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Multifractal spectral features enhance classification of anomalous diffusion
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Anomalous diffusion processes, characterized by their nonstandard scaling of the mean-squared displacement,
pose a unique challenge in classification and characterization. In a previous study [Mangalam e al., Phys. Rev.
Res. 5, 023144 (2023)], we established a comprehensive framework for understanding anomalous diffusion
using multifractal formalism. The present study delves into the potential of multifractal spectral features for
effectively distinguishing anomalous diffusion trajectories from five widely used models: fractional Brownian
motion, scaled Brownian motion, continuous-time random walk, annealed transient time motion, and Lévy walk.
We generate extensive datasets comprising 10° trajectories from these five anomalous diffusion models and
extract multiple multifractal spectra from each trajectory to accomplish this. Our investigation entails a thorough
analysis of neural network performance, encompassing features derived from varying numbers of spectra. We
also explore the integration of multifractal spectra into traditional feature datasets, enabling us to assess their
impact comprehensively. To ensure a statistically meaningful comparison, we categorize features into concept
groups and train neural networks using features from each designated group. Notably, several feature groups
demonstrate similar levels of accuracy, with the highest performance observed in groups utilizing moving-
window characteristics and p varation features. Multifractal spectral features, particularly those derived from
three spectra involving different timescales and cutoffs, closely follow, highlighting their robust discriminatory
potential. Remarkably, a neural network exclusively trained on features from a single multifractal spectrum
exhibits commendable performance, surpassing other feature groups. In summary, our findings underscore the
diverse and potent efficacy of multifractal spectral features in enhancing the predictive capacity of machine

learning to classify anomalous diffusion processes.
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I. INTRODUCTION

Anomalous diffusion is a ubiquitous phenomenon found in
diverse natural settings, including atoms confined in magneto-
optical traps [1,2]; the behavior of various biological entities
such as DNA, lipids, and proteins [3—12]; microorganisms
like bacteria, cells, and parasites [13-20]; as well as in the
behavior of foraging wild animals [21-23] and even among
human hunter-gatherer societies [24,25]. Anomalous diffu-
sion manifests itself in economic markets [26-28] and a wide
array of other processes [29-33], and it exhibits characteristics
that span multiple temporal and spatial scales. In these pro-
cesses, there is a distinctive, erratic evolution of an observable
property (e.g., position, temperature, or stock price) over time.
The term “anomalous” signifies that the mean-squared dis-
placement (MSD) of the observable x does not follow a linear
growth with time ¢ as predicted by Fick’s theory of diffusion
but rather adheres to the more general power-law behavior,
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where the anomalous exponent 8 # 1. For example, 8 = 1
corresponds to the linear growth observed in Brownian motion
[34,35]. Frequently, one observes < 1, indicating subdif-
fusion [6,16,36-47], while superdiffusion, characterized by
B > 1, is less commonly observed but can be found in active
physical and biological systems [48-57].

One of the primary motivations for investigating anoma-
lous diffusion models is identifying and categorizing specific
anomalous diffusion phenomena in real-world data. Neverthe-
less, the complexities outlined above render this classification
a formidable challenge. As a result, recent endeavors have
encompassed Bayesian methodologies [58-62], as well as
machine-learning (ML) strategies [63—73], and even unsuper-
vised techniques [74,75]. However, these approaches often
rely on atheoretical features, which may not correspond to
plausible generative mechanisms [73,76,77]. A more theo-
retically grounded feature set can enhance the ML-based
characterization of anomalous diffusion processes within em-
pirical data.

In a previous study [78], we took an initial stride to-
wards establishing a comprehensive framework rooted in
understanding anomalous diffusion using the multifractal for-
malism [79-81] aimed at re-establishing ergodicity within
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the description of anomalous-diffusion phenomena [82-84].
We harnessed synthetic data that mirror a wide spectrum
of anomalous-diffusion processes, spanning various values
of the anomalous exponent 8. These processes, encompass-
ing both ergodic and nonergodic behaviors, were approxi-
mated through five distinct mathematical models: fractional
Brownian motion (FBM, ergodic), scaled Brownian mo-
tion (SBM, weakly nonergodic), continuous-time random
walk (CTRW, weakly nonergodic), annealed transient time
motion (ATTM, weakly nonergodic), and Lévy walk (LW,
ultraweakly nonergodic). Our investigation revealed that de-
scriptors linked to the time-averaged and ensemble-averaged
mean-squared displacement (TAMSD and MSD), including
linear metrics such as standard deviation, coefficient of varia-
tion, and root mean square, exhibit a disruption of ergodicity.
In stark contrast, descriptors addressing the temporal structure
and potential nonlinearity, such as multifractality and, to a
certain extent, fractality, display time-independent behavior,
functioning as ergodic descriptors insensitive to the minor er-
godicity deviations inherent to these processes. Consequently,
these descriptors provide consistent information across vari-
ous diffusion processes and anomalous exponents S. Further
analysis traced back these patterns to the multiplicative
cascades underpinning these diffusion phenomena, as the
multifractal spectrum’s shape and symmetry, in conjunction
with those of corresponding surrogate series, distinguish these
processes.

This previous work [78] has opened the door to the poten-
tial use of multifractal spectral (MFS) features in improving
the classification of anomalous diffusion. Multifractal geom-
etry provides a formalism explicitly tailored to address the
intermittent, nonergodic fluctuations that manifest themselves
across multiple space- and timescales, encompassing the in-
tricate interplay between short-range events and large-scale
contextual factors [85,86]. This perspective does not imply
that the underlying models generating these diverse forms
of anomalous diffusion are inherently multifractal. Instead,
it recognizes multifractal geometry as a versatile modeling
framework with a long-standing history of explaining how
these modes of anomalous diffusion evolve, occasionally tran-
sitioning between different regimes [87]. Given the successful
application of multifractal geometrical estimations as ergodic
descriptors in previous work for various anomalous diffusion
processes, incorporating MFS features alongside traditional
feature sets in ML models holds promise for enhancing the
classification of anomalous diffusion.

In this investigation, we delve into the potential of MFS
features for discerning anomalous-diffusion patterns. Our ap-
proach begins by generating datasets comprising trajectories
derived from five distinct anomalous diffusion models—
FBM, SBM, CTRW, ATTM, and LW. From each trajectory,
we extract multiple multifractal spectra. Our analysis en-
compasses assessing a neural network’s performance when
trained on features derived from varying numbers of spectra.
Furthermore, we explore the augmentation of datasets con-
taining traditional features, as documented in previous works
[69,76], with multifractal spectra. To culminate the study, we
categorize features into distinct concept groups and gauge
the performance of each group; this categorization enables a

meaningful comparison against the novel concept introduced
herein—MFS features.

The paper follows a structured sequence. Beginning with a
concise introduction to the employed dataset, traditional fea-
tures, multifractal analysis, and the machine learning model
in Sec. II, we assess the performance of MFS features in
Sec. III. This encompasses the outcomes achieved by utilizing
MES features independently, alongside, or in contrast to tradi-
tional feature sets. The paper concludes with a comprehensive
discussion and a glimpse into avenues for future research in
Sec. IV.

II. METHODS

A. Diffusion models and dataset

To ensure comparability, our dataset generation pro-
cess closely aligns with that employed in the Anomalous-
Diffusion-(AnDi-) Challenge [70,71,88]. Nevertheless, it is
noteworthy that, in contrast to the AnDi-Challenge dataset,
we focus solely on trajectories within the 250 < N < 1000
range, where N is the number of datapoints. This omission of
shorter trajectories is necessitated by the specific constraints
associated with the features utilized in our study. Considering
trajectories within 250 < N < 1000 does not influence ergod-
icity breaking, as this phenomenon depends on the underlying
dynamics rather than the length of the trajectory. Each tra-
jectory is randomly assigned to one of five distinct diffusion
models; all yield anomalous diffusion patterns conforming to
Eq. (1). We present sample trajectories for each in Figs. 1(a)
and 1(c), which show the time evolution of the position of
a particle diffusing according to each of the five anomalous
diffusion models for different values of S. Figures 1(b) and
1(d) shows the extracted multifractal spectra for each of these
trajectories (see Sec. II C).

These diffusion processes show differences in how in-
crements are generated, corresponding to distinct statistical
mechanisms of anomalous diffusion (see Appendix A).

We generated a dataset comprising 10° trajectories using
the andi-datasets [75] Python package. These trajec-
tories have a range of randomly selected anomalous ex-
ponents B, with values 8 € {0.05, 0.10, ..., 1.95, 2}, albeit
with some variations based on the specific model. Particu-
larly, the CTRW and ATTM models exhibit only sub- and
normal-diffusive behaviors (8 < 1), while the LW model is
exclusively superdiffusive (8 > 1) and even ballistic (8 = 2).
Additionally, this dataset does not consider ballistic (8 = 2)
FBM. To simulate conditions more akin to experimental data,
we introduced additive white Gaussian noise &, to all trajecto-
ries at varying levels, resulting in signal-to-noise ratios (snr)
of 0.1, 0.5, or 1. Given a trajectory X,, we obtain the noisy
trajectory x,, = X, + &, with the superimposed noise

OAx
snr

&~ —N(0, 1), )

where o3 is the standard deviation of the unperturbed incre-
ment process AX, = X,4+1 — X,.

Of the 10° trajectories, 9 x 10° (90%) were allocated for
training the ML algorithms. The remaining 10° trajectories
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FIG. 1. Representative trajectories of the five anomalous diffusion processes for various anomalous exponents [(a) and (c)] and the
respective multifractal spectrum [(b) and (d)]. The spectrum in blue (bold) corresponds to the original time series, while the spectra in gray

correspond to five IAAFT surrogates.

(10%) were evenly divided into a validation set to refine the
training parameters and a separate test set to evaluate the
performance metrics reported in this study.

B. Traditional features

The traditional features considered for anomalous diffu-
sion classification encompassed many parameters based on
Ref. [69], as listed in Table I. Appendix B provides definitions
and mathematical details for each feature (see also Ref. [69]).

C. Multifractal spectral features

We used Chhabra and Jensen’s [89] direct method for all
analyses of this section. This method estimates the multifrac-
tal spectrum width A« by sampling a series x; at progressively
longer scales using the proportion P,(n) of the signal falling

within the vth bin of length n as

vn
Xk
k=(—1)n+1

P,(n) = N
> Xk
k=1

, n=1{4,8,16,...}(Nmax- (3)

As n increases, P,(n) represents a progressively larger propor-
tion of x(1),

P(n) « n®, 4
suggesting a growth of the proportion according to one “sin-
gularity” strength « [90]. P(n) exhibits multifractal dynamics
when it grows heterogeneously across timescales n according
to multiple singularity strengths, such that

P(nv) X nﬂly ’

)
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TABLE 1. Traditional features considered for anomalous diffu-
sion classification based on Ref. [69]. See Appendix B or Ref. [69]
for detailed definitions.

Anomalous exponent

Diffusion coefficient

Efficiency

Empirical velocity autocorrelation function
Fractal dimension

Maximal excursion

Mean maximal excursion

Kurtosis

Mean Gaussianity

Mean-squared displacement ratio
Statistics based on p varation
Straightness

Trappedness

D’ Agostino-Pearson test statistic
Kolmogorov-Smirnov (KS) statistic against x 2 distribution
Joseph exponent

Noah exponent

Moses exponent

Detrending moving average (DMA)
Average moving window characteristics
Maximum standard deviation

whereby each vth bin may show a distinct relationship of
P(n) with n. The width of this singularity spectrum, Ao =
(max — ®min), indicates the heterogeneity of these relation-
ships [91,92].

Chhabra and Jensen’s [89] method estimates P(n) for N,
nonoverlapping windows of size n and transforms them into a
“mass” 1(q) using a parameter g emphasizing higher or lower
P(n) for g > 1 and g < 1, respectively, in the form

[P, (n)]
Molg, ) = g——— (6)
Z [P;(n)]e
J:
Then a(g) is the singularity for mass u-weighted P(n) esti-
mated as

MX

1
alq)=— lim ——"j1,(g,n)log P,(n)
m =1

lim
N,—oo log N,

N,

Z 15(g, n) log P, (n). (7)

= lim
n—0 log n

Each estimated value of @ (g) belongs to the multifractal spec-
trum only when the Shannon entropy of i(q, n) scales with n
according to the Hausdorff dimension f(g) [89], where

lim

flg)=— lim logN

Z 1o(g, n)log iy (g, n)

Z 10(g, n)10g 11,(g, n). ®)

lim
v—0 log n

For values of ¢ yielding a strong relationship between Eqs. (7)
and (8), as constituted by a minimum value r for the

TABLE II. MFS features utilized for anomalous diffusion classi-
fication. See also Fig. 2 to visualize the features.

MES width of the original time series, Ax

MEFS width of the IAAFT surrogate time series, Aogy
Multifractal nonlinearity, Ty

Left-side width of the original spectrum, Ay
Right-side width of the original spectrum, Aogign
Horizontal location of the singularity, o f(q)=i

Height of the original spectrum, A f (o)

Left-side height of the original spectrum, A f(o¢)e
Right-size height of the original spectrum, A f(a)right
Difference in the left- and right-side height of the original spectrum,
A f () Left—Right]

Mean of « values, o

Mean of f(a) values, f(a)

Number of points in the original spectrum, Ngpec

correlation coefficient, the parametric curve {«(q), f(q)} or
{or, f(@)} constitutes the multifractal spectrum and A« (i.e.,
Omax — Omin) constitutes the multifractal spectrum width. The
cutoff r determines that only scaling relationships of compa-
rable strength can support the estimation of the multifractal
spectrum, whether generated as cascades or surrogates. Using
a correlation benchmark aims to operationalize previously
raised concerns about misspecifications of the multifractal
spectrum [93]. For each trajectory, we compute nine multi-
fractal spectra {«, f(«)}, corresponding to all combinations
of the scaling ranges of Nix € {N/4, N/8, N/16}, where N is
the trajectory length, and the cutoff r € {0.92,0.95,0.97}. In
short. we systematically varied three different cutoffs of the
correlation coefficient » and three maximum bin sizes. This
approach allowed us to estimate multifractal features across a
broad spectrum of precisions and coarse-grainings.

Our next objective was to discern whether a nonzero Aw
truly signified multifractality arising from nonlinear inter-
actions across various timescales. We compared Ao values
between the original series and 32 iterated amplitude adjusted
Fourier transform (IAAFT) surrogates [79,94] for each simu-
lated series across generations 9 through 15. IAAFT stands
out as a method capable of symmetrically reshuffling the
original values around their autoregressive structure. Con-
sequently, it generates surrogates that disentangle the phase
ordering of spectral amplitudes within the series while pre-
serving the linear temporal correlations. The one-sample T
statistic, Tyr, comes into play by computing the difference be-
tween A« for the original series and the corresponding values
for the 32 surrogates, which is then divided by the standard
error of the spectrum width for these surrogates, facilitating a
robust statistical assessment of multifractal nonlinearity.

Multifractal spectra are complex functions characterized
by varying widths and heights across their two-dimensional
definition, and they exhibit asymmetry and differing spacing
across various ranges of the parameter g. To comprehen-
sively capture the diverse aspects of these multifractal spectra,
we incorporated various features spanning a wide range of
characteristics. Specifically, we extracted nine features from
multifractal spectra obtained for each trajectory, as listed in
Table II and depicted in Fig. 2.
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FIG. 2. Determining MFS features of anomalous diffusion tra-
jectories. The multifractal spectrum of each trajectory was created
by plotting the parametric curve {(q), f(g)}. a(g) is the singularity
exponent and f(g) the corresponding singularity dimension as de-
fined in Egs. (7) and (8).

D. ML classifiers

A neural network can essentially be described as a sophis-
ticated function approximator. It aims to align its outputs,
denoted as fy(X;), with the actual target values, represented
as ¥;, based on the corresponding input data X; [95,96]. In
its simplest form, a neural network comprises multiple layers
of neurons. Within each layer, the value of a neuron denoted
as Oy in layer [, is determined by the weighted sum of all
neurons in the preceding layer, Oy ;—;, which is then passed
through an activation function 4,

Ovi=h 29(/[!),( <O+ 9,5/13)0 , )
k

where 6’,51 )k is the weight between neuron k" in the /th layer

and neuron k in the (I — 1)-th layer with Olg,l’)o as an additional
offset. The output fy (X;) of the neural network corresponds to
the values of the neurons in the final layer, whereas the input
X; corresponds to the values of the neurons in the first layer.

The neural network’s weights, collectively represented as
0, are derived by minimizing a loss function applied to a
training dataset. Frequently, this loss function is the negative-
log-likelihood loss [96],

Lo ==Y log pl¥il fo (X)), (10)

where p[¥;|fs(X;)] is the probability the neural network as-
signed to the true target ¥; for input X;. In classification tasks,
we usually aim to predict discrete probabilities, denoted as
Di.k, about each class k as the true label for input X;. In this
context, the negative-log-likelihood is transformed into the

Feature vector

128 neurons

FIG. 3. Neural network architecture used for anomalous diffu-
sion classification. A fully connected neural network was used with
three hidden layers of size 128, 64, and 32 (or 256, 128, and 64
when using all additional features). The input layer comprised the
(normalized) feature vector, with its dimension determined by the
number of spectra used (13 features per spectrum). It incorporated
an additional 26 or 39 features for the original or extended sets,
respectively. The network then generated model scores for the five
diffusion models examined.

well-known cross-entropy loss [97],

L ==Y Yiilog(pis). (11

ik

where ?i,k = & is a binary indicator of the true label j; of
input X;.

The optimization of this loss function is accomplished
through the utilization of stochastic gradient descent [98].
This study employed an advanced variant of stochastic gradi-
ent descent known as “Adaptive Moment Estimation” (Adam)
[99]. In addition to Adam, we incorporated “stochastic weight
averaging Gaussian” (SWAG)—which captures the uncer-
tainty of the neural network’s weight parameters, 6—toward
the conclusion of the training process. This is achieved by
fitting an approximate Gaussian distribution to the observed
changes of 0 during the gradient descent process. For in-depth
insights into SWAG, we refer readers to Ref. [100], and for an
application to anomalous diffusion to Ref. [72].

In contrast to the approach adopted in Ref. [72], where a
recurrent neural network was utilized to classify anomalous
diffusion models directly from raw positional data, the present
study opted for a different strategy, focusing on extracted
features, allowing us to employ a simpler neural network
architecture. The used neural network comprised three hidden
layers with dimensions 128, 64, and 32, utilizing the rectified
linear unit [101] as the activation function, as visually rep-
resented in Fig. 3. This particular architecture was selected
based on careful observation of the performance exhibited
by multiple architectures throughout the training process and
subsequent evaluation stages. Notably, when working with an
extended feature set encompassing all the features outlined in
Ref. [69], we observed that a more expansive network con-
figuration yields benefits, thus opting for larger hidden-layer
sizes of 256, 128, and 64. The network generates membership
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FIG. 4. Achieved accuracy (a) and loss (b) for anomalous diffusion classification using features from different numbers of multifractal
spectra and feature combinations. The depicted error bars are obtained via subsampling on the test dataset.

scores for each of the five classes as a “logit vector,” denoted
as Z; = fp(X;), with values subsequently related to model
probabilities p; ; through a normalized exponential (softmax)
function [102],

exp (Zik)
Pik =

> exp (zik) (12)
To train the neural network, we conducted 300 epochs, dur-
ing which we systematically shuffled the training dataset and
divided it into batches of size 512. Each epoch constitutes
one pass through the whole training dataset. The number of
epochs was chosen so that including additional epochs did not
lead to further improvement, even for the larger feature sets.
The network weights are iteratively updated with each batch to
minimize the loss function [as expressed in Eq. (4)], employ-
ing the Adam optimizer with a learning rate that decays from
1073 to 10~*. The final 20 epochs estimated SWAG, which
entails determining a Gaussian probability density function on
the network weights 6.

III. RESULTS

Our analysis began with assessing their stand-alone perfor-
mance to evaluate the effectiveness of the newly introduced
MES features in ML-based classification. We gauged the
achieved accuracy across varying numbers of spectra and
delved into the significance of each feature. Considering that
these MFS features may not individually rival state-of-the-art
techniques, which often employ a wide array of features or
operate directly on trajectory data, we explored an additional
dimension. We investigated how the MFS features might en-
hance established feature sets by incorporating supplementary
features inspired by Kowalek et al.’s work in Refs. [69,76]
into our dataset. This encompassed the original feature set
introduced in Ref. [76] and the enhanced extended feature
set outlined in Ref. [69]. Furthermore, we organized the fea-
tures into groups based on similar conceptual foundations for
the extended feature set. This categorization enabled us to
make meaningful performance comparisons by training ML

models on individual feature groups as an extension to the
MES features.

A. Classification performance with MFS features exclusively

We trained a neural network to predict the anomalous dif-
fusion model exclusively based on the features extracted from
multifractal spectra. To scrutinize the influence of spectrum
selection, we employed various spectra, each comprising 13
distinct features, and documented the outcomes for the most
promising combination of spectra. Figure 4 presents the at-
tained accuracy and loss on the test dataset in relation to
the number of spectra utilized; we only consider the graphs
labeled as “MFS features only.” In Fig. 4(a), the accuracy
ranged from 62.5% to 68.6% based on the number of incor-
porated spectra. Notably, we observed a substantial surge in
accuracy when transitioning from a single spectrum (62.5%)
to two spectra (66.7%), but this improvement diminished as
more spectra were included. A comparable pattern was ob-
served in loss in Fig. 4(b), spanning from 0.860 to 0.736.
It is worth noting that the loss function considers not only
the predicted class but also the assigned probabilities for all
five classes, as elucidated in Eq. (4). The diminished im-
provement observed with additional spectra is expected, given
that these spectra stem from the same trajectories, albeit with
slight parameter variations. Consequently, their inclusion con-
tributes progressively less novel information as more spectra
are added—indeed, augmenting the complexity of the neural
network model did not yield improved performance when
incorporating additional spectra.

Figures 5(a) and 5(b), respectively, present the confusion
matrices for the models trained on features extracted from
a single multifractal spectrum and features extracted from
three multifractal spectra. These matrices illustrate the like-
lihood of the respective neural networks predicting each true
class (rows) as one of the five classes (columns); therefore,
the probabilities for correct predictions may be recovered
from the diagonal entries. For comparison, Fig. 5(c) also
shows the confusion matrix obtained when employing a state-
of-the-art LSTM neural network, as introduced in Ref. [72],
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FIG. 5. Confusion matrices showing the accuracy of the anomalous diffusion classification using only the MFS features from just 1
spectrum (a) and 3 spectra (b), as well as for a state-of-the-art LSTM neural network trained on raw trajectories (c). The matrices show
the probability of a ground-truth model on the vertical axis to be predicted as one of the models on the horizontal axis.

on the same dataset. The confusion matrices reveal that a
network trained on a single spectrum [Fig. 5(a)] demonstrates
proficiency in accurately identifying LW trajectories (89%)
and CTRW trajectories (75%) but faces challenges in distin-
guishing between FBM (66%), SBM (50%), and particularly
ATTM (31%). However, incorporating features from multi-
ple spectra [Fig. 5(b)] significantly enhances performance for
ATTM (42%) and FBM (73%), with noticeable, though less
pronounced, improvements observed for all other models.

A notable advantage of feature-based ML, in contrast to
non-feature-based approaches such as Bayesian deep learn-
ing [72], lies in its heightened interpretability. Specifically,
these methods empower the identification of each feature’s
influence on the neural network’s performance. For instance,
one can selectively choose a feature, permute its position
among the inputs and observe the resulting accuracy de-
crease attributable to this particular feature’s misallocation.
Tables IIT and IV present the permutation feature importance
for models trained on singular or dual multifractal spectra,
respectively. Notably, when utilizing a solitary spectrum (Ta-
ble III), we discern the utmost significance for the right end of

TABLE III. Permutation importance of the various MFS features
obtained using only one multifractal spectrum.

the spectrum, denoted as Aagigh and A f(o0)rigne. A consistent
pattern emerges across various scenarios, wherein the spatial
orientation of the spectrum, as indicated by the singularity
exponent «, outweighs the precise singularity dimension f(c)
at those specific locations in terms of importance. The sig-
nificance of features persists in the context of two spectra
(Table IV), aligning with the observed behavior in the singular
spectrum scenario. Slight enhancements in importance across
most features are evident, indicative of an overall improved
performance. Only Aoy .r ascends from the fourth position in
Table III to become the most crucial feature in Table IV—a
shift suggesting that heterogeneity in Acap.r between them
may assume heightened importance when leveraging multiple
spectra.

Although achieving an accuracy from 62.5% to 68.6%, as
we saw for the MFS features only in Fig. 4(a), is a notable
improvement over random predictions (20% for predicting
one out of five models), it does not reach the levels of perfor-
mance attainable with state-of-the-art techniques developed

TABLE IV. Permutation importance of the various MFS features
obtained using two multifractal spectra. The ranking of the MFS
features stays mostly the same, except that the feature Aoy.; moves
up from fourth to the most important position.

Spectral feature Permutation importance

Spectral feature Permutation importance

Aogight 0.202
A f(@)Right 0.185
Ao 0.174
Aorgest 0.173
A fa)=1 0.139
A f (o) Left—Right| 0.136
NSpec 0.133
Af(o)rLer 0.125
A()‘Sul‘r 0.112
TmE 0.059
fle) 0.016
Af(a) 0.013
o 0.005

Aogest 0.215
AoRight 0.212
A f(o)Right 0.203
Aa 0.185
Af(a)=1 0.180
A f (o) Left—Right| 0.164
NSpec 0.159
A f(0)Lefe 0.147
AO[Surr 0.141
TyE 0.078
f(@) 0.021
Af(a) 0.015
o 0.005
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(a) No spectrum : 77.8% (b) 2 multifractal spectra : 81.4%
FBM 0.00 | 0.03 FBM 0.00 | 0.01
SBM 0.07 | 0.01 SBM 0.05 | 0.01
CTRW 0.08 | 0.00 CTRW 0.07 | 0.00
ATTM| 0.03 | 0.36 | 0.18 | 0.42 | 0.00 ATTM| 0.03 | 0.29 | 0.16 | 0.52 | 0.00
LW| 0.02 | 0.01 | 0.00 | 0.00 . LW| 0.01 | 0.01 [ 0.00 | 0.00 .

(c) No spectrum w/ extended : 84.3% (d)
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CTRW
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2 spectra w/ extended : 84.9%
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CTRW

ATTM

Lw

FIG. 6. Confusion matrices showing the accuracy of the anomalous diffusion classification using MFS features and traditional features.
The confusion matrices show the probability of a ground-truth model on the vertical axis to be predicted as one of the models on the horizontal
axis. (a) Smaller feature set without any spectrum. (b) Smaller feature set with two multifractal spectra. (c) Extended feature set without any

spectrum. (d) Extended feature set with two multifractal spectra.

during and after the AnDi-Challenge (e.g., Refs. [71-73]).
This outcome aligns with expectations, given that our model
relies solely on a single category of features. Notably, a model
leveraging the features introduced in Refs. [69,76] demon-
strated the ability to achieve an accuracy of 77.8%, which
further increased to 84.3% when utilizing the extended feature
set. Additionally, when employing the LSTM neural network
from Ref. [72], which primarily operates on minimally pre-
processed raw trajectories, we accomplished an accuracy of
91.7% using the same dataset as depicted in Fig. 5(c). Con-
sequently, we proceed with our investigation to determine
whether incorporating MFS features into established feature
sets can improve classification performance.

B. Classification performance after adding
MEFS features to established feature sets

We next assessed the implications of augmenting the
traditional feature sets, detailed in Sec. IIB of Ref. [69],
for classification performance, together with the recently

introduced MFS features. Figure 4 showcases the attained
accuracies and losses. The initial datapoint, representing
no spectrum, delineates the classification performance with-
out MFS features. In addition, we present the confusion
matrices for the stand-alone traditional feature sets and
their integration with MFS features from two spectra in
Fig. 6. This comprehensive visualization provides insights
into these distinct feature sets’ comparative performance and
interactions.

In the case of the smaller feature set—so-called original
feature set, initially employed in Ref. [76], a discernible en-
hancement in accuracy is evident—from the initial 77.8%
without MFS features to an elevated 82.0% with the in-
clusion of all nine spectra, as visible in the corresponding
graph in Fig. 4(a). Notably, the influence of additional spectra
diminishes rapidly, exhibiting no discernible changes sur-
passing random fluctuations beyond the inclusion of five
spectra. A parallel pattern emerges for the loss [Fig. 4(b)],
where a notable improvement— from 0.504 without spec-
tra to 0.415 with all nine spectra—is observed. Although
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TABLE V. Permutation importance for the top 10 features, com-
bining two multifractal spectra with the original features as presented
in Refs. [69,76]. Although the original features, primarily involving
p variation and the anomalous exponent B, still exhibit the highest
importance, they are closely followed by the new MFS features.
Seven of the top 10 features have been derived from this newly
introduced multifractal framework (highlighted in bold).

Feature Permutation importance
p variation 0.294
o 0.195
Af(@)right 0.117
AOlRigh( 0.109
®fa)=1 0.098
Ay ep 0.094
AOlSurr 0.090
Mean Gaussianity 0.080
Af() 0.076
Ao 0.075

the impact of additional spectra diminishes, the decline is
not as abrupt as witnessed in the accuracy domain. Exam-
ining the confusion matrices in Figs. 6(a) and 6(b) unveils
some intriguing insights. For instance, despite the models
trained solely on MFS features exhibiting the weakest per-
formance for ATTM, the most significant improvement is
witnessed in the detection of ATTM, escalating from 42% [in
Fig. 6(a)] to 52% [in Fig. 6(b)]. Subsequent enhancements
are noted for FBM (from 74% to 78%), marginal gains for
CTRW and LW (by 2%), and no measurable improvement
for SBM.

Regarding the “extended” feature set [69], we observed
a marginal yet perceptible uptick in accuracy—from an ini-
tial 84.3% to a refined 84.9% from the corresponding graph
in Fig. 4(a). This suggests that most information encapsu-
lated in the multifractal spectra may already exist within
the extended feature set. Likewise, the loss in Fig. 4(b) ex-
hibits a slight reduction, transitioning from 0.366 to 0.351.
Including two-plus multifractal spectra had a minimal to neg-
ligible impact on loss and accuracy. Mirroring the trends
observed in the smaller feature set, the confusion matrices
presented in Figs. 6(c) and 6(d) showcase modest improve-
ments for ATTM [ascending from 57% in Fig. 6(c) to 60% in
Fig. 6(d)] and FBM (progressing from 79% to 81%), while the
performance for the other three models remained relatively
stable. This underscores the nuanced interplay between the
extended feature set and MFS features in influencing model
performance.

Tabels V and VI present feature-importance scores, largely
aligning with the previously elucidated trends. These tables
enumerate the top 10 features ranked by permutation impor-
tance for neural networks trained on the original or extended
feature sets, incorporating MFS features from two spectra. It
is pertinent to note that certain features, such as p varation,
encompass multiple values collectively permuted for concise-
ness and are singularly represented with unified importance.
Noteworthy prominence is accorded to the MFS features and
the smaller feature set in Table V, with most of the top 10
comprising these novel elements. Interestingly, the original

TABLE VI. Permutation importance for the top 10 features,
combining two multifractal spectra with the original and extended
features as presented in Ref. [69]. These results reveal that most of
the top 10 features are the additional features introduced in Ref. [69].
Notably, two MFS features, otfq)—1 and A f(o)gien (highlighted in
bold), occupy the 9th and 10th positions in terms of importance,
suggesting that while the newly introduced features may not be the
most critical, they surpass several other traditional features present
in anomalous diffusion in terms of importance.

Feature Permutation importance
Moving window 0.248
p variation 0.184
Anomalous exponent 0.143
KS statistic against x> 0.127
Direct statistics 0.104
Maximum standard deviation 0.085
Joseph exponent 0.082
Mean Gaussianity 0.060
A fa)=1 0.058
A f(a)right 0.054

features involving p varation and the anomalous exponent
claim the top two positions. Notable inclusions within the
top 10 are the previously underrated features Aogyr, derived
from surrogates, and A f(«). This dynamic underscores the
nuanced landscape of feature importance, shedding light on
the distinctive contributions of the traditional and newly intro-
duced features. Consistent with the diminished performance
noted in the extended feature set, the MFS features assume a
relatively lower level of importance in Table VI, signaling that
a substantial portion of the information encapsulated in these
new features might already be retrievable from the traditional
feature set. Nevertheless, two specific MFS features—o r(y)=1
and A f' (& )rigne—nhold positions towards the tail end of the top
10 features, implying a heightened significance compared to
several traditional features within the dataset.

To conclude our investigation, we systematically cate-
gorized the features within the extended feature set based
on shared conceptual foundations. This organization enables
a direct and meaningful comparison with the MFS feature
group. The features were systematically grouped as listed in
Table VII.

Finally, we trained an additional neural network with
only the features within each designated group. We recorded
the ensuing accuracies on the test set, as delineated in Ta-
ble VIII. Except for the DMA, which failed to surpass the
random-prediction accuracy of 20%, the remaining groups
demonstrated classification performances within a compa-
rable accuracy range of approximately 50-70%. Prominent
among these groups were those harnessing the moving win-
dow characteristics (72.2%) and p varation (71.7%), securing
the highest performance accuracies. Notably, the network
fashioned from the MFS features extracted from three spec-
tra closely trailed with an accuracy of 68.2%. Even the
network trained solely on features from a singular mul-
tifractal spectrum showcased commendable performance,
outpacing most other feature groups with an accuracy of
63%, except for the directedness measures, which achieved
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TABLE VII. Traditional features organized into groups based on
shared conceptual foundations. See Appendix B for detailed defini-
tions of the features.

Concept group Features

Features extracted from the
time-averaged Mean-squared
displacement (TAMSD)

Anomalous exponent
Diffusion coefficient
Mean-squared
displacement ratio
Trappedness
Scaling powers y,
Monotonicity statistic P
Joseph exponent Noah
exponent Moses exponent
Kurtosis Mean
Gaussianity
D’ Agostino-Pearson test
statistic KS statistic
against 2 distribution
Empirical velocity
autocorrelation function
Straightness Efficiency
Fractal dimension

DMA
Average moving window
characteristics Maximum
standard deviation
Maximal excursion Mean
maximal excursion

Statistics based on p varation
Joseph, Noah, and Moses effect

Statistics based on comparison
against the normal distribution

Measures for the directedness of
motion

Detrending moving average
Moving window measures

Measures to detect large jumps
(excursions)

an accuracy of 65.4%. These findings underscore the diverse
efficacy of MFS features in contributing to the overall pre-
dictive capacity of the neural network in anomalous diffusion
classification.

TABLE VIII. Achieved performance accuracies across various
feature groupings reveal noteworthy distinctions. Feature sets de-
rived from one or three multifractal spectra (highlighted in bold)
emerged as among the most proficient, exhibiting only marginal
performance differentials compared to the groups centered around p
varation or moving window statistics (by 3.5-4%). These findings
underscore the competitive performance of MFS features, posi-
tioning them close to other robust feature groupings in predictive
efficacy.

Feature group Achieved accuracy

Moving window 72.2%
p varation 71.7%
3 spectra 68.2%
Directedness measures 65.4%
1 spectrum 63.0%
vs normal 59.6%
Joseph, Noah, and Moses 58.1%
TAMSD 52.9%
Excursions 49.8%
DMA 20.0%

IV. DISCUSSION

We explored the potential of MFS features to discern
effectively anomalous-diffusion trajectories originating from
five prevalent models—FBM, SBM, CTRW, ATTM, and LW.
To achieve this objective, we generated a dataset of 10°
trajectories from these models, each yielding multiple—up
to nine—multifractal spectra. Our study entailed a thorough
analysis of neural network performance, incorporating fea-
tures derived from varying numbers of spectra. Additionally,
we systematically explored the augmentation of traditional
feature datasets with multifractal spectra, enabling a compre-
hensive assessment of their impact. To facilitate a definitive
comparison, we categorized features into concept groups, and
neural networks were trained to utilize features from each des-
ignated group. The principal outcomes of these investigations
are illustrated in Fig. 4 and tabulated in Table VIII.

Concretely, the subdivision of traditional features into two
distinct sets—an older and a more comprehensive contem-
porary set has discerned a notable impact stemming from
including new MFS features. This impact is particularly
pronounced for the former set and remains discernibly mea-
surable for the latter subset of our quantifiers, albeit of a
lesser magnitude. Notably, methodologies based on the AnDi-
Challenge, whether leveraging raw particle trajectories or
a more exhaustive feature set, consistently outperform ap-
proaches reliant solely on MFS features. Nevertheless, on
further investigation into the segmentation of traditional fea-
tures into smaller conceptual groups, MFS features closely
trailed the two top-performing quantifiers. These quantifiers,
derived from moving-average and p varation statistics analy-
ses, exhibited superior performance. Specifically, our analysis
revealed a marginal reduction in accuracy for features derived
from three spectra. At the same time, a comparatively more
substantial decline in performance was observed for the less
sensitive single-spectrum features (see entries highlighted in
bold in Table VIII). Notably, the latter still outperformed sev-
eral traditional features, exemplified by quantifiers comprising
the Joseph, Moses, and Noah exponents. In summation, our
findings underscore the diverse and potent efficacy of MFS
features in augmenting the predictive capabilities of neural
networks for classifying anomalous diffusion processes.

The multifractal formalism provides a set of parameters
that are well suited to the ergodic causal modeling of anoma-
lous diffusion processes. While traditional features, often
employed in linear causal modeling [103-105], tend to dis-
rupt ergodicity, multifractal descriptors, in contrast, exhibit
ergodicity [78,106—109], thereby offering a dependable and
consistent set of causal predictors [110-121]. The present
finding that MFS features improved anomalous diffusion
classification supports the growing interest in multifractal
modeling within various fields of active matter. For example,
in areas such as the dynamics of biomolecules within cells
[122-125], the foraging behavior of wild animals [126-129],
and the study of collective dynamics, including swarming
and milling behaviors [112,130,131], multifractal formalisms
have gained traction. The present finding underscores the sig-
nificance of such approaches in these fields.

Notably, the frequently observed disruption of ergodicity
in traditional features can serve as an advantage in model
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classification. Unlike the current focus on individual trajec-
tories, this approach necessitates access to a set of trajectories
stemming from the same motion. By capturing the interplay
between ensemble and time averages, such as through an
amplitude scatter function, distinctions may arise based on the
underlying diffusion model [132,133].

An intriguing avenue for further research lies in exploring
alternative single-particle models that have not been explic-
itly addressed in the present investigation. Complex systems
frequently manifest multiple dynamics in practical scenar-
ios, presenting various facets of heterogeneities. These may
include combinations of temporal variations in diffusivity,
as evidenced in SBM, spatial heterogeneities, and correlated
increments, as observed in FBM [134—136]. An investigation
within this context would scrutinize the applicability of mul-
tifractal modeling to elucidate and characterize such intricate
systems.

Interactions spanning diverse spatiotemporal scales can
fundamentally reshape the backdrop for subsequent fluc-
tuations. For instance, cascade-dynamical instabilities can
generate turbulent structures, intricate patterns of motion
where formerly parallel currents transform into a complex
array of vortices and eddies, with intermittent surges and
recessions throughout space and time [85,87,137] (see also
Refs. [138,139]). Significantly, anomalous diffusion gener-
ating sometimes Lévy-like distributions distinguish active
turbulence from its inertial counterpart [19,140]. The present
finding that MFS features improved anomalous diffusion clas-
sification suggests a relationship between different diffusion
coefficients and the specific geometries of the underlying
fluctuations characterizing the observed data series. The in-
tricate connection between multifractality and various models
of anomalous diffusion is becoming increasingly evident,
both from a theoretical [141-145] and empirical [128,129,
146-150] perspective. Multifractal formalisms and anoma-
lous diffusion processes thus appear to be intricately
intertwined, with their connection rooted in the far-from-
equilibrium capacity to break time-reversal symmetry and to
yield instead the multiscaled, nonlinear and multibody inter-
actions characteristic of evolving living systems [151].

Multifractal formalisms represent an optimal analytical
framework for ML-based classification of anomalous diffu-
sion processes. Recent endeavors have encompassed Bayesian
methodologies [58—62], various ML strategies [63—73], and
even unsupervised techniques [74,75]. However, these ap-
proaches often rely on atheoretical features, which may not
correspond to plausible generative mechanisms [73,76,77].
While these features have provided an intuitive way to model
diffusion as a symmetric, homogeneous, ergodic spreading of
probability mass, a potential problem with these features is
that their heuristic value comes at the cost of model efficiency.
Specifically, the raw empirical measurements of diffusive
processes break ergodicity, suggesting very little homogene-
ity or symmetry and even less with larger samples. These
features might not tame the ergodicity breaking and make
modeling more effective. Rather, they are as likely to break
ergodicity as the raw measurement series [106,108,152].
A more recent stream of diffusion modeling has begun to
recognize that measured diffusive processes exhibit nested
structure [122—125], strong context-sensitivity [126—129], and

emergent coordination patterns [112,130,131]. ML ap-
proaches might fail by using ill-suited features to describe
nonergodic diffusive regimes. Multifractal-spectral features
may provide a way to describe these heterogeneous diffusive
processes explicitly, and the multifractal descriptors of such
nonergodic processes are more likely to be ergodic [110-121].
Beyond the strictly heuristic value of intuitive linear features,
multifractal-spectral features may afford ML approaches a
dependable and consistent set of causal predictors.

While the primary focus of the statistical physics com-
munity has predominantly centered on the study of anoma-
lous diffusion at the level of single-particle trajectories
[10,153,154], a comprehensive investigation of biological
processes implies the potential existence of multiple “parti-
cles,” each exhibiting their distinct trajectories. Specifically,
examining particle trajectories may have inspired existing
models. Implicit in these models may have been their couch-
ing of particle behavior within shared, aggregate behavior in
which the particle dynamics are sometimes only downstream
effects of larger scale, ensemble behaviors. Hence, it is es-
sential to recognize that shared constraints could influence the
seemingly independent trajectories of these entities in ways
that may not be readily discernible in linear spatiotemporal
analysis. In this sense, the particle models reflect only a
reduction of the behavior of a multiscaled architecture to a
single point mass, that is, a lower-dimensional projection of
a higher-dimensional system. The particle models thus carry
this signature of high dimensionality.

Future research could elaborate single-particle-trajectory
models towards network modeling of the ensemble to
make the cascade-dynamical relationships more explicit (cf.
Refs. [116,118,119,155]). This endeavor would aim to rec-
oncile qualitative disparities among the particle models (i.e.,
among FBM, SBM, CTRW, ATTM, and LW) with the per-
vasive appearance [78] and emerging predictive capacity
of multifractal structures within these models, suggesting
a shared ancestry within a cascade-dynamical framework.
The robust predictive capabilities of multifractal parameters
in these models underscore the potential similarity in the
underlying cascade dynamics, transcending the diversity of
particle models. As such, multifractal modeling promises
to unveil causal interactions among these trajectories. The
proficiency in categorizing anomalous processes based on
cascade-related features implies that ML algorithms may be
able to classify trajectories stemming from a spectrum of cas-
cade dynamics. This attempt could serve precise classification
of higher-dimensional biological structures but also extend to
biomedical applications, affording novel theoretical traction
on the cascade-dynamical character of healthy and diseased
biological and psychological systems [156—159], extending
beyond single trajectories.
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APPENDIX A: THEORETICAL MODELS

1. Fractional Brownian motion

In FBM, x(¢) is a Gaussian process with stationary in-
crements; it is symmetric, (x(¢)) = 0, and importantly, its
MSD scales as (x(¢)) = 2Kyt*", where H is the Hurst
exponent and is related to the anomalous exponent B as
H = /2 [160-162]. The two-time correlation for FBM is
(x(t)x(p)) = KH(IIZH + tzzH — |t — £)*"). FBM can also be
defined as a process that arises from a generalized Langevin
equation with nonwhite noise (or fractional Gaussian noise,
FGN). The FGN has a standard normal distribution with zero
mean and power-law correlation:

(Eron(t)Eron(t2)) = 2Ky H(2H — D)ty — 1?72
+ 4Ky H|t — 6?7181 — 1).
(A1)

The FBM features two regimes: one in which the noise
is positively correlated (1/2 < H < 1, ie., 1 < <2, su-
perdiffusive) and the other in which the noise is negatively
correlated (0 < H < 2, i.e.,, 0 < B < 1, subdiffusive). For
H = 1/2 (B = 1), the noise is uncorrelated. Hence, the FBM
converges to Brownian motion.

Various numerical approaches have been proposed to solve
the FBM generalized Langevin equation. We use the method
by Davies and Harte [163] (or Hosking [164] for H close to 1)
via the fbm python package [165]. Details about the numerical
implementations can be found in the associated reference.

2. Scaled Brownian motion

The SBM is a process described by the Langevin equa-
tion with a time-dependent diffusivity,

X0 _ BR@E),

dr

(A2)

where £(¢) is white Gaussian noise [166]. In the case when
K(t) has a power-law dependence on to ¢ such that K(z) =
BKgtP~!, MSD follows < x?(t) >y= 2Kst?. The numerical
implementation of SBM is presented in Algorithm 1.

ALGORITHM 1. Generate SBM trajectory.

Input:
length of the trajectory 7 = N At
anomalous exponent
Define:
erfcinv(a) — Inverse complementary error function of @
U(N) — returns N uniform random numbers € [0, 1]
Calculate:
Ax <@l iy =@l . i)
2Axerfcinv(2 — 2U(N — 1))
% < cumsum (Ax)
Return: ¥

Ax <

3. Continuous-time random walk

The CTRW is a family of random walks with arbitrary
displacement density. The waiting time between subsequent
steps is a stochastic variable [167]. We considered a specific
case of CTRW with waiting times following a power-law dis-
tribution ¥ (¢) o< t~° and displacements following a Gaussian
distribution with variance D and zero means. In such case,
the anomalous exponentis 8 = o — 1 (MSD = (x(¢)?) oc tP).
As the waiting times follow a power-law distribution, for
o =2, MSD features Brownian motion with logarithmic
corrections [168].

The numerical implementation of CTRW is presented in
Algorithm 2. Notice that the variable T represents the total
time at ith iteration. The output vector X corresponds to the
position of the particle at the irregular times given by 7.

ALGORITHM 2. Generate CTRW trajectory.

Input:
length of the trajectory T’
anomalous exponent
diffusion coefficient D
Define:
X — empty vector
f — empty vector
N(u, S) — Gaussian random number generator with mean p and
standard deviation S
i=0,7=0
While t < T do
t; sample randomly from yr(t) ~¢t~°
x; < Xxi_1 + N(0, VD)
T < T+
i< i+1
end while
Return: X, 7

4. Annealed transient time motion

The ATTM implements the motion of a Brownian particle
with time-dependent diffusivity [169]. The observable per-
forms Brownian motion for a random time #; with a random
diffusion coefficient D;, then for t, with D,, and so on. The
diffusion coefficients follow a distribution such that P(D)
D°~ ! with o > 0 as D — 0, and that decays rapidly for large
D. If the random times ¢ are sampled from a distribution
with expected value E[¢|D] = D77, witho <y <o + 1, the
anomalous exponent is 8 = o /y. Here, we consider that the
distribution is a delta function, P, (t|D) = §(t — D~7). Hence,
the time #; in which the observable performs Brownian motion
with a random diffusion coefficient D; is t; = D[_”, with D;
extracted from P(D).

The numerical implementation of ATTM is presented
in Algorithm 3. In contrast to CTRW and LW, the only
output is X because the trajectory is produced at regular
intervals.

5. Lévy walk

The LW is a particular superdiffusive CTRW. Like sub-
diffusive CTRW, the flight time, that is, the time between
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ALGORITHM 3. Generate ATTM trajectory.

Input:
length of the trajectory T
anomalous exponent
sampling time At
Define:
Whileo > yandy > o + 1do
o < uniform random number € (0, 3]
y=0/p
end while
BM(D;, t;, At) — generates a Brownian motion trajectory of
length #; with diffusion coefficient D;, sampled at time
intervals At
While t < T do
D; < sample randomly from P(D) oc D°~!
ti < D7
number of steps N; = round(z;/ At)
Xiy .o Xign, < BM(D;, t;, At)
i< i+N+1
T =71+ N;At
end while
Return: x

steps, for LW is irregular [170], but, in contrast to subdiffusive
CTRW, the distribution of displacements for LW is not Gaus-
sian. We considered the case in which the flight times follow
the distribution v (t) = t~°~!. At each step, the displacement
is Ax, and the step length is |Ax|. The displacements are
correlated with the flight times such that the probability of
moving a step Ax at time ¢ and stopping at the new position
to wait for a new random event to happen is V¥ (Ax,t) =
%8(|Ax| — vt)Y(t), where v is the velocity. The anomalous
exponent is given by

p={3

3 —o,

if0<o <1
ifl <o <2’

(AL)

The numerical implementation of LW is presented in Algo-
rithm 4. Notice that we use a random number r, which can take

J

Mmax 2y log(n) log[ (X (nAn)] — -0 log(m){ - log[(r*(n - Ar)]}

values O or 1, to decide in which sense the step is performed.
The output vectors X represent irregularly sampled positions
and times.

ALGORITHM 4. Generate LW trajectory.

Input:
length of the trajectory T'
anomalous exponent S
Define:
X — empty vector
{ — empty vector
v — random number € (0, 10]
i=0
While r < T do
t; < sample randomly from v (t) ~ ¢t~ ~!
X; < (—1)"vt;, where random r is O or 1 with equal probability.
T <171+ t
i<i+1
end while
Return: ¥, 7

APPENDIX B: TRADITIONAL FEATURES

This Appendix briefly introduces the definitions of the
traditional features from Refs. [69,76] listed in Sec. I B.

1. Original features
a. Anomalous exponent

Four estimates for the anomalous diffusion exponent g
constituted separate features:

(1) the standard estimation, based on fitting the empirical
TAMSD to Eq. (1),

(2) three estimation methods proposed for trajectories
with noise, which is normally distributed with zero mean
[171],

(a) using the estimator

B:

where n denotes time lag with np,, = N/10—where N is
T / At—rounded to the nearest lower integer (but not less
than 4),

(b) simultaneous fitting of the parameters D, B ,and &
in the relation

(r*(t)) = 2dDit” + 672, (B2)

where d denotes the embedding dimension, D is the diffu-
sion coefficient, and o2 is the variance of noise,

(c) simultaneous fitting of the parameters D and B in
the equation

(r2(nAt)) = 2dDmP — 1)(AHP. (B2)

Pinax Rimax 2
Mmax Zn:l logz(n) - [Zn:l IOg(n)]

; (BI)

(
b. Diffusion coefficient

An estimator of the diffusion coefficient was extracted
from the fit of the empirical TAMSD to Eq. (B2).

c. Efficiency

The efficiency E relates the net-squared displacement to
the sum of squared step lengths,

o2
E(N.1) = lxy — xi

N - 1)2?1;11 i1 — X2

(B4)

Efficiency ranges from O to 1 and should help detect directed
motion, which takes values close to 1.
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d. Empirical velocity autocorrelation function

The empirical velocity autocorrelation function [46] for lag
1 and point 7 is in one dimension,

N—1—-n

1
Y (st — X)X — %), (B3)
i=1

X”:N—l—n

it can be used to distinguish different subdiffusive processes.
In Ref. [69], x, for points n = 1 and n = 2 was used, as well
as in the present study.

e. Fractal dimension

The fractal dimension measures the space-filling capacity
of a pattern (a trajectory in our case). For a planar trajectory,
it may be calculated as

logN

Dj=_——2°" B4
7~ log(NdL-1)’ (B4)

where L = va |Ax;| is the total distance traveled, N is the
number of steps, and d is the largest distance between any two
positions [172]. It usually takes values around 1 for directed
motion and around 2 for normal diffusion. For subdiffusive
CTRW, it is also around 2, while for FBM, it is larger than 2.

Jf. Maximal excursion
The maximal excursion of the particle is

_ max;(Jxip1 — xi|)

ME = (B5)

XN — X1

It detects relatively long jumps (in comparison to the overall
displacement).

8. Mean maximal excursion

The mean maximal excursion can replace the MSD as the
observable used to determine the anomalous exponent [173].
It is defined as the standardized value of the largest distance
traveled by a particle,

_ max;(lx; — xi])

T, =
VOr(y — 1)

The parameter 6y is a consistent estimator of the standard
deviation,

(B6)

N
1
A2 2
=— =X B7
N 2(N—1)Atj2=2:|xj Xj-1 (B7)

h. Mean Gaussianity

The Gaussianity g(n) checks the Gaussian statistics of in-
crements of a trajectory [174] as

{ra)
3<r3)2
where (r,’i) denotes the kth moment of the trajectory at time
lag n. The Gaussianity for normal diffusion is equal to 0. The
same result should be obtained for FBM since its increments

follow a Gaussian distribution. Other types of motion should
show deviations from that value.

gn) = -1, (B8)

Instead of looking at Gaussianities at single-time lags, in
Ref. [69] and here, the mean Gaussianity across all lags was
used as one of the features,

1 N
& =+ ;gm). (B9)

i. Mean-squared displacement ratio

The MSD ratio gives information about the shape of the
corresponding MSD curve. We will define it as

) m
(rm)

—

MSDR (ny, ny) =

(B10)

where n; < n. MSDR is zero for normal diffusion (8 = 1).
We should get MSDR < 0 for sub- and MSDR > 0 for su-
perdiffusion. in Ref. [69] and the present study, n, = n; +
1 was taken, and then the averaged ratio across all n; =
1,2,..., N — 1 was calculated for every trajectory.

J. Kurtosis

The kurtosis gives insight into the asymmetry and peaked-
ness of the distribution of points within a trajectory [175]. It
is defined as the fourth moment,

N _
1 (x; — %)
K=y o

i=1

(B11)

where X is the mean position and o, the standard deviation.

k. Statistics based on p varation

The empirical p varation is given by the formula [176]

N_j

m

Vn(1p) = E |x(k+1)m - ka|p oxcm'.
k=1

(B12)

This statistic can be used to detect fractional Lévy stable
motion (including FBM). Ten features based on VP were
used for the classification of trajectories:

(1) the power y,, fitted to p varation for lags 1 to 5 for nine
values of p,

(2) the statistic P used in Ref. [77], based on the mono-
tonicity changes of V,\" as a function of m as indicated by the
sign of y,:

0 ifV,"does not change the monotonicity,

P = 1
—1 ify,changes from positive to negative.

(B13)

ify,changes from negative to positive,

L. Straightness

The straightness S measures the average direction change
between subsequent steps. It relates the net displacement of a
particle to the sum of all step lengths,

lxy — x1]

=T - (B14)
SN i — il
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m. Trappedness

The trappedness is the probability that a diffusing particle
is trapped in a bounded region with radius ry up to some
observation time ¢. [177] estimated this probability with

P(D,t, 1) ~ 100.2048—2.5117(Dt/r§)' (B15)
ro is approximated by half of the maximum distance between
any two positions along a given trajectory, D is estimated by
fitting the first two points of the MSD curve (i.e., the so-called

short-time diffusion coefficient), and ¢ is chosen as the total
observation time 7.

2. Additional features
a. d’Agostino-Pearson test statistic
The d’Agostino-Pearson k2 test statistic [178] measures
the departure of a given sample from normality,

it = Z1(g1) + Za(K), (B16)

where K is the sample kurtosis given by Eq. (B11) and g; =
ms /m;/ % is the sample skewness with mz; being the jth sample
central moment. The transformations Z; and Z, bring the dis-
tributions of the skewness and kurtosis as close to the standard
normal as possible. This feature must help distinguish SBM
and ATTM from other trajectories.

b. Kolmogorov-Smirnov statistic against x* distribution
The KS statistic quantifies the distance between the em-
pirical distribution function of the sample Fr(x) and the
cumulative function Gr(x) of a reference distribution,

Dr = sup |[F7(x) — Gr(x)|. (B17)

The next feature to consider is the statistic calculated by com-
paring the empirical distribution of squared increments from
a trajectory to a sampled x? distribution. This choice is rooted
in the concept that a Gaussian trajectory should theoretically
yield a distribution of squared increments closely resembling
the x? distribution.

c. Joseph, Noah, and Moses exponents

Processes featuring stationary increments can manifest
anomalous scaling of MSD via two mechanisms that, in
principle, defy the Gaussian central limit theorem. These
mechanisms include long-time increment correlations, known
as the Joseph effect, and a flat-tailed increment distribu-
tion, referred to as the Noah effect [179,180]. Notably, FBM
typifies the first effect, while LW embodies the latter. Fur-
thermore, nonstationary increment distributions can induce
anomalous scaling, giving rise to the Moses effect [179]. The
Moses effect plays a pivotal role in identifying SBM and
ATTM trajectories.

All three effects may be quantified by exponents, which
can be used as features. Given a stochastic process x; and
the corresponding increment process 8,(T) = x,+; — X;, the
Joseph, Moses, and Noah exponents are defined as follows:

(1) The Joseph exponent J is estimated from the ensemble
average of the rescaled range statistics,

E |:maX1<i<n[xi — =xp] — minygicu[xi — £x,] W
bl

G}l
(B18)
where o; is the standard deviation of the process x;.

(2) The Moses exponent M is determined from the scaling
of the ensemble probability distribution of the sum of the
absolute value of the increments, which can be estimated by
the scaling of the median of the probability distribution of
Yy =20 18l

E[Y,] ~ nM*2, (B19)

(3) The Noah exponent L is extracted from the scaling of
the ensemble probability distribution of the sum of squared
increments, which can be estimated by the scaling of the
median of the probability distribution of Z, = Y, 8%

]E[Zn] ~ n2L+2M71. (BZO)

The {J,M,L} exponents are related to the anomalous exponent
B, [32,181]

B/2=J4+M+L—1. B21)
d. Detrending moving average
The DMA statistic [182] is given by
1 N
_ =T 2
DMA(7) = T Z (o —X7)%, (B22)

i=1+1

for r ={1,2, ...}, where X] is a moving average of v obser-
vations, that is, X] = %H Z;zo X;—j. According to Ref. [182],
a DMA-based statistical test can help detect SBM. In Ref. [69]
and in this work, DMA (1) and DMA (2) were used as features.

e. Average moving window characteristics
Let us define the following moving window characteristic:

N—m—2

1
MW, = —
2N —m—2) ;

sl 7]

—=(m) —(m)]

—sgn[x 1 —x™]|. (B23)

where ¥ denotes a statistic of the process calculated within
the window of length m and sgn is the sign function. We
here use four attributes calculating MW,, using the mean and
standard deviation for X with windows of lengths m = 10 and
m = 20.

J. Maximum standard deviation

The last two features from the extended feature set rely
on the standard deviation o,, of the process calculated within
windows of length m,

min[o,,(t)]

MXM,, = (B24)

max[oy,(1)]
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and

MXC,, — max |o,,(t + 1) — Um(l)|’
o

(B25)

where o denotes the sample standard deviation over the whole
trajectory and o,,(¢) the standard deviation within the window
starting at ¢ and ending at r + mA¢t. We used m = 3. These
features must improve the detection of ATTM-type move-
ments.
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