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Time-dependent properties of run-and-tumble particles. II. Current fluctuations
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We investigate steady-state current fluctuations in two models of hardcore run-and-tumble particles (RTPs) on
a periodic one-dimensional lattice of L sites, for arbitrary tumbling rate γ = τ−1

p and density ρ; model I consists
of standard hardcore RTPs, while model II is an analytically tractable variant of model I, called a long-ranged
lattice gas (LLG). We show that, in the limit of L large, the fluctuation of cumulative current Qi(T, L) across the
ith bond in a time interval T � 1/D grows first subdiffusively and then diffusively (linearly) with T : 〈Q2

i 〉 ∼
T α with α = 1/2 for 1/D � T � L2/D and α = 1 for T � L2/D, where D(ρ, γ ) is the collective- or bulk-
diffusion coefficient; at small times T � 1/D, exponent α depends on the details. Remarkably, regardless of the
model details, the scaled bond-current fluctuations D〈Q2

i (T, L)〉/2χL ≡ W (y) as a function of scaled variable
y = DT/L2 collapse onto a universal scaling curve W (y), where χ (ρ, γ ) is the collective particle mobility. In the
limit of small density and tumbling rate, ρ, γ → 0, with ψ = ρ/γ fixed, there exists a scaling law: The scaled
mobility γ aχ (ρ, γ )/χ (0) ≡ H(ψ ) as a function of ψ collapses onto a scaling curve H(ψ ), where a = 1 and 2
in models I and II, respectively, and χ (0) is the mobility in the limiting case of a symmetric simple exclusion
process; notably, the scaling function H(ψ ) is model dependent. For model II (LLG), we calculate exactly, within
a truncation scheme, both the scaling functions, W (y) and H(ψ ). We also calculate spatial correlation functions
for the current and compare our theory with simulation results of model I; for both models, the correlation
functions decay exponentially, with correlation length ξ ∼ τ 1/2

p diverging with persistence time τp � 1. Overall,
our theory is in excellent agreement with simulations and complements the prior findings [T. Chakraborty and P.
Pradhan, Phys. Rev. E 109, 024124 (2024)].
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I. INTRODUCTION

Characterizing the time-dependent properties of interacting
self-propelled particles (SPPs), also known as active matter,
has attracted a lot of attention in the past [1,2]. SPPs convert
chemical energy into directed or persistent motion (“run”);
they move with a velocity v and randomly change direc-
tions, or tumble, with a rate γ , thus violating detailed balance
(i.e., breaking time-reversal symmetry) at microscopic scales
and driving the system out of equilibrium. Because of the
delicate interplay between persistence and interactions, they
display remarkable collective behavior, such as flocking [3],
clustering [4], “giant” number fluctuation [5], and anomalous
transport [6,7]. Indeed, over the last couple of decades, signif-
icant effort has been made to better understand the emergent
properties of active matter through studies of paradigmatic
models, such as the celebrated Vicsek models [3], active
Brownian particles (ABPs) [8] and run-and-tumble particles
(RTPs) [9]. However, despite numerous simulation and ana-
lytical studies in the past [1,2], theoretical characterization of
the dynamic properties of these many-body systems poses a
major challenge and is still far from complete.

There is a well-established statistical mechanics frame-
work for many-particle systems satisfying detailed balance.
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For example, consider a one-dimensional “diffusive” system
in a near-equilibrium scenario; the time evolution of coarse-
grained local density ρ(x, τ ) at suitably rescaled space x
and time τ can be described by a fluctuating hydrodynamic
equation,

∂ρ(x, τ )

∂τ
= ∂

∂x

[
D(ρ)

∂ρ

∂x
+
√

2χ (ρ)

L
ζx(τ )

]
, (1)

which is written in terms of two density-dependent trans-
port coefficients—the collective- or bulk-diffusion coefficient
D(ρ) and the mobility χ (ρ); here ζx(τ ) is the Gaussian
white noise with unit variance and L is the system size. Per-
haps not surprisingly, for systems violating detailed balance
(nonequilibrium), there is no general theoretical framework.
However, in recent times, a deeper understanding of the
problem for a broad class of diffusive, albeit nonequilib-
rium, systems is gradually emerging through the formulation
of macroscopic fluctuation theory (MFT) [10]. Quite re-
markably, MFT proposes a similar description as given in
Eq. (1), even when detailed balance is violated in the bulk
of the system. Of course, calculating the macroscopic trans-
port coefficients D(ρ) and χ (ρ) for interacting systems is a
nontrivial task, especially when the system is driven out of
equilibrium and its nonequilibrium steady-state measure is
a priori not known. Notably, the bulk-diffusion coefficient,
which is related to the relaxation rate of long-wavelength
perturbations [11], characterizes density relaxation in the
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system. In principle, the bulk-diffusion coefficient should be
distinguished from the self-diffusion coefficient of a tagged
particle [12–14]; however, the distinction, which can be quite
striking, particularly in one-dimensional models [15,16], is
somewhat less emphasized in the context of active matter
systems [17,18]. In our recent work [14], we considered two
models of athermal hardcore RTPs, for which we explic-
itly calculated the bulk-diffusion coefficient and characterized
density relaxation in the system for arbitrary parameter values.
However, the other transport coefficient—the collective parti-
cle mobility, which is directly connected to the fluctuation of
the space-time integrated current over the entire system [19]—
is much less explored for interacting SPPs and is studied here
for the same models considered in Ref. [14]. It is important to
note that the space-time integrated current is nothing but the
cumulative displacement of all (tagged) particles in a given
direction up to certain time. Of course, the knowledge of only
the mean squared displacement (MSD) of a single tagged par-
ticle is not enough to calculate the collective particle mobility,
which essentially involves many-particle correlations (over all
tagged particles). Indeed, one of the primary objectives of this
work is to theoretically characterize of the mobility by calcu-
lating the space-time integrated current fluctuations. Another
goal is to understand the spatial correlations of (appropriately
coarse-grained) current or, equivalently, “velocity,” which has
recently received significant attention in the contexts of coars-
ening in the Vicsek model [20], ordering dynamics in the
ABPs [21–24], and other active matter systems [25–28].

In the past decades, several analytical studies of current
fluctuations for passive lattice gases have been conducted us-
ing microscopic [29–33] as well as hydrodynamic frameworks
[19,34,35]. However, their extension to interacting SPPs is
still a work in progress. In fact, unlike studies of tagged
particle displacement fluctuations [36–39], there are few stud-
ies of current fluctuations in conventional models of SPPs,
with the exception of an exact analysis for noninteracting
RTPs [40] and an approximate analysis for ABPs [41]. Re-
cently, exact studies of fluctuations in “weakly interacting”
RTPs [42], which are governed by mean-field hydrodynamics,
were carried out in Refs. [43–45]. While weakly interacting
RTPs undergo diffusion (symmetric hopping) with a finite
rate, run-and-tumble dynamics on the other hand occur with
vanishingly small system-size-dependent rates, thus distin-
guishing the model from the conventional or the standard ones
[46,47]. Indeed, in the latter models, the hopping dynamics is
independent of system size; as a result, spatial correlations
are finite, and long-ranged for small tumbling rates. In such
a case, the mean-field description of Refs. [42,43] would not
be applicable and a detailed microscopic study of the conven-
tional, “strongly interacting,” RTPs is desirable.

In this paper, we use a microscopic approach to investi-
gate spatiotemporal correlations of current in two models of
strongly interacting athermal RTPs: model I, standard hard-
core RTPs, and model II, a hardcore long-ranged lattice gas
(LLG), which is an analytically tractable idealized variant
of model I [14]. We study the models on a one-dimensional
ring of L sites for arbitrary tumbling rate γ = τ−1

p and den-
sity ρ. Interestingly, despite having nontrivial many-body
correlations, model II is amenable to “first-principles” analyt-
ical calculations, whereas model I is studied through Monte

Carlo simulations. We demonstrate that large-scale fluctua-
tions in both models can be characterized in terms of the two
density- and tumbling-rate-dependent transport coefficients:
the bulk-diffusion coefficient D(ρ, γ ) and the collective parti-
cle mobility χ (ρ, γ ). Indeed, the current fluctuations and the
mobility in model II are calculated exactly within a previously
introduced truncation scheme of Ref. [16], and are expressed
in terms of the distribution of gaps between two consecutive
particles. For convenience, we provide below a summary of
our main findings.

Spatial correlations of current. We calculate the steady-
state spatial correlation function CJJ

r = limt→∞〈J0(t )Jr (t )〉
evaluated at two spatial points separated by distance r, with
Ji(t ) being instantaneous current across bond (i, i + 1) at
time t . The correlation functions are shown to decay expo-
nentially, CJJ

r ∼ exp(−r/ξ ); the correlation length ξ (ρ, γ ) is
analytically calculated for LLG, with ξ ∼ √

τp diverging with
persistence time τp, thus providing a theoretical explanation
of the findings in recent simulations and experiments [21,27].

Space-time integrated current fluctuations. We calcu-
late fluctuations of space-time integrated current Qtot =∑L

i=1 Qi(T ) or, equivalently, the cumulative displacement
of all particles, during time interval T ; here Qi(T ) =∫ t+T

t dtJi(t ) is the cumulative bond current across the ith
bond (i, i + 1) during time T . We then study the collec-
tive mobility χ (ρ, γ ) ≡ limL→∞(1/2LT )〈Q2

tot〉, which, in the
limit of ρ, γ → 0, obeys a scaling law: the scaled mobility
γ aχ (ρ, γ )/χ (0) as a function of scaled variable ψ = ρ/γ is
expressed through a scaling function H(ψ ); here a = 1 and
2 in models I and II, respectively, and χ (0) = ρ(1 − ρ) is the
mobility in the limiting case of a symmetric simple exclusion
process (SSEP) [19]. The scaling function for the LLG is
calculated analytically and, in the limit of strong persistence
ψ � 1, it is shown to have an asymptotic behavior H(ψ ) ∼
ψ−3/2.

Time-integrated bond-current fluctuations. Depending on
the density- and tumbling-rate-dependent collective- or bulk-
diffusion coefficient D(ρ, γ ) and system size L, we find three
distinct time regimes for the fluctuations of time-integrated
bond current Qi(T ):

(i) Initial-time regime T � r2
0/D (where r0 is the particle

diameter, taken to be unity throughout): The bond-current
fluctuation 〈Q2

i 〉(T, L) depends on the details of dynamical
rules. It exhibits linear (diffusive) growth for model II (LLG),
whereas, for model I (standard RTPs), it crosses over from a
mildly superdiffusive to a diffusive growth as tumbling rate
increases.

(ii) Intermediate-time regime r2
0/D � T � L2/D: The

current fluctuation displays subdiffusive growth 〈Q2
i 〉 ∼ √

T .
(iii) Long-time regime L2/D � T : The bond-current fluc-

tuation 〈Q2
i 〉 ∼ T grows diffusively (linear growth).

So the qualitative behavior in regimes (ii) and (iii) is uni-
versal, being independent of dynamical rules of the models,
though the prefactors in the growth laws are model dependent.

Universal scaling of bond-current fluctuations. Remark-
ably, in the limit of L, T → ∞ with scaled time y = DT/L2

fixed and regardless of the dynamical rules of the models,
the above-mentioned behavior can be succinctly expressed
through a universal scaling law for the scaled bond-current
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fluctuation D(ρ, γ )〈Q2
i (T, L)〉/2χL ≡ W (y) as a function of

y = DT/L2 [see Eq. (85)]. For model II (LLG), the scaling
function W (y) is calculated exactly within the truncation
scheme.

Dynamic correlations of current. We also calculate, nu-
merically for model I (standard RTPs) and analytically for
model II (LLG), the two-point dynamic correlation func-
tion CJJ

0 (t ) = 〈Ji(0)Ji(t )〉 for instantaneous current Ji(t ). For
model II, by using our microscopic dynamical calculations,
we derive, at large times, the dynamic correlation function
CJJ

0 (t ) ∼ −t−3/2, which is shown to have a long-time power-
law tail, with the correlations actually being negative.

The paper is organized as follows: In Sec. II, we intro-
duce two models of hardcore RTPs in one dimension. In
Sec. III A we describe the procedure for decomposing cur-
rent into “slow” (diffusive) and “fast” (noiselike) components.
Then in Sec. III B, we introduce a truncation scheme, which
allows us to calculate spatiotemporal correlations of time-
integrated currents. In Secs. III C and III D, we investigate
spatiotemporal correlations of instantaneous and fluctuating
currents, respectively. Next, in Sec. III E, we characterize
fluctuations of total current, leading to the characterization of
the collective particle mobility χ (ρ, γ ); here we also discuss
a scaling law, which is satisfied by the mobility in the limit
of strong persistence and small density. In Sec. III F, we char-
acterize bond-current fluctuation and find another scaling law,
satisfied by the bond current; the scaling function is found to
be the same for both models. Finally, we summarize the paper
in Sec. IV with some concluding remarks.

II. MODEL DESCRIPTION

We consider two minimal models of athermal hardcore
RTPs on a one-dimensional periodic lattice of L sites where
the number of particles, N , is conserved with density ρ =
N/L. In both the models, particles obey a hardcore constraint;
i.e., a site can be occupied by at most one particle and also
the crossing between particles is not allowed. We denote the
occupation variable ηi = 1 or 0, depending on whether the site
is occupied or not, respectively.

A. Model I: Standard hardcore RTPs

We consider standard hardcore RTPs (see the schematic
diagram in the top panel of Fig. 1), previously introduced in
Ref. [47]. In this model, in addition to the occupation variable,
a spin s = ±1 is assigned to each particle, with s = 1 and
s = −1 representing its rightward and leftward orientations,
respectively. The continuous-time stochastic dynamics are
specified below.

(a) Run: With unit rate, a particle hops, along its spin
direction, to its nearest neighbor provided that the destination
site is vacant.

(b) Tumble: With rate γ = τ−1
p , a particle flips its spin

orientation, s → −s.
Clearly, particles retain their spin orientation over a

timescale called the persistence time τp and, during this time,
they exhibit ballistic motion having a constant speed v along
the vacant stretch available in the direction of its spin [note
that v = 1, set by rule (a)].

FIG. 1. Schematic diagram of models I and II. Top: Typical
microscopic dynamics in model I, which is composed of standard
hardcore RTPs (red circles) on a one-dimensional lattice (green
rectangles). RTPs move along the associated spin indicated by the
arrows above them. Bottom: We demonstrate microscopic dynamics
of hardcore particles (red circle) in model II (i.e., LLG) on a one-
dimensional lattice (green rectangle). Particles hop symmetrically
by length l , which is drawn from an exponential distribution φ(l ) ∼
e−l/lp with integer l = 0, 1, 2, . . . . This particular diagram has been
taken from our previous work [14].

B. Model II: Hardcore long-ranged lattice gas

Because of the additional spin degree of freedom, model I
is difficult to deal with analytically. To address the issue, we
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introduce a simpler idealized variant of hardcore RTPs, called
a long-ranged lattice gas (LLG) [14,48], which is amenable to
analytical studies. The (athermal) long-range hopping mimics
the ballistic motion (“run”) of individual RTPs, having a char-
acteristic run length, which is the persistence length lp = v/γ .
Indeed, model II (LLG) is motivated by the fact that, on the
timescale of persistence time τp, a single RTP would hop, on
average, by the typical length lp.

The precise dynamical rules of model II (see the schematic
diagram in the bottom panel of Fig. 1) are as follows. With
unit rate, a particle attempts to hop symmetrically by length
l , drawn from an exponential distribution φ(l ). The hop is
successful provided that, along the hopping direction, there
is a vacant stretch, called a gap, of size g, which is of at
least size l (i.e., g � l); otherwise (i.e., for g < l), due to the
hardcore constraint, the particle traverses the entire stretch
and sits adjacent to its nearest occupied site. The hop-length
distribution φ(l ) can, in principle, be arbitrary. However, to
compare the two models I and II, we chose φ(l ) to be an
exponential function,

φ(l ) = A exp(−l/lp), (2)

where the normalization constant A = (1 − e−1/lp ) as hop
lengths l = 0, 1, 2, . . . are discrete.

III. THEORY: MODEL II

In this section, we develop a microscopic theoretical frame-
work to analytically calculate current fluctuations in model II
(hardcore LLG). We also compare our analytic results with
those obtained from direct Monte Carlo simulations of both
models I and II.

A. Decomposition of current: Slow and fast components

To begin with, we first define cumulative (time-integrated)
bond current Qi(T ), which is the total current across a bond
(i, i + 1) in a time interval T . On the other hand, instantaneous
current Ji(t ) is defined as

Ji(t ) ≡ lim
t→0

Qi

t
, (3)

where Qi = ∫ t+t
t dtJi(t ) is the cumulative bond current in

time interval t . Note that, while we investigate fluctuation
properties of both quantities Qi(t ) and Ji(t ), in simulations it
is statistically more efficient to calculate the averages related
to the time-integrated current Qi(t ) than the instantaneous one
Ji(t ).

However, before discussing the second moment (fluctua-
tions) of currents, in this section, we first investigate their
average behavior and set the notations required in the subse-
quent part of the paper. To this end, let us define the following
stochastic variables:

U (l )
i+l ≡ ηi+1ηi+2 · · · ηi+l , (4)

V (l+2)
i+l+1 ≡ ηiηi+1ηi+2 · · · ηi+lηi+l+1, (5)

where η̄i = (1 − ηi ), and U (l ) and V (l+2) are indicator func-
tions for a single site being vacant, l consecutive sites being
vacant, and a vacancy cluster to be of size l , respectively.

Note that, whenever a particle performs a long-range hop
of length l , it contributes a unit current at each bond in the
stretch between the departure and destination sites; that is, for
a rightward (leftward) hop, current across all bonds in that
stretch increases (decreases) by unity. By considering this, the
continuous-time evolution for time-integrated current Qi(t ) in
an infinitesimal time interval [t, t + dt] can be written as

Qi(t + dt ) =

⎧⎪⎪⎨
⎪⎪⎩

Qi(t ) + 1, prob. PR
i (t )dt

Qi(t ) − 1, prob. PL
i (t )dt

Qi(t ), prob. 1 − (
PR

i + PL
i

)
dt,

(6)

where PR
i dt and PL

i dt are probabilities of the hopping events
and the corresponding rates are given by [14]

PR
i ≡ 1

2

∞∑
l=1

φ(l )

⎡
⎣ l∑

k=1

(
U (l )

i+k − U (l+1)
i+k

)+
l−1∑
g=1

g∑
k=1

V (g+2)
i+k+1

⎤
⎦,

(7)

PL
i ≡ 1

2

∞∑
l=1

φ(l )

⎡
⎣ l∑

k=1

(
U (l )

i+k−1 − U (l+1)
i+k

)+
l−1∑
g=1

g∑
k=1

V (g+2)
i+k

⎤
⎦.

(8)

By using the above microscopic update rules and doing some
straightforward algebraic manipulations, the average instanta-
neous current 〈Ji(t )〉 can be written as [14]

〈Ji(t )〉 = 1

2

∞∑
l=1

φ(l )

[
l−1∑
g=1

(〈
V (g+2)

i+g+1

〉− 〈
V (g+2)

i+1

〉)

+ (〈
U (l )

i+l

〉− 〈
U (l )

i

〉)]
. (9)

Note that, in the above equation, the average current 〈Ji(t )〉
is written as a (generalized) gradient of the observables
〈V (g+2)〉(ρ) and 〈U (l )〉(ρ), both of which depend on (local)
density and, of course, tumbling rate. By making use of Tay-
lor’s expansion, we can write the average current explicitly in
terms of (discrete) gradient of (local) density [14],

〈Ji(t )〉 � −D(ρ, γ )[〈ηi+1(t )〉 − 〈ηi(t )〉], (10)

where ρi(t ) = 〈ηi(t )〉 is the local density and the bulk-
diffusion coefficient D(ρ, γ ) [14],

D(ρ, γ ) = −1

2

∞∑
l=1

φ(l )
∂

∂ρ

⎡
⎣ l−1∑

g=1

g〈V (g+2)〉(ρ) + l〈U (l )〉(ρ)

⎤
⎦,

(11)

is a function of the global density ρ and tumbling rate γ .
As shown in Ref. [14], the correlation functions 〈V (g+2)〉 and
〈U (l )〉, and therefore the bulk-diffusion coefficient D(ρ, γ ),
can be written in terms of the gap distribution P(g) by using
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the following relations:

〈V (g+2)(ρ, γ )〉 = ρP(g), (12)

〈U (l )(ρ, γ )〉 = ρ

∞∑
g=l−1

(g − l + 1)P(g). (13)

Then the resulting expression of the bulk-diffusion coefficient D(ρ, γ ) is given by [14]

D(ρ, γ ) = −1

2

∂

∂ρ

⎡
⎣ρ

∞∑
l=1

φ(l )

⎛
⎝ l−1∑

g=1

gP(g) + l
∞∑

g=l−1

(g − l + 1)P(g)

⎞
⎠
⎤
⎦, (14)

which will be required later to explicitly calculate the current
fluctuations in the system.

As the system is homogeneous in the steady state, the
gradients in Eq. (9) simply vanish, implying that the system
has zero steady-state current. However, on the level of fluctu-
ations, the (stochastic) instantaneous current is in fact nonzero
even in the steady state. To characterize fluctuations appropri-
ately [10,19], we decompose the total instantaneous current
into two components: a (hydrodynamic) diffusive current J (D)

i ,
which relaxes very slowly, and a fluctuating or noise current
J ( f l )

i , which is then expected to relax fast. In other words, we
write the instantaneous current as the sum of these slow and
fast components,

Ji(t ) = J (D)
i (t ) + J ( f l )

i (t ), (15)

where we identify, by using Eq. (9), the diffusive current

J (D)
i ≡ 1

2

∞∑
l=1

φ(l )

[
l−1∑
g=1

(
V (g+2)

i+g+1 − V (g+2)
i+1

)+ (
U (l )

i+l − U (l )
i

)]
.

(16)
Indeed, as we derive later [see Eqs. (60) and (67)], the time-
dependent correlation function for the diffusive current J (D)

i
(also the total current Ji) has a power-law tail, whereas that for
the fluctuating (noise) current J ( f l )

i is delta correlated. Also, by
comparing Eqs. (9), (15), and (16), we find that the average
fluctuating current is simply zero:〈

J f l
i (t )

〉 = 0. (17)

However, the space-time correlations of J f l
i have nontrivial

spatial structures [see Eq. (67)]. In the subsequent section,
these spatiotemporal correlations are analytically calculated
by using a truncation scheme, which we discuss next.

B. Spatiotemporal correlations of current

We consider time-integrated currents Qr (t ′) and Q0(t ),
which are measured up to times t ′ and t (t ′ > t ) across bonds
(r, r + 1) and (0, 1), respectively, with the bonds being spa-
tially separated by distance r. In this section, we investigate
the space-time-dependent correlation function for bond cur-
rent Qi(t ),

CQQ
r (t ′, t ) = 〈Qr (t ′)Q0(t )〉c

= 〈Qr (t ′)Q0(t )〉 − 〈Qr (t ′)〉〈Q0(t )〉. (18)

As we choose t ′ > t , it is easy to see that, in an infinitesi-
mal time interval [t ′, t ′ + dt ′], Q0(t ) remains constant, and
any change in CQQ

r (t ′, t ) occurs solely due to the change in

Qr (t ′). Now, by using infinitesimal update rules [Eq. (6)], we
write down the time-evolution equation for CQQ

r (t ′, t ) as given
below (see Appendix A for details):

d

dt ′ C
QQ
r (t ′, t ) = 1

2

∞∑
l=1

φ(l )

[{
CU (l )Q

r+l (t ′, t ) − CU (l )Q
r (t ′, t )

}

+
l−1∑
g=1

{
CV (g+2)Q

r+g+1 (t ′, t ) − CV (g+2)Q
r+1 (t ′, t )

}]
.

(19)

In other words, we have the following identity:

d

dt ′ C
QQ
r (t ′, t ) = 〈

J (D)
r (t ′)Q0(t )

〉
c
, (20)

where J (D)
r (t ) is the diffusive current across the rth bond and

at time t . Note that Eq. (19) for two-point current correlation is
exact and has been expressed as the gradients of two nontrivial
multipoint correlation functions,

CU (l )Q
r (t ′, t ) = 〈

U (l )
r (t ′)Q0(t )

〉
c, (21)

CV (g+2)Q
r (t ′, t ) = 〈

V (g+2)
r (t ′)Q0(t )

〉
c. (22)

However, the difficulty arises here because the two-point cor-
relation in Eq. (19) involves various multipoint correlation
functions, which must now be calculated in order to deter-
mine CQQ

r (t ′, t ). Not surprisingly, the hierarchy involving the
time evolution of CU (l )Q

r (t ′, t ) and CV (g+2)Q
r (t ′, t ) does not close,

making exact calculations quite difficult.
To address the above-mentioned difficulty, in this paper, we

now use a truncation scheme that, though approximate, allows
us to close the above hierarchy and to write the time evolution
of the two-point current correlations in terms of two-point
correlations, involving only current and density, which, in-
terestingly, close onto themselves. Indeed, when fluctuations
of local density around the steady state are small, on a long
timescale the variables V (g+2) and U (l ) appearing in Eq. (16)
are essentially “slaved” to local density and, as a result, the
diffusive current could be approximately written in the form
of a “microscopic” version of Fick’s law [33], which is evident
from Eq. (10):

J (D)
r (t ′) � D(ρ, γ )[ηr (t ′) − ηr+1(t ′)]. (23)

Here we have simply used D[ρr (t ), γ ] � D(ρ, γ ); the symbol
“�” in Eq. (23) should rather be interpreted as an “equiva-
lence,” not an “equality,” between the random variables there,
unless one takes explicit averages. The precise implication of
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the above equivalence relation in Eq. (23), which has been
used in the subsequent calculations, is the following: We sim-
ply write the correlation function for diffusive current J (D)

r (t ′)
and any other stochastic variable B(t ) in terms of correlations
between local density and the variable B(t ), i.e.,〈

J (D)
r (t ′)B(t )

〉
c
� −D(ρ, γ )r〈ηr (t ′)B(t )〉c, (24)

where rhr = hr+1 − hr is the forward difference operator.
Following the above truncation scheme [Eq. (24)], the time
evolution of the current correlations in Eq. (20) greatly sim-
plifies as the gradient of two-point density-current correlation
function CηQ

r (t ′, t ) = 〈ηr (t ′)Q0(t )〉c, which, as shown below,
immediately closes the hierarchy. We thus rewrite Eq. (20) as

d

dt ′ C
QQ
r (t ′, t ) � −D(ρ, γ )rCηQ

r (t ′, t ), (25)

whereas the time evolution of the density-current correlation
CηQ

r (t ′, t ) can be written as (for details see Appendix B)

d

dt ′ C
ηQ
r (t ′, t ) = D(ρ, γ )2

rCηQ
r (t ′, t ). (26)

Notably, the SSEP, despite having a product-measure steady
state and the bulk-diffusion coefficient being independent
of density [33], shares a quite similar structure involving
the density and current correlations, which, for LLG, how-
ever, require calculations of various nontrivial spatiotemporal
correlations. To further simplify the time-evolution equa-
tions governing the two-point correlations, we represent
the correlation functions in the Fourier space by using the
transformation

C̃AB
q (t ′, t ) =

L−1∑
r=0

CAB
r (t ′, t )eiqr . (27)

The inverse Fourier transform is given by

CAB
r (t ′, t ) = 1

L

∑
q

C̃AB
q (t ′, t )e−iqr, (28)

where

q = 2πn

L
, (29)

and n = 0, 1, 2, . . . , (L − 1). We rewrite Eqs. (25) and (26) in
terms of the time evolution of the respective Fourier modes,

d

dt ′ C̃
QQ
q (t ′, t ) = D(ρ, γ )(1 − e−iq )C̃QQ

q (t ′, t ) (30)

and
d

dt ′ C̃
ηQ
q (t ′, t ) = −D(ρ, γ )λqC̃ηQ

q (t ′, t ), (31)

where λq is given by

λq = 2(1 − cos q). (32)

By integrating Eqs. (30) and (31), we express the unequal-
time correlation functions in the following forms:

C̃QQ
q (t ′, t ) = D(ρ, γ )

∫ t ′

t
dt ′′(1 − e−iq )C̃ηQ

q (t ′′, t ) + C̃QQ
q (t, t ),

(33)

C̃ηQ
q (t ′′, t ) = e−λqD(ρ,γ )(t ′′−t )C̃ηQ

q (t, t ), (34)

where t ′′ � t . It is now clear that, to evaluate the unequal-time
correlation functions, CQQ

r (t ′, t ) and CηQ
r (t ′, t ), one must first

calculate their equal-time counterparts, which we do next.

1. Equal-time density-current correlation C̃ηQ
q (t, t )

We have already seen in Eq. (33) that the density-current
correlation function C̃ηQ

q plays an important role in deter-
mining C̃QQ

q . We therefore proceed with the calculation of
the equal-time density-current correlation function C̃ηQ

q (t, t )
(for details of the following calculations, see Appendix C).
Starting from microscopic dynamical rules, we obtain the time
evolution of CηQ

r (t, t ), which, in terms of the Fourier modes,
satisfies the following equation:(

d

dt
+ D(ρ, γ )λq

)
C̃ηQ

q (t, t ) = S̃ηQ
q (t ). (35)

Here the source term S̃ηQ
q (t ) is given by

S̃ηQ
q (t ) = 1

(1 − e−iq )

[
D(ρ, γ )λqC̃ηη

q (t, t ) − fq(t )
]
, (36)

where fq(t ) is directly related to the gap distribution P(g, t ) of
the system and is given by

fq(t ) = ρ

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

λgqP(g, t ) + λlq

∞∑
g=l

P(g, t )

⎤
⎦. (37)

We can now solve for C̃ηQ
q (t, t ) by integrating Eq. (35) and the

solution is given by

C̃ηQ
q (t, t ) =

∫ t

0
dt ′′′e−λqD(ρ,γ )(t−t ′′′ )S̃ηQ

q (t ′′′), (38)

which, upon substitution in Eq. (34), leads to the unequal-time
density-current correlation function,

C̃ηQ
q (t ′′, t ) =

∫ t

0
dt ′′′e−λqD(ρ,γ )(t ′′−t ′′′ )S̃ηQ

q (t ′′′). (39)

Note that, in the above analysis, S̃ηQ
q (t ) and hence C̃ηQ

q (t, t )
and C̃ηQ

q (t ′′, t ) have been expressed in terms of the equal-time
density-density correlation function C̃ηη

q (t, t ), which remains
to be the only unknown quantity so far and has to be de-
termined. To this end, we first derive the time-evolution
equation for the correlation function Cηη

r (t, t ) = 〈ηr (t )η0(t )〉c,
in the real space (for details, see Appendix D). Using a Fourier
transform of Eq. (27), we find the time-evolution equation for
Fourier modes C̃ηη

q (t, t ),(
d

dt
+ 2D(ρ, γ )λq

)
C̃ηη

q (t, t ) = S̃ηη
q (t ), (40)

where the source term S̃ηη
q = fq. One can now solve Eq. (40)

to obtain the time-dependent solution of C̃ηη
q (t, t ). Since we

want the dynamic density-density correlation function to be
evaluated in the steady state, we simply drop its time depen-
dence and set d C̃ηη

q (t, t )/dt = 0; consequently, we have from
Eq. (40)

2D(ρ, γ )λqC̃ηη
q = S̃ηη

q = fq. (41)
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Equation (41) provides the solution for the static density-
density correlation function and fq is then obtained by
replacing P(g, t ) by its steady-state value P(g) in Eq. (37).
Upon substituting the static C̃ηη

q in Eq. (36), the source term
S̃ηQ

q also becomes time independent and thus the solution is
given by

S̃ηQ
q = − fq

2(1 − e−iq )
. (42)

Using this particular form of S̃ηQ
q in Eq. (39), we finally obtain

the equal- as well as unequal-time density-current correlation
function C̃ηQ

q in the steady state,

C̃ηQ
q (t, t ) = − fq

2D(ρ, γ )λq(1 − e−iq )

(
1 − e−λqD(ρ,γ )t

)
, (43)

C̃ηQ
q (t ′′, t ) = − fqe−λqD(ρ,γ )t ′′

2D(ρ, γ )λq(1 − e−iq )

(
eλqD(ρ,γ )t − 1

)
, (44)

where t ′′ � t . It should be noted that, by substituting Eq. (44)
in Eq. (33), one can readily obtain the first term of the
unequal-time current-current correlation function C̃QQ

q (t ′′, t ).
In the next section, we focus on another equal-time correlation
function CQQ

r (t, t ), which is the quantity to be considered
while calculating the two-point space-time correlation func-
tion CQQ

r (t ′, t ).

2. Equal-time current-current correlation CQQ
r (t, t )

To calculate the equal-time current-current correlation
CQQ

r (t, t ), we first derive its time-evolution equation, which,
upon applying the closure scheme as in Eq. (23), leads to
the solution for CQQ

r (t, t ) having the following closed-form
expression:

CQQ
r (t, t ) = D

L

∑
q

(1 − e−iq )(2 − λqr )
∫ t

0
C̃ηQ

q (t, t )dt + �rt .

(45)

On the right-hand side of the above equation, C̃ηQ
q (t, t ) in

the first term is readily obtained from Eq. (43), while, in the

second term, �r can be written in terms of gap distribution as
given below:

�r =ρ

∞∑
l=|r|+1

φ(l )

⎡
⎣(l− | r |)

∞∑
g=l

P(g) +
l−1∑

g=|r|
(g− | r |)P(g)

⎤
⎦

(46)

(see Appendix E for calculation details). The quantity �r

physically corresponds to the strength of the “noise current”
and is shown to be equal to the two-point space-time cor-
relation of the fluctuating current, i.e., 〈J ( f l )

r (t )J ( f l )
0 (0)〉 =

�rδ(t ) [see Eq. (67)]. Later we also show that the steady-state
fluctuation of the space-time integrated current Qtot (L, T ) =∫ T

0 dt
∑L−1

i=0 J ( f l )
i (t ) [see Eq. (74)] satisfies, in the thermody-

namic limit, a fluctuation relation,

2χ (ρ, γ ) ≡ lim
L→∞

1

LT

〈
Q2

tot (L, T )
〉 = ∑

r

�r, (47)

where the particle mobility χ (ρ, γ ) has the following expres-
sion:

χ (ρ, γ ) = ρ

2

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

g2P(g) + l2
∞∑

g=l

P(g)

⎤
⎦. (48)

The mobility can be written explicitly as a function of density
and tumbling rate, provided that the gap distribution P(g) is
known (see the ρ, γ → 0 limit and the corresponding scaling
regime, discussed later in Sec. III E). Note that the sum rule,
as in Eq. (47), states that the scaled space-time integrated cur-
rent fluctuation is equal to the spatially integrated correlation
function for fluctuating current and can be directly tested in
simulations [see Fig. 4].

We now perform an inverse Fourier transform of Eq. (33)
and finally obtain the desired solution for the steady-state
unequal-time two-point current-current correlation function
CQQ

r (t ′, t ) in real space,

CQQ
r (t ′, t ) = − 1

2LD

∑
q

fq

λ2
q

(e−λqDt − e−λqDt ′
)(e−λqDt − 1)e−iqr − 1

2L

∑
q

fq

λq

{
t − (1 − e−λqDt )

λqD

}
(2 − λqr ) + �rt . (49)

Now onwards, to keep the notations simple, we drop the
argument of D(ρ, γ ) in Eq. (49) and elsewhere.

C. Spatiotemporal correlation of the instantaneous current

In this section, we calculate the two-point unequal-time
correlation function of the instantaneous current, i.e., CJJ

r (t ′, t )
in the steady state. We do this by differentiating the steady-
state integrated current correlation function CQQ

r (t ′, t ) with
respect to times t ′ and t . However, the expression for
CQQ

r (t ′, t ) provided in Eq. (49) is valid only for t ′ � t . There-
fore, to obtain CJJ

r (t ′, t ) for arbitrary values of t ′ and t , the
appropriate formula can be written by using the Heaviside

theta function �(t ),

CJJ
r (t, t ′) = d

dt

d

dt ′
[
CQQ

r (t ′, t )�(t ′ − t ) + CQQ
r (t, t ′)�(t−t ′)

]
,

(50)

where CQQ
r (t, t ′) is obtained directly from Eq. (49) by in-

terchanging t ′ and t . Using Eq. (50), we straightforwardly
compute CJJ

r (t ′, t ). After doing some algebraic manipula-
tions and setting t ′ = 0, we eventually arrive at the following
expression:

CJJ
r (t, t ′) = �rδ(t − t ′) − D

4L

∑
q

(2 − λqr ) fqe−λqD|t−t ′|

× {�(t − t ′) + �(t ′ − t )}, (51)
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where fq is obtained by substituting the steady-state gap distri-
bution P(g) in Eq. (37). Clearly, CJJ

r (t, t ′) can be divided into
two distinct parts. The space-dependent prefactor in the first
component, which is delta correlated in time, pertains to the
equal-time two-point correlation, which in turn is determined
by the fluctuating current correlations �r . The second part
comprises the correlations at different space and time points.
In the subsequent analysis, we examine the contribution of
each of these terms.

1. Equal-time unequal-space correlation

To obtain the equal-time spatial correlations of the in-
stantaneous current, we consider the case in Eq. (51) with
t = t ′ = 0, yielding the leading-order contribution,

CJJ
r �

(CJJ
0

�0

)
�r . (52)

Note that the spatial dependence of the correlation function
CJJ

r is solely governed by �r , which can be written in terms
of the steady-state gap distribution function P(g) only [see
Eq. (46)]. So, perhaps not surprisingly, the spatial correlations
of current are in fact governed by the gap statistics and one
would expect the correlation length to be determined by the
typical gap size in the system. However, obtaining P(g) ex-
plicitly as a function of ρ and γ is not an easy task in general.
We can still do the following asymptotic analysis, which is
quite general. For larger gap size, we expect P(g) to be an
exponential function (which can be shown to be indeed the
case for γ � 1 [49]),

P(g) � N∗ exp(−g/g∗), (53)

where g∗ is the typical gap size. Now, using the conservation
relation 〈g〉 = ∑∞

g=1 gP(g) = 1/ρ − 1, one can immediately
obtain the prefactor

N∗ �
(

1

ρ
− 1

)
(e1/g∗ − 1)2

e1/g∗
. (54)

Upon substituting the above expression of P(g) into Eq. (46),
we obtain the following simplified expression:

�r � (1 − ρ)
(e1/g∗ − 1)

(e(γ+1/g∗ ) − 1)
e−r/ξ = �0e−r/ξ . (55)

The above equation immediately leads to the spatial correla-
tion function of the current,

CJJ
r = CJJ

0 e−r/ξ , (56)

where the correlation length ξ is given by

ξ = 1

γ + g−1∗
. (57)

Equations (55) and (57) imply that the typical gap size g∗
plays a crucial role in determining �r and ξ . Although one
can calculate g∗ numerically without much difficulty, the
determination of its exact analytical form for any arbitrary
parameter regime is a nontrivial task. However, in the limit of
strong persistence where lp = γ −1 → ∞, there is an analytic

expression for typical gap size [49],

g∗ �
√

1 − ρ

γρ
, (58)

which leads to the explicit solution of �r and hence the
correlation function CJJ

r . It is worth noting that, in this spe-
cific regime of strong persistence, the correlation length ξ

is primarily dominated by g∗ alone, which immediately im-
plies ξ ∼ 1/

√
γ = √

τp. That is, correlation length ξ ∼ √
τp

diverges with persistence time τp, thus providing a straight-
forward theoretical explanation of the findings in recent
simulations and experiments [21,27].

In order to verify the theoretical results in Eqs. (56), (57),
and (58), in simulations we actually calculate, for better statis-
tics, correlation function CJ̄J̄ (r) = limt→∞〈J̄0(t )J̄r (t )〉 for a
coarse-grained current J̄i(t ) = (1/t )

∫ t+t
t dtJi(t ), averaged

over a reasonably small time window (t, t + t ) and evalu-
ated at two spatial points separated by distance r. In Fig. 2,
we plot the scaled correlation function CJJ

r /CJJ
0 for mod-

els II (LLG, closed points; left-hand panel) and I (standard
RTPs, open points; middle panel), obtained from Monte Carlo
simulation, at different tumbling rates γ = 0.05 (triangle),
0.02 (inverted triangle), 0.01 (diamond), and 0.005 (pentagon)
while keeping the density fixed at ρ = 0.5. We also compare
the simulation data with the strong-persistence analytical so-
lution (dotted lines), obtained using Eqs. (56), (57), and (58).
We indeed find quite good agreement between simulations
and analytic results in the limit of small γ . Finally, in the
right-hand panel of Fig. 2, we plot the numerically obtained
correlation length ξ as a function of γ for models II (LLG,
closed points) and I (standard RTPs, open points) at a fixed
density ρ = 0.5 and also compare the results with the strong-
persistence analytical solution, obtained using Eqs. (57) and
(58). In both cases, models I and II, we find in simulations
that the correlation functions decay exponentially, CJ̄J̄ (r) ∼
exp(−r/ξ ), and agree reasonably well with the analytical
results. Notably, at small γ , the correlation lengths for models
I and II asymptotically converge to each other, as implied by
our theory in Eqs. (56), (57), and (58).

2. Equal-space unequal-time correlation function

To evaluate the dynamic two-point correlation function for
the instantaneous current in the steady state, we set r = 0 and
consider the case t ′ = 0 and t > 0 in Eq. (51), leading to the
following expression:

CJJ
0 (t, 0) = − D

2L

∑
q

fq(t )e−λqDt . (59)

It is important to distinguish between the order of space and
time limits. In the case where the long-time limit t → ∞ is
taken first and then the large-system-size limit L → ∞ (i.e.,
t � L2/D), it can be shown from Eq. (59) that CJJ

0 (t, 0) =
0. In the other case, where we first take the limit L → ∞
and then the t → ∞ limit (i.e., L2/D � t � r2

0/D, where
r0 is the lattice spacing, or particle diameter, taken to be
unity throughout), we observe that the dynamic correlation
CJJ

0 (t, 0) becomes a long-ranged one. In this time regime, the
behavior of CJJ

0 (t, 0) in Eq. (59) is primarily dominated by
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FIG. 2. Verification of Eqs. (56), (57), and (58). We plot the scaled two-point spatial correlation of the instantaneous current CJJ
r /CJJ

0

for model II (LLG, left-hand panel) and model I (standard RTPs, middle panel), obtained from simulations (points), at a fixed ρ = 0.5 and
various γ = 0.05 (triangle), 0.02 (inverted triangle), and 0.01 (diamond). We also compare the simulation data in both models with the strong
persistence analytical solution (dotted line) given by Eqs. (56), (57), and (58). In the right-hand panel, we plot the correlation length ξ , as a
function of γ , at ρ = 0.5 for model II (LLG, closed points) and model I (RTPs, open points) and compare them with the strong persistence
analytical solution (line) provided by Eqs. (57) and (58).

the relaxations of the small-q Fourier modes. Therefore, in
order to obtain the large-t behavior, we can employ a small-
q analysis by performing the transformations λq → q2 and
fq → χ (ρ, γ )q2. Moreover, for large L � 1, by converting
the summation into an integral, we obtain, for large times,

CJJ
0 (t ) � − χ (ρ, γ )

4
√

πD(ρ, γ )
t−3/2 (60)

(see Appendix F for calculation details). Notably, the corre-
lation function CJJ

0 (t, 0) is negatively correlated for t > 0,
with a delta function at t = 0, and exhibits a power-law decay.
These two important characteristics are a direct consequence
of the observed subdiffusive growth in CQQ

0 (t, t ) in the time
regime 1 � Dt � L2. In fact, in this regime, upon suitable
rearrangements of Eq. (60), we immediately obtain a scaling
law,

1

χD
CJJ

0 (t ) = − 1

4
√

π
(Dt )−3/2. (61)

Here χ (ρ, γ ) and D(ρ, γ ) are the density- and tumbling-
rate-dependent collective mobility, as in Eq. (48), and
bulk-diffusion coefficient, respectively. Interestingly, in a
slightly different setting, dynamic fluctuations of “force” on
a “passive” tracer immersed in a bath of hardcore RTPs have
been studied in Ref. [50], where the associated correlation
function was shown to have a similar power-law tail.

In order to verify the scaling law in Eq. (61), we first
require to calculate the parameter-dependent transport coef-
ficients D(ρ, γ ) and χ (ρ, γ ) for models I and II. We calculate
D(ρ, γ ) and χ (ρ, γ ) for model II (LLG) by numerically com-
puting P(g) in the steady state and then using it in Eqs. (14)
and (48), respectively. However, for model I (standard hard-
core RTPs), we do not have any analytical expressions for
the two transport coefficients and therefore, to explicitly
calculate them, we resort to Monte Carlo simulations. To
calculate D(ρ, γ ) for model I, we studied in our previous
work [14] relaxation of long-wavelength perturbation through
a quite efficient Monte Carlo algorithm. Now, for numeri-
cal calculation of the particle mobility χ (ρ, γ ), we directly
compute the scaled space-time integrated current fluctuation
as given in Eq. (74). We now verify Eq. (61) by plotting the

(negative) scaled correlation function −CJJ
0 (t )/χD (obtained

from simulations) as a function of scaling variable Dt in
Fig. 3, for model II (closed points) and model I (open points)
for various densities ρ = 0.3 (circle), 0.5 (square), and 0.7
(triangle) at a fixed tumbling rate γ = 0.1. We also compare
simulation results (points) with the analytic solution as given
in Eq. (61). We find that, at large times, theory agrees quite
well with simulations.

D. Space-time correlations of fluctuating (“noise”) current

In this section, we focus on determining the two-point spa-
tiotemporal correlation function for fluctuating current J ( f l )(t )
in the steady state. In other words, we aim to derive the
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FIG. 3. Verification of Eq. (61). We plot the negative scaled
equal-space unequal-time instantaneous current correlation function,
i.e., −CJJ

0 (t )/χD, as a function of Dt , for model II (LLG, closed
symbols) and model I (standard RTPs, open symbols), at a fixed
γ = 0.1 and different ρ = 0.3 (blue circle), 0.5 (red square), and
0.7 (magenta triangle). We also compare the scaled simulation data
points with the theoretical prediction (black dotted line), as shown in
Eq. (61).
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expression for CJ ( f l )J ( f l )

r (t, 0) where t � 0. Using the current
decomposition as in Eq. (15), we can write the following
relation:

CJ f l J f l

r (t, 0) = CJJ
r (t, 0) − CJDJ

r (t, 0) − CJ f l JD

r (t, 0). (62)

Notably, the fluctuation current J ( f l )(t ) at time t is not corre-
lated with the diffusive current JD

0 (0) at an earlier time t = 0,
i.e.,

CJ f l JD

r (t, 0) = 〈
J f l

r (t )JD
0 (0)

〉 = 0. (63)

Then the third term in Eq. (62) immediately drops out. More-
over, in order to determine the second term CJDJ

r (t, 0), we use
the following relation,

CJDJ
r (t, 0) =

[
d

dt ′ C
JDQ
r (t, t ′)

]
t ′=0

(64)

� D
d

dt ′
[
CηQ

r (t, t ′) − CηQ
r+1(t, t ′)

]
t ′=0

, (65)

where we have used the truncation approximation as in
Eq. (23) to arrive at Eq. (65) by using Eq. (64). Following
Eq. (27), we now expand the correlators CηQ

r (t, t ′) in the
Fourier basis, and then, using Eq. (44), we obtain the desired
solution,

CJDJ
r (t, 0) = − D

4L

∑
q

(2 − λqr ) fq(t )e−λqDt . (66)

Importantly the above solution coincides with the two-point
unequal-time correlation of CJJ

r (t, 0) which is displayed in
the second term of Eq. (51) with t � t ′ = 0. Finally, using
Eqs. (51), (63), and (66) in Eq. (62), we readily obtain

CJ f l J f l

r (t, 0) = 〈
J f l

r (t )J f l
0 (0)

〉 = δ(t )�r . (67)

E. Fluctuation of the space-time integrated current

The space-time integrated current Qtot (L, T ) of the system
is defined as

Qtot (L, T ) =
L−1∑
i=0

Qi(T ) =
∫ T

0
dt

L−1∑
i=0

Ji(t ). (68)

Note that Qtot (L, T ) measures the total current in the system
up to the observation time T . Alternatively, Qtot (L, T ) can be
linked to the cumulative tagged particle displacements in the
following way:

Qtot (L, T ) =
N∑

i=1

Xi(T ), (69)

where Xi(T ) is the displacement of the ith particle in time T .
In this section, we characterize the fluctuation properties of
Qtot (L, T ), which is essentially related to the fluctuation of
cumulative displacements of RTPs in the system.

It is worth noting that, according to the decomposition
shown in Eq. (15), we can write Ji(t ) in Eq. (68) as the sum of
diffusive J (D)

i (t ) and fluctuating J ( f l )
i (t ) current components.

However, for a periodic system (which is the case here), we

use the identity

L−1∑
i=0

J (D)
i (t ) = 0, (70)

and, as a result, the diffusive component does not contribute
to Qtot (L, T ), leading to

Qtot (L, T ) =
∫ T

0
dt

L−1∑
i=0

J f l
i (t ). (71)

The above equation clearly reflects the fact that the time-
integrated current Qtot (L, T ) across the entire system is solely
governed by the fluctuating component J ( f l )

i (t ), immediately
implying the average current being zero,

〈Qtot (L, T )〉 =
∫ T

0
dt

L−1∑
i=0

〈
J f l

i (t )
〉 = 0, (72)

since 〈J f l
i (t )〉 = 0. Similarly, we write the expression for the

fluctuation,

〈
Q2

tot (L, T )
〉 = ∫ T

0
dt ′
∫ T

0
dt

L−1∑
i=0

∑
r

〈
J f l

i (t )J f l
i+r (t ′)

〉
. (73)

Now, by using Eq. (67) in the above equation, it is straight-
forward to find that the total current fluctuation satisfies the
following relation,

1

LT

〈
Q2

tot (L, T )
〉 = ∑

r

�r = 2χ (ρ, γ ), (74)

where we have already expressed χ (ρ, γ ) in terms of P(g) in
Eq. (48). To verify the above equation for model II (LLG),
we first compute 〈Q2

tot (L, T )〉 from numerical simulation with
L = 1000 and T = 50 in the parameter ranges 0.01 � ρ �
0.9 and 0.005 � γ � 1. Moreover, we also numerically com-
pute P(g) and use them in Eq. (48) to obtain χ (ρ, γ ) for the
same parameter values. In Figs. 4(a) and 4(b), we plot the
numerically obtained scaled fluctuation γ 〈Q2

tot (L, T )〉/2LT
as a function of ρ and γ , respectively. We also plot the al-
ready calculated γχ (ρ, γ ) and represent them with the dotted
lines. An excellent agreement between γ 〈Q2

tot (L, T )〉/2LT
and γχ (ρ, γ ) immediately verifies Eq. (74) for model II. In
Figs. 4(c) and 4(d), we plot the functional variation of the nu-
merically obtained 〈Q2

tot (L, T )〉/2LT , which is also a measure
of χ (ρ, γ ) according to Eq. (74), with respect to ρ and γ ,
respectively for model I (standard RTPs). Note that that the
scaled fluctuation is a nonmonotonic function of both ρ and γ ;
also one can see the qualitative similarities between Figs. 4(a)
and 4(c), as well as Figs. 4(b) and 4(d), thus establishing the
same underlying mechanism of particle transport in models I
(standard RTPs) and II (LLG).

Physically, the nonmonotonic effect in mobility in a sys-
tem of interacting RTPs arises from an intricate interplay
between persistence and interaction. For a fixed tumbling rate,
when density increases gradually beyond the dilute regime,
the number of “free” particles contributing to the current first
increases, thus enhancing the particle mobility. However, this
enhancement reaches a threshold density (which increases
with the tumbling rate), beyond which, due to the hardcore
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FIG. 4. [(a) and (b)] Scaled space-time integrated current fluctuation γ 〈Q2
tot (L, T )〉/2LT for the LLG, obtained from simulation (points), as

a function of ρ [at different γ = 0.001 (blue square), 0.005 (red circle), 0.01 (black triangle), 0.05 (magenta inverted triangle), and 0.1 (green
diamond)] and γ [at various ρ = 0.01 (blue square), 0.05 (red circle), 0.1 (black triangle), and 0.5 (magenta inverted triangle)], respectively.
Corresponding dotted lines are γχ (ρ, γ ) calculated by using the numerically obtained P(g) in Eq. (48). The excellent match between these
two quantities verifies Eq. (74). [(c) and (d)] Plots of 〈Q2

tot (L, T )〉/2LT for model I (standard RTPs), obtained from numerical simulation (line
point), as a function of ρ and γ , respectively, for the aforementioned parameters.

interaction, particles form clustered (thus almost immobile)
configurations, reducing the number of “free” RTPs and hence
resulting in the decrease in mobility. This explains the above-
mentioned nonmonotonicity as seen from Figs. 4(a) and 4(c).
Likewise, as seen in Figs. 4(b) and 4(d), for a fixed density,
decreasing γ amplifies the persistence effect, thus increasing
the total current fluctuation and therefore also the mobility.
Further reduction in γ corresponds to very large persistence,
facilitating clustered (almost immobile) configurations, that
decrease the particle mobility. Notably, between these ex-
tremes, there must exists a threshold γ (which increases with
ρ), where the competing effects of persistence and interaction
result in an optimal transport in the system.

Scaling regime for the particle mobility χ(ρ, γ )

In this section, we study the particle mobility χ (ρ, γ ) in
the two limiting cases: case I, ρ → 0, γ → ∞, and case
II, ρ → 0, γ → 0. While case I is qualitatively similar to
the SSEP limit, case II captures the nontrivial interplay of

interaction and persistence in terms of the scaling variable
ψ = ρ/γ . Previously, in Ref. [14], we investigated a similar
scaling regime for the bulk-diffusion coefficient D(ρ, γ ) for
case II; also, in the case of the mobility, we calculate the
associated scaling function analytically for model II, by using
the truncation scheme as in Eq. (23).

By using Eqs. (53) and (48), we substitute the steady-state
gap distribution P(g) in χ (ρ, γ ) for model II and obtain

χ (ρ, γ ) � (1 − ρ)

2

(e1/g∗ − 1)(eγ+1/g∗ + 1)

(eγ+1/g∗ − 1)2
. (75)

Note that the above expression of χ (ρ, γ ) is valid for any
arbitrary ρ and γ . However, in the following discussion, we
analyze the limiting cases mentioned in the beginning.

Case I (ρ → 0 and γ → ∞). In this case of small per-
sistence and low-density limit, the steady-state distribution
is a product measure: P(g) ∼ (1 − ρ)g � e−ρg, yielding g∗ =
1/ρ. Finally, using this g∗ and setting the condition γ � 1 �
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ρ in Eq. (75), we obtain

χ (ρ, γ ) � e−γ

2
ρ(1 − ρ) = e−γ

2
χ (0), (76)

which, up to a scale factor exp(−γ ) due to time scaling
(explained below), is the particle mobility χ (0) = ρ(1 − ρ)
in SSEP. The exponential prefactor e−γ in the above equa-
tion appears because of the following. In this case, φ(l ) carries
maximum weight at l = 0, while all other hop lengths, i.e.,
l > 0, occur with an exponentially smaller probability 1 −
φ(0) = e−γ . Furthermore, among these nonzero hop lengths,
l = 1 dominates, with contributions from the larger l being
vanishingly small. Therefore, in the limit γ → ∞ or, equiva-
lently, lp → 0 in model II (LLG), particles effectively perform
SSEP-like hopping dynamics, albeit with a rate that is sim-
ply exponentially small, e−γ , thus explaining the prefactor in
Eq. (76).

Case II (ρ → 0 and γ → 0). As we show below, similar
to the bulk-diffusion coefficient D(ρ, γ ) in hardcore RTPs
studied in Ref. [14], the particle mobility too exhibits interest-
ing scaling properties. Indeed, in the strong-persistence and
low-density limits, there are only two relevant length scales in
the problem: the persistence length lp = v/γ and the “mean
free path” or the average gap 〈g〉 � 1/ρ. Consequently, their
ratio ψ = lp/〈g〉 is expected to provide a scaling variable that
should quantify the interplay of persistence and interaction. In
the regime of strong persistence, ψ → ∞ denotes the strongly
interacting limit, whereas ψ → 0 corresponds to the nonin-
teracting limit. Now, as argued previously in Ref. [14], we
have the typical gap length g∗ satisfying the following scaling
law: g∗ � G(ψ )/ρ. In the limit of ψ → 0, the model reduces
to the well-known SSEP for which G(ψ ) = 1, while, in the
opposite limit of ψ → ∞, we have the strongly interacting
regime, for which previous calculations in Ref. [49] yield
G(ψ ) = √

ψ . Now combining these two limiting cases, we
could simply write G(ψ ) � √

1 + ψ . Finally, plugging the
assumed form of g∗ = G(ψ )/ρ in Eq. (75), and after some
algebraic manipulations, we obtain the following scaling law:

χLLG(ρ, γ ) ≡ χ (0)

γ 2
HLLG

(
ψ = ρ

γ

)
, (77)

where χ (0) = ρ(1 − ρ) is the particle mobility in the SSEP
and the expression for the scaling function can be explicitly
written as

HLLG(ψ ) = G(ψ )

(ψ + G(ψ ))2
. (78)

Finally for model II (LLG), by replacing the above form of
G(ψ ) � √

1 + ψ , we immediately obtain

HLLG(ψ ) =
√

1 + ψ

(ψ + √
1 + ψ )2

(79)

(for calculation details, see Appendix I).
In the top panel of Fig. 5, we plot the scaled mobility

γ 2χLLG(ρ, γ )/χ (0), obtained from simulations (points), as a
function of the scaling variable ψ = ρ/γ in the parameter
ranges 0.01 � ρ � 0.5 and 0.001 � γ � 0.1. We observe
that the data points collapse onto each other and that the
collapsed data points follow the analytically obtained scaling
function HLLG(ψ ) (solid line) quite well. This observation
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FIG. 5. Verification of Eqs. (77) and (79). We plot the ratio
γ aχ (ρ, γ )/χ (0) for model II (LLG, top panel, a = 2) and model I
(RTPs, bottom panel, a = 1) as a function of scaling variable ψ =
ρ/γ in the parameter ranges 0.01 � ρ � 0.5 and 0.001 � γ � 0.1.
For LLG, we compare the collapsed simulation data points with
the analytic scaling function HLLG(ψ ) (solid black line) shown in
Eq. (79). For both models, the collapsed data points exhibit ψ−3/2

decay in the asymptotic limit, which is shown here by the red dotted
line.

indeed verifies the existence of the scaling law as in Eq. (77)
and substantiates the scaling function derived in Eq. (79). We
find that the same scaling law holds also for model I (standard
RTPs). To demonstrate this, we plot γχRT P(ρ, γ )/χ (0) as a
function of ψ in the bottom panel of Fig. 5, in the same
parameter range as in LLG.

F. Time-integrated bond-current fluctuation

To calculate the steady-state time-integrated bond-current
fluctuation, we simply put r = 0 and t ′ = t = T in Eq. (49)
and obtain

CQQ
0 (T, T ) = �0T − 1

L

∑
q

fq

λq

{
t − (1 − e−λqDT )

λqD

}
(80)

= 2χ

L
T + 1

DL

∑
q

fq

λ2
q

(1 − e−λqDT ) (81)
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[see Appendix G for the derivation of Eq. (81)]. It is im-
portant to mention that CQQ

0 (T, T ), which is expressed by
Eqs. (80) and (81) in its most comprehensive form, exhibits
quite interesting characteristics at different time regimes. In
the subsequent discussion, we investigate these properties by
analyzing the limiting cases.

1. Case I: Small-time regime DT � 1

In this case, we perform a linear expansion of the expo-
nential function in the second term of Eq. (80) with respect to
DT , which yields e−λqDT ≈ 1 − λqDT . As a result, this term
drops out and we are left with

CQQ
0 (T, T ) � �0T, (82)

where �0 is simply obtained by putting r = 0 in Eq. (46).

2. Case II: Intermediate- and long-time regime DT � 1

In general, it is difficult to evaluate the summation in the
second term of Eq. (81) in a closed form. However, in this
time regime, the summand only contributes when q → 0 and
vanishes otherwise. In this limit, the eigenvalues are quadratic,
i.e., λq � q2, λgq � g2q2, and λlq � l2q2, resulting in a simpli-
fied version of Eq. (81),

CQQ
0 (T, T ) � 2χ

L

⎡
⎣T + 1

D

∑
q

1

λ2
q

(1 − e−λqDT )

⎤
⎦. (83)

Considering both of the preceding cases, the asymptotic be-
havior of CQQ

0 (T, T ) = 〈Q2(t )〉 is obtained as

〈Q2(T )〉 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�0T for DT � 1
2χ (ρ,γ )√
πD(ρ,γ )

√
T for 1 � DT � L2

2χ (ρ,γ )
L T for DT � L2,

(84)

where the first term simply corresponds to Eq. (82), while
the other two terms are obtained using Eq. (83) (for details,
see Appendix H). Therefore, the time-integrated bond-current
fluctuation 〈Q2

i (T )〉 exhibits an initial linear growth in time
before transitioning to a subdiffusive scaling at the inter-
mediate regime L2/D � T � 1/D; subsequently, at larger
timescales T � L2/D, it reverts to diffusive or linear scaling
behavior where the strength of the fluctuation is governed by
χ (ρ, γ ). To verify these observations, we plot the numerically
obtained bond-current fluctuation 〈Q2

i (T )〉 as a function of
the observation time T , at the top panel of Fig. 6 for LLG
at different parameter values and compare them with our
analytical solution given in Eq. (81). Note that we have cal-
culated the bulk-diffusion coefficient D(ρ, γ ), which appears
in Eq. (81), by numerically calculating the steady-state gap
distribution function P(g) and then by using the exact analytic
expression given in Eq. (14). We find that the numerical data
points clearly exhibit the previously mentioned three different
regimes and they follow the analytical solution quite well.
In the case of model I (standard RTPs), we plot the similar
quantity, obtained from direct simulations, in the bottom panel
of Fig. 6. We find that, in the above-mentioned time regimes,
the data points have quite similar characteristics as in model
II (LLG).
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FIG. 6. We plot the time-integrated bond-current fluctuation
〈Q2

i (T )〉, as a function of time T , obtained from simulations (points)
for model II (LLG, top panel) and model I (standard RTPs, bottom
panel) at ρ = 0.3, 0.7 and γ = 0.1, 0.01. In the case of model II, we
also compare the simulation data points with the analytical solution
shown in Eq. (81) (line). For both these models, 〈Q2

i (T )〉 exhibits
subdiffusive growth at the intermediate-time regime, followed by a
diffusive (linear) growth at very long times (shown by the dotted
lines).

Interestingly, the above intermediate- and long-time regime
for time-dependent bond-current fluctuations can actually be
unified through a single scaling function as follows. Moreover,
quite remarkably, the scaling function seems to be univer-
sal, as it does not depend on the details of the dynamical
rules of the models considered here. In the limit of L →
∞ and DT → ∞ such that y = DT/L2 is finite, we find
CQQ

0 (T, T ) = 〈Q2(T )〉, as expressed in Eq. (83), to satisfy the
following scaling relation:

D

2χL
〈Q2(T )〉 = W

(
DT

L2

)
. (85)

For model II (LLG), the scaling function is calculated exactly
within the truncation scheme and is given by the following
series:

W (y) = y + lim
L→∞

1

L2

∑
q

1

λq

(
1 − e−λqyL2)

. (86)
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FIG. 7. Verification of Eqs. (85) and (86). We plot the scaled bond-current fluctuation D〈Q2
i (T )〉/2χL for model II (LLG, left-hand panel)

and model I (standard RTPs, middle panel), obtained from simulations (points) at various ρ and γ , as a function of the rescaled hydrodynamic
time y = D(ρ, γ )T/L2. For LLG, we compare the scaled data points with the analytic scaling function W (y) shown in Eq. (86) (black line). In
the right-hand panel, we check the universality of W (y) by plotting these numerically obtained scaled current fluctuation D〈Q2

i (T )〉/2χL for
model II (LLG, closed points) and model I (standard RTPs, open points) together and compare them with the analytically obtained W (y). In
all three panels, the red dotted guiding lines reflect the early time subdiffusive growth (∼ √

y), followed by the diffusive growth of W (y) ∼ y
as derived in Eq. (88).

One can approximate the discrete sum in the right-hand side
of the above equation as a quadrature, which can be written as
[51]

W (y) � y +
( y

π

)1/2
erfc(2π

√
y) + 1 − exp(−4π2y)

4π2
,

(87)

with erfc(y) = 1 − erf (y) and the error function erf (y) =
(2/

√
π )
∫ y

0 exp(−t2)dt . Note that, as demonstrated in Fig. 7,
the scaling function is the same for both models I and II. We
also perform an asymptotic analysis to obtain the behavior of
W (y) in the two limiting cases when y � 1 and y � 1 and we
find the following:

W (y) �
{√

y/π for y � 1
y for y � 1.

(88)

To verify our theoretical results, as in Eqs. (83), (86), and
(88), we plot in Fig. 7 the steady-state scaled bond-current
fluctuations as a function of the rescaled hydrodynamic time
y = DT/L2 for models II (LLG, left-hand panel) and I (stan-
dard RTPs, right-hand panel) for various ρ and γ denoted;
simulation results are represented the points. We determine
D(ρ, γ ) and χ (ρ, γ ) for model II (LLG) by numerically eval-
uating P(g) in the steady state and utilizing it in Eqs. (14) and
(48), respectively. In contrast, for model I (standard RTPs),
we compute D(ρ, γ ) by studying the relaxation of a long-
wavelength perturbation, following the approach outlined in
our previous work [14], and for the mobility χ (ρ, γ ), we
calculate the scaled space-time integrated current fluctuation
using the formula provided in Eq. (74). For both models,
we see an excellent collapse of the simulation data points.
The collapsed data (points) follow the analytically derived
scaling function W (y) as given in Eq. (86) (line) and they
exhibit subdiffusive growth at small y before crossing over
to diffusive growth at large y, thus being consistent with the
asymptotic form as in Eq. (88).

IV. SUMMARY AND CONCLUDING REMARKS

In this work, we characterize steady-state current fluctu-
ations in two minimal models of athermal hardcore RTPs
by using a microscopic approach. Model I is the standard
version of hardcore RTPs introduced in Ref. [47], whereas
model II is a long-ranged lattice gas (LLG)—a variant of
model I [14]; the latter model also has the hardcore constraint.
These two model systems were recently considered by us
in Ref. [14], where we characterized the collective- or bulk-
diffusion coefficient; in this study, we characterize the other
transport coefficient, the collective particle mobility, which
essentially characterizes current fluctuations in the system.
Indeed, one great advantage of studying model II (LLG) is
that, despite a lack of knowledge of the steady-state measure
having nontrivial spatial correlations, the model is amenable
to analytical studies and is the primary focus of our work. To
this end, we introduce a truncation (closure) scheme in our
microscopic dynamical framework to analytically calculate
various dynamic quantities, which have been of significant
interest in the past in the context of self-propelled particles.
In particular, in model II, we calculate exactly, within the
truncation approximation, the fluctuations of time-integrated
current Qi(T ) across a bond (i, i + 1) in a time interval T as
well as instantaneous current Ji(t ) ≡ dQi(t )/dt . We compare
our theoretical results with those obtained from direct Monte
Carlo simulations of models I and II and observe that the two
models of RTPs share remarkably similar features.

The main results of this paper are as follows. The
time-integrated bond-current fluctuation exhibits subdiffusive
growth at moderately large time r2

0/D � T � L2/D (with r0

being the lattice spacing, or particle diameter, taken to be unity
throughout), where 〈Qi(T )2〉 ∼ T 1/2, before crossing over
to a diffusive growth regime at very long time T � L2/D,
where D(ρ, γ ) is the density- and tumbling-rate-dependent
bulk-diffusion coefficient [14]. Notably, the power-law behav-
iors are qualitatively similar to those observed in symmetric
exclusion processes [33]. Although the prefactors in the
growth laws as a function of density and tumbling rate are
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model dependent, they can be expressed in terms of the two
macroscopic transport coefficients: the bulk-diffusion coef-
ficient and the mobility. Remarkably, in the limit of L, T
being large, with the dimensionless scaling variable DT/L2 fi-
nite, we show that the growth of time-integrated bond-current
fluctuation obeys a scaling law, that is presumably universal,
i.e., independent of the dynamical rules of the models and
parameter values [see Eq. (85)].

Furthermore, using the truncation scheme introduced in
our microscopic theory, we analytically calculate in model II
(LLG) the fluctuations of space-time integrated current across
the entire system (equivalently, the cumulative displacement
of all particles). In this way, we can characterize the cur-
rent fluctuations in terms of the collective particle mobility
χ (ρ, γ ) ≡ limL→∞(1/2LT )〈[∑L

i=1 Q2
i (T )]〉c [see Eq. (74)],

which is also equal to the scaled space-time integrated fluc-
tuating (“noise”) current. Interestingly, in the limit of small
density and strong persistence, i.e., ρ, γ → 0 with scaling
variable ψ = ρ/γ ∼ lp/ḡ fixed, we show that, similar to the
bulk-diffusion coefficient D(ρ, γ ) studied in Ref. [14], there
exists a scaling regime for the mobility χ (ρ, γ ) too. In-
deed, the scaling regime implies that the system is governed
by essentially only two length scales: the persistence length
lp ∼ γ −1 and the mean gap ḡ ∼ 1/ρ [14]. Thus, our analysis
highlights the crucial role of persistence and interaction in
the collective relaxation and fluctuation in the conventional
models of hardcore RTPs.

Moreover, our theoretical scheme readily allows us to cal-
culate the spatial and dynamic properties of the instantaneous
current in model II (LLG). Using our microscopic calcula-
tions, we derive that, at long times, the two-point dynamic
correlation function for instantaneous bond-current as a func-
tion of time t is indeed a power law of the form ∼t−3/2

and, moreover, it is negative for t �= 0, with a delta-correlated
part at the origin t = 0. Similar behavior is also observed
for model I (standard hardcore RTPs). On the other hand,
the spatial correlations of current in both models are found
to decay exponentially, exp(−r/ξ ), with spatial separation r.
Interestingly, in the strong-persistence regime, we find that
correlation length ξ diverges as the square root of persistence
time τp, i.e., ξ ∼ √

τp, the behavior which we derive analyti-
cally for model II (LLG). This result provides a microscopic
theoretical explanation of the qualitative features of velocity
correlations observed in the recent experiments and simula-
tions [21,27].

Characterizing current fluctuations in driven many-body
systems having a nontrivial spatial structure is a difficult
problem in general and exact calculations of the dynamic cur-
rent correlations have been done for few such systems so far
[51]. Previously, an exact calculation of the temporal growth
of the time-integrated bond current has been performed for
the symmetric simple exclusion process (SSEP), which, de-
spite having hardcore interactions, however, has a product
measure and, as a result, does not have spatial correlations
[33]. However, the above analysis for the SSEP cannot be
easily extended to systems with finite spatial correlations,
which is the case here. This is because, in such a case,
the equations governing the two-point correlations involve
higher-order correlations, resulting in an infinite hierarchy of
many-body correlations. To get around the difficulty, in this

paper we use a truncation scheme [16], which, though ap-
proximate, immediately leads to a closed set of equations for
density and current correlations, thus making model II (LLG)
analytically tractable.

Indeed, deriving a rigorous fluctuating hydrodynamics for
interacting SPPs is a fundamental problem in nonequilibrium
statistical physics and our present work provides some useful
insights in that direction. Previously, some progress has been
made in Ref. [43], albeit only for a special class of “weakly
interacting” RTPs (with vanishing spatial correlations in the
thermodynamic limit), where tumbling rate and velocity are
system-size dependent and vanishingly small. In that case, the
system has two slowly varying fields, density and “magne-
tization,” which are in fact coupled on hydrodynamic scales.
However, as discussed below, in our present work we consider
the conventional RTPs having finite, system-size independent,
tumbling rates (which could be small though). The findings of
this study, along with our previous study of density relaxation
in hardcore RTPs in Ref. [14], implies that, for finite tumbling
rates, one can, on timescales much larger than the persistence
time, integrate out the magnetization field. Then the result-
ing large-scale fluctuating hydrodynamics will be effectively
governed by Eq. (1); the crucial ingredients of this theory are
the macroscopic density- and tumbling-rate-dependent bulk-
diffusion coefficient [14] and mobility, which we characterize
here.

It is worth noting that the order of limits, tumbling rate
γ → 0, and system size L → ∞, is important, and, depending
on the order, there can be various distinct circumstances as
described below.

(1) As one takes the limit γ → 0 first and then the limit
L → ∞ (by keeping drift velocity v fixed), the system even-
tually goes into a state of dynamical arrest [52], where
dynamical activities cease and the system becomes frozen in
time.

(2) The tumbling rate γ (L) ∼ O(L−δ1 ) and drift velocity
v(L) ∼ O(L−δ2 ) are taken to be system-size dependent and
one takes the limit L → ∞, by keeping diffusion rate fixed;
a specific case with δ1 = 2 and δ2 = 1 was considered in
Refs. [42] and [44].

(3) On the other hand, in the present work, we consider
conventional (athermal) hardcore RTPs (therefore, “strongly
interacting”) in the limit of L large, with γ fixed (thermal or
bare diffusion rate is strictly zero) [14]. We are particularly
interested in the γ → 0 limit, but, in that case, the L → ∞
limit is taken first; in other words, persistent length lp = v/γ

is finite and large, but much smaller than the system size L,
1 � lp � L. We keep the drift velocity v fixed.

Notably, our theory is based on two important assertions
[10,19]: (i) the total instantaneous current can be decomposed
into a diffusive and a fluctuating (“noise”) component, with
the latter having mean zero and short-ranged (in fact, delta-
correlated for model II) temporal correlations, and (ii) the
diffusive current can be written as a product of the bulk-
diffusion coefficient and the gradient of mass (occupation)
variable. The latter implies that the local relaxation processes
are effectively “slaved” to coarse-grained local density, im-
plying a “local-equilibrium-like” property of the steady state
and thus diffusive relaxation on long timescales. Indeed, our
theory leads to the explicit analytical calculation of various
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quantities, such as current fluctuations, mobility [see Eqs. (81)
and (48)], and scaling properties [see Eqs. (85) and (77)]—all
of which agree remarkably well with simulations (see Figs. 7
and 5). Furthermore, the comparison of models I and II shows
that the two systems have qualitatively similar spatiotemporal
behaviors. The striking resemblance suggests that the typical
models of interacting RTPs can be described by the same
theoretical framework, formulated in terms of the two macro-
scopic transport coefficients: the bulk-diffusion coefficient
and the collective particle mobility. Indeed, dynamic fluctua-
tions in interacting SPPs have not yet been fully understood
and, unlike the linear-response theory for equilibrium sys-
tems, a general theoretical formulation for dealing with such
systems is still lacking. In this scenario, our study elucidates
the large-scale hydrodynamic structure of hardcore RTPs and

could initiate further studies concerning interacting SPPs in
general.
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APPENDIX A: TIME EVOLUTION OF TWO-POINT UNEQUAL-TIME CURRENT-CURRENT CORRELATION CQQ
r (t ′, t )

Qr (t ′ + dt ′)Q0(t ) =

⎧⎪⎨
⎪⎩

(Qr (t ′) + 1)Q0(t ), prob. PR
r dt ′

(Qr (t ′) − 1)Q0(t ), prob. PL
r dt ′

Qr (t ′)Q0(t ), prob. 1 − (
PR

r + PL
r

)
dt ′.

(A1)

Using the update rules in Eq. (A1) and substituting the expressions of PR
r and PL

r , as shown in Eqs. (7) and (8), respectively, the
corresponding time-evolution equation can be written as

d

dt ′ 〈Qr (t ′)Q0(t )〉 = 1

2

∞∑
l=1

φ(l )

⎡
⎣{〈Û (l )

r+l (t
′)Q0(t )

〉− 〈
Û (l )

r (t ′)Q0(t )
〉}+

l−1∑
g=1

{〈
V̂ (g+2)

r+g+1(t ′)Q0(t )
〉− 〈

V̂ (g+2)
r+1 (t ′)Q0(t )

〉}⎤⎦. (A2)

Finally, using the definition of CQQ
r (t ′, t ) as provided in Eq. (18), we immediately obtain

d

dt ′ C
QQ
r (t ′, t ) = 1

2

∞∑
l=1

φ(l )
[{
CU (l )Q

r+l (t ′, t ) − CU (l )Q
r (t ′, t )

}+
l−1∑
g=1

{
CV (g+2)Q

r+g+1 (t ′, t ) − CV (g+2)Q
r+1 (t ′, t )

}]
(A3)

= 〈
J (D)

r (t ′)Q0(t )
〉
c. (A4)

Here we have used the expression for J (D)
r (t ′) as given in Eq. (16). Note that the above two equations are expressed in the main

text as Eqs. (19) and (20).

APPENDIX B: TIME EVOLUTION OF THE TWO-POINT UNEQUAL-TIME DENSITY-CURRENT CORRELATION CηQ
r (t ′, t )

In this section, we derive the time-evolution equation for the two-point unequal-time density-current correlation CηQ
r (t ′, t ) as

shown in Eq. (26) in the main text. In order to do so, we first derive the time-evolution equation of the local density ρr (t ), which
is defined as the average occupancy at site r and time t , i.e., ρr (t ) = 〈ηr (t )〉.

Recall that the average instantaneous bond current 〈Jr (t )〉 across the bond (r, r + 1) at time t [as given by Eq. (9) in the main
text] is given by

〈Jr (t )〉 = 1

2

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

(
V (g+2)

r+g+1 − V (g+2)
r+1

)+ (
U (l )

r+l − U (l )
r

)⎤⎦. (B1)

Since the total number of particles is a conserved quantity, the corresponding local density is a slow variable, and its time
evolution must be related to 〈Jr (t )〉 via the following continuity equation:

dρr (t )

dt
= 〈Jr−1(t )〉 − 〈Jr (t )〉. (B2)
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Using Eq. (B1) in Eq. (B2), it is now straightforward to obtain the corresponding time-evolution equation in the form of the
following balance equation:

dρr (t )

dt
= 〈P+

r (t )〉 − 〈P−
r (t )〉, (B3)

where the gain and loss terms are respectively given by

P+
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

{
V (g+2)

r+g + V (g+2)
r+1

}+ {(
U (l )

r+l−1 − U (l+1)
r+l

)+ (
U (l )

r − U (l+1)
r

)}⎤⎦, (B4)

P−
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

{
V (g+2)

r+g+1 + V (g+2)
r

}+ {(
U (l )

r+l − U (l+1)
r+l

)+ (
U (l )

r−1 − U (l+1)
r

)}⎤⎦. (B5)

We now use the expression of the local diffusive current operator, as shown in Eq. (16) in the main text, to arrive at the following
identity:

P+
r (t ) − P−

r (t ) = J (D)
r−1(t ) − J (D)

r (t ) (B6)

� D(ρ, γ )[ηr+1(t ) + ηr−1(t ) − 2ηr (t )], (B7)

where Eq. (B7) is a direct consequence of the proposed closure approximation, as shown in Eq. (23) in the main text. Finally,
using Eqs. (B7) and (B3) together, we arrive at the desired time-evolution equation,

dρr (t )

dt
� D(ρ, γ )[ρr+1(t ) + ρr−1(t ) − 2ρr (t )] = D(ρ, γ )2

r ρr (t ), (B8)

where 2
r is the discrete Laplacian operator. We will now deduce the desired time evolution of CηQ

r (t ′, t ) by writing the following
update rules:

ηr (t ′ + dt ′)Q0(t ) =

⎧⎪⎨
⎪⎩

1 × Q0(t ), prob. P+
r (t ′)dt ′

0 × Q0(t ), prob. P−
r (t ′)dt ′

ηr (t )Q0(t ), prob. 1 − �dt .

(B9)

Using the update equation, as shown above in Eq. (B9), we write down the corresponding time-evolution equation as

d

dt ′ 〈ηr (t ′)Q0(t )〉 = 〈(P+
r (t ′) − P−

r (t ′))Q0(t )〉 (B10)

� D(ρ, γ )2
r 〈ηr (t ′)Q0(t )〉, (B11)

where in the last equation, we have used the identity displayed in Eq. (B7). Now, by using the definition of CηQ
r (t ′, t ) =

〈ηr (t ′)Q0(t )〉 − 〈ηr (t ′)〉Q0(t )〉, we directly obtain

d

dt ′ C
ηQ
r (t ′, t ) � D(ρ, γ )2

rCηQ
r (t ′, t ). (B12)

Note that Eq. (B12) is the desired time-evolution equation which we have used in Eq. (26) in the main text.

APPENDIX C: TIME EVOLUTION OF THE EQUAL-TIME DENSITY-CURRENT CORRELATION CηQ
r (t, t )

Here we will derive the time-evolution equation for the equal-time density-current correlation CηQ
r (t, t ), which is presented

in Eq. (35) of the main text. We write down all of the possible ways that the product ηrQ0 can change in the infinitesimal time
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interval [t, t + dt], as given by

ηr (t + dt )Q0(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 × (Q0(t ) + 1), prob. P3
r (t )dt

1 × (Q0(t ) − 1), prob. P4
r (t )dt

0 × (Q0(t ) + 1), prob. P5
r (t )dt

0 × (Q0(t ) − 1), prob. P6
r (t )dt

ηr (t )(Q0(t ) + 1), prob.
[
PR

0 (t ) − P3
r (t ) − P5

r (t )
]
dt

ηr (t )(Q0(t ) − 1), prob.
[
PL

0 (t ) − P4
r (t ) − P6

r (t )
]
dt

1 × Q0(t ), prob.
[
P+

r (t ) − P3
r (t ) − P4

r (t )
]
dt

0 × Q0(t ), prob.
[
P−

r (t ) − P5
r (t ) − P6

r (t )
]
dt

ηr (t )Q0(t ), prob. 1 − �̂(t )dt,

(C1)

where �̂(t )dt is the sum of probability operators corresponding to all the possible ways in which the product ηr (t )Q0(t ) can
change in the infinitesimal time interval dt and is given by

�̂(t ) = P+
r (t ) + P−

r (t ) + PR
0 (t ) + PL

0 (t ) + P3
r (t ) + P4

r (t ) + P5
r (t ) + P6

r (t ), (C2)

and the operators P3
r (t ), P4

r (t ), P5
r (t ), and P6

r (t ) are defined as

P3
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣(U (l )

r − U (l+1)
r

) l∑
k=1

δr,k +
l−1∑
g=1

V (g+2)
r+1

g∑
k=1

δr,k

⎤
⎦, (C3)

P4
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣(U (l )

r+l−1 − U (l+1)
r+l

) l∑
k=1

δr,−k+1 +
l−1∑
g=1

V (g+2)
r+g

g∑
k=1

δr,−k+1

⎤
⎦, (C4)

P5
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣(U (l )

r+l − U (l+1)
r+l

) l∑
k=1

δr,−k+1 +
l−1∑
g=1

V (g+2)
r+g+1

g∑
k=1

δr,−k+1

⎤
⎦, (C5)

P6
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣(U (l )

r−1 − U (l+1)
r

) l∑
k=1

δr,k +
l−1∑
g=1

V (g+2)
r

g∑
k=1

δr,k

⎤
⎦. (C6)

Using the above update rules, shown in Eq. (C1), the time evolution of the quantity 〈ηr (t )Q0(t )〉 is given by

d

dt
〈ηr (t )Q0(t )〉 = [〈

P3
r (t )

〉− 〈
P4

r (t )
〉− 〈

P5
r (t )

〉+ 〈
P6

r (t )
〉]+ 〈[

P+
r (t ) − P−

r (t )
]
Q0(t )

〉+ 〈
ηr (t )

[
PR

0 (t ) − PL
0 (t )

]〉
. (C7)

At the steady state, we can disregard the spatial dependence in the average quantities 〈U (l )〉 and 〈V (g+2)〉, which essentially leads
to the simplification of the first term in Eq. (C7) in the following manner:

〈
P3

r (t )
〉− 〈

P4
r (t )

〉− 〈
P5

r (t )
〉+ 〈

P6
r (t )

〉 = ∞∑
l=1

φ(l )

⎡
⎣(U (l ) − U (l+1))

l∑
k=1

(δr,k − δr,−k+1) +
l−1∑
g=1

V (g+2)
g∑

k=1

(δr,k − δr,−k+1)

⎤
⎦. (C8)

Moreover, using the identity shown in Eq. (B7), the second term in Eq. (C7) can be transformed into

〈[P+
r (t ) − P−

r (t )]Q0(t )〉 � D(ρ, γ )2
r 〈ηr (t )Q0(t )〉. (C9)

Furthermore, using the following relation, PR
0 (t ) − PL

0 (t ) = J (D)
0 (t ) � D(ρ, γ )(η0 − η1), we rewrite the third term in Eq. (C7)

in the following way:〈
ηr (t )

[
PR

0 (t ) − PL
0 (t )

]〉 � D(ρ, γ )[〈ηr (t )η0(t )〉 − 〈ηr (t )η1(t )〉] = D(ρ, γ )r〈ηr (t )η0(t )〉. (C10)

Finally, using the last three transformations, the time-evolution equation of CηQ
r (t, t ) can be written as the following inhomoge-

neous differential equation:

d

dt
CηQ

r (t, t ) � D(ρ, γ )2
rCηQ

r (t, t ) + SηQ
r (t ), (C11)

where the source term is given by

SηQ
r (t ) =

∞∑
l=1

φ(l )

⎡
⎣(U (l ) − U (l+1))

l∑
k=1

(δr,k − δr,−k+1) +
l−1∑
g=1

V (g+2)
g∑

k=1

(δr,k − δr,−k+1)

⎤
⎦+ D(ρ, γ )rCηη

r (t, t ). (C12)
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Equation (C11) describes the time evolution of CηQ
r (t, t ) in the real space, which in the Fourier space is simply transformed into

the following equation: (
d

dt
+ D(ρ, γ )λq

)
C̃ηQ

q (t, t ) = S̃ηQ
q (t ). (C13)

Note that the above equation appears in Eq. (35) in the main text. Here −λq is the eigenvalue of the discrete Laplacian operator,
which is given by

λq = 2(1 − cos(q)), (C14)

and S̃ηQ
q (t ) is the source term in the Fourier space which is trivially obtained to be

S̃ηQ
q (t ) = 1

(1 − e−iq )

⎡
⎣D(ρ, γ )λqC̃ηη

q (t, t ) −
∞∑

l=1

φ(l )

{
(U (l ) − U (l+1))λlq +

l−1∑
g=1

V (g+2)λgq

}⎤⎦. (C15)

Finally, using the following identities that relate the correlators U (l ), V (g+2) with the gap-distribution function P(g) as given by

U (l )(t ) = ρ

∞∑
g=l−1

(g − l + 1)P(g, t ),

V (g+2)(t ) = ρP(g, t ), (C16)

we obtain simpler structure of S̃ηQ
q (t ), which is given by

S̃ηQ
q (t ) = 1

(1 − e−iq )

[
D(ρ, γ )λqC̃ηη

q (t, t ) − fq(t )
]
, (C17)

where fq(t ) is given by

fq(t ) = ρ

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

λgqP(g, t ) + λlq

∞∑
g=l

P(g, t )

⎤
⎦. (C18)

The last two equations compositely express the source term corresponding to the equal-time density-current correlation function
and they appear in the main text in Eqs. (36) and (37), respectively.

APPENDIX D: TIME EVOLUTION OF EQUAL-TIME DENSITY-DENSITY CORRELATION Cηη
r (t, t )

ηr (t + dt )η0(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 × 1, prob. P7
r (t )dt

0 × 0, prob. P8
r (t )dt

1 × 0, prob. P9
r (t )dt

0 × 1, prob. P10
r (t )dt

1 × η0(t ), prob.
[
P+

r (t ) − P7
r (t ) − P9

r (t )
]
dt

0 × η0(t ), prob.
[
P−

r (t ) − P8
r (t ) − P10

r (t )
]
dt

ηr (t ) × 1, prob.
[
P+

0 (t ) − P7
r (t ) − P10

r (t )
]
dt

ηr (t ) × 0, prob.
[
P−

0 (t ) − P8
r (t ) − P9

r (t )
]
dt

ηr (t )η0(t ), prob. 1 − �̂(t )dt,

(D1)

where �̂(t )dt corresponds to the total probability with which the product of occupations at sites r and 0 changes in the
infinitesimal time interval dt with

�̂(t ) = P+
r (t ) + P−

r (t ) + P+
0 (t ) + P−

0 (t ) − P7
r (t ) − P8

r (t ) − P9
r (t ) − P10

r (t ), (D2)

and the operators P7
r (t ), P8

r (t ), P9
r (t ), and P10

r (t ) are defined as

P7
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

(
V (g+2)

r+1 + V (g+2)
r+g

)
δr,0 + {(

U (l )
r − U (l+1)

r

)+ (
U (l )

r+l−1 − U (l+1)
r+l

)}
δr,0

⎤
⎦, (D3)
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P8
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

(
V (g+2)

r + V (g+2)
r+g+1

)
δr,0 + {(

U (l )
r+l − U (l+1)

r+l

)+ (
U (l )

r−1 − U (l+1)
r

)}
δr,0

⎤
⎦, (D4)

P9
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

(
V (g+2)

g+1 δr,g + V (g+2)
0 δr,−g

)+ {(
U (l )

l − U (l+1)
l

)
δr,l + (

U (l )
−1 − U (l+1)

0

)
δr,−l

}⎤⎦, (D5)

P10
r (t ) = 1

2

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

(
V (g+2)

r+g+1δr,−g + V (g+2)
r δr,g

)+ {(
U (l )

r+l − U (l+1)
r+l

)
δr,−l + (

U (l )
r−1 − U (l+1)

r

)
δr,l
}⎤⎦. (D6)

Finally, using the above update rules in Eq. (D1), we can straightforwardly write down the corresponding time-evolution
equation, which is given by

d

dt
〈ηr (t )η0(t )〉 = (〈

P7
r (t )

〉+ 〈
P8

r (t )
〉− 〈

P9
r (t )

〉− 〈
P10

r (t )
〉)+ 〈ηr (t )(P+

0 (t ) − P−
0 (t ))〉 + 〈(P+

r (t ) − P−
r (t ))η0(t )〉. (D7)

Using the concept of spatial homogeneity at the steady state, we can now ignore the spatial dependence in the averages 〈U (l )〉
and 〈V (g+2)〉, which leads to the following simplification of the first term in Eq. (D7):

Sηη
r (t ) = 〈

P7
r (t )

〉+ 〈
P8

r (t )
〉− 〈

P9
r (t )

〉− 〈
P10

r (t )
〉

=
∞∑

l=1

φ(l )

⎡
⎣ l−1∑

g=1

V (g+2)(t )
(
2δr,0 − δr,g − δr,−g

)+ (U (l )(t ) − U (l+1)(t ))(2δr,0 − δr,l − δr,−l )

⎤
⎦

= ρ

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

P(g, t )(2δr,0 − δr,g − δr,−g) +
∞∑

g=l

P(g, t )(2δr,0 − δr,l − δr,−l )

⎤
⎦. (D8)

Note that in the last line we have used the identities in Eq. (C16) to replace the correlators V (g+2)(t ) and U (l )(t ) in terms of the
gap-distribution function P(g, t ). Furthermore, using the second identity, shown in Eq. (B7), and the definition of Cηη

r (t, t ), we
can write down the corresponding time-evolution equation in real space in the following manner:

d

dt
Cηη

r (t, t ) = 2D(ρ, γ )2
rCηη

r (t, t ) + Sηη
r (t ). (D9)

In fact, using Eq. (27) in the above equation, we immediately obtain the corresponding evolution equation in the Fourier space,
which is given by

d

dt
C̃ηη

q (t, t ) + 2D(ρ, γ )λqC̃ηη
q (t, t ) = S̃ηη

q (t ), (D10)

where S̃ηη
q (t ) is the corresponding source term in the Fourier space, which is simply obtained by using Eq. (27) in Eq. (D8) and

is given by

S̃ηη
q (t ) = ρ

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

λgqP(g, t ) + λlq

∞∑
g=l

P(g, t )

⎤
⎦. (D11)

It is worth noting that Eq. (D10) is the desired equation used in the main text as Eq. (40).

APPENDIX E: TIME EVOLUTION OF EQUAL-TIME CURRENT-CURRENT CORRELATION CQQ
r (t, t )

Here we provide the derivation details of Eq. (45) in the main text, which describes the time evolution of CQQ
r (t, t ). We begin

with the update rules corresponding to Qr (t )Q0(t ), as written below:

Qr (t + dt )Q0(t + dt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qr (t ) + 1)(Q0(t ) + 1), prob. P1
r (t )dt

(Qr (t ) + 1)Q0(t ), prob.
[
PR

r (t ) − P1
r (t )

]
dt

Qr (t )(Q0(t ) + 1), prob.
[
PR

0 (t ) − P1
r (t )

]
dt

(Qr (t ) − 1)(Q0(t ) − 1), prob. P2
r (t )dt

(Qr (t ) − 1)Q0(t ), prob.
[
PL

r (t ) − P2
r

]
dt

Qr (t )(Q0(t ) − 1), prob.
[
PL

0 (t ) − P2
r (t )

]
dt

Qr (t )Q0(t ), prob. 1 − �̂(t )dt,

(E1)
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where �̂(t )dt corresponds to the total probability with which the product of currents across bonds (r, r + 1) and (0,1) changes
in the infinitesimal time interval dt with

�̂ = PR
r (t ) + PR

0 (t )) + PL
r (t ) + PL

0 (t )) − P1
r (t ) − P2

r (t ), (E2)

and the operators P1
r and P2

r are defined as

P1
r = 1

2

∞∑
l=1

φ(l )

{ l∑
k=1

(
U (l )

r+k − U (l+1)
r+k

)
�(k + r)�(l − r − k + 1) +

l−1∑
g=1

g∑
k=1

V (g+2)
r+k+1�(k + r)�(g − r − k + 1)

}
,

P2
r = 1

2

∞∑
l=1

φ(l )

{ l∑
k=1

(
U (l )

r+k−1 − U (l+1)
r+k

)
�(k + r)�(l − r − k + 1) +

l−1∑
g=1

g∑
k=1

V (g+2)
r+k �(k + r)�(g − r − k + 1)

}
. (E3)

Here �(r) is the Heaviside theta function, which is defined as

�(r) =
{

1 for r > 0
0 otherwise. (E4)

Using the update rules shown in Eq. (E1), we write the evolution of the two-point equal-time current-current correlation as

d

dt
〈Qr (t )Q0(t )〉 = [〈

P1
r

〉+ 〈
P2

r

〉]+ 〈
J (D)

r (t )Q0(t )
〉+ 〈

J (D)
0 (t )Qr (t )

〉
. (E5)

At the steady state, we can ignore the position dependence in the averages 〈P1
r 〉 and 〈P2

r 〉, which leads us to write the first term
in a simplified manner through the following quantity:

�r = 〈
P1

r

〉+ 〈
P2

r

〉
=

∞∑
l=|r|+1

φ(l )

{
(U (l ) − U (l+1))(l− | r |) +

l−1∑
g=1

V (g+2)(g− | r |)
}

(E6)

= ρ

∞∑
l=|r|+1

φ(l )

{
(l− | r |)

∞∑
g=l

P(g) +
l−1∑
g=1

(g− | r |)P(g)

}
, (E7)

where to arrive the last equation, which is presented as Eq. (46) in the main text, we have used the identities shown in Eq. (C16).
Finally, using the definition of CQQ

r (t, t ) and the closure approximation scheme, as shown in Eq. (23), we obtain the desired
time-evolution equation,

d

dt
CQQ

r (t, t ) = �r − D(ρ, γ )rCηQ
r (t, t ) − D(ρ, γ )−rCηQ

−r (t, t ). (E8)

By using Fourier transform in Eq. (28) in the main text, we now invert the CηQ
r (t, t ) and CηQ

−r (t, t ) in Eq. (E8) in their Fourier
basis, and, as a result, the corresponding steady-state time-evolution equation of CQQ

r (t, t ) takes the following form:

d

dt
CQQ

r (t, t ) = �r + D(ρ, γ )

L

∑
q

(2 − λqr )(1 − e−iq )C̃ηQ
q (t, t ). (E9)

Equation (E9) is the resulting time-evolution equation, which is presented in the main text as Eq. (45) after integration.

APPENDIX F: TEMPORAL CORRELATION OF THE
INSTANTANEOUS BOND CURRENT

Our aim in this section is to derive the expression of the
steady-state temporal correlation of the instantaneous current
CJJ

0 (t ) in the long-time regime, which is presented in the main
text in Eq. (60). Note that, for any time t > 0, we have already
derived CJJ

0 (t ) to obey the following equation [Eq. (59) in the
main text]:

CJJ
0 (t, 0) = −D(ρ, γ )

2L

∑
q

fqe−λqD(ρ,γ )t , (F1)

where q = 2πn/L with n = 1, 2, . . . , L − 1 and the quantity
fq at the steady state is defined as

fq = ρ

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

λgqP(g) + λlq

∞∑
g=l

P(g)

⎤
⎦, (F2)

where P(g) is the steady-state gap-distribution function of the
system. Now, if we first take the infinite-system-size limit, i.e.,
L → ∞, we have the following transformations: q → q(x) =
2πx, λq → λ(x), and fq → f (x). As a result, we can convert
the summation into an integration, as shown in the following:

lim
L→∞

CJJ
0 (t ) � −D(ρ, γ )

∫ 1/2

0
dx f (x)e−λ(x)D(ρ,γ )t . (F3)
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Interestingly, if we now take the large-time limit, i.e., L2/D �
t � 1/D for x > 0, the integrand in Eq. (F3) contributes only
in the limit x → 0, while it becomes vanishingly small for
any other x values. This effectively leads to performing a
small-x analysis of Eq. (F3). Note that, in this limit of x → 0,
λ(x) is quadratic, i.e., λ(x) → 4π2x2, λ(lx) → 4π2l2x2, and
λ(gx) → 4π2g2x2. These transformations straightforwardly
yield f (x) → 8π2x2χ , where χ is defined in Eq. (48) in the
main text. Following all of the aforementioned transforma-
tions, Eq. (F3) in terms of a new variable z = 4π2x2Dt is
directly reduced to the following in the limit of large t :

lim
L→∞

CJJ
0 (t ) � − χ (ρ, γ )

2π
√

D(ρ, γ )
t−3/2

∫ ∞

0
dz

√
ze−z. (F4)

Finally, using
∫∞

0 dz
√

ze−z = √
π/2, we get the desired result

presented in the main text in Eq. (60),

CJJ
0 (t ) � − χ (ρ, γ )

4
√

πD(ρ, γ )
t−3/2. (F5)

APPENDIX G: DERIVATION OF THE TIME-INTEGRATED
BOND-CURRENT FLUCTUATION CQQ

0 (t, t )

According to Eq. (80) in the main text, the steady-state
bond-current fluctuation for LLG is given by

CQQ
0 (t, t ) =

⎡
⎣�0 − 1

L

∑
q

(
fq

λq

)⎤⎦t

+ 1

LD

∑
q

(
fq

λ2
q

)
(1 − e−λqDt ), (G1)

where we have defined fq and λq in the main text in Eqs. (37)
and (32), respectively. Moreover, in order to obtain �0, we put
r = 0 in Eq. (46) in the main text, and get

�0 = ρ

∞∑
l=1

φ(l )

{
l

∞∑
g=l

P(g) +
l−1∑
g=1

gP(g)

}
. (G2)

In order to simplify Eq. (G1), we first expand fq and write

∑
q

(
fq

λq

)
= ρ

∞∑
l=1

φ(l )

[
l−1∑
g=1

P(g)
∑

q

(
λgq

λq

)

+
(∑

q

λlq

λq

) ∞∑
g=l

P(g)

]
. (G3)

Note that the wave vector is given by q = 2πn/L where
n = 1, 2, 3, . . . , L − 1. Therefore, the above summation over
q, appearing at the right-hand side of the above equation, can
be equivalently transformed over the integer variable n, which
can be solved easily using Mathematica to have the following
simplified form:

∑
q

(
λgq

λq

)
=

L−1∑
n=1

(
1 − cos

( 2πgn
L

)
1 − cos

(
2πn

L

)
)

= g(L − g), (G4)

∑
q

(
λlq

λq

)
=

L−1∑
n=1

(
1 − cos

(
2π ln

L

)
1 − cos

(
2πn

L

)
)

= l (L − l ). (G5)

Applying these relations in Eq. (G3) drastically simplifies it
and the resulting equation is given by∑

q

(
fq

λq

)
= L�0 − 2χ (ρ, γ ). (G6)

Using the above equation in Eq. (G1), we finally obtain the
expression of CQQ

0 (t, t ) used in the main text in Eq. (81), which
is given by

CQQ
0 (t, t ) = 2χ (ρ, γ )

L
t + 1

D(ρ, γ )L

×
∑

q

fq

λ2
q

(
1 − e−λqD(ρ,γ )t

)
. (G7)

APPENDIX H: LIMITING CASES OF CQQ
0 (t, t )

In this section, we are going to calculate CQQ
0 (t, t ) in three

distinct time regimes, which is shown in Eq. (84) in the main
text.

1. Case I: t � 1/D

It is easy to check that, in this particular time regime, the
second and third terms in Eq. (G1) identically cancel each
other, which ultimately results in the following:

CQQ
0 (t, t ) = �0t . (H1)

2. Case II: 1/D � t � L2/D

In order to calculate CQQ
0 (t, t ) in the intermediate regime,

we use the expression derived in Eq. (H2) and follow the
footsteps of the analysis in Appendix F. As before, for in-
finitely large system size, i.e., L → ∞, one can convert the
summation into the following integral form:

CQQ
0 (t, t ) = 2χ (ρ, γ )

L
t

+ 2

D(ρ, γ )

∫ 1/2

0

f (x)dx

λ2(x)
(1 − e−λ(x)D(ρ,γ )t ),

(H2)

where we have used the transformations q = 2πn/L ≡ 2πx,
λq → λ(x), and fq → f (x). Note that the integrand in the
above equation primarily contributes to the limit x → 0, in
which case, following Eqs. (32) and (37) in the main text, we
can write λ(x) � 4π2x2 and f (x) � 8π2x2χ . Finally, using
the aforementioned transformations, the above equation in
terms of a new variable, z = 4π2x2Dt , can be written as

CQQ
0 (t, t ) = 2χ (ρ, γ )

L
t + χ (ρ, γ )

π
√

D(ρ, γ )

∫ ∞

0
z−3/2(1 − e−z )dz.

(H3)

Finally, using the relation
∫∞

0 z−3/2(1 − e−z )dz = 2
√

π and
neglecting the first term which is a subleading contributor, the
leading-order contribution to CQQ

0 (t, t ) can be written as

CQQ
0 (t, t ) � 2χ (ρ, γ )√

πD(ρ, γ )

√
t + O(t ), (H4)

which is presented in the main text in Eq. (84).
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3. Case III: L2/D � t

From Eq. (H2), it is straightforward to see that, in the
limit of large t such that t � L2/D, the exponential term
contributes nothing, whereas the second term gives a constant
value and the leading-order contribution comes directly from
the first term, which shows linear growth of CQQ

0 (t, t ) with t ,
and the resulting equation becomes

CQQ
0 (t, t ) = 2χ (ρ, γ )

L
t . (H5)

APPENDIX I: SCALING RELATION OF THE EFFECTIVE
MOBILITY χ(ρ, γ )

In this section, we will obtain the scaling relation for
χ (ρ, γ ) in the limit ρ → 0, γ → 0, such that the ratio ψ =
ρ/γ is finite, and calculate the corresponding scaling function
H(ψ ) shown in the main text in Eqs. (77) and (79). We begin
our analysis with the expression χ (ρ, γ ) shown in Eq. (48) in
the main text, i.e.,

χ (ρ, γ ) = ρ

2

∞∑
l=1

φ(l )

⎡
⎣ l−1∑

g=1

g2P(g) + l2
∞∑

g=l

P(g)

⎤
⎦. (I1)

Note that the hop-length distribution φ(l ) is given in Eq. (2)
in the main text as

φ(l ) = Ae−γ l , (I2)

where the normalization constant A = (1 − e−1/lp ). More-
over, the steady-state gap-distribution function P(g), which
is assumed to be exponentially distributed for g > 0, has the
following form:

P(g) � N∗ exp(−g/g∗), (I3)

where the prefactor N∗, as shown in the main text in Eq. (54),
is given by

N∗ =
(

1

ρ
− 1

)
(e1/g∗ − 1)2

e1/g∗
. (I4)

Now, using the above expression of P(g) in Eq. (I1) and
performing some algebraic manipulations, we obtain

χ (ρ, γ ) = (1 − ρ)

2

(e1/g∗ − 1)(eγ+1/g∗ + 1)

(eγ+1/g∗ − 1)2
. (I5)

Note that the above expression of χ (ρ, γ ) is valid for any
arbitrary ρ and γ . However, in the following analysis, we look
at two specific cases: Case I, ρ → 0 and γ → ∞. In this case,
the typical gap size g∗ is given by

g∗ = 1

ρ
. (I6)

Now, to calculate χ (ρ, γ ), we use Eq. (I6) in Eq. (I5), and
with the limit ρ → 0 such that γ + 1/g∗ � γ � 1 in consid-
eration, we obtain

χ (ρ, γ ) = (eρ − 1)(1 − ρ)

2
e−γ (I7)

� ρ(1 − ρ)

2
e−γ = χ (0)e−γ

2
, (I8)

where χ (0) = ρ(1 − ρ) is the particle mobility in SSEP.
Case II, ρ → 0 and γ → 0. In the limit of ρ → 0, γ → 0,

such that the ratio ψ = ρ/γ is finite, we make the following
transformations in Eq. (I5):

(a) The typical gap size g∗ obeys the following scaling
relation:

g∗ � 1

ρ
G(ψ ), (I9)

where G(ψ ) is the scaling function corresponding to g∗, which
upon consideration of the two limiting cases is assumed to
be G(ψ ) = √

1 + ψ [see the paragraph before Eq. (77) in the
main text].

(b) All the exponential terms are approximated up to the
leading-order contributions, i.e.,

eγ+1/g∗ − 1 � γ + 1/g∗ = γ + ρ/G(ψ ) = γ (1 + ψ/G(ψ )),

(I10)

e1/g∗ − 1 � 1/g∗ = γψ/G(ψ ), (I11)

eγ+1/g∗ + 1 � 2. (I12)

Finally, by substituting the above transformation in
Eq. (I5), we get the leading-order contribution to χ (ρ, γ ) in
the limit ρ → 0 and γ → 0, as shown below:

χ (ρ, γ ) � ρ(1 − ρ)

γ 2

G(ψ )

(ψ + G(ψ ))2
. (I13)

Note that, by replacing χ (0) = ρ(1 − ρ) in the above equa-
tion, we immediately obtain the scaling relation shown in
Eq. (77) in the main text and the corresponding scaling func-
tion is given by

H(ψ ) = G(ψ )

(ψ + G(ψ ))2
. (I14)
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