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Eigen microstates in self-organized criticality
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We employ the eigen microstates approach to explore the self-organized criticality (SOC) in two celebrated
sandpile models, namely the BTW model and the Manna model. In both models, phase transitions from the
absorbing state to the critical state can be understood by the emergence of dominant eigen microstates with sig-
nificantly increased weights. Spatial eigen microstates of avalanches can be uniformly characterized by a linear
system size rescaling. The first temporal eigen microstates reveal scaling relations in both models. Furthermore,
by finite-size scaling analysis of the first eigen microstates, we numerically estimate critical exponents, i.e.,√

σ0w1/ṽ1 ∝ LD and ṽ1 ∝ LD(1−τs )/2. Our findings could provide profound insights into eigen microstates of the
universality and phase transition in nonequilibrium complex systems governed by self-organized criticality.

DOI: 10.1103/PhysRevE.109.044130

I. INTRODUCTION

Phase transitions and critical phenomena play pivotal roles
in understanding complex systems. Classical models, such as
the Ising model and percolation model [1], adeptly capture the
continuous phase transition properties. In the Ising model, ap-
proaching a critical temperature leads to power-law behaviors
in thermodynamic quantities like magnetization and suscepti-
bility, with universal critical exponents which are independent
microscopic details [1]. However, the applicability of the Ising
model to understand critical phenomena in complex systems
is constrained by its requirement for thermodynamic equilib-
rium, a condition seldom met by real complex systems, which
predominantly exist in nonequilibrium states.

In 1987, Bak, Tang, and Wiesenfeld (BTW) established
the concept of self-organized criticality (SOC) by introducing
the BTW sandpile model [2]. Within this model, power-law
behaviors were identified in the size of avalanches, with
potential implications for understanding phenomena in the
real world. For instance, earthquake energy release follows a
power-law distribution [3], rainfall exhibits continuous phase
transitions [4], and the waiting time statistics of various natu-
ral records mirror the sandpile model’s behavior [5–8].

The BTW model illustrates the spontaneous evolution of a
nonequilibrium system toward a critical state marked by slow
driving energy and rapid energy dissipation [9]. A continuous
phase transition between an absorbing state and an active
phase is a distinctive feature of the sandpile model [10–12].
The BTW model, characterized by an Abelian group struc-
ture, draws an analogy with the Abelian Manna model, which
incorporates random relaxation rules [13,14]. Zhang also
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proposed another SOC model involving continuous en-
ergy [15]. Experimental validation of SOC behavior was
demonstrated through a rice pile experiment [16,17]. The
universality class of various SOC models, including both
the BTW and Manna models, has been reported as identical
[18,19]. Nevertheless, there exists some contention regarding
the assertion that they might belong to distinct universality
classes [20,21].

In this paper, we introduce the concept of eigen microstates
of the statistical ensemble to explore the critical behaviors of
sandpile models. The critical state can be delineated by the
condensed eigen microstates, characterized by the emergence
of a substantial weight factor. This characterization finds sup-
port in the Ising model [22–24] and collective motion [25].
Our proposed methodology enables the identification of phase
transitions and universality classes in nonequilibrium systems
without requiring knowledge of the order parameter.

In the subsequent section, we elucidate the definition of
SOC sandpile models and articulate the concept of the eigen
microstates within the statistical ensemble for the system.
Section III provides a detailed exposition of the simulations
conducted on SOC sandpile models, along with the presenta-
tion of results pertaining to their eigen microstates, analyzed
through finite-size scaling. Conclusive remarks are then drawn
in Sec. IV.

II. MODEL DEFINITION AND METHODS

A. The SOC sandpile models

We explore two models exemplifying SOC: the BTW
model and the Abelian Manna model. For the BTW model,
we examine a square lattice with N = L2 sites, where L rep-
resents the system’s size. The initial state involves a random
distribution of nonnegative integer heights z for sites, with a
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FIG. 1. Evolution of the average height of the sandpile from the absorbing state to the critical state for (a) the BTW model and (b) the
Manna model with L = 32. The system reaches the critical state after the time step indicated by the red dashed line. PDFs of the avalanche size
in subcritical and critical states for (c) the BTW model and (d) the Manna model. The lines represent fitted lines with slopes of −1.1 ± 0.07 in
(c) and −1.17 ± 0.04 in (d), respectively.

given average height. The system undergoes driving forces
by adding a grain to a randomly chosen site i, resulting
in an increase in height zi → zi + 1. When zi � z0 (where
z0 = 4 is a predefined threshold height), the site becomes
unstable and topples (relaxes) as zi → zi − 4. Furthermore,
each nearest neighboring site j gains one grain, leading to
z j → z j + 1. Toppling may induce instability in neighboring
sites, triggering a cascade of toppling until stability is restored,
with grains dissipating from the open boundary. This entire
toppling process constitutes an avalanche. New grains are
added for the next time step until the last avalanche concludes.
Over multiple time steps, the system reaches the critical state
characterized by recurrent configurations, identifiable through
the burning test [26].

Contrastingly, the toppling rule differs in the Abelian
Manna model, which introduces an element of randomness.
In this model, if zi � 2 at any site i, the site becomes

unstable and topples, reducing zi to zi − 2. The two grains
are then distributed randomly and independently among near-
est neighbors, with the possibility of selecting the same site
twice: z j → z j + 1. The remaining aspects of the Abelian
Manna model mirror those of the BTW model described
above.

B. Eigen Microstates

In the sandpile system with N sites, we extract the states of
the sites through simulations. By conducting measurements
over M time steps, we obtain an N × M matrix (M > N)
representing the state as S = (s1, s2, . . . , st , . . . , sM ), where
st = (s1t , s2t , . . . , sNt )T signifies the microstate of the system
at time step t , and sit is the number of topplings at site i during
time step t . This matrix S can be treated as a statistical ensem-
ble with dynamic microstates of the sandpile system. Utilizing
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FIG. 2. Evolution of the weights: (a) w1 and (b) w2 and w3 of the eigenensemble from the absorbing state to the critical state for the BTW
model with L = 32. (c) and (d) Similar to (a) and (b), but for the Manna model. Each ensemble matrix is calculated based on M = 5 × 105

from independent 5 × 105 realizations.

singular value decomposition (SVD), we decompose the
ensemble matrix as S = U · � · V T , where � is a N × N diag-
onal matrix with nonzero eigenvalues λ1 � λ2 · · · � λI · · · �
λN � 0. The corresponding eigenvectors are represented by
a M × N unitary matrix V = (v1, v2, . . . , vI, . . . , vN ) and a
N × N unitary matrix U = (u1, u2, . . . , uI, . . . , uN ), where
vI = (v1I , v2I , . . . , vMI )T and uI = (u1I , u2I , . . . , uNI )T .

Furthermore, we express the ensemble matrix S as [22]

S =
N∑

I=1

w
1/2
I SE

I , (1)

where SE
I is an N × M eigenensemble matrix of the sys-

tem with elements (SE
I )it = C1/2

0 uiIvt I . Here, the eigenvector
uI corresponds to the normalized eigen microstates, and
the eigenvector vI represents the normalized temporal eigen
microstates. The constant amplitude is defined as C0 =∑N

I=1 λ2
I = ∑M

t=1

∑N
i=1 s2

it , and wI = λ2
I /

∑N
I=1 λ2

I serves as
a weight associated with the probability of the eige-
nensemble SE

I in the statistical ensemble S. Further details
regarding the eigen microstates approach can be found in
Refs. [22–25].

For a given time step t , the avalanche size is denoted as
As(t ) = ∑N

i=1 sit . Consequently, the average avalanche size
over M steps is expressed as

〈As〉 = σ
1/2
0

N∑
I=1

w
1/2
I ũI ṽI , (2)

where σ0 = NC0
M , and the parameters ũI and ṽI are defined as

ũI = 1√
N

N∑
i=1

uiI , (3)

ṽI = 1√
M

M∑
t=1

vt I . (4)

Given
∑M

t=1 v2
t I = 1, the second moment of the avalanche size

is calculated as:

〈A2
s 〉 = σ0

N∑
I=1

wI ũ
2
I . (5)

In our study, we employ L = 16, 32, 64, 96, 128 and M =
5 × 105 to calculate the eigenensemble.
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FIG. 3. Spatial distributions of the rescaled eigen microstates u1L for the BTW model at the critical state with different system sizes:
(a) L = 32, (b) L = 64, and (c) L = 128. Correspondingly, (d)–(f) and (g)–(i) present the spatial distributions of u2L and u3L for the same
system sizes, respectively.

III. RESULTS

The simulations of the sandpile models, depicted in Fig. 1,
illustrate the transition from the absorbing state to the critical
state. In Figs. 1(a) and 1(b) (before the red dashed line),
when the average height is low, the system resides in the
absorbing state. Here, the average height increases proportion-
ally with the addition of grains to the system. Subsequently,
upon reaching the critical state, as evident in Figs. 1(a) and
1(b) (after the red dashed line), the average height stabilizes
and fluctuates around a specific value. Throughout the crit-
ical state, the system’s average energy remains constant for
many time steps, indicative of a balance between energy input
and dissipation. Both the BTW and Manna models exhibit a
comparable evolution, albeit with distinct critical heights, as
illustrated in Figs. 1(a) and 1(b).

An essential feature of SOC is its adherence to power-
law behavior. The Probability Density Functions (PDFs) of
avalanche sizes in subcritical and critical states are illus-
trated in Figs. 1(c) and 1(d). In the subcritical state, the
distribution of As exhibits a faster decay as As increases

compared to the critical state. A proposed PDF satisfies
P(As) = A−τs

s G(As/Asc), where τs represents a critical expo-
nent, and G(x) is a scaling function. The cutoff for the system,
denoted by Asc (∼LD), is determined by the system size,
where D = 2.75 is a critical exponent associated with the
fractal dimension [27]. Beyond the avalanche size Asc, the
PDF experiences a rapid decay. In Figs. 1(c) and 1(d), we
determine the exponents τs = 1.10 ± 0.07 and 1.17 ± 0.04
for the BTW model and the Manna model, respectively, with
L = 32. A correction factor (∼1/ ln L) can be applied to the
critical exponent τs. As L approaches infinity, τs converges to
1.27 for both models [19,28].

We proceed to derive eigenensembles and their associated
weights according to Eq. (1). The evolution of these weights,
from the absorbing state to the critical state, is presented in
Fig. 2. Notably, for both the BTW and Manna models, the
dominant eigen microstates emerges, linked with the ampli-
fied weight w1, as shown in Figs. 2(a) and 2(c). Upon reaching
the critical state, the substantial weight w1 above 0.3 stabi-
lizes, indicating the presence of a phase transition captured by
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FIG. 4. Similar to Fig. 3, but for the Manna model.

the eigen microstates. It is akin to observations in the Ising
model at the critical temperature [22].

Additionally, for the smaller weights w2 and w3 (almost
degenerate), we observe an incremental increase as the system
evolves toward the critical state, as demonstrated in Figs. 2(b)
and 2(d). However, it is noteworthy that the maximum values
of the weights w2 and w3 emerge earlier than that of w1. This
early emergence could potentially serve as an indicator for
detecting early warning signals of the critical state for those
systems that are not currently in a critical state but may be
approaching one.

Spatial distributions of the rescaled eigen microstates u1L,
u2L, and u3L at the critical state are illustrated in Fig. 3
for the BTW model. The first eigen microstates reveals the
universality and the presence of a giant cluster nearly match-
ing the size of the system, with its components increasing
from the boundary to the center of the system, as depicted
in Figs. 3(a)–3(c).

The second-largest eigen microstates displays two clus-
ters with opposite orientations, as seen in Figs. 3(d)–3(f).
In order to maintain uniformity in the distribution, we have
assigned positive values to the top area, considering that both
u2 and −u2 can represent the second eigenvector. Given that

the eigenvectors are orthogonal, the third-largest eigen mi-
crostates will be rotated by π/2 relative to the second-largest
eigen microstates, as shown in Figs. 3(g)–3(i). These observed
behaviors remain universal for different sizes. For the Manna
model, the results closely mirror those of the BTW model in
Fig. 4. Some differences are attributed to negligible random
noise factors inherent in the Manna model.

We then explore the temporal eigen microstates v1 at the
critical state with varying system sizes. Figures 5(a) and 5(c)
depict PDFs for the BTW model and the Manna model, re-
spectively. Since all components of v1 share the same sign
(positive or negative), we enforce them to be positive. Three
distinct regions emerge in the PDF of vt1. For very small vt1,
the PDF remains unaffected by the increased vt1 in Figs. 5(a)
and 5(c). In the medium range of vt1, the PDF exhibits power-
law decay with an exponent (∼τs). Furthermore, for large
vt1, the PDF rapidly decays, influenced by the system size in
Figs. 5(a) and 5(c).

Considering Eqs. (2) and (5), we can approximate 〈As〉 ∼
σ

1/2
0 w

1/2
1 ũ1ṽ1 and 〈A2

s 〉 ∼ σ0w1ũ2
1, as the first eigen mi-

crostates is dominant. Consequently, we obtain 〈As〉2/〈A2
s 〉 ∼

ṽ2
1 . For both the BTW model and the Manna model, the

kth moment of the avalanche size follows 〈Ak
s 〉 ∝ LD(1+k−τs )
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[1], resulting in 〈As〉2/〈A2
s 〉 ∝ LD(1−τs ) and ṽ1 ∝ LD(1−τs )/2. To

establish the scaling relation, we have
1√
M

ṽ1 =
∫

V
vt1PDF (vt1; L)dvt1

=
∫

V
vt1L−τsD/2F (vt1/L

D
4 )dvt1

=
∫

X
(xL

D
4 )L−τsD/2F (x)L

D
4 dx

= LD(1−τs )/2
∫

X
xF (x)dx (x = vt1/L

D
4 )

∝ LD(1−τs )/2. (6)

Based on Eq. (6), we rescale the PDF of vt1 with the
critical exponents τs = 1.27 and D = 2.75 in Figs. 5(b) and
5(d) for the BTW model and the Manna model, respectively.
For the medium and large range of vt1, the curves collapse
across different system sizes. However, scaling breaks for
very small vt1. We speculate that the inherent fluctuation of
the eigenvector related to the ratio N/M [29] rather than the
critical behavior of the system influences the very small vt1.

Next, we study the impact of system size on critical state
parameters. The dependence of weight w1, σ0, and ṽ1 on
system size is illustrated in Fig. 6. We observe w1 ∝ Lα and

σ0 ∝ Lβ in Figs. 6(a) and 6(b), where α and β are critical
exponents detailed in Table I. Additionally, Fig. 6(c) demon-
strates ṽ1 ∝ LD(1−τs )/2 with D(1 − τs)/2 = −0.31 ± 0.01 and
−0.39 ± 0.01 for the BTW model and the Manna model,
respectively.

By Eq. (2) and Eq. (5), we find 〈A2
s 〉/〈As〉 ∼ √

σ0w1ũ1/ṽ1.
Since ũ1 remains constant with system size,

√
σ0w1/ṽ1 ∝ LD. (7)

Figure 6(d) depicts the outcome, with the estimated criti-
cal exponent D presented in Table I. We also estimate the
critical exponent τs based on the results of Figs. 5(c) and
5(d), as indicated in Table I. The estimated critical exponents
exhibit slight variations between the BTW model and the
Manna model at the critical state. Notably, the estimated τs

TABLE I. Estimated critical exponents based on the first eigen
microstates for both the BTW model and the Manna model at the
critical state.

α β D τs

BTW 0.12 ± 0.01 4.27 ± 0.05 2.50 ± 0.03 1.25 ± 0.05
Manna 0.09 ± 0.01 4.50 ± 0.03 2.69 ± 0.02 1.29 ± 0.03
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√
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derived from the first eigen microstates is closer to 1.27 than
the estimated value from the PDF of avalanche size without
corrections.

Alternatively, we can define the ensemble matrix as Sa

with the element sa
it representing the toppling area (multiple

topples at the same site will only be counted once during
a time step). Similarly, we obtain the eigenensemble and
eigen microstates for the toppling area. Thus, the critical
exponents Da and τa are estimated based on the first eigen
microstates. For the toppling area, there is the same rela-
tion 〈Ak

a〉 ∝ LDa (1+k−τa ). Regarding the parameter Ca
0 , we have

Ca
0 = ∑M

t=1

∑N
i=1(sa

it )
2 = 1

M 〈Aa〉 (sa
it can only be one or zero),

implying that σ a
0 ∝ LDa(2−τa )+2. Therefore, we deduce the re-

lation wa
1L2 ∝ LDa from Eq. (7).

Figure 7(a) displays the results. The critical exponents
Da = 2.05 ± 0.01 and 2.04 ± 0.01 are estimated for the
BTW model and the Manna model, respectively, both closely
approaching two since avalanches in two dimensions are
compact [27]. Thus, the critical exponent γsa = D/Da be-
tween the toppling number and area is 1.22 ± 0.04 and 1.32 ±
0.03 for the BTW model and the Manna model, respectively.
Previous studies suggested that both γsa for the two models are
around 1.35 or even smaller for BTW [19,20]. Based on the
dependence of ṽa

1 on the system size in Fig. 7(a), we can esti-
mate the critical exponent τa = 1.18 ± 0.01 and 1.32 ± 0.01

for the BTW model and the Manna model, respectively. The
obtained exponent is smaller for the BTW model, with its
exact value suggested to be 4/3 [28].

IV. CONCLUSIONS

In conclusion, our investigation into the eigen microstates
of SOC through the study of sandpile models, particularly the
BTW and Manna models, has revealed intriguing findings.
We observed the emergence of dominant eigen microstates
associated with amplified weights as these systems transi-
tioned from an absorbing state to a critical state. This behavior
mirrors the phase transition phenomena observed in other
critical systems, such as the Ising model. Notably, the non-
dominant weights, specifically w2 and w3, unveil themselves
as potential indicators for detecting early warning signals of
the critical state.

Spatial analyses of normalized eigen microstates di-
vulge avalanche characteristics across various spatial scales,
from the entire system down to half scale or smaller. The
examination of PDFs for the components of the tempo-
ral eigen microstates v1 imparts critical behavioral insights.
The establishment of scaling relations, coupled with rescaled
PDFs, demonstrate collapse for medium and large vt1 values.
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Moreover, we introduced an analysis of finite size effects
on the first eigen microstates to estimate critical exponents
for both the BTW and Manna models at the critical state,
i.e.,

√
σ0w1/ṽ1 ∝ LD and ṽ1 ∝ LD(1−τs )/2. Our investigation

extended further to the toppling area, where the critical ex-
ponent γsa = D/Da between the toppling number and area
revealed values of 1.22 ± 0.04 and 1.32 ± 0.03 for the BTW
and Manna models, respectively.
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