = 0. (53)

The resemblance between the above framework and that of
our previous study for the granular gas is neat. To avoid reiter-
ation, we thus focus on the main aspects of the glassy behavior
in the molecular fluid. As will be seen, the analogy with the
behavior found in the granular gas is almost complete.

The lowest order solution for the cooling protocol would
be again obtained by solving Eq. (52) with the boundary
conditions limX→∞ Y (X ) = ∞, limX→∞ a2(X ) = 0, which
is completely independent of rc. At the frozen state we
thus have

Y Frz ≡ lim
X→0

Y (X ), aFrz
2 ≡ lim

X→0
a2(X ), (54)

which are independent of rc. We check this theoretical predic-
tion with numerical data in Table I, in which we compare the
value of Y Frz and aFrz

2 obtained from numerical simulation of
the Langevin equation (44) and our theoretical prediction [86]
for different values of rc. The agreement is excellent for the
kinetic temperature, and fair for the excess kurtosis. This was
to be expected within the first Sonine approximation, since
aFrz

2 is quite large for the nonlinear fluid. Moreover, aFrz
2 is

not as close to its value at the LLNES, aL
2 = −0.4 for d = 3

as predicted by Eq. (50), as it was aFrz
2 close to its HCS

value in the granular gas. See Appendix A for a more detailed
discussion on this point.

The independence of aFrz
2 on the cooling rate suggests that

this property should also hold for the complete VDF of the

044137-11



PATRÓN, SÁNCHEZ-REY, AND PRADOS PHYSICAL REVIEW E 109, 044137 (2024)

FIG. 8. Plot of the dimensionless VDF at the frozen state for
the nonlinear fluid. Symbols correspond to the numerical integration
of the Langevin equation with N = 105 stochastic trajectories for
different cooling rates: rc = 0.005 (purple diamonds), 0.01 (blue
triangles), 0.05 (orange circles), and 0.1 (red squares). The dashed
curve corresponds to the equilibrium Maxwellian, whereas the dotted
vertical line marks the position of the LLNES Dirac-delta peak, as
given by Eq. (49).

nonlinear fluid—as was the case for the granular gas. We
check this property in Fig. 8, by plotting the scaled VDF
for the nonlinear fluid in the frozen state, obtained from the
numerical integration of the Langevin equation (44). The
universality of the VDF at the frozen state is clearly ob-
served. The largeness of aFrz

2 entails that the deviation from
the Maxwellian equilibrium distribution is also large. For
reference, the position of the delta peak corresponding to the
LLNES is also plotted.

From the frozen state, we may reheat the system with the
same rate rh = rc. Once more, scaled variables are introduced

as Y ≡ r−2/3
h θ , X ≡ r−2/3

h θs, and the evolution equations be-
come independent of the heating rate

dY

dX
= X 1/2

{
2 (X − Y )

[
1 + γ (d + 2)

Y

X

]

−2γ (d + 2)
Y 2

X
a2

}
, (55a)

da2

dX
= X 1/2

{
8γ

(
1 − Y

X

)

−
[

4X

Y
− 8γ + 4γ (d + 8)

Y

X

]
a2

}
. (55b)

Note that the heating evolution equations differ from the cool-
ing evolution equations (52) only in the sign of the left-hand
side (lhs). Again, this system has to be solved with the bound-
ary conditions Y (0) = Y Frz, a2(0) = aFrz

2 , which correspond
to the frozen state from the previously applied cooling pro-
gram.

Figure 9 is the transposition of Fig. 4 to the case of the
nonlinear molecular fluid. Its left panel shows both the numer-
ical simulations of the Langevin equation and the boundary
layer solution for a full hysteresis cycle. Similarly to the
granular gas case, our boundary layer solution captures very
well the simulation data. On the right panel, the behavior of
the associated apparent heat capacity of the molecular fluid,
C =dθ/dθs = dY/dX is displayed. In the reheating curve, the
typical maximum that may be used to define a glass transition
temperature is neatly observed. Interestingly, in the cooling
curve, an anomalous behavior emerges, the apparent heat
capacity increases instead of going to a constant. This anoma-
lous behavior stems from the singular behavior for small X of
the dynamic equation (52a) for Y in the cooling protocol, and
it is better discerned in the inset, which shows a zoom of the
very low temperature region. Specifically, one has that

C = dY

dX
∼ 2γ (d + 2)

(Y Frz)2

X 1/2

(
1 + aFrz

2

)
, X � 1, (56)

FIG. 9. Hysteresis cycle in the nonlinear molecular fluid. Both panels are the transposition to the case of the nonlinear molecular fluid of
those in Fig. 4 for the granular gas, with the same values of the cooling and heating rate r in dimensionless variables. For the molecular fluid,
the numerical data (symbols) corresponds to the simulation of the Langevin equation (44), while the theoretical curves (solid lines) correspond
to the numerical integration of Eqs. (52) and (55). On the left panel, the vertical line marks the bath temperature Xg at which the heat capacity
reaches its maximum in the reheating program—see right panel. Therein, an additional inset shows the anomalous behavior of the apparent
heat capacity in the cooling process, which is discussed in the text.
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FIG. 10. Hysteresis cycles for the nonlinear fluid upon reheating
with rate rh from the frozen states corresponding to different cooling
rates rc. All simulation data corresponds to rh = 0.01, whereas the
cooling rates are symbols, rc = red squares, 0.05; orange circles,
0.01; blue triangles, 0.005; and purple diamonds, 0.001. The solid
curve corresponds to the perturbative expression (57a) for the normal
curve.

which diverges as X −1/2. This has to be contrasted with the
behavior for the granular gas: Eq. (35) tells us that C goes
to a constant for the granular gas—consistent with the results
reported in Fig. 4.

Finally, our molecular fluid also presents an universal curve
when reheated from different frozen states. A regular pertur-
bation theory, once more analogous to that carried out before
for the granular gas, gives

θ = θs − rh

2θ
1/2
s

1 + γ (d + 6)

[1 + γ (d + 4)]2 − 2γ 2(d + 4)
, (57a)

a2 = + rh

θ
3/2
s

γ

[1 + γ (d + 4)]2 − 2γ 2(d + 4)
, (57b)

neglecting O(r2
h ) terms. These expressions are obtained from

Eqs. (51) by exchanging rc ↔ −rh. They are valid for θs �
r2/3

h , i.e., for high enough temperatures such that the system is
close to the instantaneous equilibrium curve.

When the system is reheated from different initial frozen
states with kinetic temperatures θFrz = Y Frzr2/3

c , obtained
from previously applied cooling programs with different rates
rc, we expect the kinetic temperature to tend towards the
normal curve (57a) as θs increases. This entails the behavior
shown in Figs. 10 and 11: All the heating curves, indepen-
dently of the previous cooling rate rc, overshoot the equilib-
rium curve to approach the universal normal curve (57a) when
being reheated with rate rh. The discussion on the magnitude
of the dimple shown by the reheating curves, which is more
marked for higher cooling rates, is completely analogous to
that for the granular gas—we thus do not repeat it here.

Figure 12 puts forward our theoretical prediction for Xg,
the scaled glass transition temperature for the molecular fluid,
as a function of the ratio of the cooling and heating rates
rc/rh. Again, the glass transition temperature is defined as
that at which the apparent heat capacity reaches its maximum.
The behavior is once more analogous to the one observed

FIG. 11. Hysteresis cycles for the nonlinear molecular fluid upon
reheating with different rates rh after a common cooling protocol
with rate rc. Specifically, the plotted simulation data correspond to
rc = 0.01 with different reheating rates: symbols, rh = red squares,
0.05;, orange circles, 0.01; blue triangles, 0.005; and purple dia-
monds, 0.001. The solid curves correspond to Eq. (57a) for each
value of rh, from left to right rh increases from 0.001 to 0.05.

previously for the granular gas, Xg remains of the order of
unity over the whole range of rc/rh. Therefore, the glass
transition temperature θg = r2/3

h Xg is also proportional to r2/3
h

in the molecular fluid.

VIII. CONCLUSIONS

We have investigated the emergence of a kinetic glass
transition in two basic fluid models: a granular gas of smooth
hard spheres and a molecular fluid with nonlinear drag force.
The two systems are very different from a fundamental point
of view. One the one hand, collisions in the granular gas are

FIG. 12. Scaled glass transition temperature Xg = r−2/3
h θg for the

molecular fluid as a function of the ratio rc/rh. Similarly to Fig. 7 for
the granular gas, we only plot our theoretical prediction for Xg, stem-
ming from the numerical integration of the evolution equations in
scaled variables, and the dashed horizontal line marks the value for
rc = rh.
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inelastic, and thus its VDF is always non-Gaussian and the
system is intrinsically out-of-equilibrium, tending eventually
to a NESS if an energy injection mechanism is introduced. On
the other hand, collisions are elastic in the molecular fluid and
the system approaches equilibrium, with a Maxwellian VDF,
in the long time limit.

In both cases, our analysis have been carried out within
the first Sonine approximation of the relevant evolution equa-
tion for the VDF: the inelastic Boltzmann equation for the
granular gas and the FPE for the molecular fluid with non-
linear drag. Therein, the evolution equation of the kinetic
temperature—basically, the average kinetic energy—is found
to be coupled with that of the excess kurtosis. In turn, the
evolution equation of the excess kurtosis is coupled with
higher-order cumulants. Still, only the excess kurtosis is kept
within the first Sonine approximation, higher-order cumulants
are neglected because they are assumed to be small.

In this paper, we have focused on the time evolution of
these systems when the bath temperature is decreased to very
low values, and afterwards reheated. Despite the profound
differences between granular gases and molecular fluids, both
systems share some striking similarities in their dynamical be-
havior. These similarities stem from the algebraic divergence
of the characteristic relaxation time, specifically as T −1/2

s , for
low enough bath temperature.

The common divergent behavior of the relaxation time
in granular gases and nonlinear molecular fluids entails that
the frozen values of the kinetic temperature and the excess
kurtosis share the same scalings with the cooling rate. More-
over, these scalings can be intuitively understood with simple
physical arguments. By defining an effective timescale, which
basically measures the number of relaxation times up to the
final time of the cooling process, the bath temperature at
which the system departs from the instantaneous stationary
curve and gets frozen—the so-called fictive temperature—is
accurately predicted.

Our mathematical approach to the dynamical problem em-
ploys a perturbation theory that assumes that the cooling
rate is a small parameter. From a mathematical standpoint,
the breakdown of the resulting regular perturbative series for
low bath temperatures signals the necessity of introducing
tools from singular perturbation theory, such as boundary
layer techniques. From a physical standpoint, it is interesting
to remark that the temperature range at which the regular
perturbative approach breaks down coincides with the fictive
temperature predicted by intuitive arguments.

Our intuitive physical arguments and our detailed math-
ematical approach predict, for both granular gases and
nonlinear molecular fluids, that the kinetic temperature and
the excess kurtosis deviate from their instantaneous stationary
curves at low bath temperatures, getting frozen in a value
(i) scaling as r2/3

c for the kinetic temperature and (ii) indepen-
dent of rc for the excess kurtosis. In addition, these theoretical
predictions have been confirmed by our numerical results:
DSMC simulations of the inelastic Boltzmann equation for
the granular gas, and numerical integration of the nonlinear
Langevin equation for the molecular fluid.

A key point of our approach is the evolution equations be-
coming independent of the cooling rate when they are written
in terms of scaled variables, well-suited for our boundary layer

treatment of the problem. This is the mathematical reason
for the frozen value of the excess kurtosis being independent
of rc. This independence suggests that the complete VDF,
beyond the first Sonine approximation employed in the paper,
is universal—in the sense of being independent of the cooling
rate in scaled variables. We have numerically confirmed this
expectation in the numerical simulations of both the granular
gas and the nonlinear molecular fluid.

Moreover, when the system is reheated from this frozen
state with the same rate, the independence on the rate, i.e., the
above universality, extends to the whole dynamical evolution.
This entails that the observed hysteresis when the systems
are submitted to a thermal cycle—first cooling, followed by
reheating—is also universal, independent of the rate of vari-
ation of the bath temperature. Once more, this theoretical
prediction has been confirmed by numerical simulations of
both systems, and an excellent agreement between the numer-
ical and the theoretical curves has been found.

Another interesting feature of both systems is their ten-
dency to a unique normal curve upon reheating, independent
of the previous cooling program. This behavior has been the-
oretically predicted for Markovian systems obeying master
equations [75] and observed in a variety of simple models
for glasses and dense granular systems [74,76–78]. From a
mathematical point of view, it is this tendency to approach
the normal curve that explains the hysteresis cycles observed
upon reheating, including the overshoot of the instantaneous
stationary curve [87] θ = θs upon reheating: the normal curve
lies below θ = θs whereas the cooling curves lie above θ = θs.

Physically, the hysteresis cycles upon reheating are under-
stood by taking into account that the kinetic temperature in
both systems always lags behind the bath temperature—i.e.,
the former is not able to keep up with the latter for low
bath temperatures, due to the divergence of the cooling rate.
On the one hand, for the cooling process, this picture leads
to the departure of the kinetic temperature from the instanta-
neous NESS curve θ (t ) = θs(t ), with θ > θs. In terms of the
apparent heat capacity, this entails the free cooling behavior of
the kinetic temperature, which provides the nonexponential,
algebraic, relaxation functions given by Haff’s law for the
granular gas and by the LLNES for the nonlinear fluid. On the
other hand, for the reheating process, this lagging behind the
bath temperature also explains the overshooting of the instan-
taneous NESS curve: for low bath temperatures, the kinetic
temperature continues to decrease. Therefore, the kinetic tem-
perature touches the instantaneous NESS curve at a bath tem-
perature for which the relaxation time is still very large, and
the kinetic temperature is not able to keep up with the rate of
change of the bath temperature, which leads to the overshoot.

In the granular gas, the values of the excess kurtosis at
the frozen state are very close to that of the HCS: this hints
at the frozen state being strongly related with the HCS. In
the nonlinear molecular fluid, the value of the excess kurtosis
are further from that at the LLNES, so the relation between
the frozen state and the LLNES is less clear. Still, it seems
that both the HCS for the granular gas and the LLNES for
the nonlinear fluid play the role of a reference state for the
cooling protocol—a first step in this direction is provided in
Appendix A, although this point certainly deserves further
investigation.
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The universality of the frozen state, in the sense of
its independence of rc in scaled variables, is an appealing
feature of the kinetic glass transition found in this paper—
both for the smooth granular gas and the molecular fluid
with (quadratic) nonlinear drag. The possible extension of
this property to other systems, for example, rough granular
fluids [88–90], molecular fluids with more complex nonlin-
earities [34,39,80,81,91], or binary mixtures [92–95], is an
interesting prospect for future work.

The Fortran codes employed for generating the data
that support the findings of this paper, together with the
MATHEMATICA notebooks employed for producing the fig-
ures presented in the paper, are openly available on the GitHub
page of University of Sevilla’s FINE research group [96].
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APPENDIX A: GLASS TRANSITION FOR DIFFERENT
COOLING PROGRAMS

Throughout this paper, we have employed linear cooling
programs to study the emergence of glassy behavior in both
molecular fluids and granular gases. Let us now consider the
following general family of cooling protocols,

dθs

dt
= −rcθ

k
s , (A1)

with k being a real number. Notice that the k = 0 case reduces
to the already studied linear cooling protocol.

We still consider that the cooling is slow, in the sense that
rc � 1. Following the same approach as in Sec. III for the
linear cooling program, we introduce the effective timescale

s =
∫ t0

t
dt ′τ−1(θs(t

′)) = 1

rc

∫ θs

0
dθs (θ ′

s )−kτ−1(θ ′
s ), (A2)

where we have inserted Eq. (A1) into the second integral.
Assuming again that s is of the order of unity when the system
freezes, we arrive at the following estimation of the fictive
temperature θ f :

θ f =
[(

3

2
− k

)
rc

c

] 2
3−2k

, θFrz ∝ r
2

3−2k
c , (A3)

where we have taken into account that the characteristic re-
laxation timescale τ is still given by Eq. (16), regardless of
the cooling program employed. Thus, the above entails that
the system will present a kinetic glass transition as long as
k < kcrit = 3/2. Equation (A3) generalizes the power law be-
havior r2/3

c found in the main text for k = 0.
Now, to corroborate the scaling found in Eq. (A3), we

follow a regular perturbation approach similar to the ones

employed in the main text for both the granular gas and
the nonlinear fluid. The solution to the lowest order corre-
sponds again to the instantaneous stationary solutions θ (0) =
θs, a(0)

2 = as
2. The first-order O(rc) corrections are provided by

the equations

−θ k
s = θ1/2

s

{
c1θ

(1) + c2θsa
(1)
2

}
, (A4a)

0 = c3
θ (1)

θ
1/2
s

+ c4θ
1/2
s a(1)

2 , (A4b)

with ci, i = 1, .., 4 being constants that depend on the param-
eters of the specific system of concern. These equations entail
the scalings

θ (1) ∝ θ
k− 1

2
s , a(1)

2 ∝ θ
k− 3

2
s , (A5)

which imply that θ (1) � θ (0) = θs, a(1)
2 � a(0)

2 = as
2 when k >

kcrit = 3/2. Therefore, for k > kcrit a kinetic glass transition
is presented neither by the granular gas nor by the nonlinear
fluid. The cooling is so slow for k > kcrit that both systems
remain basically over the instantaneous stationary curve {θ =
θs, a2 = as

2} for all bath temperatures [97].
Let us now consider the case k � kcrit. In this case, the

regular perturbation approach breaks down for low enough
bath temperatures, which marks the onset of the kinetic glass
transition. Our regular perturbation approach ceases to be
valid when the O(1) terms become comparable with the O(rc)
ones, thus implying

θs = O(r
2

3−2k
c ), (A6)

which, consistently with our discussion above, only makes
sense for k < kcrit; it diverges for k > kcrit. Equation (A6)
entails that we expect that the kinetic temperature at the frozen

state scales as θFrz ∝ r
2

3−2k
c , consistent with Eq. (A3). Interest-

ingly, regardless of the choice of k, the frozen state is still
universal, in the sense that it is independent of the cooling
rate rc, since

a2 − as
2 ∼ a(1)

2 ∝ rc θ
k− 3

2
s = O(1). (A7)

As in the main text, the above scaling relations suggest the
introduction of scaled variables

Y ≡ r
− 2

3−2k
c θ, X ≡ r

− 2
3−2k

c θs. (A8)

In terms of them, the dynamic equations for the cooling proto-
col become rc independent. The same applies for a reheating
program with rh = rc from the frozen state. We remark that
the evolution equations for the scaled variables (Y, a2) in both
systems are the same as the ones we have written in the main
text, with the only change d/dX ↔ X kd/dX on their lhs.

Figure 13 shows the evolution of the excess
kurtosis a2 towards its frozen state in a cooling program
with rate rc for different values of k in Eq. (A1) for both
the granular gas and the nonlinear molecular fluid. The
excess kurtosis follows a similar trend: on the one hand, for
k → −∞, the time window over which θs decays towards
zero becomes infinitely small, and thus the excess kurtosis
does not have time to deviate from its stationary state value
and is approximately constant for all X . On the other hand,
as the value of k is increased, the time window to relax also
increases. The limiting case k = kcrit constitutes the ultimate
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FIG. 13. Excess kurtosis a2 as a function of the scaled bath temperature X for the family of cooling programs (A1) with different values
of k. The solid lines correspond to the numerical integration of the evolution equations in the first Sonine approximation for the values of k
depicted in the legend—i.e., from top to bottom k increases from −5 to 1. Left: behavior found in a granular gas. Right: Behavior found in a
molecular fluid. In both cases, a dimensionless cooling rate rc = 0.1 has been employed. On the left (right) panel, (i) the dotted line represents
the value of the excess kurtosis at the NESS as

2 (equilibrium value of the excess kurtosis aeq
2 = 0), from which all the curves depart for large

X , and (ii) the dashed line accounts for the value at the HCS (LLNES) within the first Sonine approximation.

balance between a sufficiently wide time window to relax,
and a fast enough relaxation protocol such that θ deviates
from the θ = θs behavior.

It is worth noting that, for 1/2 � k < kcrit, the excess kur-
tosis tends to the value over the HCS for the granular gas
and the LLNES for the nonlinear molecular fluid. The lower
bound k = 1/2 corresponds to the value above which the
deviations from the θ = θs line become significantly small,
but still allowing for the kurtosis to evolve towards the frozen
state, as Eq. (A5) states. Since we are showing the numeri-
cal integration of the evolution equations in the first Sonine
approximation, these limit values of the excess kurtosis cor-
respond to their theoretical estimates in this framework. For
the granular gas, this is given by Eq. (9), which is quite
accurate due to its smallness. For the nonlinear fluid, the first
Sonine approximation gives aL

2
′ = −2/(d + 8) [39], which

is quite different from its exact value in Eq. (50)—this is
reasonable, since the deviations from the Gaussian are much
larger in the LLNES than in the HCS.

The above discussion hints at the frozen state correspond-
ing to the HCS and the LLNES for the granular gas and the
nonlinear molecular fluid, respectively, for 1/2 � k < kcrit.
This means that the two model systems, either the granular
gas or the nonlinear molecular fluid, reach the corresponding
nonequilibrium state, either the HCS or the LLNES, over a
time window of the order of r−1

c when cooled down with a
program for which 1/2 � k < kcrit. The latter suggests use-
ful applications in optimal control [98–101] and also within
the study of nonequilibrium effects, as previous work on
both systems shows that both the HCS and the LLNES are
responsible for the emergence of a plethora of nonequilib-
rium phenomena, such as the Mpemba and Kovacs effects
[33,39,41–43].

APPENDIX B: RELAXATION TIME OF THE
GRANULAR GAS

In Ref. [67], the linear relaxation to the NESS of the
uniformly heated granular gas was investigated in detail. The

relaxation of the system from the NESS corresponding to a
value of the driving intensity ξ + δξ to the NESS correspond-
ing to a driving intensity ξ was considered.

Therefore, the granular (or kinetic) temperature evolves
from the initial value θs + δθs to the final value θs. The
relaxation function for the granular temperature can be
defined as

φθ (t ) ≡ θ (t ) − θs

δθs
, (B1)

which is normalized in the usual way, φθ (t = 0) = 1. In
particular, this relaxation function was shown to have the
following form:

φθ (t ) = a+e−λ+t + a−e−λ−t , (B2)

where, due to the normalization, a− = 1 − a+. Both λ+ and
λ+ are proportional to θ

1/2
s

λ± = c±θ1/2
s , (B3)

with

c+ = 3

2
+ 9

32

1 + 4B

4B − 3
as

2 + O
(
as

2

)2
, (B4a)

c− = 2B − 9

4(4B − 3)
as

2 + O
(
as

2

)2
, (B4b)

and

a+ = 1 + 9

4(4B − 3)
as

2 + O
(
as

2

)2
. (B5)

The characteristic relaxation time of the relaxation is given by

τ ≡
∫ ∞

0
dt φθ (t ) = a+

λ+
+ a−

λ−
. (B6)

Since both λ+ and λ− are proportional to θ
1/2
s , and both a+

and a− are independent of the bath temperature, we have the
scaling in Eq. (16) of the main text:

τ = 1

c
θ−1/2

s ,
1

c
= a+

c+
+ a−

c−
. (B7)
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In practice, it is straightforward to check numerically that
a+ ≈ 1 
 a− regardless of the value of α, such that c ≈ c+ ≈
3/2, which provides the value Xf = 1 for the fictive temper-
ature that it is depicted Fig. 3. Thus, we may roughly state
that the fictive temperature is independent of the restitution
coefficient.

APPENDIX C: REGULAR PERTURBATION THEORY FOR
THE GRANULAR GAS

To find an approximate solution of the evolution equa-
tions for cooling (22), we introduce the regular perturbation
series in powers of the cooling rate,

θ = θ (0) + rc θ (1) + O
(
r2

c

)
,

a2 = a(0)
2 + rc a(1)

2 + O
(
r2

c

)
. (C1)

Equations (C1) are inserted into Eq. (22), in which we subse-
quently equal the terms with the same power of rc and solve
for {θ (k), a(k)

2 }, k = 0, 1, . . .. At the lowest order, O(r0
c ), i.e.,

for terms independent of rc, we get

θ (0) = θs, a(0)
2 = as

2, (C2)

which corresponds to the instantaneous NESS curve. At the
first order, O(rc), i.e., for terms linear in rc, we get

θ (1) = 2

3
θ−1/2

s

[
1 + 3

16
as

2

(
1 + 1

B

)]−1

, (C3a)

a(1)
2 = −as

2

B
θ−3/2

s

[
1 + 3

16
as

2

(
1 + 1

B

)]−1

. (C3b)

Putting together Eqs. (C2) and (C3), we obtain the regular
perturbative expression (24) in the main text.

APPENDIX D: UNIFORM SOLUTION IN THE BOUNDARY
LAYER APPROACH

In this Appendix, we aim to derive an approximate expres-
sion for the temperature and the excess kurtosis for the cooling
process, valid over the whole bath temperature range. For
high enough bath temperatures, θs 
 r2/3

c , we have the outer
expansion in Eq. (24). For low enough bath temperatures,
θs = O(r2/3

c ), we have the boundary layer system (27) for
the scaled variables. In boundary layer perturbation theory,
the lowest-order perturbative solution—known as the uniform
solution—is constructed as the sum of the lowest-order outer
and inner solutions, minus the common behavior found in an
intermediate matching region [70]. Below we derive such a
uniform solution for the cooling protocol.

We denote the outer solution at the lowest order by
(θO, a2,O). Equation (24) tells us that

θO(θs) = θs, a2,O(θs) = as
2, (D1)

which is the instantaneous NESS curve. Now, let us seek the
solution of the inner problem at the lowest order, which we
denote by (YI (X ), a2,I (X )). To obtain it, we solve Eq. (27)
with the boundary conditions

lim
X→∞

YI (X ) = ∞, lim
X→∞

a2,I (X ) = as
2, (D2)

which correspond to the limit as rc → 0 in Eq. (28). There-
fore, (YI (X ), a2,I (X )) does not depend on rc, since neither the
evolution equations (27) nor the boundary conditions (D2)
depend on rc.

Although it is not possible to write (YI (X ), a2,I (X )) in a
simple closed form, an asymptotic analysis for large values of
X gives

YI (X ) ∼ X, a2,I (X ) ∼ as
2, X 
 1, (D3)

which is consistent with the tendency of the DSMC data in
Fig. 3 to the instantaneous NESS curve for large X . By com-
paring Eqs. (D1) and (D3), we obtain the common behavior

θc(θs) = θs, a2,c(θs) = as
2, θs � 1, X 
 1, (D4)

or r2/3
c � θs � 1. This is the region at which the outer and

inner solution match, the uniform solution is built as [70]

θ (0)(θs) = θO(θs) + r2/3
c YI

(
X = r−2/3

c θs
) − θc(θs), (D5)

a(0)
2 (θs) = a2,O(θs) + a2,I

(
X = r−2/3

c θs
) − a2,c(θs), (D6)

Since the common behavior (D4) equals the outer solu-
tion (D1), the range of validity of the inner solution extends
to the whole temperature interval. In other words, the uniform
solution coincides with the inner solution:

θ (0)(θs) = r2/3
c YI

(
X = r−2/3

c θs
)
, (D7)

a(0)
2 (θs) = a2,I

(
X = r−2/3

c θs
)
. (D8)

The first equation tells us that Y (0) ≡ r−2/3
c θ (0) = YI , i.e.,

we have the universal behavior in Fig. 3 over the uniform
solution—to the lowest order.

APPENDIX E: REGULAR PERTURBATION THEORY FOR
THE MOLECULAR FLUID

Following an approach similar to that in Sec. IV A, let us
decrease the bath temperature by applying the linear cooling
program

dθs

dt
= −rc ⇒ dθ

dt
= −rc

dθ

dθs
,

da2

dt
= −rc

da2

dθs
, (E1)

where rc � 1 is the cooling rate. We again employ the bound-
ary layer theory [70] to approach the problem. For the outer
layer, for which it is expected that θ does not deviate too much
from θs, we insert the regular perturbation series

θ = θ (0) + rcθ
(1) + O

(
r2

c

)
, (E2a)

a2 = a(0)
2 + rca(1)

2 + O
(
r2

c

)
(E2b)

into the evolution equations (47) and equate terms with the
same power of rc. At the lowest order, O(1), one obtains

0 = 2(θs − θ (0) ) + 2γ (d + 2) θ (0)

− 2 γ (d + 2)
(
1 + a(0)

2

) [θ (0)]2

θs
, (E3a)

0 = 8γ

(
1 − θ (0)

θs

)
−

[
4θs

θ (0)
− 8γ + 4γ (d + 8)

θ (0)

θs

]
a(0)

2 ,

(E3b)
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whose solution corresponds to equilibrium:

θ (0) = θs, a(0)
2 = 0. (E4)

The linear terms in rc obey

−1 = θ1/2
s

{−2[1 + γ (d + 2)]θ (1) − 2γ (d + 2)θsa
(1)
2

}
,

(E5a)

0 = 2γ
θ (1)

θ
1/2
s

+ θ1/2
s [1 + γ (d + 6)]a(1)

2 . (E5b)

The solution of this system is given by

θ (1) = 1

2θ
1/2
s

1 + γ (d + 6)

[1 + γ (d + 4)]2 − 2γ 2(d + 4)
, (E6)

a(1)
2 = − 1

θ
3/2
s

γ

[1 + γ (d + 4)]2 − 2γ 2(d + 4)
. (E7)

The regular perturbation expansion (51) in the main text is
directly obtained by combining Eqs. (E2), (E4), and (E6).
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