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Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine
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We study quantum Otto thermal machines with a two-spin working system coupled by anisotropic interaction.
Depending on the choice of different parameters, the quantum Otto cycle can function as different thermal
machines, including a heat engine, refrigerator, accelerator, and heater. We aim to investigate how the anisotropy
plays a fundamental role in the performance of the quantum Otto engine (QOE) operating in different timescales.
We find that while the engine’s efficiency increases with the increase in anisotropy for the quasistatic operation,
quantum internal friction and incomplete thermalization degrade the performance in a finite-time cycle. Further,
we study the quantum heat engine (QHE) with one of the spins (local spin) as the working system. We show
that the efficiency of such an engine can surpass the standard quantum Otto limit, along with maximum power,
thanks to the anisotropy. This can be attributed to quantum interference effects. We demonstrate that the enhanced
performance of a local-spin QHE originates from the same interference effects, as in a measurement-based QOE
for their finite-time operation.

DOI: 10.1103/PhysRevE.109.044128

I. INTRODUCTION

Recent advancements in experimental techniques have
made it possible to measure and control systems at the level of
a single atom and molecule. This has accelerated as the size
of quantum devices shrinks rapidly. Consequently, it becomes
imperative to understand the thermodynamics of quantum
systems and the thermal machines (e.g., heat engines, refriger-
ators, heaters, accelerators) at the atomic level [1,2]. Several
studies have been done in this direction [3], and it has been
shown that nonclassical features, viz., quantum coherence
[4–9], quantum correlation and entanglement [10–16], and
nonthermal baths [17–21] can be exploited to enhance the
performance of quantum thermal machines (QTMs).

To make a QTM useful for various practical applications of
quantum technologies, one must have a nonvanishing power.
Operating a quantum heat engine (QHE) quasistatically leads
to null power generation and, therefore, finite-time operation
of the QTMs becomes meaningful in this regard. In fact,
such finite-time operation may exploit genuine non-classical
properties in their performances [22,23]. It has been shown
that the non-Markovian character of dynamics can speed
up the control of a quantum system, thereby improving the
power output of a thermal machine [24,25]. Also, quantum
coherence can be harnessed to increase the power of QHEs
[4,7,9,17,26] and the efficiency at maximum power [27], as
well. Furthermore, the role of quantum internal friction on
the work extraction and performance of the QHEs has been
investigated [23,28–32].

The thermodynamics of spin systems has gained much
interest due to its relevance as the basic building block
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for quantum computing and quantum information processing
[33,34]. There have been a plethora of works on thermody-
namics of coupled spins, particularly as a working system
for QTMs [22,29,35–44]. The coupling strength between the
spin can serve as an additional control parameter for the cycle
[45]. The coupling between spins can improve the engine’s
efficiency [35]. Entanglement and correlation between spins
also play crucial roles [11,13,19,46]. The Hamiltonian of cou-
pled spins can be easily built using state-of-the-art quantum
technology, namely, trapped ions, quantum dots, etc. [47].
There are several proposals on how we can build Heisenberg’s
anisotropic spin interaction in the laboratory [48,49]. This
makes a potential promise that the QHE can be tested in
experiments using spins.

The anisotropy in the coupling between the spins adds
further flexibility. The effect of such anisotropy on entan-
glement [50–54], teleportation [55–57], and the tripartite
uncertainty bound [58] has been studied. Recently, the role
of anisotropy in quantum batteries has been studied [59–61].
It was shown that the maximum power output of this bat-
tery can be enhanced by maintaining a low, yet nonzero
anisotropy. However, there are only a few studies on the ef-
fects of anisotropy on the performance of QTMs, using, e.g.,
the LMG model [36], the Heisenberg XYZ model with the
DM interaction [62], and measurement-assisted Heisenberg
XY spin model [22]. All these works discuss the quasistatic
performance of the QTMs. On the contrary, in this paper, we
aim to investigate finite-time performance of the QHEs in the
presence of the anisotropy.

Particularly speaking, we will study the performance
of a quantum Otto engine (QOE), operating between two
heat baths, with a two-spin working system coupled by
Heisenberg’s anisotropic XY interaction. Our investigation
focuses on different durations of the cycle: (a) the quasistatic
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operation, (b) the nonadiabatic unitary stages, and (c) the
incomplete thermalization in the hot isochoric stage. For
anisotropic interaction between the spins, the Hamiltonian
does not commute at two times, which introduces genuine
quantum features in the finite-duration operation of the cycle
[32]. We will investigate how anisotropy affects the engine’s
performance both for the quasistatic and finite-time operation
of the engine. We show that the efficiency increases with
the increase of the anisotropy for the quasistatic operation.
For the finite-time operation, we show that irreversibility,
measured by irreversible work, increases with the increase of
the anisotropy, which in turn reduces the performance of the
QOE.

Then we will consider a single-spin working system which
is a part of the global two-spin system. We will call this
single-spin a local system. A heat engine using one of the
spins of the pair becomes relevant in a situation when the other
spin is inaccessible or it is more challenging to manipulate it.
We aim to investigate how the performance of a local-spin
QHE differs from that of a single-spin QOE uncoupled to
any other spin. We ask the following question: Can we get
any thermodynamic advantage under such a local scenario,
and our answer is affirmative. Several studies have been con-
ducted on QHEs and refrigerators that function with a local
system [35,37,39,41,63–67]. These studies primarily focused
on studying the quasistatic operation, and also employed the
Hamiltonian that commutes at different times. We want to
explore how the anisotropic interaction and, therefore, the
noncommuting nature of the Hamiltonian affects the perfor-
mance of a local spin QHE. We show that for the quasistatic
operation of the engine, local extractable work is more than
for the case of a global system, and also the efficiency of
a local spin QHE becomes more than that of a single spin
QOE. We also show that in the finite-time operation, the
efficiency can be enhanced further than the quasistatic limit,
and the maximum power is associated with the enhanced
efficiency.

The paper is organized as follows. We present our QHE
model and implementation of the cycle in Sec. II. In Sec. III,
we discuss the various limiting cases of duration of the QHE
operation. Further, in Sec. IV, we explore the QHE operation
using a local spin as the working system. In Sec. V discusses
potential experimental implementations of our QHE model.
Finally, we conclude our work in Sec. VI.

II. IMPLEMENTATION OF THE QUANTUM OTTO CYCLE

A. System model

We consider a system of two spins coupled by an
anisotropic XY interaction, Jx �= Jy, of Heisenberg type in
a transverse time-dependent magnetic field B(t ). Here, Jx =
J (1 + γ ) and Jy = J (1 − γ ) represent the coupling strengths
along the x and y axes with the anisotropy parameter 0 � γ �
1. The Hamiltonian that describes this system can be written
as (in the unit of h̄ = 1) [22,30,68]

Ĥ (t ) = Ĥ0(t ) + ĤI , (1)

where Ĥ0 = B(t )(σ̂ z
1 + σ̂ z

2 ) represents the free part, ĤI =
J[(1 + γ )σ̂ x

1 σ̂ x
2 + (1 − γ )σ̂ y

1 σ̂
y
2 ] represents the interaction

FIG. 1. Schematic diagram of the quantum Otto cycle in the
entropy (S) vs magnetic field (B) plane, when it functions as a heat
engine. In other types of thermal machines, the direction of heat
flows and work differ.

between two spins with the coupling constant J , J > 0
(J < 0) represents the antiferromagnetic (ferromagnetic) con-
figuration, and σ̂

x,y,z
i are the Pauli spin operators for the

ith spin (i ∈ 1, 2). For γ = 0, the above Hamiltonian re-
duces to the isotropic XX model and γ = 1 gives rise to
the transverse field Ising model [50]. Because [Ĥ0, ĤI ] �=
0 for γ �= 0, it renders [Ĥ (t1), Ĥ (t2)] �= 0, that introduces
a true quantum feature in the operation of the finite-time
QHE. This also reflects the non-Abelian nature of quantum
algebra [22,32].

The eigenvalues and the corresponding eigenvectors of the
total Hamiltonian [Eq. (1)] are given by

|ψ0,3〉 = 1√
2

(
B ∓ K√
K2 ∓ BK

|11〉 + γ J√
K2 ∓ BK

|00〉
)

,

E0,3 = ∓2K,

|ψ1,2〉 = 1√
2

(∓|10〉 + |01〉), E1,2 = ∓2J, (2)

where K =
√

B2 + γ 2J2.

B. Quantum Otto cycle and thermodynamic quantities

In the following, we will discuss the implementation of the
four stages of the quantum Otto cycle. The schematic diagram
of the cycle is shown in Fig. 1.

1. Unitary expansion (A → B)

We assume that the cycle begins with the working sys-
tem in thermal equilibrium with the cold bath at temperature
TL = 1/βL(kB = 1) at point A. The corresponding thermal
state of the system is ρ̂A = e−βLĤ1/Z1, with Ĥ1 = Ĥ (0) and
Z1 = Tr(e−βLĤ1 ). During this stage, the working system stays
decoupled from the cold bath, and the external magnetic field
is changed from BL to BH (> BL ) following the protocol
B(t ) = BL + (BH − BL )(t/τ ), where 0 � t � τ and τ is the
duration of changing the magnetic field from BL to BH or vice
versa. So at point B, the state of the system can be obtained
as ρ̂B = Û (τ )ρ̂AÛ †(τ ), where Û (τ ) = T e−i

∫ τ

0 dtĤ exp(t ) is the
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FIG. 2. Variation of the thermodynamic quantities W , QH , and QL as a function of ratio of the temperatures TH/TL of the hot and cold baths
for different values of the anisotropy parameters (a) γ = 1 and (b) γ = 0. Symbols R, H, A, and E represent refrigerator, heater, accelerator,
and engine, respectively. The other parameters are BL = 1, BH = 4, J = 1, TL = 1.

time evolution operator, T indicates the time ordering, and
Ĥ exp(t ) is the time-dependent Hamiltonian [Eq. (1)] with the
control protocol given above. The amount of work done by
the system in this stage is given by W1 = 〈EB〉 − 〈EA〉, where
〈EA〉 = Tr(ρ̂AĤ1) and 〈EB〉 = Tr(ρ̂BĤ2) represent the internal
energies of the system at A and B, and Ĥ2 = Ĥ (τ ) represents
the Hamiltonian of the system at B.

2. Isochoric heating (B → C)

In this stage, the working system is connected with a heat
bath at temperature TH (> TL ), and the external magnetic
field remains fixed at a value BH , so the Hamiltonian of the
system remains fixed. Therefore, there is no work in this stage.
Also, the system gets completely thermalized at a timescale
th, which is much larger than the relaxation time trelax. This
means, for th � trelax, the system is incompletely thermal-
ized in this process. After complete thermalization, the state
of the working system is ρ̂C = e−βH Ĥ2/Z2 at a temperature
TH = 1/βH (kB = 1), with Ĥ2 = Ĥ (τ ) and Z2 = Tr(e−βH Ĥ2 ).
In the case of incomplete thermalization, the state of the
system can be obtained by solving the master equation, as
described later in Sec. III C. The system absorbs some amount
of heat in this stage which can be calculated as, QH = 〈EC〉 −
〈EB〉, where 〈EC〉 = Tr(ρ̂CĤ2) is the internal energy of the
system at C.

3. Unitary compression (C → D)

In this stage, the working system is decoupled from the
hot bath and the external magnetic field is changed from
BH to BL following the protocol B(τ − t ), where 0 � t � τ .
In this process, the state of the working system changes to
ρ̂D = V̂ (τ )ρ̂CV̂ †(τ ), where V̂ (τ ) = T e−i

∫ τ

0 dtĤ com(t ) is the time
evolution operator with Ĥ com(t ) = Ĥ exp(τ − t ). The amount
of work done on the system in this stage can be obtained
as W2 = 〈ED〉 − 〈EC〉, where 〈ED〉 = Tr(ρ̂DĤ1) represents the
internal energy of the system at D.

4. Isochoric cooling (D → A)

In this stage, the working system is coupled to the cold bath
at a temperature TL, and the external magnetic field remains
fixed at BL. If the process is carried out for a time tc, then
the case tc � trelax represents the timescale when the system
reaches thermal equilibrium with the heat bath at the end of
this process. The state of the system comes back to the initial

state ρA, and the system releases some amount of heat in this
stage, which can be obtained as QL = 〈EA〉 − 〈ED〉.

Operation of the quantum Otto cycle
as different thermal machines

We next identify the parameter zones for which the two-
spin works as a QHE. It is known that the the same system
may work as different types of QTMs for different parameter
zones [69,70]. We show in Fig. 2 how the work and heat vary
with respect to the ratio TH/TL, in the presence and absence
of anisotropy. From the relative signs of the work and heat,
as follows, we find that the cycle can act as a heat engine, a
refrigerator, an accelerator, or a heater for different regimes of
TH/TL.

(1) Engine: QH > 0, QL < 0,W < 0.

(2) Refrigerator: QH < 0, QL > 0,W > 0.

(3) Accelerator: QH > 0, QL < 0,W > 0.

(4) Heater: QH < 0, QL < 0,W > 0.

In our paper, we will mainly focus on the heat engine
operation. Total work in a complete cycle of a QHE can be
obtained as W = W1 + W2 = −(QH + QL ). So, its efficiency
is defined as

η = −W1 + W2

QH
= QH + QL

QH
.

.

III. OPERATION OF THE HEAT ENGINE
IN DIFFERENT TIMEFRAMES

In this section, we will discuss the various limiting cases of
duration over which the engine can be operated.

A. Quasistatic operation

We first consider that two unitary stages (expansion and
compression) in the cycle are carried out over a long time
such that these stages are adiabatic, i.e., there is no transition
between two energy eigenstates. Two isochoric stages are also
carried out for long times, so the system gets fully thermalized
at the end of these stages. Such a timescale of the operation
corresponds to the quasistatic cycle.

The analytical expressions of the internal energies (for
derivation, see Appendix A) of the working systems at A, B,
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FIG. 3. (a) Variation of efficiency η as a function of the ratio of
the temperatures TH/TL of the hot and cold baths. (b) Parametric plot
of efficiency versus work as a function of anisotropy γ when TH =
10. The γ varies from 0 to 1 from the left to the right. The other
parameters are the same as in Fig. 2.

C, and D for a quasistatic cycle are given by

〈EA,B〉 = −4KL,H
u1

Z1
− 4J

v1

Z1
,

〈EC,D〉 = −4KH,L
u2

Z2
− 4J

v2

Z2
,

(3)

where KL,H =
√

B2
L,H + γ 2J2 and Z1,2 = 2 cosh(2KL,HβL,H )

+ 2 cosh(2JβL,H ) are the partition functions. Also, u1 =
sinh(2KLβL ), u2 = sinh(2KHβH ), v1 = sinh(2JβL ), and v2 =
sinh(2JβH ).

The thermodynamic quantities of the cycle can be obtained
using Eq. (3), and the work in a complete cycle is given by

W = W1 + W2 = 4(KL − KH )

(
u1

Z1
− u2

Z2

)
. (4)

Also, heat absorption in the isochoric heating process is given
by

QH = 4KH

(
u1

Z1
− u2

Z2

)
+ 4J

(
v1

Z1
− v2

Z2

)
. (5)

Therefore, the expression of efficiency can be obtained as

η = −W

QH
= 1 − KL(u1 − u2) + J (v1 − v2)

KH (u1 − u2) + J (v1 − v2)
. (6)

From the above expression, we observe that the efficiency
depends on both bath temperatures TH and TL, the magnetic
fields BL and BH , and the anisotropy parameter γ . Note that
for a measurement-based QOE in a coupled two-spin system
[22], the hot bath is replaced by the projective measurements
and the cold bath is retained. In this case, the quasistatic
efficiency does not depend on the temperature of the cold bath.

In Fig. 3(a), we show the variation of the efficiency η with
TH/TL. We find that η monotonically increases and saturates
with increase in TH/TL. To operate the engine with higher
efficiency, we choose TH/TL = 10 in the remaining part of
the paper. Further, from the parametric plot of efficiency as
a function of work [see Fig. 3(b)], we observe that they both
increase with γ . This is contrary to the measurement-based
QOE, where quasistatic efficiency decreases with the increase
of γ [22]. So, we can adjust the parameters of the cycle to
achieve a higher-efficiency performance of the engine.

We can also investigate the correlation between entropy
and efficiency, which can provide insight into the physics
behind our result. As the stages AB and CD are isentropic,

FIG. 4. Variation of entropy SB of the global two-spin system at
point B of the cycle as a function of the anisotropy parameter γ , for
the quasistatic performance of the engine. We have chosen TH = 10
and the other parameters are the same as in Fig. 2.

the von Neumann entropy S = −Tr(ρ ln ρ) of the working
system remains unchanged during these stages, i.e., SB = SA

and SD = SC , where S j represents the entropy of the working
system at j ∈ A, B,C, D. For a working system with larger
anisotropy γ , the decrease in SA(= SB) (see Fig. 4) is much
larger than the change in SC (= SD). Therefore, the entropy
difference SC − SB (and the heat input QH ) during the iso-
choric stage BC is larger for larger γ . During the stage AB,
the effect of γ is more prominent because this stage occurs at
a lower temperature TL. The change in the average energy dur-
ing this stage is negative, because, by increasing the magnetic
field (from BL to BH ), the eigenstates get further separated and
the ground-state energy becomes more negative. This negative
change in the average energy is identified as the work done by
the system. During the other unitary stage CD, the work is
done on the system. However, the effect of γ is not so promi-
nent, as the higher temperature TH obscures the small changes
in eigenvalues made by changing γ . More importantly, the
total work done increases more rapidly than QH does, with the
increase in γ . Therefore, their ratio, the efficiency η, increases
with γ .

B. Time-dependent unitary processes

We next consider that two unitary stages (expansion and
compression) are time dependent. Nonadiabaticity appears for
the shorter duration of these stages. We also assume that the
isochoric stages lead to complete thermalization.

1. Thermodynamic quantities in terms of transition probability

In such a scenario, the expressions of the internal energies
(for derivations, see Appendixes A and B) of the working
systems at A, B, C, and D of the cycle are given by

〈EA,C〉 = −4KL,H
u1,2

Z1,2
− 4J

v1,2

Z1,2
,

〈EB,D〉τ = −4KH,L (1 − 2ξτ )
u1,2

Z1,2
− 4J

v1,2

Z1,2
,

(7)

where ξτ = |〈ψ
(2)
0 |Û (τ )| ψ (1)

3 〉 |2 = |〈ψ (2)
3 |Û (τ )|ψ (1)

0 〉|2 =
|〈ψ (1)

3 |V̂ (τ )| ψ (2)
0 〉|2 = |〈ψ

(1)
0 | V̂ (τ )| ψ (2)

3 〉|2 represents the
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FIG. 5. Variation of (a) transition probability ξτ between two
energy eigenstates, (b) irreversible work W Ir

τ , (c) work in a complete
cycle Wτ , and (d) efficiency ητ as a function of duration τ of the
unitary stages, for different values of γ . We have chosen TH = 10,
while the other parameters are the same as in Fig. 2.

transition probability between the associated energy levels.
Here the suffix τ represents that it is a function of τ .

So, the work in a complete cycle can be obtained as

Wτ = 4KL

[
u1

Z1
− (1 − 2ξτ )

u2

Z2

]
− 4KH

[
(1 − 2ξτ )

u1

Z1
− u2

Z2

]
.

(8)

Also, heat absorbed in the isochoric heating stage is given by

Qτ = 4KH

[
− u2

Z2
− (1 − 2ξτ )

u1

Z1

]
+ 4J

[
− v2

Z2
+ v1

Z1

]
.

(9)
Therefore, the efficiency ητ = −Wτ /Qτ is given by

ητ = 1 − KL[u1 − (1 − 2ξτ )u2] + J[v1 − v2]

KH [(1 − 2ξτ )u1 − u2] + J[v1 − v2]
. (10)

The variation of the transition probability ξτ as a function
of τ is displayed in Fig. 5(a). This dependence of ξτ on τ

is mapped into that of ητ via Eq. (10) and is displayed in
Fig. 5(d). A similar plot for Wτ is shown in Fig. 5(c). These
plots are produced using the QUTIP [71] package. The work
and efficiency increase with τ and eventually reaches the
adiabatic (quasistatic) value, which is largest from γ = 1.

As the Hamiltonian does not commute at different times,
the system cannot follow the instantaneous energy eigen-
states. This induces a nonadiabatic transition between the
instantaneous eigenstates of the Hamiltonian when the sys-
tem is driven by an external control parameter [here B(t )],
in finite-time unitary stages. Therefore, these stages become
nonadiabatic. In this case, the extractable work in a complete
cycle is reduced. In fact, an extra amount of work, which can
be represented by the irreversible work, needs to be performed
on the system to drive it for finite duration. Note that this
irreversible work is defined as

W Ir
τ = Wτ→∞ − Wτ , (11)

where Wτ→∞ is the quasistatic work [see Eq. (5)]. This irre-
versible work has a finite value for finite τ . Once the driving
process is completed and the system is coupled with the cold
bath, the system dumps more heat into the cold bath. This
degrades the overall performance of the engine in very-short-
duration unitary stages, as can be seen in Figs. 5(c) and
5(d)]. This refers to the so-called quantum internal friction
[28–32,72–74] and is quantified by W Ir

τ . The irreversible work
(W Ir

τ ) represents irreversibility [31] in the engine performance,
which is also linked with entropy production in the system
during these driven stages. We can see that the entropy (von
Neumann entropy remains unchanged in a unitary process),
which is defined in terms of the occupation probabilities
Pn of the energy levels of a Hamiltonian Ĥ as [75] SĤ =
−∑

n Pn ln Pn of the system at B and C increases to a value
above the quasistatic limit, if we drive the system for finite
duration.

The variation of W Ir
τ with respect to τ is shown in Fig. 5(b).

The plot indicates that in the short-duration limit (nonadi-
abatic regime), the more the anisotropy (γ ), the more the
irreversible work. Therefore, the irreversibility increases with
the increase of anisotropy (γ ). For γ = 1, the system becomes
an Ising spin model, which gives rise to maximum irreversibil-
ity in finite-time operation. On the other hand, for γ = 0, the
system becomes a Heisenberg XX model which gives rise to
a reversible operation of the cycle, irrespective of the time
duration of the unitary processes.

In the adiabatic limit, i.e., τ → ∞, there is no transition
between the instantaneous energy eigenstates. Therefore, we
can write ξτ = |〈ψ (2)

0 |Û (τ )|ψ (1)
3 〉|2 τ→∞= 0, such that Wτ = W ,

W Ir
τ = 0, and ητ = η. Therefore, the expression of the qua-

sistatic efficiency [Eq. (6)] is recovered by putting ξτ = 0 in
the expression of the finite time efficiency [Eq. (10)].

C. Time-dependent hot isochoric process

Next, we choose the hot isochoric stages to be time de-
pendent [23,76]. Therefore, we have different thermalization
scenarios of the working system depending on the time limit
of this process. In the case th � trelax, the system is completely
thermalized. For shorter th, incomplete thermalization occurs
and is expected to affect the performance of the QHE.

In this case, the states of the working system at points
A and B can be represented by the expressions (see Ap-
pendix A). But, to determine the state at point C, we need to
solve the master equation (see below) and that, at D, the von
Neumann equation becomes useful.

1. Bath model

To describe the dynamics of the system under a heat bath,
the Lindblad master equation in the interaction picture can be
obtained as [19,22,77]

∂ρ̂

∂t
= i[ρ̂, Ĥ (t )] +

∑
i=1,2

[
�(ni + 1)

(
X̂iρ̂X̂ +

i − 1

2
X̂ +

i X̂iρ̂

− 1

2
ρ̂X̂ +

i X̂i

)
+ �ni

(
X̂ +

i ρ̂X̂i − 1

2
X̂iX̂

+
i ρ̂ − 1

2
ρ̂X̂iX̂

+
i

)]
,

(12)
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FIG. 6. Variation of (a) heat absorbed by the system QHt ,
(b) work in a complete cycle Wt , (c) trace distance D, and (d) effi-
ciency of the QHE as a function of th, for different values of γ . We
have chosen � = 0.1, TH = 10, while the other parameters are the
same as in Fig. 2.

where we have considered that only one spin of the cou-
pled two-spin system is interacting with a heat bath at a
temperature T . The density matrix ρ represents the state of
the system and the Hamiltonian Ĥ (t ) is given in Eq. (1).
Also, X̂i represents the jump operators and their exact forms
are given below. The sum over i represents the number of
transitions in the system in the presence of the heat bath,
and the thermal photon number distribution in the bath at the
transition frequencies are n(ωi ) = [exp( h̄ωi

kT ) − 1]−1. Here, �

is the spontaneous decay rate of the system.
The jump operators of the system when only the first

spin interacts with the heat bath via σ x operator are given
by [22,77]

X1,2 = 1

2

(
B + k ∓ γ J√

k2 + Bk
|ψ1,2〉〈ψ3| + B − k ± γ J√

k2 − Bk
|ψ0〉〈ψ2,1|

)
.

(13)

They signify transitions between the two energy eigenstates,
involving the energy differences h̄ω1 = 2k + 2J and h̄ω2 =
2k − 2J , respectively. Note that the entire two-spin system
gets thermalized through the interaction of one spin with the
bath. If both spins interact with the bath, we need to consider
jump operators for another spin as well and the corresponding
dissipator in the master equation. Then the thermalization
time would be shorter than the single spin interaction, how-
ever, keeping the essential physics the same.

To understand the thermalization of the working system,
we next calculate the trace distance D(ρ, σ ) = 1

2 Tr |ρ − σ |
[76] between two states ρ, given by Eq. (A1) and σ , which
is its time-evolved form obtained by solving Eq. (12). The
plot of this trace distance with respect to the duration th of
the isochoric process is shown in Fig. 6(c). We found that the
thermalization slows down for larger γ [22]. Note that here
D = 0 represents a complete thermalization.

FIG. 7. Schematic diagram of the quantum Otto cycle on the
entropy S versus magnetic field B plane when it functions as a heat
engine. We consider a single local spin as a working system when
the coupled two-spin global system is operated in the Otto cycle.

The plots of the heat absorbed, QHt , by the working system
from the hot bath and the work done in a complete cycle as a
function th are shown in Figs. 6(a) and 6(b). These plots show
that QHt increases with the increase of th and then reaches
a steady value when the system is completely thermalized.
Also, with the increase in QHt , the system has more energy
to perform work in a complete cycle; therefore, the work
increases with th, and saturated for larger th.

The plot of the efficiency ηt with respect to th is shown
in Fig. 6(d). For the lower value of γ , the work Wt increases
slower than the significant increase of QHt , leading to a slower
increase in ηt . For γ > 0.85, in the very short value of th �
0.1, Wt increases significantly rather than the QHt , which gives
rise to a sudden increase in efficiency and a maximum in
efficiency. For larger th, both QHt and Wt saturate and the
efficiency ηt saturates to its quasistatic value for all values of
γ (see Sec. III A).

Similar to the time-dependent hot isochoric stages, we can
operate the engine under the condition that the hot isochoric
stage is complete, while the cold isochoric stage is time de-
pendent, executed in a time tc. In this case, we would also find
that the thermalization time increases with the increase of γ .
All the thermodynamic quantities (heat, work, and efficiency),
similar to the time-dependent hot isochoric stage, gradually
increase with tc before reaching their quasistatic values. But
here, the cycle does not operate as a heat engine for smaller
values of tc, and the timescale of tc over which the cycle does
not operate as an engine increases further with γ .

IV. HEAT ENGINE OPERATION OF A LOCAL SYSTEM

In the previous section, we considered that the coupled
two spin is operated in the quantum Otto cycle as illustrated
in Sec. II B. In this section, we will consider a single spin,
which is a part of the global system, as a working system
(see Fig. 7). The primary goal is to investigate how the HE
operation with a local spin differs from a QOE operating with
a single-spin which is not coupled to any other spin. We want
to illustrate the thermodynamic benefits of a local approach in
QHE operation.
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QHEs and refrigerators that function with local sys-
tems have received significant attention in recent studies
[35,37,39,41,63–67]. These studies primarily focused on ana-
lyzing the quasistatic operation of the cycle and also employed
the Hamiltonian that commutes at different times. In contrast,
our Hamiltonian does not commute at different times [see
Eq. (1)] which may give rise to some unique characteristics
[22] in the finite time behavior of the QHE operating with
a local spin working system. We will next explore how the
noncommuting nature of the Hamiltonian impacts the perfor-
mance of a local spin QHE.

The states of the local spin can be obtained by tracing out
the other spin from the state of the global two-spin system at
A, B, C, and D of the cycle (see Sec. II B), which will give
us the states of the local spin. If the states of the global two-
spin system are represented by ρ j , where j ∈ A, B,C, D (see
Appendixes A and B), then the reduced density matrices for
the first spin are given by

ρ jL = 〈02|ρ j |02〉 + 〈12|ρ j |12〉,
where subscript 2 represents tracing out the second spin.
Therefore, the internal energies of the local spin can be ob-
tained as 〈Ej〉L = tr(HjLρ jL ), where H1L = BLσz for j ∈ A, D
and H2L = BHσz for j ∈ B,C represent the Hamiltonian of the
local spin.

Thermodynamic quantities of a local spin can be defined in
a similar way as that of the global system (see Sec. II B). Heat
absorbed in the isochoric heating process is given by QHL =
〈EC〉L − 〈EB〉L. The work in the unitary expansion is defined
as W1L = 〈EB〉L − 〈EA〉L, and that in the unitary compression
is defined as W2L = 〈ED〉L − 〈EC〉L, so the work in a complete
cycle is WL = W1L + W2L.

A. Quasistatic operation of the cycle

Let us consider that the cycle (see Sec. II B) for the global
system is carried out quasistatically, therefore, two unitary
stages are adiabatic, and the system is completely thermalized
in two isochoric stages. So, the expressions (for derivation,
see Appendix E) of the internal energies for the local spin are
given by

〈EA,D,B,C〉L = −2BL,L,H,H (1 − a2
L,L,H,H )

u1,2,1,2

Z1,2,1,2
, (14)

where aL,H = BL,H −KL,H√
K2

L,H −BL,H KL,H
.

Thermodynamic quantities of the local spin are given by

WL = 2
[
BL

(
1 − a2

L

) − BH
(
1 − a2

H

)]( u1

Z1
− u2

Z2

)
,

QHL = 2BH
(
1 − a2

H

)( u1

Z1
− u2

Z2

)
. (15)

1. Comparison between global and local work extraction

Now, to find the potential figure of merit of the local ap-
proach, we will compare the local work extraction with the
global work extraction for the two-spin system. To do that,
we will study the quantity WG − 2WL, where WG [Eq. (5)]
represents the work for the global two-spin system and WL

[Eq. (15)] represents the work for a local spin. The factor of

FIG. 8. On the left axis, variation of the work difference WG −
2WL as a function of anisotropy parameter γ . On the right axis, a
variation of efficiency for a local system as a function of γ . The
efficiency of a single spin system QOE is 0.75 for BL = 1, BH = 4.
We have chosen TH = 10 and the other parameters are the same as in
Fig. 2.

2 is included to consider the contribution from the two local
spins. The quantity WG − 2WL can be calculated as

WG − 2WL = 4
[
(KH − BH ) − (KL − BL ) + (

BH a2
H − BLa2

L

)]

×
(

sinh 2KLβL

Z1
− sinh 2KHβH

Z2

)
. (16)

The variation of WG − 2WL with respect to γ is shown in
Fig. 8. The plot shows that WG < 2WL if the two spins are cou-
pled by anisotropic interaction. For the isotropic interaction,
i.e., in the limit of γ → 0, KH → BH , KL → BL, a2

H → 0,
and also a2

L → 0, so WG = 2WL. The case γ > 0 gives rise
to (KH − BH ) < (KL − BL ) and also a2

H < a2
L, so WG < 2WL,

i.e., the sum of the local work from each local spin surpasses
the global work from the global system. Therefore, we can
say that extracting work locally is better than globally in the
OOE operation with a two-spin system coupled by anisotropic
interaction.

2. Comparison between the efficiencies of a local spin
and a single QOE

The efficiency of the QOE cycle followed by the local spin
ηL = − WL

QHL
is given by

ηLq = 1 − BL
(
1 − a2

L

)
BH

(
1 − a2

H

) . (17)

The expression of the efficiency of the local spin shows that it
depends on γ through aL,H .

If a QOE operates with a single spin working system under
the same physical conditions of BL and BH (or the same com-
pression ratio BL/BH ), then the expression of its efficiency is
given by [70,78]

ηS = 1 − BL

BH
. (18)

We can see that γ � 0 makes the quantity (1 − a2
L )/(1 −

a2
H ) � 1, which gives rise to ηLq � ηS . Therefore, as γ in-

creases, the quantity (1 − a2
L )/(1 − a2

H ) becomes much less
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than 1, which makes ηL [Eq. (17)] much larger than ηS

[Eq. (18)]. For γ = 0, we get ηLq = ηS . All of these can be
seen in the plot of efficiency (Fig. 8) of the local spin QHE
as a function of γ . The local spin system QHE outperforms
the single spin system QOE for γ > 0. Therefore, we can
say that the efficiency of a QHE operating with a local spin
working system, which, in conjunction with another spin with
an anisotropic interaction between a two-spin global system
driven through a QOE cycle, can surpass the standard quan-
tum Otto limit for a single spin working system.

We can also correlate the entropy of the local spin working
system with the performance of the local spin QHE. When we
consider a local spin (i.e., one of the two interacting spins),
the entropy does not remain constant in the AB and CD stages,
i.e., SLB �= SLA and SLD �= SLC for γ �= 0, where SL j represents
the entropy of a local spin at j ∈ A, B,C, D. Therefore, a
local-spin heat engine, with γ �= 0, is not exactly an Otto
engine, although the two-spin system is driven through an
Otto cycle. The total energy change associated with these
two stages is identified as work because the global two-spin
system undergoes a unitary process in these stages. Note that
obtaining the reduced density matrices of the local spin at A,
B, C, and D are associated with costs, which are usually not
considered in the literature [35,37,39,41,63–67]. The work in
the AB and CD stages becomes more for a system with larger
γ . The effect of γ on the entropy changes remains somewhat
similar. The entropy change, SLC − SLB, in the isochoric stage
BC, increases more rapidly than SLA − SLD when a system
with larger γ is chosen. Thus, as happens in the case of a
global-system heat engine, the local-spin heat engine involves
more heat exchange, for larger γ . The efficiency increases
with γ due to a similar reason as in the case of a global system:
The work increases more than the heat input does, for larger
γ .

B. Finite time operation: Time-dependent unitary processes

In this section, we consider that two unitary stages in the
cycle (see Sec. II B) for the global two-spin system are carried
out in a finite time τ , i.e., they are nonadiabatic in nature.
However, the thermalization of the working system in the hot
isochoric stage is complete. The expressions of the internal
energies (for derivation, see Appendix F) of the local spin in
terms of transition probabilities are given by

〈EA,D〉L = −2BL(1 − 2δτ,τ→∞)
u1,2

Z1,2
,

〈EB,C〉L = −2BH (1 − 2λτ,τ→∞)
u1,2

Z1,2
, (19)

where λτ = |〈00|Û (τ )|ψ (1)
3 〉|2 = |〈11|Û (τ )|ψ (1)

0 〉|2 and δτ =
|〈11|V̂ (τ )|ψ (2)

0 〉|2 = |〈00|V̂ (τ )|ψ (2)
3 〉|2 represent the nonzero

overlap between the basis states of a two-spin system and
the instantaneous energy eigenstates. In the adiabatic limit,
i.e., τ → ∞, λτ , and δτ become λτ→∞ = a2

H/2 and δτ→∞ =
a2

L/2, respectively, illustrating that finite-time average of the
internal energies [see Eq. (19)] approach quasistatic average
internal energies [see Eq. (14)].

FIG. 9. Variation of the transition probability λτ and δτ on the
left axis, and efficiency of a local spin on the right axis as a function
of τ . The solid line on the top represents the quasistatic value of δτ ,
at the bottom represents the quasistatic value of λτ , and in the middle
represents the quasistatic value of the local efficiency, respectively.
We have chosen γ = 1 and TH = 10, while the other parameters
remaining are the same as in Fig. 2.

Thermodynamic quantities of the local spin are given by

WLτ = −2

[
u1

Z1

[
BH (1 − 2λτ ) − BL(1 − 2δτ→∞)

]

+ u2

Z2
[BL(1 − 2δτ ) − BH (1 − 2λτ→∞)]

]
,

QHLτ = −2BH

[
u2

Z2
(1 − 2λτ→∞) − u1

Z1
(1 − 2λτ )

]
.

So, the efficiency, ηLτ = − WLτ

QHLτ
, of the heat engine cycle ex-

perienced by the local spin in finite time is given by

ηLτ = 1 − BL[u2(1 − 2δτ ) − u1(1 − 2δτ→∞)]

BH [u2(1 − 2λτ→∞) − u1(1 − 2λτ )]
. (20)

It can be seen that the finite-time local efficiency depends on
the temperatures of the heat baths as the coefficients u1, u2

depend on the temperatures, whereas the quasistatic local
efficiency does not depend on the temperatures of the heat
baths.

Plots of the transition probabilities (λτ , δτ ) with respect to
τ are shown in Fig. 9. If we put the value of λτ and δτ in the ex-
pression of efficiency [Eq. (20)], we get the plot of efficiency
with respect to τ , which is shown in Fig. 9. This plot shows
that there is an oscillatory dependence of efficiency on τ for
γ �= 0. Depending on the exact value of τ in the short time
duration, a local spin system QHE can either underperform
or outperform the counterpart which operates in the adiabatic
limit. Thus, by adjusting the duration of the unitary stages,
the efficiency of a local spin system QHE can be enhanced
beyond its quasistatic limit. In a long time duration, i.e., in the
adiabatic limit (τ → ∞), efficiency gradually approaches the
adiabatic (quasistatic) value (see Sec. IV A). In that case, the
local spin system efficiency which is represented by Eq. (20)
will be reduced to Eq. (17).

In the sudden quench limit, i.e., τ → 0, the external
magnetic field is changed from BL to BH or vice versa
suddenly, in this case, both the δτ and λτ attain their
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FIG. 10. Variation of efficiency of the local spin heat engine
as a function of anisotropy parameter γ for different values of the
unitary process time τ . τ = 20 represents the adiabatic and τ = 0.3
represents the nonadiabatic cases of the unitary time evolution. We
have chosen TH = 10 and the other parameters are the same as in
Fig. 2.

sudden value, which can be obtained as λτ→0 =
|〈00|ψ (1)

3 〉|2 = |〈11|ψ (1)
3 〉|2, and δτ→0 = |〈11|ψ (2)

3 〉|2 =
|〈00|ψ (2)

3 〉|2, as in this case Û (τ ), V̂ (τ ) → 1. The engine’s
performance degraded in this case (see Fig. 9). Also, in
the adiabatic limit, i.e., τ → ∞, both λτ and δτ reach their
adiabatic value λτ→∞ and δτ→∞. In between these two
limiting cases of time, there is an oscillation in δτ , λτ with
respect to τ . The oscillation in the efficiency is mainly
because of the oscillation in the transition probabilities δτ , λτ

in finite times of the unitary processes, which can be attributed
to the interferencelike phenomena that happen between two
probability amplitudes. This can be seen if we rewrite the
λτ , δτ in the form given in Eq. (21),

λτ , δτ =
∣∣∣∣∣

√
2aH,L

aH,LdH,L − bH,LcH,L

〈
ψ

(2)
3

∣∣Û (τ ), V̂ (τ )
∣∣ψ (1)

3

〉

−
√

2cH,L

aH,LdH,L − bH,LcH,L

〈
ψ

(2)
0

∣∣Û (τ ), V̂ (τ )
∣∣ψ (1)

3

〉∣∣∣∣∣
2

,

(21)

where bH,L = γ J√
k2

H,L−BH,LkH,L
, cH,L = BH,L+kH,L√

k2
H,L+BH,LkH,L

, dH,L =
γ J√

k2
H,L+BH,LkH,L

. Although the oscillation in δτ is less prominent

here compared to λτ for the chosen parameter domain (see
Fig. 9), the oscillation in δτ can be found to be significant for
other regions of the parameter, particularly BH . From Fig. 9,
we can see that when λτ goes below the λτ→∞, the finite time
HE outperforms its counterpart operating in the adiabatic limit
(τ → ∞). Also, it can be shown that for γ = 0, the efficiency
does not change with τ , because there is no interferencelike
effect in this case [22].

The plot of the efficiency of the local spin QHE with
respect to anisotropy parameter γ is shown in Fig. 10. It
shows that the outperformance increases with the increase
of γ for the finite-time operation of the engine, similar to a
measurement-based QOE [22].

In fact, for the finite-time performance of the local spin
QHE, the entropy at B or D at certain times, depending on
the transition probabilities λτ and δτ , even goes below their
quasistatic limits. As a result, finite-time work production and
engine performance are better than the quasistatic limits.

1. Similarity with a measurement-based QOE

It is worth mentioning that if we are able to construct a
QHE model with a transition probability between the energy
eigenstates and bare basis states of the working system, then
we may see an oscillation in the transition probability in
finite times. This oscillation allows us to improve the per-
formance of QHEs in finite times than the quasistatic limit.
Also, this will be independent of the type of QHE model. In
a recent study, it has been shown that the performance of a
measurement-based QOE can be enhanced in a finite time
using this type of transition probability [22]. The prescribed
type of transition probability is derived from the nonselec-
tive measurement protocol. But here we obtain this from a
local engine behavior perspective. Therefore, we can say that
the QHE with a local working system can function like a
measurement-based engine for the finite-time operation.

2. Power analysis

As we are studying the finite-time performance of the en-
gine, it is imperative to explore the power and its relation to
efficiency. The power of the local spin QHE can be defined as

PL = |WL|
th + tc + 2τ

, (22)

where it is assumed that two isochoric stages are carried out
over a long time, but not infinite time, so the states of the
working system reach very close to the reference thermal
states in two isochoric processes. The 3D plot of efficiency
as a function of power and the duration of the unitary stages
is shown in Fig. 11. From this plot, it can be seen that we can
have improved efficiency (above the quasistatic limit) even at
maximum power.

In most heat engine models, we sacrifice efficiency, where
we need to operate the engines way below the maximum
quasistatic efficiency limit, to get maximum power [79,80]. In
a very short time operation, required to produce high power,
different types of irreversibilities reduce work and efficiency.
Again, in long-term operation, where work and efficiency
both get improved but because of the long time limit, power
decreases. Therefore, we need a trade-off between power and
efficiency. On the contrary, in a local spin QHE, we get im-
proved efficiency even above the quasistatic Otto limit in a
very short time. This helps us to obtain maximum power with
improved efficiency.

V. DISCUSSION

A similar type of analysis can be done for the refrigerator
operation of the cycle. In contrast to the heat engine operation,
it can be shown that the coefficient of performance (COP) of
the refrigerator degrades as the anisotropy (γ ) increases for
the quasistatic operation of the cycle. The COP also declines
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FIG. 11. Variation of efficiency of the local spin heat engine as
a function of power and the time of the unitary processes τ for
γ = 1. The times for the isochoric processes are th = 100, tc = 220,
� = 0.1. We have chosen TH = 10, while the other parameters are
the same as in Fig. 2. The blue line represents the quasistatic value
of the local spin QHE’s efficiency [see Eq. (17)] and the black line
represents the single spin QOE’s efficiency [see Eq. (18)] with zero
power for the same values of the parameters as used for the finite
time behavior.

when the refrigerator is operated for a finite time, which is
similar to an engine.

Also, using the local analysis as that of the heat engine
mentioned above, we can show that the COP of a local spin
refrigerator can be enhanced in finite-time unitary processes,
which is similar to the local spin QHE operation.

Heisenberg’s anisotropic XY interaction between two-spin
can be constructed using state-of-the-art technologies [47],
particularly in NMR systems or trapped ion systems [48,49].
In a typical trapped ion system, the coupling constant J can
range from a few hundred Hz to one kHz [81,82]. Also, the
external magnetic field can be of the order of a few kHz
[82–84]. Therefore, depending on the value of J , the time
for the unitary processes τ can range from 2μs to a few ms.
Also, the working system needs to be cooled at TL = 50 nK
and TH = 500 nK.

VI. CONCLUSIONS

We have studied the quantum Otto cycle with a two-spin
working system coupled by anisotropic interaction. The cycle
can be operated in different thermal machine cycles, including
a heat engine, refrigerator, accelerator and heater depending
on different ratios of the temperatures of the hot and cold
baths. Among all thermal machines, QOE is studied in differ-
ent time limits. The role of anisotropy on engine performance
has been investigated. We found that the engine’s efficiency
increases with the increase of the anisotropy parameter (γ ) for
the quasistatic operation of the cycle, but efficiency decreases
for finite-time engine operation due to quantum internal fric-
tion. We found that the decrease in efficiency increases with
the increase of γ , which signifies irreversibility in engine
operation which increases with the increase of γ . In the iso-
choric heating process, the case of incomplete thermalization

of the working system on the thermodynamic quantities is
also discussed. We observed that heat absorption and work
in a complete cycle both increase with the increase in the
time of the process and reach a steady value after a long
time.

Further, we studied the QHE performance with a local spin
working system, which is obtained by tracing out one spin
from the global two-spin system. We found that the combined
local work extraction from all the spins is larger than the
global work extraction in the two-spin system and the dif-
ference between these two types of work extraction increases
with γ . Also, for the anisotropic interaction between two-spin
(γ > 0), a local spin QHE outperforms, in terms of efficiency,
a single spin QOE when both functions quasistatically with
the same cycle parameters. We found that the efficiency of the
local spin heat engine oscillates for the finite time unitary pro-
cesses of the global two-spin system. Therefore, a local spin
QHE can outperform the same operating in a long time limit
and this outperformance in efficiency is also associated with
the maximum power output by the engine. We have shown
that the oscillation in the efficiency of the local spin QHE
comes due to the same origin of an interferencelike effect
between two probability amplitudes as that of a nonselective
measurement-based QOE.
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APPENDIX A: DERIVATION OF INTERNAL ENERGIES
FOR THE QUASISTATIC CASE FOR THE GLOBAL

TWO-SPIN SYSTEM

At A

The Hamiltonian at point A of the cycle can be ex-
pressed as HA = H1 = ∑3

i=0 E (1)
i |ψ (1)

i 〉〈ψ (1)
i | where {|ψ (1)

i 〉}
are the eigenstates of the Hamiltonian H1. As we consider
that the system at A is in thermal equilibrium with the heat
bath, the thermal density matrix is given by ρA = e−βL H1

Z1
=∑3

i=0 PL
i |ψ (1)

i 〉〈ψ (1)
i |, where PL

i = e−βLE (1)
i /Z1 is the thermal

occupation probability of the ith eigenstate. So, the average
internal energy at point A is given by 〈EA〉 = Tr(H1ρA) =∑3

i=0 PiE
(1)
i = −4KL

u1
Z1

− 4J v1
Z1

.

At B

The Hamiltonian at point B of the cycle can be expressed
as HB = H2 = ∑3

i=0 E (2)
i |ψ (2)

i 〉〈ψ (2)
i |, where {|ψ (2)

i 〉} are the
eigenstates of the Hamiltonian H2. We consider that the uni-
tary process AB is carried out adiabatically, i.e., the system
follows the instantaneous eigenstates, so the state of the sys-
tem at B can be written as ρB = ∑

n PL
n |ψ (2)

n 〉〈ψ (2)
n |.
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The average internal energy at point B, 〈EB〉 = Tr(H2ρB)
is given by

〈EB〉 = P0E (2)
0 + P3E (2)

0 + P1E (2)
1 + P2E (2)

2 + P0E (2)
3 + P3E (2)

3

= −4KH
u1

Z1
− 4J

v1

Z1
.

At C

The thermal density matrix at C is given by

ρC = e−βH H2

Z2
=

3∑
i=0

Pi

∣∣ψ (2)
i

〉〈
ψ

(2)
i

∣∣, (A1)

where PH
i = e−βE (2)

i /Z2 is the thermal occupation probability
of the it h eigenstate. Similarly to point A, we can derive the
expression of average energy at C which is given by 〈EC〉 =
Tr(H2ρc) = −4KH

u2
Z2

− 4J v2
Z2

.

At D

Similarly to the unitary process AB, we consider that the
unitary process CD is also carried out adiabatically. Therefore,
the density matrix at the point D can be written as ρD =∑

n PH
n |ψ (1)

n 〉〈ψ (1)
n |.

Similarly to point B, we can derive the average internal
energy at point D, which is given by

〈ED〉 = Tr(H1ρD) = −4KL
u2

Z2
− 4J

v2

Z2
.

APPENDIX B: DERIVATION OF INTERNAL ENERGIES
OF THE GLOBAL TWO-SPIN SYSTEM FOR FINITE-TIME

UNITARY PROCESSES

At B

The density matrix at point B after the unitary
process AB can be obtained as ρBτ = Û (τ )ρAÛ †(τ ) =∑3

i=0 PiÛ (τ )|ψ (1)
i 〉〈ψ (1)

i |Û †(τ ).
The average internal energy at point B, 〈EB〉 = Tr(H2ρBτ ),

is given by

〈EB〉τ = PL
0 E (2)

0 (1 − ξτ ) + PL
3 E (2)

0 ξτ + PL
1 E (2)

1

+ PL
2 E (2)

2 + PL
0 E (2)

3 ξτ + PL
3 E (2)

3 (1 − ξτ )

= −4KH (1 − 2ξτ )
u1

Z1
− 4J

v1β

Z1
, (B1)

where we have used the microreversibility condition
|〈ψ (2)

0 |Û (τ )|ψ (1)
3 〉|2 = |〈ψ (2)

3 |Û (τ )|ψ (1)
0 〉|2 = ξτ (for proof,

see Appendix D) and |〈ψ (2)
0 |Û (τ )|ψ (1)

0 〉|2 = |〈ψ (2)
3 |Û (τ )|

ψ
(1)
3 〉|2 = 1 − ξτ . In unitary stages for a short time interval

τ , nonadiabatic transitions occur between energy eigenstates
that are coupled [85]. In the present case, such transitions
will be induced between levels |ψ0〉 and |ψ3〉. So, terms like
〈ψ (2)

0 |Û (τ )|ψ (1)
1 〉, 〈ψ (2)

0 |Û (τ )|ψ (1)
2 〉, 〈ψ (2)

3 |Û (τ )|ψ (1)
1 〉, etc.,

become zero. More details of the proof can be found in
Ref. [22].

At D

The density matrix at point D after the unitary process CD
is given by ρDτ = V̂ (τ )ρCV̂ †(τ ). Similarly to point B, we

can derive the average internal energy at point D which is
given by

〈ED〉τ = Tr(H1ρDτ ) = −4KL (1 − 2ξτ )
u2

Z2
− 4J

v2

Z2
, (B2)

where we have used the microreversibility condition
|〈ψ (2)

0 |V̂ (τ )|ψ (1)
3 〉|2 = |〈ψ (2)

3 |V̂ (τ )|ψ (1)
0 〉|2 = ξτ (for proof,

see Appendix D) and |〈ψ (2)
0 |V̂ (τ )|ψ (1)

0 〉|2 = |〈ψ (2)
3 |V̂ (τ )|

ψ
(1)
3 〉|2 = 1 − ξτ .

APPENDIX C: EQUIVALENCE OF THE TIME EVOLUTION
OPERATORS IN THE UNITARY EXPANSION

AND COMPRESSION PROCESSES

By utilizing the definitions (see Sec. II B) of the unitary
time evolution operators in the expansion and compression
stages, one can obtain the equivalence between them [76,85]:

Û (τ ) = T exp

[
−i

∫ τ

0
H exp(t )dt

]

= T exp

[
−i

∫ −τ

0
H exp(−t )d (−t )

]

= T exp

[
−i

∫ 0

τ

H exp(τ − t ′)d (τ − t ′)
]

= T exp

[
−i

∫ τ

0
H exp(τ − t )dt

]

= T exp

[
−i

∫ τ

0
H com(t )dt

]

= V̂ (τ ).

APPENDIX D: PROOF OF THE MICROREVERSIBILITY
CONDITIONS FOR THE TOTAL TWO-SPIN SYSTEM

Using the completeness relation
∑3

i=0 |ψ (1)
i 〉〈ψ (1)

i | = I
and the conservation of probability |〈ψ (2)

0 |Û (τ )|ψ (1)
3 〉|2 +

|〈ψ (2)
3 |Û (τ )|ψ (1)

3 〉|2 = 1, we can proof the relation
|〈ψ (2)

3 |Û (τ )|ψ (1)
0 〉|2 = |〈ψ (2)

0 |Û (τ )|ψ (1)
3 〉|2. For more details

about the proof, see Ref. [22].
Similarly, we can prove for the unitary compression

stage that |〈ψ (1)
3 |V̂ (τ )|ψ (2)

0 〉|2 = |〈ψ (1)
0 |V̂ (τ )|ψ (2)

3 〉|2. Also,
using the equivalence between two unitary time evolu-
tion operators Û (t ) and V̂ (τ ) (see Appendix C), we
can show that |〈ψ (2)

3 |Û (τ )|ψ (1)
0 〉|2 = |〈ψ (2)

0 |Û (τ )|ψ (1)
3 〉|2 =

|〈ψ (1)
3 |V̂ (τ )|ψ (2)

0 〉|2 = |〈ψ (1)
0 |V̂ (τ )|ψ (2)

3 〉|2.

APPENDIX E: DERIVATION OF INTERNAL ENERGIES
OF A LOCAL SPIN SYSTEM FOR QUASISTATIC

OPERATION

At A

The density matrix of the local spin at A, ρAL =
〈02|ρA|02〉 + 〈12|ρA|12〉 is given by

ρAL = 1
2

[(
PL

0 b2
L + PL

1 + PL
2 + PL

3 d2
L

)|0〉〈0|
+ (

PL
0 a2

L + PL
1 + PL

2 + PL
3 c2

L

)|1〉〈1|], (E1)
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where PL
i , i ∈ (0, 1, 2, 3), are the thermal probabilities of the

ith energy levels of the global system at A.
The average internal energy at point A, 〈EA〉L =

Tr(HL1ρAL ), is given by

〈EA〉L =
∑
j=0,1

〈 j|(−BL|0〉〈0| + BL|1〉〈1|)ρLA| j〉

= BL

2

[
PL

0

(
a2

L − b2
L

) + PL
3

(
c2

L − d2
L

)]
= BL

[(
PL

3 − PL
0

)(
1 − a2

L

)]
, (E2)

where we have used a2
L = d2

L , b2
L = c2

L, and a2
L/2 + b2

L/2 = 1.

At B

The density matrix of the local spin at B, ρBL =
〈02|ρA|02〉 + 〈12|ρA|12〉, is given by

ρBL = 1
2

[(
PL

0 b2
H + PL

1 + PL
2 + PL

3 d2
H

)|0〉〈0|
+ (

PL
0 a2

H + PL
1 + PL

2 + PL
3 c2

H

)|1〉〈1|]. (E3)

The average internal energy at point B, 〈EB〉L =
Tr(HL2ρLB), is given by

〈EB〉L =
∑
j=0,1

〈 j|(−BH |0〉〈0| + BH |1〉〈1|)ρLB| j〉

= BH

2

[
PL

0

(
a2

H − b2
H

) + PL
3

(
c2

H − d2
H

)]
= BH

[(
PL

3 − PL
0

)(
1 − a2

H

)]
, (E4)

where we have used a2
H = d2

H , b2
H = c2

H , and a2
H/2 +

b2
H/2 = 1.

At C

Similarly to point A, we can derive the average internal
energy at point C, 〈EC〉L = Tr(HL2ρCL ), given by

〈EC〉L = BH

2

[
PH

0

(
a2

H − b2
H

) + PH
3

(
c2

H − d2
H

)]
= BH

[(
PH

3 − PH
0

)(
1 − a2

H

)]
, (E5)

where PH
0 and PH

3 are the thermal probabilities zeroth and
third energy levels at C.

At D

Similarly to point B, we can derive the average internal
energy at D, 〈ED〉L = Tr(HL1ρLD), given by

〈ED〉L = BL

2

[
PH

0

(
a2

L − b2
L

) + PH
3

(
c2

L − d2
L

)]
= BL

[(
PH

3 − PH
0

)(
1 − a2

L

)]
. (E6)

APPENDIX F: DERIVATION OF INTERNAL ENERGIES
OF A LOCAL SPIN SYSTEM FOR FINITE TIME

OPERATION

At B

The density matrix at B, ρBLτ = 〈02|ρAτ |02〉 + 〈12|ρAτ |12〉,
is given by

ρBLτ = 1
2

[
PL

1 (|1〉〈1| + |0〉〈0|) + PL
2 (|1〉〈1| + |0〉〈0|)] + PL

0 〈02|Û (τ )
∣∣ψ (1)

0

〉〈
ψ

(1)
0

∣∣Û †(τ )|02〉 + PL
3 〈02|Û (τ )

∣∣ψ (1)
3

〉
× 〈

ψ
(1)
3

∣∣Û †(τ )|02〉 + PL
0 〈12|Û (τ )

∣∣ψ (1)
0

〉〈
ψ

(1)
0

∣∣Û †(τ )|12〉 + PL
3 〈12|Û (τ )

∣∣ψ (1)
3

〉〈
ψ

(1)
3

∣∣Û †(τ )|12〉. (F1)

The average internal energy, 〈ELBt 〉 = Tr(HL2ρLBt ) is given by

〈EB〉Lτ =
∑
j=0,1

〈 j|(−BH |0〉〈0| + BH |1〉〈1|)ρLB| j〉

= −PH
0 BH

∣∣〈00|Û (τ )
∣∣ψ (1)

0

〉∣∣2 − PH
3 BH

∣∣〈00|Û (τ )
∣∣ψ (1)

3

〉∣∣2 + PH
0 BH

∣∣〈11|Û (τ )
∣∣ψ (1)

0

〉∣∣2 + PH
3 BH

∣∣〈11|Û (τ )
∣∣ψ (1)

3

〉∣∣2

= BH
(
PL

3 − PL
0

)
(1 − 2δτ ), (F2)

where we have used the microreversibility conditions
(for derivation, see Appendix G) |〈00|Û (τ )|ψ (1)

0 〉|2 =
1 − λτ , |〈00|Û (τ )|ψ (1)

3 〉|2 = λτ , |〈11|Û (τ )|ψ (1)
0 〉|2 = λτ ,

|〈11|Û (τ )|ψ (1)
3 〉|2 = 1 − λτ .

At D

Similarly to point B, we can derive the expression of the
average internal energy at D, 〈ED〉Lτ = Tr(HL1ρDLτ ), given by

〈ED〉Lτ = BL
(
PH

3 − PH
0

)
(1 − 2δτ ), (F3)

where we need to use the microreversibility condi-
tions (for derivation, see Appendix G) |〈00|V̂ (τ )|ψ (2)

0 〉|2 =

1 − δτ , |〈00|V̂ (τ )|ψ (2)
3 〉|2 = δτ , |〈11|V̂ (τ )|ψ (2)

0 〉|2 = δτ , and
|〈11|V̂ (τ )|ψ (2)

3 〉|2 = 1 − δτ .

APPENDIX G: PROOF OF THE MICRO-REVERSIBILITY
CONDITION FOR THE LOCAL SPIN SYSTEM

We can proof the relation |〈00|Û (τ )|ψ (1)
3 〉|2 =

|〈11|Û (τ )|ψ (1)
0 〉|2 using the completeness relation∑3

i=0 |ψ (1)
i 〉〈ψ (1)

i | = I and the conservation of probability
|〈00|Û (τ )|ψ (1)

0 〉|2 + |〈11|Û (τ )|ψ (1)
0 〉|2 = 1, whereas other

two terms |〈01|Û (τ )|ψ (1)
0 〉|2 = 0, and |〈10|Û (τ )|ψ (1)

0 〉|2 = 0.
Similarly, we can prove that |〈00|V̂ (τ )|ψ (2)

3 〉|2 =
|〈11|V̂ (τ )|ψ (2)

0 〉|2, where we need to use the conservation of
probability |〈00|V̂ (τ )|ψ (2)

0 〉|2 + |〈11|V̂ (τ )|ψ (2)
0 〉|2 = 1.

044128-12
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(2019).
[31] F. Plastina, A. Alecce, T. J. G. Apollaro, G. Falcone, G.

Francica, F. Galve, N. Lo Gullo, and R. Zambrini, Phys. Rev.
Lett. 113, 260601 (2014).

[32] Y. Rezek, Entropy 12, 1885 (2010).
[33] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

[34] F. Meier, J. Levy, and D. Loss, Phys. Rev. Lett. 90, 047901
(2003).

[35] G. Thomas and R. S. Johal, Phys. Rev. E 83, 031135 (2011).
[36] S. Çakmak, F. Altintas, and Ö. E Müstecaplıoğlu, Eur. Phys. J.
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