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Thermal conduction force under standing and quasistanding temperature field
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Thermal conduction force plays a crucial role in manipulating the local thermal conductivity of crystals.
However, due to the diffusive nature of thermal conduction, investigating the force effect is challenging. Recently,
researchers have explored the force effect based on the wavelike behavior of thermal conduction, specifically
second sound. However, their focus has been primarily on the progressive case, neglecting the more complex
standing temperature field case. Additionally, establishing a connection between the results obtained from the
progressive case and the standing case poses a challenging problem. In this study, we investigate the force effect
of standing and quasistanding temperature fields, revealing distinct characteristics of thermal conduction force.
Moreover, we establish a link between the progressive and standing cases through the quasistanding case. Our
findings pave the way for research in more intricate scenarios and provide an additional degree of freedom for
manipulating the local thermal conductivity of dielectric crystals.
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I. INTRODUCTION

Thermal conduction is a research field that has gar-
nered significant attention, both from a macroscopic and
microscopic perspective [1–12]. However, the force effect
associated with this heat transport mechanism has received
limited attention. In this regard, the thermal conduction force
between the liquid-liquid and liquid-solid phases has been
theoretically explained and experimentally verified by con-
sidering the coupling of momentum and flux [13–15]. For
the solid-solid case, Tan et al. proposed the theory of sec-
ond sound radiation force (SSRF) based on the wavelike
nature of thermal conduction in dielectric crystals [16–22].
Their work not only confirmed the existence of SSRF but
also demonstrated its tunability by manipulating the incident
wave. This research challenges the conventional notion that a
constant temperature gradient is necessary to induce thermal
conduction force. Moreover, SSRF provides a mechanism for
manipulating local thermal conductivity [23,24].

However, Tan et al. only investigated the case of a single
incident second sound [16]. To further advance the research,
it is necessary to explore the scenario involving multiple in-
cident second sounds. When two second sounds with equal
amplitudes counter-propagate, they create a standing temper-
ature field, while different amplitudes result in a quasistanding
temperature field. Consequently, the thermal conduction force
becomes more complex. First, it is unknown whether the
force exhibits distinct behavior compared to the progres-
sive case under these two scenarios. Second, it remains
uncertain whether changing the force direction, as previ-
ously observed, holds the same significance. Furthermore,
we are particularly interested in determining if there is a
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relationship between the results obtained from these different
cases. In this study, we theoretically investigate the thermal
conduction force exerted on stationary and adiabatic impurity
particles in dielectric crystals when two counter-propagating
second sounds generate standing and quasistanding temper-
ature fields. We consider various cases, including the plane,
zeroth-order Bessel, and high-order Bessel standing cases.
Additionally, we examine the corresponding quasistanding
cases. Interestingly, we discover that the force direction can
be reversed, similar to the progressive case. However, due to
the absence of a specific propagating direction for the standing
and quasistanding temperature fields, their physical implica-
tions differ. The most significant finding is that the results
obtained from the quasistanding case establish a connection
between the results of the standing and progressive cases.
These findings not only enhance the theoretical understanding
of thermal conduction force but also provide an additional
degree of freedom for manipulating the local thermal conduc-
tivity of dielectric crystals, as is shown in Fig. 1(c).

II. GENERAL THEORY FOR CALCULATING THERMAL
CONDUCTION FORCE

To investigate the standing and quasistanding temperature
field’s impact on the SSRF, we utilize the nonattenuation
model as a progressive case. Initially, we assume that the
dielectric crystal’s temperature is approximately 10 K, ensur-
ing that phonon transport operates within the hydrodynamic
regime. In certain crystalline materials, the phenomenon of
second sound is observed at a temperature of 10 K [20].
Subsequently, we assume that the resistive process can be
neglected, implying an infinite resistive relaxation time, τR →
∞. Additionally, we consider the normal relaxation time τN

to be sufficiently short. Consequently, we can assume that
the phonon system can be described by the local equilibrium
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FIG. 1. Schematic of thermal conduction force under standing
and quasistanding temperature field. (a) An adiabatic spherical par-
ticle in the presence of plane standing temperature field is depicted.
The particle center is the origin of the Cartesian coordinate system
(x, y, z), and θ denotes the polar angle. (b) A particle with radius a
in the presence of Bessel standing second sound is shown, with δ

representing the half cone angle. (c) The local thermal conductivity
of dielectric crystals can be tuned by manipulating the interaction
between the impurity particle (the blue sphere) and the second sound
(the pink wave). ω1 and ω2 are the vibrating angular frequencies of
the impurity particle before and after interacting with the second
sound, and κ1 and κ2 are the corresponding local thermal conduc-
tivities of the crystal. The region containing the impurity particle is
zoomed in for clarity.

function

f (k, r, t ) = 1

eβ(r,t )(h̄ωk−h̄k·u(r,t )) − 1
, (1)

where h̄, ωk , k, and u(r, t ) are the reduced Planck constant,
phonon angular frequency, phonon wave vector, and phonon
drifting velocity, respectively. β(r, t ) = 1/(kBT (r, t )), where
kB is the Boltzmann constant, and T (r, t ) is the local temper-
ature of the crystal. r is the position vector, and t represents
time. In the aforementioned premises, the second and third
assumptions rest upon the fact that in any crystal, both resis-
tive and normal processes occur. When the normal process
predominates in phonon collisions, the impact of the resistive
process can be considered negligible, signified by τR → ∞.
Consequently, it is justifiable to treat the phonon system as
being in a state of local equilibrium. In our investigation of the
force effect of second sound, the size of the impurity particle
has an impact on the resistive relaxation time. However, our
focus lies within the regime where τN << τR. Under this con-
dition, the local equilibrium assumption remains valid, even
as the radius of the impurity particle, denoted as a, varies.
Through the application of momentum and energy conserva-
tion principles, as well as the utilization of the Debye model
to characterize the phonon spectrum, we are able to provide

evidence supporting the propagation of the temperature field
as a wave phenomenon known as second sound [25–32].

According to the momentum conservation law, we can
define the SSRF as the progressive case,

F = −
∫∫

〈Π ′ 〉dS, (2)

where Π
′
ij = ∑

k h̄kivkj ( f − f0) is the momentum flux of the
second sound, and vkj = ∂ωk/∂kj is the phonon group velocity
component. The variable F denotes the time-averaged force
exerted on a particle by the temperature field. The integration
is over the particle surface S. In this context, the term f − f0

represents the deviation of the phonon system from its equi-
librium state, which is characterized by f0. The equilibrium
state of the system is given by the equation

f0(k) = 1

eβ0 h̄ωk − 1
, (3)

where β0 = 1/kBT0, and T0 represents the background tem-
perature. In the equilibrium state ( f = f0), there is no SSRF
present.

For the sake of simplicity, we assume that one incident
second sound propagates along the +z direction, while the
other propagates along the −z direction. Under this assump-
tion, Eq. (2) can be further simplified as follows:

F = −
∫∫ ∑

k

h̄kzvkz ( f − f0)dS. (4)

After further derivation, we can obtain the expression for the
SSRF under the standing and quasistanding case:

F = −1

2

×
∫∫ ⎛

⎝ 2π2

9β4
0 (h̄c)3

〈(
T

′
1

T0

)2〉
+ π2

15β4
0 h̄3c5

〈|u|2〉
⎞
⎠dS.

(5)

Here, c represents the modulus of the phonon group velocity.
It is noteworthy that the expression derived above for the
SSRF is identical to the one obtained in the progressive case.
However, in this context, T ′

1 represents the sum of two incident
second sounds and their corresponding scattering field. When
calculating the acoustic radiation force in the acoustic field,
two methods are commonly employed: the angular-spectrum
method and the multipole-expansion based method. Extensive
research has demonstrated the equivalence of these two ap-
proaches [33–40]. In the subsequent analysis, we will utilize
the multipole-expansion based method for direct calculations.

III. FORCE EFFECTS WITH DIFFERENT STANDING
AND QUASI-STANDING TEMPERATURE FIELDS

Initially, we examine the SSRF under a plane standing
temperature field. In this scenario, the incident second sound
can be mathematically represented as Tinc = T1e−iωt {eiq(z+h) +
e−iq(z+h)}, where T1, ω, and q denote the amplitude, angular
frequency, and wave number of the second sound, respec-
tively. Here, h represents the distance in the z direction from
the center of the impurity to the nearest velocity antinode, as
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FIG. 2. Numerical results of the reduced second sound radiation force Yst under the conditions of (a) plane standing second sound as a
function of qa (where q and a are the second sound wave number and the particle radius) with the temperature ratio T1/T0 = 0.02, 0.06, 0.10
(where T1 is the second sound amplitude, and T0 is the background temperature), (b) zeroth-order Bessel standing second sound as a function
of qa and δ (unit: degree) with T1/T0 = 0.10, and (c) first-order Bessel standing second sound as a function of qa and δ with T1/T0 = 0.10.
The area enclosed by the red line is where Yst < 0.

is shown in Fig. 1(a). Additionally, i = √−1, and t signifies
time. By expressing the incident second sound in spherical
coordinates, we can derive the following expression:

Tinc = T1

∞∑
n=0

(2n + 1)�nin jn(qr)Pn(cos θ )e−iωt , (6)

where jn(x) is the spherical Bessel function of order n, Pn(x)
are the Legendre polynomial of order n, �n = {eiq(z+h) +
e−iq(z+h)}, and θ is the polar angle. Following the calculation
procedure in progressive case, we can get the SSFR for the
plane standing second sound:

F = − 2π3a2T 2
1

9β4
0 (h̄c)3T 2

0

∞∑
n=0

4(−1)n+1n(n + 1)(n + 2)

× [Un(qa)Un+1(qa) + Vn(qa)Vn+1(qa)] sin(2qh)

− π3T 2
1

5β4
0 (h̄c)3q2T 2

0

∞∑
n=0

4(−1)n+1(n + 1)

× [Un(qa)Un+1(qa) + Vn(qa)Vn+1(qa)] sin(2qh), (7)

where U and V are determined by the scattering character-
istics of the second sound at the boundary of the impurity
particle. As we are examining the force effect on a stationary
and adiabatic impurity particle, the expressions for U and V
remain the same as in the progressive case:

Un(qa) = jn(qa) − jn(qa)

j ′2
n (qa) + g′2

n (qa)

× [ j
′
n(qa) jn(qa) + g

′
n(qa)gn(qa)], (8)

Vn(qa) = jn(qa)

j ′2
n (qa) + n′2

n (qa)

× [ jn(qa)g
′
n(qa) − j

′
n(qa)gn(qa)], (9)

where gn(x) is the spherical Bessel function of order n of
the second kind, and j

′
n(x) and g

′
n(x) are the derivatives of

jn(x) and gn(x) with respect to x, respectively. Consequently,
the reduced SSRF, i.e., the time-averaged force exerted on
the particle per unit energy density and per scattering cross

section, can be expressed as follows:

Yst = F

AE ′
1 sin(2qh)

= F

πa2E ′
1 sin(2qh)

= −5T1

3T0

∞∑
n=0

4(−1)n+1n(n + 1)(n + 2)

× [Un(qa)Un+1(qa) + Vn(qa)Vn+1(qa)]

− 3T1

2T0(qa)2

∞∑
n=0

4(−1)n+1(n + 1)

× [Un(qa)Un+1(qa) + Vn(qa)Vn+1(qa)], (10)

where A represents the cross-section area, and E ′ denotes the
characteristic energy density of the incident second sound
[16]. The results of Yst for different values of T1/T0 are il-
lustrated in Fig. 2(a). Unlike the progressive case [41–47],
where only positive Yp values are observed, here, even in the
case of the plane standing second sound, negative Yst values
can be obtained. In the context of the standing second sound,
where there is no specific propagation direction, a negative
Yst value indicates that the direction of SSRF is toward the
temperature antinode. Conversely, a positive Yst value signifies
that the force direction is toward the temperature node. This
stands in contrast to the progressive case. It is worth noting
that, in the presence of a plane standing sound wave field, the
reduced SSRF can exhibit both positive and negative values
[48], further supporting the validity of our findings.

Next, when the incident field is a standing zeroth-order
Bessel second sound, the temperature field can be expressed
as Tinc = T1e−iωt {eiqz (z+h) + e−iqz (z+h)}J0(qr sin θ ). Here, qz

and qr represent the axial and radial wave numbers, re-
spectively, i.e., q = √

q2
z + q2

r . J0(x) denotes the cylindrical
Bessel function of zeroth order. Similarly, in spherical coor-
dinates, the incident field can also be expressed as Eq. (6).
But the expression of �n is different. Here, �n = {eiqz (z+h) +
e−iqz (z+h)}Pn(cos δ), δ = cos−1(qz/q) is the half cone angle of
the incident second sound [see Fig. 1(b)]. It is easy to verify
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that

Yst = − 5T1

3T0

∞∑
n=0

4(−1)n+1(n + 1)[Un(qa)Un+1(qa)

+ Vn(qa)Vn+1(qa)]Pn cos(δ)Pn+1 cos(δ)

− 3T1

2T0(qa)2

∞∑
n=0

4(−1)n+1n(n + 1)(n + 2)[Un(qa)

× Un+1(qa) + Vn(qa)Vn+1(qa)]Pn cos(δ)Pn+1 cos(δ).
(11)

Here, the standing temperature field can be seen as the su-
perposition of two progressive second sounds with the same
half cone angle δ. The variation of Yst with qa is shown in
Fig. 2(b). In contrast to the progressive zeroth-order Bessel
second sound, Yst can be negative in this case, indicating the
same behavior as in the plane standing case. Meanwhile, when
δ = 0, the result is equivalent to the plane standing case, as the
zeroth-order Bessel second sound reduces to plane standing
second sound. The comparison with the acoustic radiation
force under a zeroth-order Bessel standing sound wave field
confirms the reasonableness of our results [49]. Further, we
investigate the SSRF for first-order Bessel standing second
sound. The incident second sound can be mathematically rep-
resented as Tinc = T1e−iωt {eiqz (z+h) + e−iqz (z+h)}J1(qr sin θ )eiφ ,
where J1(x) denotes the cylindrical Bessel function of the
first order, and φ denotes the azimuth angle. By transforming
this expression into spherical coordinates, we can derive the
following results:

Tinc = T1

∞∑
n=1

(n − 1)!

(n + 1)!
(2n + 1)�nin−1 jn(qr)

× P1
n (cos θ )e−iωt eiφ. (12)

Here, �n = {eiqz (z+h) + (−1)n+1e−iqz (z+h)}P1
n (cos δ), and

Pm
n (x) is the associated Legendre polynomial. Following the

same procedure as before, the reduced SSRF is

Yst = − 5T1

3T0

∞∑
n=1

4(−1)n+2

n + 1
[Un(qa)Un+1(qa)

+ Vn(qa)Vn+1(qa)]Pn cos(δ)Pn+1 cos(δ)

− 3T1

2T0(qa)2

∞∑
n=1

4(−1)n+2n(n + 2)

n + 1
[Un(qa)Un+1(qa)

+ Vn(qa)Vn+1(qa)]Pn cos(δ)Pn+1 cos(δ). (13)

The results demonstrate that Yst can exhibit both positive and
negative values [see Fig. 2(c)]. This finding aligns with the
acoustic radiation force observed under a one-order Bessel
standing sound wave field, as reported by Mitri et al. [50].

As previously mentioned, the standing second sound can
be conceptualized as the superposition of two second sounds
propagating with the same amplitude. When these two second
sounds possess different amplitudes, they give rise to a quasi-
standing temperature field. For instance, considering the case
of a plane quasistanding field, the incident temperature field
can be mathematically represented as Tinc = e−iωt {T1eiq(z+h) +
T2e−iq(z+h)}, where we assume T1 > T2. By employing the
direct calculation method, we can determine the SSRF for the
plane quasistanding temperature field:

Yqst = −
(

T2 sin(2qh)

T1

)
5T1

3T0

∞∑
n=0

4(−1)n+1n(n + 1)(n + 2)

× [Un(qa)Un+1(qa) + Vn(qa)Vn+1(qa)]

−
(

T2 sin(2qh)

T1

)
3T1

2T0(qa)2

∞∑
n=0

4(−1)n+1(n + 1)

× [Un(qa)Un+1(qa) + Vn(qa)Vn+1(qa)]

−
(

1 − T 2
2

T 2
1

)
5T1

3T0

∞∑
n=0

2(n + 1)

× [Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]

−
(

1 − T 2
2

T 2
1

)
3T1

2T0(qa)2

∞∑
n=0

2n(n + 1)(n + 2)

× [Vn(qa)Un+1(qa) − Un(qa)Vn+1(qa)]. (14)

Combining the findings from the progressive and standing

cases, we observe that Yqst = Yp(1 − T 2
2

T 2
1

) + Yst (
T2 sin(2qh)

T1
). In

this equation, Yp represents the reduced SSRF under the plane
progressive second sound. This expression serves as a link be-
tween the results obtained from the progressive and standing

FIG. 3. Numerical results of the reduced second sound radiation force Yst under the conditions of (a) second-order Bessel standing second
sound as a function of qa and δ (unit: degree), (b) third-order Bessel standing second sound as a function of qa and δ, and (c) fourth-order
Bessel standing second sound as a function of qa and δ, with T1/T0 = 0.10. The area enclosed by the red line is where Yst < 0.
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cases. Importantly, it is applicable not only to the plane case
but also to the Bessel temperature field. The only difference is
that sin(2qh) should be replaced by sin(2qzh). We see when
T1 = T2, the result coincides with the standing case, as the
quasistanding temperature field reduces to a standing temper-
ature field. Furthermore, if T1 = 0, then Yst is equivalent to the
SSRF for progressive second sound.

IV. DISCUSSION AND CONCLUSION

In this paper, we have conducted a study on the SSRF
(second sound radiation force) under the standing and quasi-
standing temperature field. In the case of a standing second
sound field, the reduced SSRF can have both positive and
negative values, even for the plane and zeroth-order Bessel
standing temperature field. Similar results are found under
high-order Bessel standing cases, as shown in Figs. 3(a)–3(c).
However, it is important to note that the sign of Yst indicates
the direction relative to the temperature antinode or node,
which is distinct from the progressive cases. We have also
demonstrated that the results of the quasistanding temperature
field can link the progressive case and standing case, which
is of theoretical significance considering the existence of this
relation even for high-order Bessel temperature field. In our
research, we prioritize understanding the reduced radiation
force, as we are particularly interested in the direction of this
force. Through our calculations, we see that the magnitude
of the second sound radiation force is approximately 10−9N
in a plane standing temperature field (see Fig. 4), as derived
from Eq. (7). For simplicity, we have assumed sin(2qh) = 1.
We propose that one potential method to detect this force
could be through the application of x-ray diffraction technique
[51]. Given the elastic constant of the purity in crystals, the
force can be determined by measuring the displacement of the
purity particle from its equilibrium position.

Nevertheless, our focus in this paper remains on the hy-
drodynamic regime of thermal conduction force. For further
studies, we could extend our analysis to other regimes, such as
the diffusive and casir regimes [52–56]. Additionally, recent
research has shown that density variation can induce a force
effect for the fluid [57]. In the case of our solid-solid system,
where we assume the background temperature is constant, we
have neglected the corresponding density variation and have
not considered the force effect. Our primary focus is on the
interaction between second sound and impurity. Furthermore,
we have assumed that the impurity is fixed, and there is a
need for exploration regarding the force effect on movable im-
purities. Moreover, studying the force effect on nonadiabatic
impurity particles proves to be an interesting research topic.

FIG. 4. Numerical results of the second sound radiation force F
under the condition of plane standing second sound as a function of
qa with T1/T0 = 0.10.

While our investigation is primarily centered on the interac-
tion between second sound and a spherical particle within this
study, corresponding to the force exerted on a purity particle
in crystals by the temperature field, it is theoretically feasible
to explore the force effect between the second sound and a
cylinder as well [58].

In summary, building upon the research on second sound
radiation force for progressive second sound, we have
extended our analysis to incorporate the standing and qua-
sistanding cases. We have revealed distinct characteristics
of the second radiation force for these cases. Additionally,
we have explored the relationship between the progressive,
standing, and quasistanding cases. This not only enriches the
fundamental theory of second sound radiation force but also
paves the way for future studies in more complex scenarios
[59]. In terms of applications, our study offers people an
additional degree of freedom to manipulate the local thermal
conductivity of dielectric crystals.
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