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Two-dimensional open quantum system in dissipative bosonic heat bath,
external magnetic field, and two time-dependent electric fields
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Non-Markovian dynamics of a charged particle in a two-dimensional harmonic oscillator linearly coupled to
a neutral bosonic heat bath is investigated in an external uniform magnetic field and two perpendicular time-
dependent electric fields. The analytical expressions for the time-dependent and asymptotic angular momentum
are derived for the Markovian and non-Markovian dynamics. The dependence of the angular momentum on
the frequency of the electric field, cyclotron frequency, collective frequency, and anisotropy of the heat bath is
studied. The angular momentum (or magnetization) of a charged particle can be ruled by varying the frequency
of the electric field.
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I. INTRODUCTION

Nowadays, the field of two-dimensional (2D) materials and
two-dimensional electron gas (2DEG) is being rapidly devel-
oped. A big impetus for this was the discovery of the highly
topical 2DEG of graphene, which accelerated the theoretical
and experimental research of all 2D materials [1–12]. Several
important properties of 2D materials and 2DEGs allow their
application in nanotechnology, telecommunications, biotech-
nology, electronics, and optoelectronics, as an active medium
for light amplification, electrode materials, electrocatalysts in
energy storage, and many other applications. Therefore, it is
important to study the dependence of their electromagnetic,
mechanical, and optical properties on the electric field, mag-
netic field, temperature, pressure, etc. In Ref. [13], a phase
transition from a paramagnetic state to a ferromagnetic state
on the surface of the Pd monolayer by an applied electric field
is predicted. The electric-field effect is also utilized to control
magnetism in ferromagnets [14]. There are theoretical and
experimental studies of the effects of polarized electromag-
netic waves on 2D materials and 2DEG [15–18]. An analysis
of the nonlinear electric conductivity of graphene beyond the
Kubo regime under the influence of a dissipative bosonic heat
bath was carried out in Refs. [17,18]. Electric conductivity
and nonlinear optical and optoelectronic properties of 2D
materials have been extensively studied, but the effect of a
polarized electric field on their magnetic properties has been
relatively little studied.

The well-known Landau theory of diamagnetism [19,20]
stems from the solution of the quantum-mechanical problem
of a charged particle in the presence of a constant magnetic
field. The physics of Landau levels is of great interest in
many physical systems, e.g., the quantum Hall effect and
high-temperature superconductivity [21]. A generalization of
Landau diamagnetism in a dissipative 2D system was ob-
tained in the Markovian limit in Ref. [22]. As predicted in
Refs. [23,24], a dynamic magnetic moment also appears in a

2D dissipative asymmetric harmonic oscillator affected by a
linear-polarized monochromatic electromagnetic wave, even
without an external magnetic field. This effect was revealed in
the Markovian and dipole approximations in the case of the
symmetric friction tensor (isotropic environment). As shown
in Refs. [23,24], a linear-polarized microwave field creates
stationary magnetization in mesoscopic ballistic quantum dots
with 2D electron gas being at thermal equilibrium. Magneti-
zation is proportional to a number of electrons in a quantum
dot and to the microwave power and does not depend on
temperature and, generally, on the form of the initial distri-
bution function. Microwave fields of moderate strength create
magnetization in the quantum dot of a few microns in size that
is several orders of magnitude larger than the magnetization
produced by persistent currents [24]. However, in symmetric
(isotropic) quantum dots (symmetric 2D harmonic oscillator)
a dynamic magnetic moment does not appear.

In this work, we will significantly expand the study of
induced magnetization taking into account the anisotropy of
the environment, the external uniform magnetic field, and
non-Markovian effects. The formalism presented allows us
to explore the magnetization of 2D materials under influence
of external magnetic and electric fields and coupling with
the environment. The challenge is to indicate how we can
control this magnetization with the electric field and cyclotron
frequency depending on the anisotropy of the environment in
which the system is embedded. We use the theory of open
quantum systems, which is widely utilized to identify the
effects of fluctuations and dissipation in macroscopic systems
[25–41]. To calculate dynamic magnetization, we consider
the charge carrier as a quantum particle coupled to a neu-
tral bosonic environment (heat bath) through particle-phonon
interactions and develop a general approach based on the
quantum non-Markovian Langevin model for a 2D harmonic
oscillator with an asymmetric (anisotropic) friction tensor in
the field of a linearly polarized monochromatic electromag-
netic wave and an uniform magnetic field. So asymmetry is
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also created by the heat bath and the formalism suggested
generalizes the previous results on induced magnetization.
We show that a nonzero magnetic moment appears even in
the case of the symmetric 2D harmonic oscillator and zero
magnetic field. We also extend our analysis to the case of zero
potential (a free particle) and anisotropic environment. Note
that the results presented here are relevant for any nondegener-
ate 2D quantum objects, in which the influence of Fermi-Dirac
statistics can be neglected.

The paper is organized as follows. In Sec. II we in-
troduce the Hamiltonian of the total system consisting of
a 2D quantum oscillator embedded in a neutral bosonic
medium in the presence of a constant magnetic field and
time-dependent electric fields. Solving the second-order
Heisenberg equations for the heat bath degrees of freedom,
the generalized non-Markovian Langevin equations are ex-
plicitly obtained for a quantum particle. Using the solutions
of these equations (Appendix A), we derive the z component
of time-dependent and asymptotic angular moments Lz for
the two-dimensional charged oscillator and explore how the
values of Lz can be controlled with the external field and
properties of the environment in the cases of non-Markovian
and Markovian dynamics. In Sec. III the obtained results are
analyzed and the resonance conditions of Lz(∞) are shown. A
summary is given in Sec. IV. In addition, angular momentum
and conditions for its resonance were obtained for a free
charged particle in a dissipative bosonic heat bath, an external
constant magnetic field, and two nonstationary electric fields
(Appendix C).

II. NON-MARKOVIAN LANGEVIN EQUATIONS
FOR A DISSIPATIVE HARMONIC OSCILLATOR

IN EXTERNAL MAGNETIC AND ELECTRIC FIELDS

In Ref. [37] a 2D quantum harmonic oscillator in a heat
bath was considered in a constant magnetic field to study
the induction of angular momentum. The quantum non-
Markovian Langevin model was also used to consider the
dynamics of this oscillator. Here we are interested in the
open quantum system affected by an electromagnetic wave,
not only by a constant magnetic field. Thus, the equations of
motion should be derived from the very beginning starting
from the total Hamiltonian.

In order to investigate the influence of external fields on the
dynamics of an open quantum system, we consider the motion
of a charged particle with effective mass m and positive charge
e in a 2D parabolic potential (in the xy plane) surrounded by
a neutral bosonic heat bath in the presence of a perpendicular
axisymmetric magnetic field (along the z axis). In the case of
a linear coupling in coordinates between this particle and the
heat bath, the total Hamiltonian of the collective subsystem +
heat bath is as follows:

H = 1

2m

(
π2

x + π2
y

) + m

2

(
ω2

x x2 + ω2
y y2) +

∑
ν

h̄ωνb+
ν bν

+ exEx(t ) + eyEy(t ) +
∑

ν

(xαν + ygν )(b+
ν + bν )

+
∑

ν

1

h̄ων

(xαν + ygν )2, (1)

where

πx = px + 1
2 mωcy, πy = py − 1

2 mωcx, (2)

[πx, πy] = −[πy, πx] = ih̄mωc, ωc = eB/m is the cyclotron
frequency [here A = (− 1

2 yB, 1
2 xB, 0) is the vector potential

of a magnetic field with the strength B = |B|], p = (px, py)
is the canonically conjugated momentum, the time-dependent
electric fields Ex(t ) and Ey(t ) act, respectively, in the x and
y directions, ωx and ωy are the collective frequencies, b+

ν and
bν are the phonon creation and annihilation operators of the
heat bath, and αν and gν are the coupling parameters. The
values of physical quantities in Eqs. (1) and (2) are given in
SI units. The bosonic heat bath is modeled by an ensemble of
noninteracting harmonic oscillators with frequencies ων . The
coupling between the heat bath and the collective subsystem
is linear in coordinates. The coupling terms, external magnetic
field, and time-dependent electric field do not affect each
other. The last term in Hamiltonian (1) compensates for the
normalization of the potential due to the coupling between the
heat bath and the collective subsystem. This term is necessary
to restore the translational invariance of an open system. We
should stress that Eq. (1) is set up in the classical Hall effect
geometry.

Using Hamiltonian (1), we obtain the system of Langevin
equations of motion for the collective variables:

ẋ(t ) = πx(t )

m
,

ẏ(t ) = πy(t )

m
,

π̇x(t ) = πy(t )ωc − mω2
x x(t ) − eEx(t )

− 1

m

∫ t

0
dτKα (t − τ )πx(τ )

− 1

m

∫ t

0
dτKαg(t − τ )πy(τ ) − Fα (t ),

π̇y(t ) = −πx(t )ωc − mω2
y y(t ) − eEy(t )

− 1

m

∫ t

0
dτKαg(t − τ )πx(τ )

− 1

m

∫ t

0
dτKg(t − τ )πy(τ ) − Fg(t ), (3)

where Kα,g,αg and Fα,g are the dissipative kernels and random
forces, respectively (see Appendix A). The presence of the
integral parts in Eqs. (3) indicates non-Markovian dynam-
ics of the system. The dissipative kernels have the form of
memory functions since they make the equations of motion
at time t dependent on the values of ẋ and ẏ for previous
times. The Langevin equation for a charged oscillator in the
magnetic field and dissipative bosonic heat bath was tack-
led earlier in Ref. [31] using the Heisenberg picture. The
inclusion of nonstationary electric fields Ex,y(t ) is new in
Eqs. (3).
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The system of Eqs. (3) is solved by applying the Laplace transform. After the tedious algebra we obtain the solution

x(t ) = A1(t )x(0) + A2(t )y(0) + A3(t )πx(0) + A4(t )πy(0) − Ix(t ) − I ′
x(t ) − Iex(t ) − I ′

ex(t ),

y(t ) = B1(t )x(0) + B2(t )y(0) + B3(t )πx(0) + B4(t )πy(0) − Iy(t ) − I ′
y(t ) − Iey(t ) − I ′

ey(t ),

πx(t ) = C1(t )x(0) + C2(t )y(0) + C3(t )πx(0) + C4(t )πy(0) − Iπx (t ) − I ′
πx

(t ) − Ieπx (t ) − I ′
eπx

(t ),

πy(t ) = D1(t )x(0) + D2(t )y(0) + D3(t )πx(0) + D4(t )πy(0) − Iπy (t ) − I ′
πy

(t ) − Ieπy (t ) − I ′
eπy

(t ) (4)

of this system of equations of motion. The time-dependent coefficients Ai, Bi, Ci, and Di (i = 1, 2, 3, 4) are given in Appendix A.

A. Non-Markovian dynamics

For simplicity, we choose the time-dependent electric fields Ex(t ) = Ex0 cos(ωext ) and Ey(t ) = Ey0 cos(ωeyt ) (the linear-
polarized monochromatic electromagnetic wave at ωex = ωey) in Hamiltonian (1). Employing Eqs. (4), and the correlations
of random forces at different times (see Appendix A), we derive the z component of angular momentum [or magnetic moment
per unit volume M(t ) = neLz(t )/(2m), where n is the concentration of charged particles]

Lz(t ) = Lz(t ) = 〈x(t )πy(t ) − y(t )πx(t )〉 = L0
z (t ) + Lz1(t ) + Lz2(t ), (5)

where the symbol 〈·〉 denotes averaging over the whole system of the heat bath and oscillator, the value of L0
z (t ) depends on the

initial second moments (see Appendix B) and does not contribute to the asymptotic value of Lz (L0
z (∞) = 0),

Lz1(t ) = mh̄γ 2

π

∫ ∞

0
dω

∫ t

0
dτ

∫ t

0
d τ̃

ω coth
[

h̄ω
2T0

]
ω2 + γ 2

cos(ω[τ − τ̃ ])

× {λx[A3(τ )D3(τ̃ ) − B3(τ )C3(τ̃ )] + λy[A4(τ )D4(τ̃ ) − B4(τ )C4(τ̃ )]} (6)

and

Lz2(t ) = [Iex(t ) + I ′
ex(t )][Ieπy (t ) + I ′

eπy
(t )] − [Iey(t ) + I ′

ey(t )][Ieπx (t ) + I ′
eπx

(t )]. (7)

Here the temperature T0 of the bosonic heat bath is given in the energy units,

Iex(t ) = eEx0

m

6∑
i=1

βi(si + γ )

s2
i + ω2

ex

[
(si + γ )

(
s2

i + ω2
y

) + λyγ si
]
ax

i (t ) = I ′
ey(t )|x↔y,

I ′
ex(t ) = eEy0ωc

m

6∑
i=1

βisi(si + γ )2

s2
i + ω2

ey

ay
i (t ) = −Iey(t )|x↔y,

Ieπx (t ) = eEx0

6∑
i=1

βisi(si + γ )

s2
i + ω2

ex

[
(si + γ )

(
s2

i + ω2
y

) + λyγ si
]
ax

i (t ) = I ′
eπy

(t )|x↔y,

I ′
eπx

(t ) = eEy0ωc

6∑
i=1

βis2
i (si + γ )2

s2
i + ω2

ey

ay
i (t ) = −Ieπy (t )|x↔y,

ax,y
i (t ) = si[e

sit − cos(ωex,eyt )] + ωex,ey sin(ωex,eyt ), (8)

si are the roots of the equation

D(s) = (si + γ )
{[

s4
i + ω2

xω
2
y + s2

i

(
ω2

c + ω2
x + ω2

y

)]
(si + γ ) + siγ λx

(
s2

i + ω2
y

)}
+ siγ λy

[
(s2

i + ω2
x )(si + γ ) + siγ λx

] = 0, (9)

and βi = [
∏

j �=i(si − s j )]−1 with i, j = 1, 2, . . . , 6 (see Appendix A).
The numerical calculations show that if ωex �= ωey, then the angular momentum has no asymptotic value and oscillates at

large t . Therefore, we chose the frequencies of the electric fields to be the same, i.e., ωex = ωey = ωe, and we find the asymptotic
z component of angular momentum

Lz(∞) = Lz1(∞) + Lz2(∞), (10)

where

Lz1(∞) = −2h̄ωcγ
2

π

∫ ∞

0
dωω3 coth

[
h̄ω

2T0

]
(ω2 + γ 2)

[
(ω2 − ω2

y )λx + (
ω2 − ω2

x

)
λy

] − 2ω2γ λxλy(
s2

1 + ω2
)
(s2

2 + ω2)
(
s2

3 + ω2
)(

s2
4 + ω2

)(
s2

5 + ω2
)(

s2
6 + ω2

) (11)
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and

Lz2(∞) = [
e2ω2

e

(
γ 2 + ω2

e

)(
γ 2

[
ωc

(
ω2

x E2
y0 + ω2

y E2
x0

) + Ex0Ey0
(
ω2

xλy − ω2
yλx

)]
+ {

E2
x0ωc

[
ω2

y − γ (γ − λy)
] + E2

y0ωc
[
ω2

x − γ (γ − λx )
] + Ex0Ey0γ

2(λx − λy)
}
ω2

e − (
E2

x0 + E2
y0

)
ωcω

4
e

)]
/N (12)

with

N = m
(
s2

1 + ω2
e

)(
s2

2 + ω2
e

)(
s2

3 + ω2
e

)(
s2

4 + ω2
e

)(
s2

5 + ω2
e

)(
s2

6 + ω2
e

)
.

Employing the residue theorem, closing the contour in the upper half-plane, and using the cotangent function poles at h̄ω/(2T0) =
iπn with an integer n, we also calculate analytically the integral over ω in Eq. (11) (see Appendix B). As seen from Eqs. (11)
and (12), in the presence of two perpendicular electric fields, angular momentum or orbital magnetization arises in the system
[Lz2(∞) �= 0], even if no external magnetic field is applied (ωc = 0 and Lz1(∞) = 0), in the case of ωx �= ωy and/or λx �= λy.
For a free charged particle, we also obtain that Lz2(∞) �= 0 at λx �= λy (Appendix C).

B. Markovian dynamics

For Markovian dynamics (γ → ∞), the asymptotic z component of angular momentum Lz(∞) = Lz1(∞) + Lz2(∞) contains
the following terms:

Lz1(∞) = −2h̄ωc

π

∫ ∞

0
dωω3 coth

[
h̄ω

2T0

]
λx

(
ω2 − ω2

y

) + λy
(
ω2 − ω2

x

)
(
s2

1 + ω2
)(

s2
2 + ω2

)(
s2

3 + ω2
)(

s2
4 + ω2

) (13)

and

Lz2(∞) = e2ω2
e
(ωx,y, λx,y)

m
(
s2

1 + ω2
e

)(
s2

2 + ω2
e

)(
s2

3 + ω2
e

)(
s2

4 + ω2
e

) . (14)

Here


(ωx,y, λx,y) = ωc
(
E2

x0ω
2
y + E2

y0ω
2
x

) − [(
E2

x0 + E2
y0

)
ωc − Ex0Ey0(λx − λy)

]
ω2

e + Ex0Ey0
(
ω2

xλy − ω2
yλx

)
and si (i = 1, 2, 3, 4) are the roots of the following equation:

D(s) = (
ω2

x + s2 + sλx
)(

ω2
y + s2 + sλy

) + s2ω2
c = 0. (15)

Calculating analytically the integral over ω in Eq. (13) and employing the Vieta theorem in Eq. (14), we derive

Lz1(∞) = −h̄ωc[2Re(J ) − Js] (16)

and

Lz2(∞) = e2ω2
e
(ωx,y, λx,y)

m�ωe (ωx,y, λx,y)
, (17)

where

J = s2
1

[
λx

(
s2

1 + ω2
y

) + λy
(
s2

1 + ω2
x

)]
(
s2

1 − s∗2
1

)(
s2

1 − s2
2

)(
s2

1 − s∗2
2

) cot

[
h̄s1

2T0

]
+ s2

2

[
λx

(
s2

2 + ω2
y

) + λy
(
s2

2 + ω2
x

)]
(
s2

2 − s2
1

)(
s2

2 − s∗2
1

)(
s2

2 − s∗2
2

) cot

[
h̄s2

2T0

]
,

Js = 32π3 T 4
0

h̄4

∞∑
n=1

[
λx

(
x2

n + ω2
y

) + λy
(
x2

n + ω2
x

)]
n3∣∣x2

n − s2
1

∣∣2∣∣x2
n − s2

2

∣∣2 ,

and

�ωe (ωx,y, λx,y) = ω4
xω

4
y − [

2ω2
cω

2
xω

2
y + ω4

x

(
2ω2

y − λ2
y

) + ω4
y

(
2ω2

x − λ2
x

)]
ω2

e + [
ω4

c + ω4
x + ω4

y − λ2
x

(
2ω2

y − λ2
y

)
+ 2ω2

c

(
ω2

x + ω2
y + λxλy

) + 2ω2
x

(
2ω2

y − λ2
y

)]
ω4

e − [
2
(
ω2

c + ω2
x + ω2

y

) − λ2
x − λ2

y

]
ω6

e + ω8
e .

Here Re(s1) < 0 and Re(s2) < 0. As seen, in the case of ωx �=
ωy and/or λx �= λy and the absence of an external magnetic
field but the presence of two perpendicular electric fields,
orbital magnetization arises in the system (Lz2(∞) �= 0). The
same behavior is observed for a free charged particle (Ap-
pendix C). The expression for Lz1(∞) was also derived in

Ref. [22]. In the case of an isotropic oscillator and an isotropic
heat bath (ωx = ωy = ω0 and λx = λy = λ), the expression for
angular momentum

Lz2(∞) = e2ω2
eωc

(
E2

x0 + E2
y0

)(
ω2

0 − ω2
e

)
m�ωe (ω0, λ)

(18)
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FIG. 1. In the Markovian (red dashed lines) and non-Markovian (black solid lines) cases, the calculated z components Lz1(t ) and Lz2(t )
of angular momentum as functions of time t at the indicated friction coefficients. Here T0 = 0.1 meV, h̄ωc = 1 meV, h̄ω0 = 1 meV, h̄ωe =
h̄ωmax

e = 0.62 meV, and h̄γ = 12 meV.

has a fairly simple shape. As seen, Lz2(∞) = 0 if the electric
field frequency is ωe = 0 or ωe = ω0.

III. CALCULATED RESULTS

The GaAs/AlGaAs heterojunction was chosen as a 2DEG
[8]. For this material, the effective mass of electrons is equal
to m = 0.067m0 (m0 is the mass of an electron at rest) [15,24].
Note that if the amplitude of the electric fields is about
Ex0 = Ey0 ≈ 1 V/cm, then Lz1(∞) � Lz2(∞) in the mean
and high magnetic field (B � 1 T). If sufficiently large electric
fields act on the 2DEG (for example, Ex0 = Ey0 ≈ 103 V/cm),
the absolute value of Lz2(∞) becomes comparable or even
larger than |Lz1(∞)|. Therefore, for numerical calculation, we
set Ex0 = Ey0 = 103 V/cm. The frequency of electric fields
(h̄ωe) is selected according to the resonance conditions for
observing resonant states. Note that the applied electric fields
do not destroy the electric properties of the 2DEG. The fre-
quencies ωx,y of the 2D harmonic oscillator are chosen of the
order of (1–5) meV, which is typical for 2D materials and
2DEG [8,42]. Since γ � ωx,y, the value of h̄γ was set to
12 meV. The friction coefficients λx,y are significantly lower
than the frequencies ωx,y, which holds at low temperatures
T0 � 0.1 meV (0.1 meV corresponds to 1.16 K).

For Markovian and non-Markovian dynamics of the 2D
harmonic oscillator, the time dependences of the z compo-
nents Lz1(t ) and Lz2(t ) of angular momentum are shown in

Fig. 1. As seen, the absolute values of Lz1(t ) and Lz2(t )
increase with small oscillations with increasing time t and
reach their asymptotic values. The amplitude of these oscil-
lations decreases with increasing damping. For Lz1(t ), non-
Markovian effects are more noticeable only in the initial short
time interval (ω0t � h̄ω0/T0 = 10), which can be probed by
ultrafast spectroscopy. For Lz2(t ), non-Markovian and Marko-
vian dynamics are almost indistinguishable throughout the
entire process.

Figure 2 shows the dependence of the asymptotic z com-
ponent of angular momentum Lz1(∞) on the magnetic field
for the Markovian and non-Markovian cases. As seen, the
value of Lz1(∞) is almost the same for Markovian and non-
Markovian dynamics at temperature T0 = 0.1 meV. So the
asymptotic z component of angular momentum Lz1(∞) [or
the magnetization M = neLz1/(2m)] is weakly affected by
non-Markovian effects. In Ref. [40] we came to the same
conclusion at ωx = ωy = ω0 and λx = λy = λ. The results of
calculations for different collective frequencies and friction
coefficients are also presented in Fig. 2. The largest |Lz1(∞)|
corresponds to the axial symmetric case (ωx/ωy = 1 and
λx/λy = 1). If the ratio of the friction coefficients λx/λy = 5,
the value of Lz1(∞) increases with the ratio ωx/ωy of collec-
tive frequencies [Fig. 2(a) and 2(b)]. In a high magnetic field
(h̄ωc � T0), we obtain

Lz1(∞) = −h̄, M(∞) = −neh̄

2m
, (19)
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FIG. 2. The calculated asymptotic z component Lz1(∞)/h̄ of angular momentum as a function of h̄ωc. Here T0 = 0.1 meV and h̄γ =
12 meV for non-Markovian dynamics. In the Markovian and non-Markovian cases, Eq. (16) and Eq. (B2) are used, respectively.

which means quantization of angular momentum or magneti-
zation.

Figure 3 shows the dependence of the asymptotic z com-
ponent Lz2(∞) of angular momentum as a function of the
electric field frequency h̄ωe at h̄ωx = h̄ωy = h̄ω0 = 1 meV
and h̄λy = 0.1 meV. In Fig. 3(a) there are a maximum and
minimum of Lz2(∞). At ωc,0 � λ, we find the positions of
these extremes:

ωmax
e ≈

√
ω2

0 + ω2
c

4
− ωc

2
, ωmin

e ≈
√

ω2
0 + ω2

c

4
+ ωc

2
.

(20)

So the dependence of Lz2(∞) and thus Lz(∞) on h̄ωe has
a resonance behavior. If the friction coefficients λx and λy

are close to each other (for example, λx = 1.1λy), then the
maximum value of Lz2(∞) is relatively large and the half-

width of the peak is rather small. With increasing ratio of
the friction coefficients (for example, λx = 2λy), the absolute
value of Lz2(∞) decreases at extremes and the half-width
of the peaks increases. Numerical calculations show that if
λx/λy increases n0 times, then |Lz2(∞)| decreases almost n0

times. One can see that Lz2(∞) = 0 at ωe = ω0, Lz2(∞) > 0
at ωe < ω0, and Lz2(∞) < 0 at ωe > ω0. This means that we
can control angular momentum (magnetization) of charged
particles through the frequency of the electric field.

In Fig. 3(b) with the same parameters as in Fig. 3(a) but
without the magnetic field (h̄ωc = 0), Lz2(∞) < 0 at ωe < ω0,
Lz2(∞) = 0 at ωe = ω0, and Lz2(∞) > 0 at ωe > ω0. The
maximum value of |Lz2(∞)| is much smaller than that at
h̄ωc = 1 meV in Fig. 3(a). If λx = λy, Lz2(∞) = 0 at ωc = 0
as in Refs. [23,24]. So the maximum value of |Lz2(∞)| in-
creases with λx/λy > 1.

In Fig. 3(c) the component of angular momentum

La
z2(∞) = Lz2(ωc = 0) = e2ω2

e Ex0Ey0
[
ω2

xλy − ω2
yλx + (λx − λy)ω2

e

]
m

[
ω4

x − (
2ω2

x − λ2
x

)
ω2

e + ω4
e

][
ω4

y − (
2ω2

y − λ2
y

)
ω2

e + ω4
e

] (21)

is presented. Note that Eq. (21) at λx = λy transforms into the expression obtained in Refs. [23,24]. So we obtain a more general
formula for angular momentum or magnetic moment in the case of the anisotropic 2D harmonic oscillator and anisotropic heat
bath.
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FIG. 3. The calculated asymptotic z component Lz2(∞)/h̄ of angular momentum as a function of h̄ωe for non-Markovian dynamics at
(a) h̄ωc = 1 meV and (b) h̄ωc = 0 for h̄ω0 = 1 meV. The calculated La

z2(∞)/h̄ at (c) h̄ωc = 0 and Lb
z2(∞)/h̄ at (d) h̄ωc = 1 meV for h̄ωx =

1.5h̄ωy = 1.5 meV. Here h̄λy = 0.1 meV, h̄γ = 12 meV, Ex0 = Ey0 = 105 V/m, and μ = 0.067m0. The solid, dashed, and dash-dotted lines
correspond to the cases with λx/λy = 1.1, 1.5, and 2, respectively.

Figure 3(d) shows Lb
z2(∞) = Lz2(∞) − La

z2(∞). If ωx = ωy = ω0,

La
z2(∞) = e2ω2

e Ex0Ey0
(
λx − λy

)(
ω2

e − ω2
0

)
m

[
ω4

0 − (
2ω2

0 − λ2
x

)
ω2

e + ω4
e

][
ω4

0 − (
2ω2

0 − λ2
y

)
ω2

e + ω4
e

] . (22)

There are two maxima in La
z2(∞) as a function of h̄ωe and

the ratio of these maxima crucially depends on λx/λy. So
one can estimate λx/λy from the ratio of these two maxima.
There are two major and two minor extremes in Lb

z2(∞). Two
minor minima are opposite to the maxima of La

z2(∞) and,
thus, are not expressed in Fig. 3(a). Therefore, there are two
extremes of Lz2(∞) in the general case [see Fig. 3(a)]. Two
major extremes of Lb

z2(∞) cause these extremes of Lz2(∞)
[Fig. 3(a)]. As seen from Eq. (22), at λx = λy (or ωe = ω0)
La

z2(∞) = 0. For a free particle (ω0 → 0), we obtain

La
z2(∞) = e2Ex0Ey0(λx − λy)

m(λ2
x + ω2

e )
(
λ2

y + ω2
e

) . (23)

As seen from Eq. (23), the angular momentum is positive
along the z axis at λx > λy. If λx < λy, the projection of
angular momentum is negative. If ωe = 0 (constant electric
field), we have nonzero angular momentum

La
z2(∞) = e2Ex0Ey0(λx − λy)

mλ2
xλ

2
y

. (24)

If the collective frequencies are close to each other, the
value of Lz2(∞) deviates more strongly from zero at extremes.
For example, the absolute value of Lz2(∞) at extremes in
Fig. 4 is larger at ωx/ωy = 1.1 than at ωx/ωy = 2.

In Fig. 5 the dependence of the asymptotic z component
of angular momentum is shown as a function of h̄ωe for a
free particle. At h̄ωc = 0, the maximum value of Lz2(∞) is
near ωmax

e = 0. With increasing anisotropy in the system (the
ratio λx/λy increases), the value of Lz2(∞) becomes larger. If
h̄ωc = 1 meV, the maximum value of |Lz2(∞)| is at ωmax

e =
ωc, and as the ratio λx/λy increases, the value of |Lz2(∞)|
decreases. It should be noted that the value of Lz2(∞) changes
sign in the presence of a magnetic field, the particle moves in
the opposite direction. At the same time, |Lz2(∞)| is larger at
extremum at h̄ωc = 0 for a given λx/λy. In order to obtain a
large angular momentum (or a large magnetic moment) in the
system at ωc = 0, the frequency of the electric field should be
small or it can be affected by a constant electric field. In this
case, the angular momentum changes as Lz2(∞) ∼ 1/ω4

e [see
Eq. (23)].
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FIG. 4. The calculated asymptotic z component Lz2(∞)/h̄ of
angular momentum as a function of h̄ωe at different ratios of col-
lective frequencies. Here h̄λx = 1.5h̄λy = 0.15 meV, h̄ωc = 1 meV,
h̄ωy = 1 meV, and h̄γ = 12 meV.

The dependence of Lz2(∞) on the magnetic field is shown
in Fig. 6 for various friction coefficients and electric field
frequencies. The Lz2(∞) is almost the same in the Markovian
and non-Markovian cases. Therefore, the value of Lz2(∞)
is weakly affected by non-Markovian effects. Here we set
ωx = ωy = ω0 and λx = λy = λ and numerical calculations
show that Lz2(∞) reaches an extremum at certain values of
the magnetic field:

ωmax
c =

√
ω4

0 − (
2ω2

0 + λ2
)
ω2

e + ω4
e + 2

√
M

3ω2
e

, (25)

where

M = ω8
0 − ω4

0ω
2
e

(
4ω2

0 − λ2
) + (

6ω4
0 − 2ω2

0λ
2 + λ4

)
ω4

e

− (
4ω2

0 − λ2
)
ω6

e + ω8
e . (26)

For a free particle, we obtain

ωmax
c =

√
ω2

e − λ2 + 2
√

ω4
e + ω2

eλ
2 + λ4

3
. (27)

If λ → 0, Eq. (25) results in

ωmax
c ≈

∣∣ω2
0 − ω2

e

∣∣
ωe

. (28)

For a free particle and λ = 0, we obtain ωmax
c ≈ ωe. As the

friction coefficient decreases, the half-width of Lz2(∞) de-
creases and the absolute value increases. For example, at
h̄ωe = 0.1 meV, Lz2(∞) ≈ 57h̄ and 57 × 104h̄ for h̄λ = 0.1
and 0.001 meV, respectively (Fig. 6). Thus, at extremes
Lz2(∞) ∼ 1/λ2. As the frequency of the electric field in-
creases, the absolute value of Lz2(∞) decreases.

The dependence of Lz2(∞) on the magnetic field is shown
in Fig. 7 for a free particle. As seen, the maximum value of
|Lz2(∞)| corresponds to ωmax

c = ωe for small friction coeffi-
cients.

Figure 8 presents the dependence of Lz2(∞) on the os-
cillator frequency at different friction coefficients, cyclotron,
and electric field frequencies. Calculations show that there is
one extremum of Lz2(∞) at large h̄ωc and small h̄ωe. If the
electric field frequency is larger, for example, h̄ωe = 2 meV,
then Lz2(∞) has two extremes. However, their amplitudes de-
crease as h̄ωe increases. At given electric field frequency, the
maximum value of |Lz2(∞)| decreases with magnetic field.
If ωx = ωy = ω0 and Ex0 = Ey0, Lz2(∞) = 0 at ωc = |λx−λy|

2

[see Eq. (17)]. If ωc >
|λx−λy|

2 , then Lz2(∞) < 0 at ω0 < ωe

and Lz2(∞) > 0 at ω0 > ωe. If ωc <
|λx−λy|

2 , then Lz2(∞) > 0
at ω0 < ωe and Lz2(∞) < 0 at ω0 > ωe. So we can control
magnetization through the frequency of the electric field and
the magnetic field acting on the charged particle embedded in
the heat bath.

IV. SUMMARY

The effects of an external uniform magnetic and two per-
pendicular time-dependent electric fields on magnetization
of the open quantum system have been studied in the non-
Markovian limit. The explicit expression for the z component
of angular momentum Lz(t ) = Lz1(t ) + Lz2(t ) was obtained
for the 2D charged quantum harmonic oscillator, where Lz1(t )
does not depend on electric fields, and Lz2(t ) is the component

FIG. 5. The calculated asymptotic z component Lz2(∞)/h̄ of angular momentum as a function of h̄ωe for a free particle (h̄ω0 = 0) at
(a) h̄ωc = 0 and (b) h̄ωc = 1 meV in the non-Markovian case.
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FIG. 6. The calculated asymptotic z component Lz2(∞)/h̄ of angular momentum as a function of h̄ωc for the Markovian and non-
Markovian dynamics. Here h̄ω0 = 1 meV and h̄γ = 12 meV.

depending on electric fields. Based on the numerical calcula-
tions, we showed that at different frequencies of electric fields
(ωex �= ωey), the Lz2(t ) does not have an asymptotic value
Lz2(∞) and oscillates at large t . For Lz2(t ) at ωe = ωex =
ωey, non-Markovian and Markovian dynamics are almost
indistinguishable throughout the entire process. For Lz1(t ),
non-Markovian effects are more noticeable only in the initial
short time interval. These facts indicate that non-Markovian
effects have a weak influence on the diamagnetic properties
of the system.

In the case of ωe = ωex = ωey, the analytical formula for
the asymptotic z component of angular momentum was de-
rived. The values of Lz1(∞) and Lz2(∞) are almost the
same as in the Markovian and non-Markovian cases. If the
anisotropy of the environment increases, for example, λx/λy

deviates from 1, then the value of |Lz1(∞)| slightly decreases
for a certain magnetic field. The value of |Lz1(∞)| signifi-
cantly decreases with increasing the ratio ωx/ωy of collective
harmonic oscillator frequencies. The Lz1(∞) = −h̄ is quan-
tized in strong magnetic fields, h̄ωc � T0. As shown, Lz2(∞)
has two extremes, and the frequencies of the electric field
corresponding to these extremes depend on the collective
frequency and magnetic field (Fig. 2). If Ex0 = Ey0 and ωx =
ωy = ω0, then Lz2(∞) = 0 at ωc = |λx − λy|/2. By varying

the electric field frequency ωe = ωex = ωey or magnetic field
we can change the sign and value of Lz2(∞) and, thus, control
the diamagnetic properties of 2DEG.

In the anisotropic environment with λx �= λy, the com-
ponent of angular momentum appears, Lz2 �= 0, even with
ωc = 0 and ωx = ωy. This means that magnetization arises be-
cause of the asymmetry in the system. The asymmetry can be
imposed in the system not only through different frequencies
of oscillators in x and y but also through the asymmetry of the
heat bath in which the 2D harmonic oscillator is embedded.
In this case, magnetization appears even for a free particle
and a symmetric harmonic oscillator and increases with the
anisotropy of the environment. It is possible to propose a
method for determining the ratio λx/λy for the environment
by measuring the dependence of Lz2 on the frequency of the
electric field at ωc = 0 and ωx = ωy.

In the absence of a magnetic field for a free particle, the
asymptotic z component of angular momentum decreases as
Lz2(∞) ∼ 1/ω4

e . If ωc �= 0, then |Lz2(∞)| has a maximum
value and this corresponds to ωmax

c = ωe. One can see that
|Lz2(∞)| decreases as the anisotropy of the environment in-
creases. As in the case of a harmonic oscillator, the influence
of the non-Markovian effect on dynamics of a free particle is
very weak.
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FIG. 7. The calculated asymptotic z component Lz2(∞)/h̄ of angular momentum as a function of h̄ωc for a free particle (h̄ω0 = 0).

APPENDIX A: DERIVATION AND SOLUTION OF THE SYSTEM OF EQS. (3)

The system of the Heisenberg equations for the collective coordinates

ẋ(t ) = i

h̄
[H, x] = πx(t )

m
,

ẏ(t ) = i

h̄
[H, y] = πy(t )

m
,

π̇x(t ) = i

h̄
[H, πx]

= πy(t )ωc − mω2
x x(t ) − eEx(t ) −

∑
ν

αν[b+
ν (t ) + bν (t )] − 2

∑
ν

αν

h̄ων

[ανx(t ) + gνy(t )],

π̇y(t ) = i

h̄
[H, πy]

= −πx(t )ωc − mω2
y y(t ) − eEy(t ) −

∑
ν

gν[b+
ν (t ) + bν (t )] − 2

∑
ν

gν

h̄ων

[ανx(t ) + gνy(t )] (A1)

and the bath phonon operators

ḃ+
ν (t ) = i

h̄
[H, b+

ν ] = iωνb+
ν (t ) + i

h̄
[ανx(t ) + gνy(t )],

ḃν (t ) = i

h̄
[H, bν] = −iωνbν (t ) − i

h̄
[ανx(t ) + gνy(t )] (A2)
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(i)

FIG. 8. The calculated asymptotic z component Lz2(∞)/h̄ of angular momentum as a function of h̄ω0. Here h̄λy = 0.1 meV, and the solid,
dashed, dotted, and dash-dotted lines correspond to the cases with λx/λy = 1, 1.1, 1.5, and 2, respectively.

is obtained by commuting them with Hamiltonian (1). The solution of Eq. (A2) is

b+
ν (t ) = f +

ν (t ) − ανx(t ) + gνy(t )

h̄ων

+ αν

h̄ων

∫ t

0
dτ ẋ(τ )eiων (t−τ ) + gν

h̄ων

∫ t

0
dτ ẏ(τ )eiων (t−τ ),

bν (t ) = fν (t ) − ανx(t ) + gνy(t )

h̄ων

+ αν

h̄ων

∫ t

0
dτ ẋ(τ )e−iων (t−τ ) + gν

h̄ων

∫ t

0
dτ ẏ(τ )e−iων (t−τ ), (A3)

where

fν (t ) =
[

bν (0) + ανx(0) + gνy(0)

h̄ων

]
e−iων t .

Substituting (A3) into (A1), we eliminate the bath variables from the equations of motion of the collective subsystem and
obtain the nonlinear integro-differential stochastic dissipative Eqs. (3) for the collective coordinates. In Eqs. (3),

Kα (t − τ ) =
∑

ν

2α2
ν

h̄ων

cos [ων (t − τ )], Kg(t − τ ) =
∑

ν

2g2
ν

h̄ων

cos [ων (t − τ )],

Kαg(t − τ ) = Kgα (t − τ ) =
∑

ν

2ανgν

h̄ων

cos [ων (t − τ )], (A4)

and

Fα (t ) =
∑

ν

F ν
α (t ) =

∑
ν

αν[ f +
ν (t ) + fν (t )],

Fg(t ) =
∑

ν

F ν
g (t ) =

∑
ν

gν[ f +
ν (t ) + fν (t )] (A5)
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are the dissipative kernels and the random forces in the coordinates, respectively. The random force operators F ν
α (t ) and F ν

g (t ) are
identified as fluctuations due to the uncertainty of the initial conditions for the thermostat operators. We consider an ensemble
of initial states in which the operators of the collective subsystem are fixed at the values x(0) and y(0), and the initial bath
operators are drawn from an ensemble that is canonical relative to the collective subsystem [27,37]. The initial distribution
is then the conditional density matrix ρ0({b+

ν (0), bν (0)}|q(0)) = exp(−∑
ν h̄ων[b+

ν + ανx+gνy
h̄ων

][bν + ανx+gνy
h̄ων

]/T0)/Z (T0), where
Z (T0) is the conditional partition function and T0 (in the energy units) is the temperature of the heat bath. In an ensemble of
initial states for the bath operators, the fluctuations F ν

α (t ) and F ν
g (t ) have the Gaussian distributions with zero average value

〈〈F ν
α (t )〉〉 = 〈〈F ν

g (t )〉〉 = 0, (A6)

where the symbol � · � denotes the average over the bath. The temperature T0 of the heat bath is included in the analysis
through the distribution of initial conditions. We use the Bose-Einstein statistics for the heat bath:

〈〈 f +
ν (t ) f +

ν ′ (t ′)〉〉 = 〈〈 fν (t ) fν ′ (t ′)〉〉 = 0,

〈〈 f +
ν (t ) fν ′ (t ′)〉〉 = δν,ν ′nνeiων (t−t ′ ),

〈〈 fν (t ) f +
ν ′ (t ′)〉〉 = δν,ν ′ (nν + 1)e−iων (t−t ′ ) (A7)

with occupation numbers for phonons nν = [exp(h̄ων/T0) − 1]−1 depending on T0. Using the properties of random forces, we
obtain the quantum fluctuation-dissipation relations

∑
ν

ϕν
αα (t, t ′)

tanh
[ h̄ων

2T0

]
h̄ων

= Kα (t − t ′),
∑

ν

ϕν
gg(t, t ′)

tanh
[ h̄ων

2T0

]
h̄ων

= Kg(t − t ′),

∑
ν

ϕν
αg(t, t ′)

tanh
[ h̄ων

2T0

]
h̄ων

= Kαg(t − t ′),

where

ϕν
αα (t, t ′) = 2α2

ν [2nν + 1] cos(ων[t − t ′]), ϕν
gg(t, t ′) = 2g2

ν[2nν + 1] cos(ων[t − t ′]),

ϕν
αg(t, t ′) = 2ανgν[2nν + 1] cos(ων[t − t ′])

are the symmetrized correlation functions ϕν
kk′ (t, t ′) = 〈〈F ν

k (t )F ν
k′ (t ′) + F ν

k′ (t ′)F ν
k (t )〉〉, k, k′ = α, g. The quantum fluctuation-

dissipation relations differ from the classical ones and are reduced to them in the limit of high temperature T0 (or h̄ → 0):∑
ν ϕν

αα (t, t ′) = 2T0Kα (t − t ′),
∑

ν ϕν
gg(t, t ′) = 2T0Kg(t − t ′), and

∑
ν ϕν

αg(t, t ′) = 2T0Kαg(t − t ′).
The Laplace transform L̂ of Eqs. (3) leads to the system of linear equations:

x(s)s = x(0) + πx(s)

m
,

y(s)s = y(0) + πy(s)

m
,

πx(s)s = πx(0) + ωcπy(s) − mω2
x x(s) − eEx(s) − Kα (s)

πx(s)

m
− Kαg(s)

πy(s)

m
− Fα (s),

πy(s)s = πy(0) − ωcπx(s) − mω2
y y(s) − eEy(s) − Kg(s)

πy(s)

m
− Kαg(s)

πx(s)

m
− Fg(s). (A8)

Here Kα (s), Kg(s), Kαg(s), and Fα (s), Fg(s) are the Laplace transforms of the dissipative kernels and random forces, respectively.
The system of Eqs. (A8) is easy to solve and performs the inverse Laplace transform L̂−1 using the residue theorem and the roots
of the determinant

D = s4 + (
ω2

c + ω2
x + ω2

y

)
s2 + ω2

xω
2
y + (

s3 + sω2
y

)Kα (s)

m
+ (

s3 + sω2
x

)Kg(s)

m
+ s2Kα (s)Kg(s)

m2
− s2K2

αg(s)

m2
= 0. (A9)

Finally, we obtain Eqs. (4) with the following time-dependent coefficients:

Ix(t ) =
∫ t

0
A3(τ )Fα (t − τ ) dτ, I ′

x (t ) =
∫ t

0
A4(τ )Fg(t − τ ) dτ, Iex (t ) = e

∫ t

0
A3(τ )Ex(t − τ ) dτ,

I ′
ex(t ) = e

∫ t

0
A4(τ )Ey(t − τ ) dτ, Iy(t ) =

∫ t

0
B3(τ )Fα (t − τ ) dτ, I ′

y(t ) =
∫ t

0
B4(τ )Fg(t − τ ) dτ,

Iey(t ) = e
∫ t

0
B3(τ )Ex(t − τ ) dτ, I ′

ey(t ) = e
∫ t

0
B4(τ )Ey(t − τ ) dτ, Iπx (t ) =

∫ t

0
C3(τ )Fα (t − τ ) dτ,
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I ′
πx

(t ) =
∫ t

0
C4(τ )Fg(t − τ ) dτ, Ieπx (t ) = e

∫ t

0
C3(τ )Ex(t − τ ) dτ, I ′

eπx
(t ) = e

∫ t

0
C4(τ )Ey(t − τ ) dτ,

Iπy (t ) =
∫ t

0
D3(τ )Fα (t − τ ) dτ, I ′

πy
(t ) =

∫ t

0
D4(τ )Fg(t − τ ) dτ, Ieπy (t ) = e

∫ t

0
D3(τ )Ex(t − τ ) dτ,

I ′
eπy

(t ) = e
∫ t

0
D4(τ )Ey(t − τ ) dτ,

and

A1(t ) = L̂−1

[
m2s3 + m2

(
ω2

c + ω2
y

)
s + m

(
s2 + ω2

y

)
Kα (s) + ms2Kg(s) + sKα (s)Kg(s) − sK2

αg(s)

m2D(s)

]

= B2(t )|x,α↔y,g, A2(t ) = L̂−1

[
−ω2

y [mωc − Kαg(s)]

mD(s)

]
,

A3(t ) = L̂−1

[
ms2 + mω2

y + sKg(s)

m2D(s)

]
= B4(t )|x,α↔y,g, A4(t ) = L̂−1

[
s[mωc − Kαg(s)]

m2D(s)

]
,

B1(t ) = L̂−1

[
ω2

x [mωc + Kαg(s)]

mD(s)

]
, B3(t ) = L̂−1

[
− s[mωc + Kαg(s)]

m2D(s)

]
,

C1(t ) = −m2ω2
x A3(t ) = D2(t )|x,α↔y,g, C2(t ) = L̂−1

[
− sω2

y [mωc − Kαg(s)]

D(s)

]
,

C3(t ) = L̂−1

[
ms3 + mω2

y s + s2Kg(s)

mD(s)

]
= D4(t )|x,α↔y,g, C4(t ) = L̂−1

[
s2[mωc − Kαg(s)]

mD(s)

]
,

D1(t ) = L̂−1

[
sω2

x [mωc + Kαg(s)]

D(s)

]
, D3(t ) = L̂−1

[
− s2[mωc + Kαg(s)]

mD(s)

]
. (A10)

In general, the diagonal dissipative kernels are much larger than off-diagonal ones. For simplicity, we assume that there is
no correlation between the operators F ν

α and F ν
g , so that Kαg = Kgα = 0. It is convenient to introduce the spectral density Dω

of the heat bath excitations, which allows us to replace the sum over different oscillators, ν, by the integral over frequency:∑
ν · · · → ∫ ∞

0 dωDω · · · . This is accompanied by the following replacements: αν → αω, gν → gω, ων → ω, and nν → nω. Let
us consider the following spectral functions [26,27]:

Dω

α2
ω

ω
= λ2

x

π

γ 2

γ 2 + ω2
, Dω

g2
ω

ω
= λ2

y

π

γ 2

γ 2 + ω2
, (A11)

where the memory time γ −1 of dissipation is inverse to the phonon bandwidth of the heat bath excitations which are coupled
with the collective oscillator and the coefficients

λx = 1

m

∫ ∞

0
dτKα (t − τ ), λy = 1

m

∫ ∞

0
dτKg(t − τ )

are the friction coefficients in the Markovian limit. This Ohmic dissipation with the Lorentzian cutoff (Drude dissipation) results
in the dissipative kernels

Kα (t ) = mλxγ e−γ |t |, Kg(t ) = mλyγ e−γ |t |.

The relaxation time of the heat bath should be much less than the period of the collective oscillator, i.e., γ � ωx,y. Using all
assumptions mentioned above, we obtain the explicit expressions for the time-dependent coefficients

A1(t ) =
6∑

i=1

βi{(si + γ )
[
si(si + γ )

(
s2

i + ω2
y + ω2

c

) + λxγ
(
s2

i + ω2
y

)] + siλyγ [si(si + γ ) + λxγ ]}esit ,

A2(t ) = −ωcω
2
y

6∑
i=1

βi(si + γ )2esit ,

A3(t ) = 1

m

6∑
i=1

βi(si + γ )[(si + γ )
(
s2

i + ω2
y

) + siλyγ ]esit ,
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A4(t ) = ωc

m

6∑
i=1

βisi(si + γ )2esit ,

B1(t ) = −A2(t )|x↔y, B2(t ) = A1(t )|x↔y, B3(t ) = −A4(t )|x↔y, B4(t ) = A3(t )|x↔y,

C1(t ) = −m2ω2
x A3(t ), C2(t ) = mȦ2(t ), C3(t ) = mȦ3(t ), C4(t ) = mȦ4(t ),

D1(t ) = mḂ1(t ), D2(t ) = −m2ω2
y B4(t ), D3(t ) = mḂ3(t ), D4(t ) = mḂ4(t ) (A12)

of Eqs. (4). The roots si of the determinant (9) arise in the time-dependent coefficients when we apply the residue theorem to
perform the integration in the inverse Laplace transform.

APPENDIX B: THE ORBITAL ANGULAR MOMENTA L0
z (t ) AND Lz1(∞)

In Sec. II A, Eq. (5) contains the term

L0
z (t ) = α11(t )〈x2(0)〉 + α12(t )〈x(0)y(0)〉 + α13(t )〈x(0)πx(0)〉 + α14(t )〈x(0)πy(0)〉

+ α21(t )〈y(0)x(0)〉 + α22(t )〈y2(0)〉 + α23(t )〈y(0)πx(0)〉 + α24(t )〈y(0)πy(0)〉
+ α31(t )〈πx(0)x(0)〉 + α32(t )〈πx(0)y(0)〉 + α33(t )〈π2

x (0)〉 + α34(t )〈πx(0)πy(0)〉
+ α41(t )〈πy(0)x(0)〉 + α42(t )〈πy(0)y(0)〉 + α43(t )〈πy(0)πx(0)〉 + α44(t )〈π2

y (0)〉 (B1)

depending on the initial second moments of the collective coordinates. Here

αkl (t ) = Ak (t )Dl (t ) − Bk (t )Cl (t ), k, l = 1, 2, 3, 4.

Analytical integration over ω in Eq. (11) leads to [40]

Lz1(∞) = −h̄ωcγ
2[2Re(I ) − Is], (B2)

where

I = s2
1

{(
γ 2 − s2

1

)[
λx

(
s2

1 + ω2
y

) + λy
(
s2

1 + ω2
x

)] − 2s2
1γ λxλy

}
(
s2

1 − s∗2
1

)(
s2

1 − s2
2

)(
s2

1 − s∗2
2

)(
s2

1 − s2
3

)(
s2

1 − s∗2
3

) cot

[
h̄s1

2T0

]

+ s2
2

{(
γ 2 − s2

2

)[
λx

(
s2

2 + ω2
y

) + λy
(
s2

2 + ω2
x

)] − 2s2
2γ λxλy

}
(
s2

2 − s2
1

)(
s2

2 − s∗2
1

)(
s2

2 − s∗2
2

)(
s2

2 − s2
3

)(
s2

2 − s∗2
3

) cot

[
h̄s2

2T0

]

+ s2
3

{(
γ 2 − s2

3

)[
λx

(
s2

3 + ω2
y

) + λy
(
s2

3 + ω2
x

)] − 2s2
3γ λxλy

}
(
s2

3 − s2
1

)(
s2

3 − s∗2
1

)(
s2

3 − s2
2

)(
s2

3 − s∗2
2

)(
s2

3 − s∗2
3

) cot

[
h̄s3

2T0

]

and

Is = 32π3 T 4
0

h̄4

∞∑
n=1

{(
γ 2 − x2

n

)[
λx

(
x2

n + ω2
y

) + λy
(
x2

n + ω2
x

)] − 2x2
nγ λxλy

}
n3∣∣x2

n − s2
1

∣∣2∣∣x2
n − s2

2

∣∣2∣∣x2
n − s2

3

∣∣2 .

Here xn = 2πnT0/h̄, Re(s1) < 0, Re(s2) < 0, and Re(s3) < 0.

APPENDIX C: FREE CHARGED PARTICLE IN A DISSIPATIVE BOSONIC HEAT BATH IN AN EXTERNAL
CONSTANT MAGNETIC FIELD AND TWO NONSTATIONARY ELECTRIC FIELDS

Let us consider the action of two perpendicular time-dependent electric fields in the xy plane and the transverse (along the
z axis) constant magnetic field on a free charged particle. Employing the Markovian limit and a trick originally due to Darwin
[43], we find the value of

Lz1(∞) = 8T0ωc

4ω2
c + (λx + λy)2

− h̄ sinh[h̄ωc/T0]

2{sinh2[h̄ωc/(2T0)] + sin2[h̄(λx + λy)/(4T0)]}

+
∞∑

n=1

128nπT 2
0 h̄3ωc(λx + λy)

|4nπT0 + h̄(2iωc − λx − λy)|2|4nπT0 − h̄(2iωc − λx − λy)|2 (C1)
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from Eq. (13) in the limit ωx = ωy → 0 (after the integration over ω). If the friction is isotropic, λx = λy = λ, then we derive
the expression

Lz1(∞) = 2T0ωc

ω2
c + λ2

+ h̄ sinh[h̄ωc/T0]

cos[h̄λ/T0] − cosh[h̄ωc/T0]
+

∞∑
n=1

16nπT 2
0 h̄3λωc

16n4π4T 4
0 + 8h̄2n2π2T 2

0

(
ω2

c − λ2
) + h̄4

(
ω2

c + λ2
)2 . (C2)

As found, the contribution of the sums in Eqs. (C1) and (C2) to Lz1(∞) is negligible at high temperatures. As seen from Eqs. (C1)
and (C2), the Bohr-Van Leeuwen theorem that states that diamagnetism does not exist in classical statistical mechanics is restored
for large damping (as λx,y → ∞).

In the limit of zero friction (λ → 0), Eq. (C2) results in the Landau formula or the Langevin function

Lz1(∞) = h̄

(
2T0

h̄ωc
− coth

[
h̄ωc

2T0

])
. (C3)

So Eq. (C1) or (C2) naturally generalizes the Landau formula (C3) in the case of dissipative system. These formulas are
applicable in a situation in which the system has scattering processes that can lead to decoherence of Landau orbits [21].
Formula (C2) for dissipative orbital magnetization was first obtained in Ref. [22], where the starting point is the quantum
Langevin equation of a charged particle in a magnetic field and an isotropic bosonic heat bath. The case of λx �= λy was studied
more extensively in Ref. [40].

In the non-Markovian limit, we find the asymptotic z component of angular momentum

Lz2(∞) = −e2
(
γ 2 + ω2

e

){
γ
[
E2

x0ωc(γ − λy) + E2
y0ωc(γ − λx ) − Ex0Ey0γ (λx − λy)

] + (
E2

x0 + E2
y0

)
ωcω

2
e

}
/N, (C4)

at ωex = ωey = ωe, where

N = m
(
γ 4

(
ω2

c + λxλy
)2 + γ 2

{[
2ω2

c + γ (λx + λy)
]2 − 2

(
ω2

c + λxλy
)[

ω2
c + γ (γ + λx + λy)

]}
ω2

e

+ {
ω4

c − 2ω2
cγ (2γ − λx − λy) + γ 2[γ 2 + λ2

x + 4λxλy + λ2
y − 2γ (λx + λy)

]}
ω4

e − 2
[
ω2

c − γ (γ − λx − λy)
]
ω6

e + ω8
e

)
.

To find the maximum of the asymptotic z component of angular momentum, we take the derivatives of Eq. (C4) with respect to
Ey0 and obtain

Emax
y0 = Ex0γ

2(λx − λy)

2ωc
(
γ 2 − γ λx + ω2

e

). (C5)

With this ratio of Emax
y0 /Ex0 we obtain the maximum value of Lz2(∞)

Lmax
z2 (∞) = − e2E2

x0

(
γ 2 + ω2

e

)
Z

4ωc[γ (γ − λx )]N
, (C6)

where

Z = {
γ 2

[
4ω2

c (γ − λx )(γ − λy) − γ 2(λx − λy)2
] + 4ω2

cω
2
e

[
ω2

e + γ (2γ − λx − λy)
]}

.

In the isotropic environment (λx = λy = λ), Emax
y0 = 0, and only one electric field is sufficient. In the constant electric fields

(ωe = 0), we obtain

Lz2(∞) = − e2
[
E2

x0ωc(γ − λy) + E2
y0ωc(γ − λx ) − Ex0Ey0γ (λx − λy)

]
mγ

(
ω2

c + λxλy
)2 . (C7)

If ωc = 0,

Lz2(∞) = e2Ex0Ey0(λx − λy)

mλ2
xλ

2
y

. (C8)

As seen, for λx = λy = λ the asymptotic z component of angular momentum equals zero. The absolute value of Lz2(∞) does
not depend on γ and reaches the maximum

Lmax
z2 (∞) = e2Ex0Ey0

4mλ3
y

(C9)

at λx = 2λy. The absolute values of Lmax
z2 (∞) decreases rapidly with increasing λy. Frequency ωmax

c corresponding to the
maximum value of the asymptotic z component of angular momentum at λx �= λy and nonzero Ex0 �= Ey0 depends on the
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frictional coefficients λx and λy, amplitude electrical fields Ex0 and Ey0, and γ as

ωmax
c =

√√√√√2Ex0Ey0γ
(
λx − λy

) +
√

3λxλy
[
E2

x0(γ − λy) + E2
y0(γ − λx )

]2 + 4E2
x0E2

y0γ
2(λx − λy)2

3
[
E2

x0(γ − λy) + E2
y0(γ − λx )

] . (C10)

At Ex0 = Ey0 �= 0, we derive the following expression:

ωmax
c =

√
2γ (λx − λy) + √

4γ 2(λx − λy)2 + 3λxλy(2γ − λx − λy)2

3(2γ − λx − λy)
. (C11)

If the external constant electric field affects the charged particle in only one direction Ex0 = 0, (or Ey0 = 0), we obtain

ωmax
c =

√
λxλy

3
. (C12)

If the friction coefficients are equal, λx = λy = λ, regardless of the external electric fields, ωmax
c is equal to

ωmax
c = λ√

3
. (C13)

At λx = λy = λ, we find from Eq. (C7) the asymptotic z component of angular momentum

Lz2(∞) = − e2
(
E2

x0 + E2
y0

)
ωc(γ − λ)

mγ (ω2
c + λ2)2 . (C14)

In the case of Ey0 = 0, γ � λ and ωc � λ, it is transformed into

Lz2(∞) = −e2E2
x0

mω3
c

. (C15)

In the Markovian limit (γ → ∞), we obtain from Eq. (C14)

Lz2(∞) = −e2
(
E2

x0 + E2
y0

)
ωc

m
(
ω2

c + λ2
)2 . (C16)
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