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Weibull function to describe the cumulative size distribution of clumps
formed by two-dimensional grains randomly arranged on a plane
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Many manifestations of natural processes give rise to interesting morphologies; it is all too easy to cite
the corrugation of the Earth’s surface or of planets in general. However, limiting ourselves to 2D cases, the
morphology to which crystal growth gives rise is also intriguing. In particular, it is interesting to study some
characteristics of the cluster projection in 2D, namely the study of the shapes of the speckles (fractal dimension
of their rims) or the distribution of their areas. Recently, for instance, it has been shown that the size cumulative
distribution function (cdf) of “voids” in a corrole film on Au(111) is well described by the well known Weibull
distribution. The present article focuses on the cdf of cluster areas generated by numerical simulations: the
clumps (clusters) are generated by overlapping grains (disks) whose germs (disk centers) are chosen randomly
in a 2000 × 2000 square lattice. The obtained cdf of their areas is excellently fitted to the Weibull function in a
given range of surface coverage. The same type of analysis is also performed for a fixed-time clump distribution
in the case of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics. Again, a very good agreement with the
Weibull function is obtained.

DOI: 10.1103/PhysRevE.109.044131

I. INTRODUCTION

The Weibull cumulative distribution function (cdf), or sim-
ply the Weibull function, [1–3]

W (x) = 1 − e−k xn
, (1)

i.e., a stretched exponential, which in probability theory texts
is written W (x) = 1 − exp[−( x

λ
)n], has a very broad applica-

tion in many fields of human knowledge [4–11], including
many aspects of the materials science. In particular it well
describes the distribution of the particle size after a fragmen-
tation process, for example in milling, graining, or crushing
operations [12–17]. Precisely in this context, the scientists
who first employed Eq. (1) were Rosin and Rammler [18]. In
fact it is often referred to as the RRSB distribution after Rosin,
Rammler, Sperling, and Bennet [18–21]; the last two scientists
were involved in the study of the problem of determining the
size distribution of the coal dust. For further information about
the history of Eq. (1), see, for example, [1,12,21] and ref-
erences therein. We have recently measured and empirically
demonstrated that also the areas of the 2D holes (here clumps)
created in a film of corrole molecules deposited on an Au(111)
surface are distributed according to a Weibull function [22].
In the same paper we also presented a simulation in order
to understand how universal the distribution of Weibull was.
On that example, we extend and deepen our numerical study
to different cluster (here clump) formation modalities that
we wish to discuss in this article. We begin by emphasizing
that, from the point of view of what we mean to prove, the
difference between holes, islands, or clusters is completely
immaterial: they are simple speckles in the images and all are
referred to as clumps in a 2D space.

The simulation requires to generate clumps with irreg-
ular edges, consistently with the experimental data [22].
Among the various possibilities we have chosen the simplest

stochastic process [23,24], that is, the random overlapping of
disks. Therefore, in our process the distribution of clump sizes
is obtained by the random accumulation of disks while the
distributions studied in Refs. [12–17] are the result of a frag-
mentation process. The two processes differ from each other
not only because the first takes place in 2D space whereas the
second in 3D space, but also in the way the distributions are
formed, one may say: bottom-up for the first, and top-down
for the second.

The nature of this article is purely geometrical, even if the
conclusions can certainly be useful also for interpreting some
experimental results.

II. RESULTS AND DISCUSSION

A. First stochastic model

We have carried out several simulations, with a code
written in MATLAB12, where 2D clumps were created with dif-
ferent modalities to then determine the cumulative distribution
of their areas. The results were fitted to the Weibull function
Eq. (1).

In this article there are three entities, which, depending
on the scientific environment where they are used, are called
by different names. We have chosen to use the nomenclature
adopted in the book by Chiu et al. [23]. The entities are: clump
instead of cluster, grain instead of disk, and germ instead of
disk center. The reason for this lies basically in the fact that
the subject matter is also of interest in stochastic geometry.

In the simulations, the germs {xi, i = 1, ..., N}, and the
corresponding grains of radius r, were generated at random
[25] on a L × L square lattice, with L = 2000 px, until an
assigned coverage � was reached. If ci is the ith grain set,
its normalized area is A (ci ) = πr2

A ∀i, where A is the area
of the lattice, it follows that � = A (

⋃N
i=1 ci ). The clump is
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TABLE I. Simulation results for coverage � ∈ [0.35, 0.60] corresponding to clumps created on a 2000 × 2000 square lattice from grains
with random germs and fixed radius r that range from 30 to 50 in steps of ten. The cumulative distributions of areas of the resulted clumps
were fitted to the Weibull function Eq. (1); best fit shape parameter n and adjusted R squared are reported.

∞ overlaps One overlap Two overlaps

� n adj.R squared � n adj.R squared � n adj.R squared

Grain radius 30 Grain radius 30 Grain radius 30

0.35 0.739 1.00000 0.35 0.842 0.99989 0.35 0.744 0.99999
0.40 0.709 0.99998 0.40 0.741 1.00000 0.40 0.717 0.99999
0.45 0.640 0.99999 0.45 0.704 0.99998 0.45 0.659 0.99996
0.50 0.576 0.99999 0.50 0.624 0.99994 0.50 0.576 0.99999
0.55 0.491 0.99991 0.55 0.516 0.99995 0.55 0.489 0.99997
0.60 0.385 0.99974 0.60 0.401 0.99983 0.60 0.379 0.99983

Grain radius 40 Grain radius 40 Grain radius 40

0.35 0.771 0.99998 0.35 1.055 0.99912 0.35 0.714 0.99999
0.40 0.676 0.99995 0.40 0.730 0.99997 0.40 0.710 0.99997
0.45 0.655 0.99997 0.45 0.679 0.99992 0.45 0.672 0.99989
0.50 0.590 0.99997 0.50 0.621 0.99998 0.50 0.573 0.99997
0.55 0.502 0.99998 0.55 0.530 0.99988 0.55 0.511 0.99995
0.60 0.406 0.99992 0.60 0.379 0.99988 0.60 0.394 0.99986

Grain radius 50 Grain radius 50 Grain radius 50

0.35 0.862 0.99995 0.35 0.978 0.99958 0.35 0.783 0.99999
0.40 0.648 0.99985 0.40 0.693 0.99997 0.40 0.652 0.99995
0.45 0.623 0.99990 0.45 0.684 0.99999 0.45 0.642 0.99993
0.50 0.578 0.99994 0.50 0.615 0.99991 0.50 0.577 0.99995
0.55 0.512 0.99996 0.55 0.553 0.99994 0.55 0.525 0.99996
0.60 0.362 0.99986 0.60 0.455 0.99986 0.60 0.395 0.99972

generated by overlapping grains (see Chapter 3 of Ref. [23])
and its area is simply determined by counting the pixels
that make it up without assigning any kind of weight to the
different clumps.

The cumulative distributions of the areas of the resulted
clumps were determined as a function of the parameters �

and r. The final distribution (histogram) was obtained as the
average over 200 iterations; the number of intervals (bins)
was chosen maximizing the adjusted R squared in the fitting
procedure to Eq. (1); it is worth noting that the bin must
be greater than or equal to πr2, the latter corresponding to
the lower limit of the simulated clump area. A summary of
the results is reported in Table I, organized in three different
columns: ∞ overlaps, one overlap, and two overlaps, corre-
sponding to three different stochastic processes. In the first
column (referred to as “∞ overlaps”) the code accepts any
number of grain overlaps (Boolean model) [23,24]. In the
second and third columns the generated grain is accepted only
if it does not have more than one or two overlaps with those
already accepted, respectively. Although the code allows to
choose any number of overlaps, for four overlaps the resulting
morphology is in fact indistinguishable from that obtained
without any limit in the number of overlaps (∞ overlaps).
Indeed, the contribution of the overlapped areas to the entire
coverage � decreases according to the relation �m = �/m!,
where m is the number of overlaps [26] and �m the corre-
sponding fraction of coverage.

Data in Table I are calculated for three different values of
grain radius (namely r = 30, 40, 50, corresponding to about

1.5%, 2.0%, 2.5% of the side L, respectively). For each of
them coverage ranges from � = 0.35 to � = 0.60 in steps
of 0.05; therefore, each datum of the table can be identified
by the 3-tuple, {�, r, n_overlaps}, where n_overlaps indi-
cates the maximum number of accepted overlaps. In each
column we report, for every coverage �, the shape parame-
ter n of the Weibull function Eq. (1) and the corresponding
adjusted R squared which evaluates the goodness of the fit
and consequently how close the chosen function is to the
exact one. Figure 1 depicts some examples of the resulting
morphologies along with the cumulative distributions and the
corresponding best fitting Weibull functions. The fit procedure
obviously excludes everything below the first bin that has a
width greater or equal to the area of the minimum clump. For
this very reason the curve within the first bin has been drawn
dashed [27].

The adjusted R squared values reported in Table I evidence
that the clump areas distribution is surprisingly well described
by the Weibull function. As a matter of fact, for the majority
of them the difference to unity is of the order of 10−5 − 10−4

and only for a few exceptions in the range of 10−3. The
worst is for {0.35, 40, 1}, for which R̄2 = 0.99912; looking
in detail at the point of the maximum deviation between the
fit data and the simulation data, the difference, in this case,
is slightly lower than 2%. Additionally, for R̄2 in the range
0.99958–0.99985, the maximum deviation ranges between
1% and 0.16%, whereas it ranges between 0.10% and 0.05%
if R̄2 is in the interval 0.99995–0.99999. Based on the above
discussion, it can be summarized that the Weibull function
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FIG. 1. An example of morphology and cumulative counts (full
symbols) of clump areas (grain area units) for grains generated at
random for � = 0.45, r = 40; and (a) ∞ overlaps, (b) one overlap,
and (c) two overlaps. Continuous line represents the best fit of sim-
ulation results to the Weibull function (see Table I). First part of the
curve is dashed since the theoretical point (0,0) is not included in the
fitting process, (see the text for details).

describes very well the distribution of clump areas just beyond
the area of a grain (numerically: beyond the first bin); actually,
the clump cumulative size distribution is discontinuous at
πr2 [29].

TABLE II. Comparison among adjusted R squared values result-
ing from fitting the cumulative distributions of areas to the Weibull
and to the log-normal function for three different 3-tuples. More
details can be found in the Supplemental Material [28].

{�, r, n_overlaps} R̄2
Weibull R̄2

Log−norm

{0.40, 30, 2} 0.99999 0.99965

{0.45, 50, 1} 0.99999 0.99965
{0.55, 30, ∞} 0.99991 0.99953

In Table I, results obtained for low coverage, � < 0.35,
are not reported, neither are those for � > 0.60. As a matter
of fact, it happens that outside the range � ∈ [0.35, 0.60] the
Weibull function no longer works, or at least not very well
anymore. For instance in tests performed for � = 0.20 and
� = 0.25 the agreement between the numerical simulation
and the Weibull function becomes poorer, providing (for in-
stance for r = 40 and one overlap) R̄2 = 0.99804 and R̄2 =
0.99677, respectively; incidentally this is accompanied by the
transition of the shape parameter n from less to greater than
unity; the latter event in itself is not particularly significant,
but indicates that the derivative of the Weibull function W (x)
at x = 0 is zero and the probability distribution function (pdf)
displays a maximum. Incidentally, in Table I we find n � 1
also for {0.35, 40, 1} (for details see [30]). The reason of the
worsening of the adjusted R squared for � < 0.35 is that
below this coverage the number of single grains becomes too
high and the cumulative distribution gets closer and closer
to the step function. As far as the coverage values � > 0.60
are concerned, tests performed for � = 0.70 and � = 0.75
show that the distributions are simply meaningless. As a mat-
ter of fact, for � > 0.60, the film coverage is close to the
percolation threshold �p = 0.676 [31–33] and the cumulative
distribution of clump areas begins to be dominated by the
clumps of increasingly larger dimensions until, for � = �p,
the infinite clump appears. However, it should be noted that
an accurate reading of Table I shows that already at � = 0.60
we begin to notice a worsening of the R̄2 value.

Since in the literature there are a plethora of papers which
compare the Weibull function with the log-normal function
[14,34–38], we could not avoid trying to fit the results of
our simulations to the aforementioned function: the fit qual-
ity with the log-normal worsens with respect to the Weibull
function as evidenced, for example, in the comparison among
the R̄2 values reported in Table II for three different 3-tuples.
(See the Supplemental Material [28] for more details).

B. Second stochastic model:
Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics

A different process was also addressed where after the ran-
dom generation of N points on a 2000 × 2000 square lattice,
they become the germs of grains whose radii start growing
simultaneously and linearly in time. In this case, the aim
of determining the kinetics of the transformation �(t ) is a
problem whose solution has been found in 1937–1941, inde-
pendently, by Kolmogorov, Johnson, Mehl, and Avrami hence
the acronym KJMA [39–44]. In particular, the aforementioned
process is known as Dirac-δ nucleation [45] and the clump
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TABLE III. Simulation results for KJMA Dirac-δ nucleation
kinetics corresponding to germs randomly distributed throughout a
2000 × 2000 square lattice and selected coverage � ∈ [0.36, 0.55].
The cumulative distributions of areas of the resulted clumps were
fitted to the Weibull function Eq. (1); best fit shape parameter n and
adjusted R squared are reported.

KJMA Dirac δ

� n adj.R squared

0.36 0.834 0.99986
0.41 0.819 0.99993
0.46 0.682 0.99999
0.51 0.598 0.99998
0.55 0.524 0.99993

size distribution has rarely been studied; this is one of the
reasons that pushed us to study the topic.

At any value of t (measured in iterations) there exists a
configuration of clumps; in Table III we report the summary of
the fits for selected coverage values. Besides, the morphology
at time t = 28, which corresponds to � = 0.46, is shown in
Fig. 2(a) along with the analysis of cumulative distribution
of the areas. Also in this case, the cumulative distribution
of clump areas fits to Eq. (1) in an absolutely satisfactory
way. The reader can easily realize that the KJMA kinetics
for a Dirac-δ nucleation at time t and grain radius r(t ) is, in
fact, a Boolean model, which is virtually the same model as
for ∞ overlaps previously described (except for a different
distribution of the number of grains).

Always within the ambit of the KJMA model, we wrote
a code in which the N points on the 2000 × 2000 square
lattice do not start growing simultaneously, but rather “turn
on” according to a linear law (linear nucleation). In detail, 100
new points out of a total of 1000 (which are the germs) start
growing at the end of each growth cycle. In other words, the
growth law that, as in the Dirac-δ case is linear, is of the type

TABLE IV. Simulation results in the case of KJMA linear
nucleation kinetics corresponding to nuclei randomly distributed
throughout a 2000 × 2000 square lattice and selected coverage � ∈
[0.35, 0.54]. The cumulative distributions of areas of the resulted
clumps were fitted to the Weibull function Eq. (1); best fit shape
parameter n and adjusted R squared are reported.

KJMA linear nucleation

� n adj.R squared

0.35 0.672 0.99999
0.40 0.621 0.99999
0.45 0.566 0.99998
0.50 0.510 0.99998
0.54 0.449 0.99995

r j (t ) = a(t − t j ), where t is the running time, r j the radius
of the jth grain, and t j the germ birth time. The results are
reported in Table IV and, as in the KJMA Dirac-δ kinetics,
the numerical data fit Eq. (1) very satisfactorily, as shown
in Fig. 2(b) where also the morphology at time t = 36 and
� = 0.45 is reported. It is worth emphasizing once again that
fitting the data from the above simulations to the log-normal
function provides poorer results. Incidentally, we recall that
the KJMA model is often employed to describe the kinetics of
some kinds of phase transition.

C. Effects of hard correlation

In all the stochastic processes previously described, the
simulated cumulative distribution agrees really well with
Eq. (1). Besides, they share the fact that the choice of the
germs is Poissonian. So as to check whether this is a pre-
requisite to obtain a good agreement between the simulation
and the Weibull function, we considered a certain degree of
correlation among the germs; for this purpose we introduced
the constraint that does not allow the germs xk to lay closer

FIG. 2. KJMA kinetics morphology for (a) instantaneous (Dirac δ) nucleation at time t = 28 and � = 0.46; (b) linear nucleation at time
t = 36 and � = 0.45. Full symbols are the corresponding cumulative counts (arbitrary units) of clump areas fitted tothe Weibull function
(continuous line), (see Table III and Table IV). First part of the curve is dashed since the theoretical point (0,0) is not included in the fitting
process, (see the text for details).
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than a given distance Rc (correlation distance) from each
other [46].

In other words, with each germ xk is associated a circle of
radius Rc; if

⋃k
i=1 Ci is the set of the first k circles of radius

Rc, then the (k + 1)th germ will be accepted if it satisfies the
condition

xk+1 /∈
k⋃

i=1

Ci. (2)

It is the case to underline that Rc can vary within the inter-
val Rc ∈ [0, 2r), but it cannot overcome 2r because in such
case there would be no overlap between grains and the pdf
would simply be a Dirac δ. A certain number of simulations
for different values of coverage (� = 0.35, 0.45, 0.50, 0.60)
were performed for constant grain radius r = 40 and Rc from
50 to 70 in steps of five (so that Rc < 2r). The cumulative
distribution is still well described by the Weibull function,
with R̄2 varying in the range 0.99972 − 0.99999 for all the
tested coverages and the different Rc (see [47]).

D. Effects of inhomogeneous spatial distribution

The introduction of the correlation does not change the
germ distribution homogeneity; however, it is precisely ho-
mogeneity that plays a key role for the distribution of grain
areas to fit the Weibull function. In order to corroborate the
latter statement, we introduced three functions f (x, y), which
allow the point (xi, yi ) to be accepted if, after having ran-
domly chosen a number p ∈ [0, 1], the relation p < f (xi, yi ) is
satisfied.

The functions are as follows:
a Gaussian-like function

f (G)(x, y) = exp

[
−

(
x2 + y2

2 ξ 2

)]
(3)

and two periodic functions

f (ss)(x, y) =
[

sin

(
x

ξ

)
sin

(
y

ξ

)]2

(4)

f (s2 )(x, y) = sin2

[(
x

ξ

)(
y

ξ

)]
, (5)

represented in Figs. 3(a)–3(c), respectively, where ξ =
L/c with c ∈ Q. In particular, in our simulations c =
1/2, 2/3, 1, 2, 3 for f (G), while c = 5 and c = 2 for f (ss) and
f (s2 ), respectively.

As far as the f (G) is concerned, the simulation results do not
fit Eq. (1) satisfactorily for ξ � L/3; specifically, for ξ = L/3,
R̄2 = 0.995 [see Fig. 3(d)]. Such effect is even more evident
when the Gaussian-like maximum coincides with a lattice
corner, and in this case the fit is meaningless (more details
can be found in the Supplemental Material [28]).

The effect of the functions f (ss)(x, y) and/or f (s2 )(x, y)
over the grain spatial arrangement is quite strong and, in
both cases, the cumulative distribution of clump areas utterly
differs from Eq. (1). The effect is more drastic for f (ss)(x, y),
to the point that the fit does not make sense [see Fig. 3(e)]. The
reason depends on the fact that the grains are concentrated in
very compact clumps, while for f (s2 )(x, y) the grains are more
scattered throughout the whole space [Fig. 3(f)]; nevertheless,

in this case, the adjusted R squared is 0.99881 instead of
typical values R̄2 ∈ [0.99989, 0.99997] for the random case
with the same grain radius and coverage (r = 40,� = 0.45).
Although we have made use of only three functions, the
message is rather apparent: the Weibull function describes
the cumulative distribution of clump areas only if the spatial
distribution of their initial germs is sufficiently spread.

III. FINAL REMARKS

Before summarizing the main results in the conclusion
section, a couple of comments are mandatory.

The first comment concerns the boundary conditions. The
simulations are performed in a square lattice of side L =
2000 and periodic boundary conditions (PBCs) are taken into
account, i.e., grains are generated onto a torus. The PBCs
guarantee the correct value of the coverage �. By referring to
the paradigmatic example of the left panel of Fig. 4, a correct
evaluation of the cumulative cluster distribution should con-
sider (thanks to the PBCs) the two clumps inside the L × L
square lattice as if they were one. Our code, on the contrary,
consider them as two separated clumps whose area is given,
as for the clump on the north side, by that of the blue clump,
and as for that on the south side by the sum of the red and
the blue clump areas (first method). From what has just been
said, a certain degree of error is introduced in the cumulative
area distribution by the clumps overflowing from the edge of
the lattice; however, their number is proportional to the side
L of the lattice, while the contribution of the clumps inside
the lattice is proportional to L2, so that the error decreases
as 1/L. Nevertheless, when increasing L from 2000 to 6000,
no signs of significant improvement in the R̄2 values were
observed against an increase in computation time of 150%
and more.

A possible method to overcome the problems of the edge
effects, is to introduce a �L wide guard region (�L = r)
around the original lattice, making the PBCs conditions un-
necessary. Indeed, since the germs lie within the L × L lattice,
all clumps lie within the (L + r) × (L + r) lattice, so that
all pixels of each clump are counted (see for instance the
clump at the north edge in the right panel of Fig. 4) [48].
However, since the germs are generated at random on the
L × L region, in the (L + r) × (L + r) region the process is
no longer Poissonian. Precisely for this reason, between the
two methods, we preferred the former.

The second comment has to do with interesting papers in
which the problem of determining the distribution function of
grains or crystallites in the growth or crystallization processes
has been tackled analytically [49–52]. Based on the titles,
these articles may be associated with our analysis but this is
not the case. In our case the clumps are separated, while in
those articles, particles in question touch each other or share a
portion of their rim like the tiles in the Voronoi tessellation.

IV. CONCLUSIONS

The numerical simulations reported here are inspired by
some experimental results that show that the areas of voids
(here, clumps) observed in a molecular film distribute accord-
ing to the Weibull function [22]. With the aim of verifying
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FIG. 3. Panels (a)–(c) show a graphical representation of the functions f (G)(x, y), f (ss)(x, y), and f (s2 )(x, y). Panels (d)–(f) report an
example of morphology and the cumulative counts (arbitrary units) of clump areas when respective functions are introduced (see text for
details); � = 0.45, r = 40.

how general this last evidence is, we approached the problem
numerically.

The results of our simulations demonstrate that, within a
certain range of coverage, there is a close connection be-
tween the Weibull function and the cumulative clump area

distribution if clumps are generated by the overlap of ran-
domly distributed grains of radius r. The same analysis was
applied to the distribution of clumps obtained from two typical
KJMA kinetics. Also in this case, the agreement between the
clump size distribution and Weibull function is excellent.
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FIG. 4. Schematic graphical representation to show how the pe-
riodic boundary conditions are taken into account in the simulations
(see text for details).

We also show that hard-correlated spatially distributed
grains give rise to a clump configuration whose area distri-
bution still fits quite well to the Weibull function. On the
other hand, by significantly changing the grain arrangement
by making space inhomogeneous, the numerical data do not
fit to the Weibull function anymore.

Eventually, the Weibull function is not only an excellent
descriptor of the clump size distribution on a surface, but it
would be, in principle, preferable to the log-normal function.
It goes without saying that, from the experimental point of
view, the possibility of obtaining an adjusted R squared with

values differing from the unity by about 10−5 − 10−4 should
be excluded. In other words, fitting the data to one of the two
functions is, in fact, equivalent. However, our study seems to
go beyond: in fact, given the exceptional goodness of the R̄2

values, it suggests the possibility that, under certain condi-
tions, the Weibull function could be, in the interval [πr2,∞),
the exact clump size distribution function for the 2D processes
we have described.

Often, simulations such as those reported here have been
employed in stochastic geometry [23,24] in order to describe
and explain several properties of heterogeneous materials in
many areas of science and technology. Naturally, the results
obtained here are far from being a mathematical proof, but
being well supported by numerical analysis, we hope they
will give rise to a new challenge in the field of mathematical
morphology [53,54] and stochastic geometry.
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