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The probability distribution (PD) of spin configurations in kinetic Ising models has been cast in the form
of the canonical Boltzmann PD with a time-dependent effective Hamiltonian (EH). It has been argued that
in systems with extensive energy EH depends linearly on the number of spins N leading to the exponential
dependence of PD on the system size. In macroscopic systems the argument of the exponential function may
reach values of the order of the Avogadro number which is impossible to deal with computationally, thus making
unusable the linear master equation (ME) governing the PD evolution. To overcome the difficulty, it has been
suggested to use instead the nonlinear ME (NLME) for the EH density per spin. It has been shown that in spatially
homogeneous systems NLME contains only terms of order unity even in the thermodynamic limit. The approach
has been illustrated with the kinetic Husimi-Temperley model (HTM) evolving under the Glauber dynamics. At
finite N the known numerical results has been reproduced and extended to broader parameter ranges. In the
thermodynamic limit an exact nonlinear partial differential equation of the Hamilton-Jacobi type for EH has
been derived. It has been shown that the average magnetization in HTM evolves according to the conventional
kinetic mean field equation.
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I. INTRODUCTION

The equilibrium statistics of Ising-type models at a fixed
temperature can be described by the canonical probabil-
ity distribution (CPD) [1]. The latter depends only on the
spin configuration energy which is conventionally called the
Hamiltonian. CPD is proportional to the Boltzmann factor
which is the exponential function of the Hamiltonian divided
by −kBT —the absolute temperature in energy units with
the minus sign. In models with short-range interactions the
energy scales linearly with the system size N . So if exact
analytic solution is unknown, the straightforward use of CPD
in approximate calculations would necessitate numerical cal-
culation of the exponential function with the argument scaling
as O(N ) which can be difficult or even impossible for large N
that are of main interest in statistical physics. To deal with this
problem, sophisticated combinatorial techniques have been
developed to calculate physical quantities of interest without
resorting to the numerical exponentiation of O(N ) numbers
and using only O(1) quantities, such as specific magnetization
and the energy density per site [1,2].

From the standpoint of out-of-equilibrium statistics CPD
is a particular case of more general nonequilibrium probabil-
ity distribution (NPD) which coincides with CPD in thermal
equilibrium. This is conveniently formalized in the effective
Hamiltonian (EH) approach [3–5] where the dependence of
NPD on EH is posited to be the same as that of CPD on the
equilibrium Hamiltonian. This is achieved by defining EH as
the logarithm of NPD multiplied by −kBT . This trick allows
one to use the approximate techniques of equilibrium statistics
[1,2] also in the nonequilibrium case.

This, however, does not fully solve the problem because
unlike the equilibrium case where the Hamiltonian is constant
in time and supposed to be known, EH for a system out of
equilibrium should be determined separately. In the case of
kinetic Ising models (IM) [6–9], EH evolves with time accord-
ing to the master equation (ME) for NPD [6]. Because NPD
depends on EH and N exponentially, the numerical solution of
ME for large N encounters the same over- and underflow dif-
ficulties as in the statistical averaging. For example, assuming
the number of spins N = 104 the span of NPD values accessi-
ble to calculations within quadruple precision arithmetic will
be exhausted by absolute values of EH density only slightly
exceeding kBT which would severely restrict calculations at
low temperatures. This could be the reason why simulations
in Ref. [10] were restricted to systems containing not more
than 10 000 spins.

In this paper we will deal with kinetic Ising-type models
with Glauber dynamics [7] that have been used to describe
out-of-equilibrium kinetics in a wide variety of systems, such
as uniaxial magnets, lattice gases, binary alloys, spin glasses,
proteins, neural networks, combinatorial optimization,
etc. [1,11–17].

The aim of the present paper is to suggest a modification
of ME along the lines of Ref. [3] such that the resulting
evolution equation contained exponential functions with O(1)
arguments and in the case of homogeneous systems the equa-
tion for EH contained only terms of order unity. It will be
shown that this can be achieved at the cost of transforming
the linear ME into a nonlinear evolution equation (henceforth
abbreviated as NLME). Its derivation will be given in Sec. II.
NLME for the kinetic Husimi-Temperley model (HTM)
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(also known as the infinitely long-range Ising-, the mean
field- (MF), the Curie-Weiss-, and the Weiss-Ising model
[10,18–21]) evolving under the Glauber dynamics [7] will
be derived in Sec. III. Numerical merits of NLME will be
illustrated on the problem of decay of metastable states in
HTM. The decay problem was previously investigated in
Refs. [10,18,19,22] in the framework of ME, the Fokker-
Planck equation, and the Monte Carlo simulations. In
Ref. [10] a scaling law for the lifetime of metastable states
was suggested and shown to be valid for large absolute values
of a scaling parameter. In Secs. IV and VI it will be shown
that the use of NLME allows one to extend the testing range
of the scaling law as well as the accuracy of the calculated
lifetimes of the metastable states by orders of magnitude. In
Sec. V it will be shown that NLME for HTM in the thermo-
dynamic limit reduces to a nonlinear differential equation of
the first order. Its characteristic equations will be derived and
it will be shown that the conventional MF kinetic equation of
Refs. [12,20,23] describes a characteristic that passes through
the minimum of a free-energy function. The description of
hysteresis with the use of MF equation, however, is inconsis-
tent because it does not predict a vanishing hysteresis loop
area at zero frequency of the oscillating external magnetic
field [20]. In Sec. VI a way of resolving this difficulty in HTM
framework will be suggested which besides purely theoretical
interest may be also of practical importance. It will be ar-
gued that HTM at finite N exhibits the Néel-type relaxation
[24] which is of interest in biomedical applications where
the hysteretic behavior of magnetic nanoparticles is of major
importance [25]. In concluding Sec. VII a brief summary will
be presented and further arguments given to support the sug-
gestion that NLME is a prospective approach to the solution
of stochastic models of the Ising type.

II. EFFECTIVE HAMILTONIAN APPROACH
TO KINETIC ISING MODELS

For brevity, the set of N Ising spins σi = ±1, i = 1, N ,
will be denoted as σ = {σi}. In the stochastic approach to
nonequilibrium kinetics the statistical properties of an out-of-
equilibrium system can be described by the time-dependent
NPD P(σ, t ) which satisfies ME [6]

Pt (σ, t ) =
∑
σ ′

[r(σ ′ → σ, t )P(σ ′, t ) − r(σ → σ ′, t )P(σ, t )].

(1)

Here and in the following by subscript t we will denote
the partial time derivative; the transition rates r in the ki-
netic IM will be chosen according to Refs. [7,8] (the “soft”
Glauber dynamics [9] can be treated similarly with minor
modifications),

r(σ → σ ′, t ) = 1

τ0

e−H0(σ ′,t )

e−H0(σ ′,t ) + e−H0(σ,t )
, (2)

where 1/τ0 is the rate of transition σ → σ ′ and the dimen-
sionless Hamiltonian H0 is assumed to include the factor
β = 1/kBT as a parameter. H0 may depend on time which is
necessary, for example, in modeling the hysteresis [20,26,27].
The dependence of the Hamiltonian on σ can be arbitrary
but in this study we will assume that H0 is an exten-

sive quantity, that is, it scales linearly with the system size
N [1]. In this case the exponential functions in Eq. (2) scale
with N as

e−H0(σ,t ) = e−Nu0(σ,t ), (3)

where u0 = O(1) is the Hamiltonian density per spin. The
exponential behavior in Eq. (3) may hinder numerical so-
lution of ME (1) because the terms on the right-hand
side (r.h.s.) of Eq. (2) will suffer from the problem of
numerical over- and underflow at sufficiently large N . How-
ever, when the transition σ → σ ′ is local, this difficulty
is easily overcome. Multiplying the numerator and de-
nominator in Eq. (2) by exp{ 1

2 [H0(σ, t ) + H0(σ ′, t )]} one
arrives at

r(σ → σ ′) = 1

2τ0

exp
[

1
2�H0

(σ, σ ′, t )
]

cosh
[

1
2�H0 (σ, σ ′, t )

] , (4)

where

�H0
(σ, σ ′, t ) = H0(σ, t ) − H0(σ ′, t ). (5)

In lattice models with local spin interactions the O(N ) scaling
of H0 is a consequence of the summation over N lattice sites.
If configurations σ and σ ′ differ only locally, then the differ-
ence in Eq. (5) in such models vanishes at large distances from
the flipping spin so the summation over sites will be spatially
restricted leading to �H0 = O(1), hence, all terms in Eq. (4)
will be of order unity. (The locality will be discussed in more
detail below in Sec. II A.)

We note that Eq. (5) is antisymmetric under the exchange
of spin arguments so the denominator in Eq. (4) is the same
for both terms in Eq. (1). Replacing it by a constant can
simplify ME while preserving its qualitative features [3,20].
In the present paper, however, more complex Glauber pre-
scription (2) will be used for compatibility with the majority
of literature on the kinetic HTM (see, e.g., Refs. [10,26] and
references therein).

Another source of the undesirable behavior briefly dis-
cussed in the Introduction comes from NPD P which should
depend on N similar to CPD because it coincides with it in
thermal equilibrium

P(σ, t )|t→∞ → P0(σ ) = e−H0(σ )/Z, (6)

where Z is the partition function and H0 in Eq. (6) is
assumed to be time-independent because otherwise the equi-
librium would not be attainable. It is easily checked that
P0 is a stationary solution of Eq. (1) which means that
at least for large t NPD P in Eq. (1) behaves similar to
P0. This can be formalized in the EH approach [3,5,12]
where by analogy with Eqs. (6) and (3) NPD depends
on EH H as

P(σ, t ) = e−H(σ,t ) ≡ e−Nu(σ,t ), (7)

where H|t→∞ → H0 + ln Z and u is the EH density. In
Eq. (7) it has been assumed that the normalization constant
similar to ln Z is included in H. This is convenient in many
cases because ME (1) preserves normalization so whenever
possible the initial H(σ, t = t0) is reasonable to choose in
such a way that P(t0) in Eq. (7) was easily normalizable. This
would eliminate the necessity to calculate an equivalent of
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the partition function Z at later stages of evolution because
in general this is a nontrivial task.

In Ref. [3] a simple way to eliminate the undesirable
exponential behavior from ME is suggested which was imple-
mented as follows. Dividing both sides of Eq. (1) by P from
Eq. (7) one arrives after trivial rearrangement at the evolution
equation for EH

Ht (σ, t ) = 1

τ0

∑
σ ′

exp
(

1
2�H0 − �H) − exp

(− 1
2�H0)

2 cosh
(

1
2�H0

) ,

(8)

where �H is defined as in Eq. (5) and normally it should be
an O(1) quantity (see Sec. II A). The arguments of deltas in
Eq. (8) have been omitted for brevity; they are the same as
in Eq. (5). As is seen, all terms on the r.h.s. are O(1) but
because of the summation over σ ′ the equation scales linearly
with N . Formally, division of both sides by N would make
equation O(1) and fully expressed in terms of EH density
defined in Eqs. (3) and (7).

Less formal results can be obtained in spatially homoge-
neous case. Assuming that the sites are arranged in a Bravais
lattice, that is, they are all equivalent, an arbitrary site can
be chosen as a reference point. Next applying the cluster
approach of the equilibrium alloy theory [13,28] to Eq. (8)
the expansion over a complete set of orthonormal polynomials
of σ can be restricted only to those containing the chosen
site. Further, if the interactions in the system are local (see
Sec. II A), then the size of the system of equations to solve
can be approximated by a finite system. In practice, in the
alloy thermodynamics the number of clusters to keep in the
expansion was found to be rather moderate in many cases
[29,30]. The approximation can be justified with the use of
a series expansion. More specific discussion of approximate
solution of NLME is not possible because it would strongly
depend on an arbitrary initial condition and on unspecified
number of time-dependent Hamiltonian parameters.

A. Local interactions in EH

Though nonequilibrium case is difficult to analyze in gen-
eral terms, in simple cases the locality can be proved.

Let us consider the case of IM with time-independent pair
interactions

H0(σ ) = −1

2

∑
i,�e

Ki,i+�eσiσi+�e − h
∑

i

σi, (9)

where Ki j = Ji j/kBT , Ji j being the pair interactions, h =
H/kBT , and H is the magnetic field. The second subscript of
K in Eq. (9) is represented as the sum of i and of the radius
vector �e of the relative position of site j with respect to i.

For simplicity let us consider Bravais lattices and assume
that the Hamiltonian satisfy all lattice symmetries. In this
case the pair interactions Ki j depend only on the difference
of the lattice coordinates i- j so in Eq. (9) for any site i only
dependence on the relative coordinate �e remains. Further,
because the absolute value of the Ising spins is unity, the
absolute value of summation over �e in Eq. (9) will be bounded

for all i if ∑
�e

|K (�e)| = O(1), (10)

which is a formal definition of the short-range interaction. The
summation over i in Eq. (9) of N O(1) terms makes the energy
an extensive quantity for any spin configuration. The criteria
for multispin interactions to be short range will have a form
similar to Eq. (10) only the summation will be carried over
several radius vectors. Though vectors �e in the summation can
be arbitrarily long, the interactions are of short range provided
the sum is convergent. Under the Glauber dynamics σ and
σ ′ in Eq. (5) differ only by one spin on one site, say, i, so
only those terms in H0 in Eq. (9) that contain this spin will
contribute to the difference

�H0

i = −2σi

∑
�e

K (�e)σi+�e − 2hσi, (11)

which is O(1) quantity due to Eq. (10) [here σ ′ on the r.h.s.
in Eq. (5) has been replaced by σ using the fact that σ ′

i = −σi

while all other spins remain unchanged].
Thus, the terms in Eq. (8) with �H0

will cause no problems
in numerical calculations in case of short-range interactions.
However, �H in the equation is not straightforward to analyze
because EH is not known and should be determined as the
solution of NLME. This in general is a difficult task because
the initial condition depends in general on 2N arbitrary param-
eters. Besides, arbitrary time dependence in H0 is possible
in the out-of-equilibrium systems. Therefore, to make the
task manageable, let us consider as an example a frequently
studied problem [31] of the quench from a disordered phase
at high temperature T0 to a lower temperature T which we
assume to be also large. In this case one can use the high
temperature expansion in powers of β or, in our notation, in
powers of the dimensionless Hamiltonian H0. For simplic-
ity let us set T0 = ∞ which means the initial value of EH
H(σ, t = 0) = 0. Because H0 = O(β ) and EH varies from
zero at t = 0 to H0 when t → ∞, it is also an O(β ) quantity.
Omitting for simplicity the external magnetic field (h = 0)
and expanding Eq. (8) to the first order in �’s it can be shown
that Eq. (11) summed over i produces 4H0 and similarly for
�H which, as will be shown, has the same spin structure in
this order. Now from Eq. (9) one gets to the first order in β a
linear equation

Ht = 2τ−1
0 (H0 − H), (12)

which integration gives

H(σ, t ) = H0(σ )(1 − e−2t/τ0 ). (13)

As is seen, in this approximation EH has the same locality
properties as the physical Hamiltonian. Because of nonlinear-
ity of Eq. (8), higher orders in β will be more difficult to
analyze. Restricting discussion for simplicity to the case of
the nearest-neighbor (nn) interactions, it is easy to see that,
e.g., in the second order in β the squares of the first-order
H0 will introduce the pair interactions in H of the extent
not exceeding the largest distance within the first coordi-
nation sphere. Higher-order terms in β will introduce even
farther neighbor interactions into EH but to any finite order
they will remain bounded by some maximum extent, thus
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retaining the locality when approximation to this order is
adequate.

From a practical standpoint more interesting is the quench
to temperatures below Tc [31]. Because the high temperature
expansion breaks down in this case, the locality of EH can be
substantiated at the initial stage of evolution within the region
where expansion in time variable t converges. Assuming as
above that at t = 0 EH vanishes, the coefficient of linear in t
term can be found with the use of Eq. (8) as

Ht |t=0 = τ−1
0

∑
i

tanh

(
1

2
�H0

i

)
. (14)

Because the hyperbolic tangent is an analytic function, it can
be expanded in powers of the argument at arbitrarily large
values of H0 ∝ β at low temperatures where β is large. In
the case of nn interactions, only σi and the nn spins will enter
the expansion which means that interactions in Eq. (14) will
extend not further then the diameter of the first coordination
sphere. In higher-order terms of expansion in t more distant
interactions will arise but they will remain short range to any
finite order.

Thus, we have shown that the locality of EH holds
within the regions of convergence of two series expansions.
Arguably, other expansion techniques suitable to specific
physical setups can be developed. The convergence cannot
always be guaranteed for any of the expansions but from
equilibrium statistics we know that the divergence of a series
usually signals the appearance of new physical behavior, such
as the phase transitions and/or critical phenomena. It may be
expected that in the out-of-equilibrium evolution the singular-
ities in series expansions would also reveal some new physics,
such as the dynamic phase transitions [20,26].

Though EH cannot be experimentally measured, the dis-
tribution of spin configurations depends on EH exactly in
the same way as the CPD depends on H0 by EH defini-
tion. Therefore, the cluster interactions that appear in EH
during the evolution will influence the correlation functions
in exactly the same way as the physical cluster interac-
tions occurring in the alloy Hamiltonians [13,28]. The cluster
interactions may influence such observable phenomena as
the diffusion scattering [32] and all physical quantities that
depend on cluster statistics, such as the electrical conductiv-
ity. Therefore, some physical insight into out-of-equilibrium
alloys can be gained from the alloy studies in thermal
equilibrium [13,33].

III. APPLICATION TO HTM

The infinitely long-range IM which we call HTM is fre-
quently being used to illustrate general concepts of phase
transition theory, such as the critical behavior, using as an
example a simple exactly solvable case [22]. Besides, be-
cause the exact solution exhibits MF behavior, the equilibrium
HTM clarifies the physics underlying MF approximations
widely used in the analysis of various models (see, e.g.,
Refs. [12,16,34]). A major result of the present study is that
the kinetic HTM evolving under the Glauber dynamics can
be also exactly solved in the thermodynamic limit, as will be
shown below.

A. HTM at thermal equilibrium

In HTM all spin pairs interact with the same strength −J/N
so the dimensionless Hamiltonian reads

H0 = − βJ

2N

N∑
i, j=1

σiσ j − βH
N∑

i=1

σi, (15)

where summations over i, j are not restricted to nn pairs as
in the conventional IM. Because in this case K (�e) = βJ/N is
not dependent on �e, the sum in Eq. (10) diverges as O(N ).
However, the divergence is compensated by the factor 1/N in
K so HTM formally satisfies the locality condition Eq. (10)
despite being long range.

The extensivity of HTM Hamiltonian can be easily seen if
represented in terms of the total spin density m [10]

M =
N∑

i=1

σi ≡ Nm, (16)

as

H0 = − βJ

2N
M2 − βHM

= −N

[
β

2
m2 + hm

]
≡ Nu0(m). (17)

Here and in the following to simplify notation we choose J
as our energy unit J = 1 and h = βH is the dimensionless
external magnetic field.

The equilibrium partition function

Zeq = Trσ e−Nu0(m) =
N∑

M=−N

NC(N+M )/2 e−Nu0(m) (18)

where NC(N+M )/2 is the combinatorial factor equal to the num-
ber of combinations of N spins with magnetization M. In the
limit of large N—which will be always assumed to be the case
in the present study—the Stirling approximation gives

S(N, M ) = ln NC(N+M )/2 � Ns(m), (19)

with [10,22]

s(m) = −
∑
(up

lo)

1 ± m

2
ln

1 ± m

2
, (20)

where the sum consists of two terms: one with all lower signs
and the other one with all upper signs. Substituting Eq. (20)
in Eq. (18) one gets

e−βF eq(h) �
∫ 1

−1
dme−βF 0(m), (21)

where we have omitted all factors that in the thermodynamic
limit do not contribute to f 0(m) defined as [10,22]

βF 0(m) ≡ N f 0(m) = N[u0(m) − s(m)]. (22)

We will call F 0 and f 0 the fluctuating free energy (FFE) and
FFE density, respectively, because unlike the true free energy
they are not not convex, as can be seen in Fig. 1 where a
typical FFE density for HTM below Tc is drawn. hSP in Fig. 1
and magnetization mSP below in Eq. (62) are the values of h
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FIG. 1. Equilibrium FFE density Eq. (22) for T = 0.8Tc and h =
0.015. A, B, and C denote, respectively, the two local minima and
a local maximum appearing in f 0(m) when T < Tc and |h| < |hSP|
where hSP is h at the spinodal point (further explanations are given in
the text).

and m at the spinodal point defined by conditions

f 0
m = 0 and f 0

mm = 0. (23)

Their explicit expressions can be found in Ref. [10]. In
Eq. (23) and in the following the subscript m will denote the
symmetric discrete derivative defined for an arbitrary function
g(m) as

gm(m) = g(m + ε) − g(m − ε)

2ε
, (24)

where ε = 1/N .
As can be seen from Eq. (21) and Fig. 1, in Laplace’s ap-

proximation suitable at large N only the absolute minimum (or
two when h = 0) will contribute to f eq while the contributions
from the hump in the region of m between points A and B in
Fig. 1 will vanish in the thermodynamic limit. However, in
nonequilibrium case the behavior of FFE in this region is of
paramount importance [10,26].

B. NLME for HTM

The kinetic HTM has been studied previously within the
linear ME and the Fokker-Planck equation approaches in
Refs. [10,18,19]. Most pertinent to our study will be the

numerical data of Ref. [10] so to facilitate comparison we
will try to closely follow the notation of that paper.

NLME for HTM can be derived straightforwardly from
Eq. (8) using explicit expression for the equilibrium Hamilto-
nian Eq. (17), allowing the Hamiltonian parameters to depend
on time, if necessary. However, to facilitate comparison with
Ref. [10], we will derive NLME for HTM departing from
Eq. (7) of that reference. To this end we first note that in
Ref. [10] the authors considered not individual spins σi but the
total magnetization M as the fluctuating quantity. Denoting its
probability distribution function as P(M ) we note that it differs
from our P which describes the distribution of the fluctuating
Ising spins; in our formulas M serves only as a shorthand
for the sum of spins Eq. (16). The configuration space in our
case consists of 2N points while M takes only N + 1 values
from −N to N with step 2 (a spin flip changes M by 2).
This is because many spin configurations correspond to one M
value which can be accounted for by the combinatorial factor
NC(N+M )/2 as

P(M )(M, t ) = N!

N+!N−!
P(M, t ), (25)

where N+ = (N + M )/2 and N− = (N − M )/2) are, respec-
tively, the numbers of spins in the configuration pointing up
and down.

In the present notation Eq. (7) of Ref. [10] reads

P(M )
t (M, t )

= − 1

2τ0

∑
(up

lo)

(
N±

exp[∓β(M ∓ 1)/N ∓ h]

cosh[β(M ∓ 1)/N + h]
P(M )(M, t )

− (N∓ + 1)
exp[±β(M ∓ 1)/N ± h]

cosh[β(M ∓ 1)/N + h]
P(M )(M ∓ 2, t )

)
,

(26)

where the summation follows the same rule as in Eq. (20).
It should be noted that one of two terms proportional to
P(M )(M ∓ 2, t ) should be set to zero at the end points
M = ±N because values of |M| > N are not allowed.

Now substituting Eqs. (25) and (7) into Eq. (26) one ob-
tains NLME containing only intensive quantities:

ut (m, t ) = 1

4τ0

∑
(up

lo)
(1 ± m)

(
exp[±u0

m(m ∓ ε, t )]

cosh[u0
m(m ∓ ε, t )]

− exp[∓u0
m(m ∓ ε, t )]

cosh[u0
m(m ∓ ε, t )]

e±2um (m∓ε,t )

)
. (27)

As expected, each term on the r.h.s. of Eq. (27) turns to
zero for um(m, t ) = u0

m(m) which is a direct consequence
of the detailed balance condition satisfied by r in Eq. (2).
An important observation is that Eq. (27) contains only
derivatives of u with respect to t and m so a constant con-
tribution to EH does not change during the evolution which
makes possible normalization of NPD either in the initial
condition or at any point during the evolution. It should
be noted that no approximations have been made in the
derivation, so Eq. (27) is exact. Most importantly, all expo-
nential functions in this equation have arguments of order

unity, so their computation is unproblematic for systems of
any size.

IV. DECAY OF METASTABLE STATES

Metastable states in many-body systems emerge when
there exist local minima in the energy landscape. By defini-
tion, they should decay as the system evolves toward thermal
equilibrium. The decay process is of paramount importance
for the kinetics of phase transitions and has been extensively
investigated in a variety of systems [6,10,15,17,35–38]. In all
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studies the mechanism of escape from the metastable states
was found to proceed via thermal activation with the transi-
tion rate depending on the FFE barrier �F ∗ according to the
Arrhenius law

R ∝ exp(−�F ∗/kBT ), (28)

where the star denotes the maximum value of the differ-
ence between FFE along the reaction pathway and at the
local minimum in which the metastable system temporary
resides. The proportionality coefficient in Eq. (28), however,
is model-dependent and in the kinetic IM its behavior at low
temperatures can be very complicated, as can be seen from
analytical calculations and simulations with the use of spe-
cialized Monte Carlo algorithms (see Ref. [39] an references
therein). The latter approaches were developed to overcome
the difficulty encountered in straightforward numerical sim-
ulations at low temperatures where the evolution develops at
a prohibitively large timescale because of the Arrhenius-law
dependence on T .

Apparently for this reason simulations of the decay in
HTM in Ref. [10] were restricted to moderately low tem-
perature T = 0.5Tc and to shallow local FFE minima in the
vicinity of the spinodal point mSP, hSP defined in Eq. (23).
The calculated lifetimes τ of the metastable states were rather
modest,τ = O(104τ0), so to extend results to larger lifetime
values a heuristic asymptotic expression was suggested pre-
sumed to be valid for metastable states (h < hSP) in the limit

|�| = (hSP − h)N2/3 → ∞. (29)

However, the simulations were performed only for |�| � 4
[10] and though good agreement with the asymptotic ex-
pression was found, it remains unclear whether the data are
already in the asymptotic range.

At moderately low temperatures (e.g., � 0.4Tc in 2D IM
[40]) that will be assumed also in the present paper the quali-
tative behavior of the decay simplifies and phenomenological
classic nucleation theory (CNT) [41] can be used for an ac-
curate calculation of lifetimes in the conventional kinetic IM
with nn interactions [36,38]. CNT, however, is not suitable to
deal with HTM because it heavily relies on the short-range na-
ture of spin interactions. It is pertinent to note that nucleation
time is usually much larger than the time of the subsequent
growth of the stable phase, so in most cases the total lifetime
of a metastable state τ is dominated by the nucleation time
τ � 1/R which will be assumed throughout the paper.

To understand the difference between nucleation in IM
and in HTM, let us consider a ferromagnetic model with
Hamiltonian Eq. (9) in equilibrium ordered state below Tc

with, say, negative magnetization. The Hamiltonian can de-
scribe both IM and HTM by restricting interactions Jnn only
to nn spins in the former case (here for clarity we temporary
return to dimensional parameters) while in the latter case the
interaction is J/N for any spin separation. In both cases the
decay is driven by the external field which contribution to
FFE difference in Eq. (28) is negative ∼ − 2Hs, where s is the
number of reversed spins within the nucleus and FFE at low
temperatures is approximated by the interaction energy. The
decay is hampered by the positive contribution due to interac-
tion of spins within the nucleus with oppositely directed spins
in the bulk. In IM case the nucleus can be chosen to be roughly

spherical to minimize the surface where the positive energy
density is concentrated so their contribution will scale with s
as cs1−1/d , where c is a size-independent positive coefficient
and d the space dimension [36,38]

�FIM � cs1−1/d − 2Hs. (30)

In HTM, however, the positive contribution is not spatially lo-
calized because of the infinite range of the interactions so any
s spins can be considered as a nucleus (rather a misnomer in
this case). Substituting in Eq. (17) M � −N for the metastable
system at low temperature T → 0 and M � −N + 2s for the
system with the nucleus one gets after subtraction

�FHTM � 2J (1 − s/N )s − 2Hs. (31)

The maximum values of the difference needed in Eq. (28) are
found from the condition

d (�F )/ds|s∗ = 0, (32)

where s∗ is the size of the critical nucleus.
In the case of HTM one finds

s∗ = J − H

2J
N, (33)

�F ∗
HTM = (J − H )2

2J
N. (34)

These expressions qualitatively differ from those that can be
obtained from Eq. (30) [36,38] in that they both linearly de-
pend on N which, in particular, means that in thermodynamic
limit the decay is impossible according to Eq. (28). In the IM
case, however, both quantities remain finite as N → ∞.

The absence of spatial separation between spins with dif-
ferent orientations and the linear dependence of �F ∗

HTM on the
system size makes the decay in HTM qualitatively similar to
the Néel relaxation in single-domain magnets which will be
further discussed below in Sec. VI B.

One may note that Eq. (33) does not make sense for H >

Hc = J . The reason is that in both HTM and IM there exist
some critical value of H = Hc above which the metastability
is impossible because the necessary local minimum disap-
pears. As can be seen from Eqs. (4) and (11) the spin flip
rate becomes large ∼τ−1

0 irrespective of the spin configuration
so spins at random positions can flip to positive values and
the system will reach equilibrium on a microscopic timescale
O(τ0). Hc = J for HTM was obtained in the low temperature
approximation; the exact value accounting for entropy effects
is HSP [10] and in IM Hc � HSP in MF approximation.

A. Decay in HTM

Because in the thermodynamic limit the decay is impos-
sible in HTM, it has been simulated with the use of NLME
at finite N . In HTM the metastable state can form when 0 �
h < hSP in the vicinity of minimum A in Fig. 1. This problem
was investigated in Ref. [10] within linear ME. Following that
study the initial condition has been chosen as the Gaussian
NPD,

P(M )(Nm, t = 0) =
√

aN

2π
exp

[
−aN

2
(m − mA)2

]
. (35)
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The initial condition for u needed in Eq. (27) has been ob-
tained from an approximate equation

P(M )(M, t ) � e−N f (m,t ), (36)

where in complete analogy with Eq. (22)

f (m, t ) = u(m, t ) − s(m). (37)

The approximation for u(m, t = 0) obtained from the last
three equations consists in using Strling’s formula for the
combinatorial factor in Eq. (25). This is admissible in the
case of sufficiently deep metastable minima for large N that
we are going to consider because the initial condition can be
arbitrary so the slight difference with Ref. [10] is not essential,
as discussed in detail below.

In all calculations parameter a in Eq. (35) has been fixed
at the same arbitrarily chosen value a = 1. Obviously that
in general the initial value should strongly influence the out-
come of the evolution. However, in our case this will not be
significant for the following reason. As was pointed out in
Refs. [10,18,19], the problem of decay of a metastable state
in HTM is akin to the problem of escape over the potential
barrier in a two-well potential studied by Kramers [42]. In
Ref. [35] the decay is described as follows. At the first stage an
arbitrary initial NPD relaxes toward a local quasiequilibrium
state and on the second stage this state slowly (in comparison
with the first stage) decays into the stable equilibrium with
the magnetic momenta distributed mainly around point B in
Fig. 1. In the present study the lifetime τ has been deter-
mined at this second stage in contrast to Ref. [10] where the
first stage was also included. Because in our definition the
properties of both the minima and the Glauber rates depend
only on the parameters of HTM, lifetime τ does not de-
pend on arbitrariness of the initial distribution. Now defining
the population of metastable state as the number of systems
with negative magnetization we may describe its time evolu-
tion following Kramers’ two-state transition state theory (see
Sec. II.C.2 in Ref. [35]) as

nA(t ) =
∫ 0

−1
P(M )(Nm, t )dm � neq

A + (
n0

A − neq
A

)
e−t/τ , (38)

where n0
A, neq

A are the populations at t = 0 and at thermal
equilibrium, respectively. The difference with Ref. [10] is that
in the present study the behavior Eq. (38) has been assumed
to hold only after the initial relaxation has completed while in
Ref. [10] it was considered to be approximately valid through-
out the whole decay process. In view of this difference, the
comparison of our lifetime τ with the calculations of Ref. [10]
would be legitimate only if the initial fast relaxation time is
negligible in comparison with τ . This has been achieved by
restricting consideration to sufficiently deep potential wells
near the local minimum A which can be easily satisfied in
large systems N � 1000 where the depth of even a shallow
well in f 0 in Fig. 1 is strongly enhanced by the factor N in the
expressions of the Arrhenius type satisfied by the lifetime in
HTM [10,18,19,42],

τ ∼ eN[ f 0(C)− f 0(A)] ≡ eN� f 0
(39)

(we remind that β enters in f 0 as a factor). For example, for
the HTM parameters used in the calculations shown in Fig. 2

FIG. 2. Probability of survival of the metastable states Eq. (38)
calculated with the use of Eq. (27) for HTM with N = 103, T =
0.8Tc, and h = 0.06. The points are spaced with time step 100τ0

and their size exceeds the accuracy of calculations. The exponen-
tial law has been fulfilled better than the accuracy of the drawing
(see the text).

neq
A ≈ 10−38. Because of this, the equilibrium population was

negligible in the simulations of Ref. [10] so the authors used
Eq. (38) with neq

A = 0. This has been a good approximation
also in all calculations of present paper except at h = 0 when
neq

A = neq
B = 1/2 due to the symmetry of f 0 in this case (see

Fig. 1). The qualitative picture just described is illustrated
in Fig. 2 where it can be seen that the decay law Eq. (38)
is satisfied at least within twelve orders of magnitude. The
influence of the initial relaxation could not be discerned at the
time resolution 100τ0. It is to be noted that the lifetime τ in
Fig. 2 is only the second smallest in all of our calculations so
the influence of the initial relaxation in most of them has been
even weaker.

Though the decay law Eq. (38) is only heuristic, in the
calculations it has been satisfied with a remarkable accuracy.
The specific decay rate

λ = τ−1/N (40)

has been found to be equal to 5.550091955(7)×10−7 at t =
200τ0, 300τ0, 400τ0, 500τ0, and 5×104τ0, that is, it had the
same value to the accuracy in nine to ten significant digits.

The simplicity of the behavior seen in Fig. 2 suggests a
simple underlying physics which can be surmised from the
behavior of FFE during the decay shown in Fig. 3. As can be
seen, at intermediate times (t = 500τ0 has been chosen as an
example) f (m, t ) in the vicinity of local minima A and B in
Fig. 1 can be accurately approximated as

f (m, t ) ≈ f 0(m) + CA(B)(t ). (41)

In terms of NPD this translates into two quasiequilibrium
distributions strongly peaked near A and B and characterized
by filling factors nA(t ) and nB(t ) = 1 − nA(t ) from Eq. (38).
The EH density u and FFE f differ only in time-independent
function s(m), therefore, large lifetimes of the metastable
states means a slow evolution of both. The behavior of f in
Fig. 3 near the minima is easily understood because Eq. (27)
has a static solution u = u0 + C0 where the constant comes
from the fact that only derivatives of u with respect to t and

044123-7



V. I. TOKAR PHYSICAL REVIEW E 109, 044123 (2024)

FIG. 3. Solid line—FFE f corresponding to the solution of
Eq. (27) at t = 500τ0 when nA ≈ nB with the model parameters β =
1.25 (T = 0.8Tc ) and h = 0.06 with the initial condition Eqs. (35)
and (36); dashed lines correspond to local fits of f 0 in Eq. (41).

m are present in the equation. When u = u0 + C0 holds for all
m, C0 is fixed by the normalization condition as C0 = ln Z . But
when the equality is only local, as in the figure,—both minima
contribute to the normalization via CA and CB in Eq. (41).

Still, the cause of the quasistatic behavior of the roughly
horizontal line that connects the two regions near the minima
in Fig. 3 needs clarification. The qualitative analysis simplifies
in the thermodynamic limit where one of the parameters (N)
disappears from NLME and its solutions simplify because the
escape over barrier is forbidden.

V. THERMODYNAMIC LIMIT AND THE MF EQUATION

For our purposes in taking the limit N → ∞ in NLME it is
convenient, besides setting ε = 0, to interchange in Eq. (27)
the second terms in the sum over the upper and the lower signs
as

ut (m, t ) = 1

4

∑
(up

lo)

e±[u0
m (m,t )−um (m,t )]

cosh u0
m(m, t )

× [e±um (m,t )(1 ± m) − e∓um (m,t )(1 ∓ m)], (42)

where use has been made of the explicit form of u0 Eq. (17);
besides, henceforth we will choose τ0 as our time unit and will
omit it in evolution equations.

Now it is easily seen that the terms in large brackets in
Eq. (42) are nullified by

um = −1

2
ln

1 + m

1 − m
= −artanh m = sm(m) ≡ u1

m, (43)

where the penultimate equality follows from Eq. (20). Thus,
there exists a locally stationary solution independent of the
Hamiltonian parameters which in terms of FFE reads

f 1(m) = C1, (44)

where C1 as a constant. Further, after some rearrangement
Eq. (42) takes the form

ut = cosh2 um (m + tanh um)
(

tanh u0
m − tanh um

)
, (45)

where for brevity the arguments (m, t ) of all functions have
been omitted. As is seen, if u0 is time-independent, then
the locally stationary solution satisfying ut (m, t ) = 0 is given

either by u = u0 + Const due to the last factor on the r.h.s. or
by u1 Eq. (43) because of the second factor.

Now the structure of f seen in Fig. 3 becomes qualitatively
transparent. In the thermodynamic limit the two segments of
f near the minima are given by Eq. (41) with the approximate
equality becoming exact and with time-independent CA(B),
nA(B) remaining unchanged with time because of the infinitely
high barrier separating the minima. At finite but sufficiently
large N the solution becomes weakly time-dependent, but the
qualitative picture remains accurate at large N .

In the Kramers approach to escape over the potential bar-
rier a crucial role plays the diffusivity which is proportional
to ε = 1/N [10,18,19,42] and thus can be neglected when
the system is very large or the processes studied, such as
the high-frequency hysteresis [20,26,27], are fast in compar-
ison with the lifetime of metastable states. In such cases the
simple Eq. (45) should be easier to use than the system of
equations (27) which may become unmanageable at large N .
However, the method of solution of Eq. (45) should be chosen
prudently. The problem is that numerical techniques are often
based on a finite difference approximation of the derivative
over m consisting in division of interval m ∈ [−1, 1] into,
say, L discretization steps. In the case of large systems (e.g.,
N ∼ 1023) L will be much smaller than N . This would effec-
tively reduce the system size to ∼ L which may introduce a
nonphysical time evolution, such as the decay of metastable
states. A method of characteristics is devoid of such difficul-
ties [43,44]. The characteristic equations for Eq. (45) has been
derived in Appendix A.

A. MF equation

In the Stirling approximation Eq. (25) can be written as

P(M )(M, t ) � e−N[u(m,t )−s(m)] = e−N f (m,t ). (46)

When h �= 0 the symmetry m � −m is broken so in general
case there is only one global minimum in f (m, t ) at some
m0(t ) which can be found from the condition

fm(m, t )|m=m0(t ) = (um + artanh m)|m=m0 = 0, (47)

where use has been made of Eqs. (37) and (20). For our
purposes the condition is convenient to cast in the form

(m + tanh um)|m=m0 = 0, (48)

which in terms of the canonical variables of Appendix A can
be written as a constraint

χ (m, q) = m + tanh q = 0. (49)

Assuming the FFE minimum in the initial condition is at
m0(t0) the equation for the characteristic passing through this
point is obtained from Eqs. (A5), (A3), (17), and (48) as [23]

ṁ0 = −m0 + tanh[βm0 + h(t )]. (50)

It is straightforward to verify that characteristic Eqs. (A6) and
(A7) are also satisfied provided constraint Eq. (49) is fulfilled
along the characteristic. This is indeed the case because the
total time derivative of χ according to Eq. (A4) is

χ̇ (m, q) = {χ, H} ∝ χ (m, q). (51)
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Thus, Eq. (49) will be fulfilled along the characteristic if, as
we have assumed, it is satisfied at the initial point t = t0.

MF Eq. (50) is a closed equation for the average mag-
netization m0 which has been widely used in the studies of
the hysteretic behavior (see, e.g., Refs. [20,21,26,27]). In the
context of the present study a useful observation is that in
the case of constant h its variables can be separated and a
closed-form solution obtained.

Despite being exact, MF equation is insufficient for de-
scription of the HTM kinetics in the thermodynamic limit. As
we saw in previous section, the initial condition Eq. (35) had
only one extremum but during the evolution two new extrema
appeared (see Fig. 3). This behavior cannot be described by
MF Eq. (50) but is present in Eq. (45), as it illustrates the
finite-N example. In the thermodynamic limit such a behavior
can be illustrated by the problem of coarsening in a binary al-
loy [31]. In symmetric (h = 0) supercritical (T > Tc) phase f 0

has one extremum—the minimum at m0 = 0. If quenched to a
subcritical temperature T < Tc, then the system will evolve
toward the equilibrium state with f 0 having a double-well
structure with two symmetric minima at A and B in Fig. 1
with h = 0. This evolution can be described by Eq. (45) while
MF equation will remain stuck at point C which will turn into
a local maximum at the end of the evolution.

Further, as is known, in MF approximation correlations
between the fluctuating variables are neglected, the average
of the variables product being approximated by the product
of average values. However, the correlations carry important
information about the system. For example, by taking statis-
tical average of IM Hamiltonian Eq. (9) it is seen that the
internal energy can be expressed exactly in terms of the pair
correlation function and the spin average. At thermal equilib-
rium the pair correlation function is directly related to another
important characteristic—the magnetic susceptibility.

In kinetic HTM all correlations between the spin variables
are contained in the moments of the magnetization

〈mn(t )〉 =
∫ 1

−1
mnP(M )(Nm, t )dm. (52)

m0(t ) entering MF Eq. (50) corresponds to moment n = 1,
the pair correlation is contained in 〈m2〉. As can be seen
from Eq. (35), the latter essentially depends on a at least at
the early stage of evolution while this parameter is absent in
MF equation Eq. (50). Thus, a complete description of the
kinetic HTM can be reached only with the use of FFE f (m, t )
satisfying Eq. (45).

VI. LIFETIMES OF METASTABLE STATES

Straightforward calculation of lifetime τ via solution of
NLME Eq. (27) and the fit to Eq. (38) has been performed
for HTM of two sizes N = 103 and 2×103, two temperatures
T = 0.5Tc and 0.8Tc, and variety of 0 � h < hSP values. The
results are shown in Fig. 4 by open symbols. Larger system
sizes were not used because to achieve higher accuracy in
Eq. (38) the integration over m has been replaced by the sum
over the discrete values

m = −1 + 2nε, n = 0, 1, 2, . . . (53)

FIG. 4. Comparison of Eq. (62) [10] with lifetimes found from
the solution of Eqs. (27) (open symbols) and (56) (filled symbols
and crosses). Circles correspond to T = 0.5Tc, squares to T = 0.8Tc;
smaller (larger) symbols correspond to N = 103 (N = 2×103). The
cross at larger (smaller) τ is for N = 105 (N = 106); the trian-
gle marks symmetric case h = 0 with N = 103 and T = 0.8Tc; the
straight line corresponds to τ̃ = τ . The symbol sizes do not reflect
the data accuracy which is higher than the drawing resolution.

to use the exact combinatorial factor in P(M ) Eq. (25). But this
necessitated calculation of N! which has been found to be nu-
merically difficult for N > 2×103 cases studied in Ref. [10].
The use of the Stirling approximation would be sufficient
from practical standpoint but to substantiate by numerical
arguments a heuristic technique developed below in Sec. VI A,
high precision calculations were necessary. Though the use
of NLME has made possible to extend the range of calcu-
lated lifetimes on an order of magnitude in comparison with
Ref. [10], the simulation time grew very quickly with τ so
determination of much larger values would have required pro-
hibitively long calculations. Therefore, more efficient, though
heuristic technique has been developed.

A. Recurrence relation

To clarify the origin of the exponential law Eq. (38) in
NLME solutions, let us consider the evolution of FFE shown
in Fig. 3 in more detail. We first note that because the config-
urational entropy Eq. (20) does not depend on time, the time
derivative of EH in Eq. (27) is equal to the time derivative
of FFE so using the available solution for u the derivative
could be calculated numerically, as shown in Fig. 5. As
is seen, the time derivative is constant in the region m � 0
needed in Eq. (38) at all simulated times. Furthermore, it is
easy to see that in this range it should be equal to specific
rate λ from Eq. (40) which means that the distribution of m
remains the same throughout the evolution and only the total
density of metastable states changes with time according to
the exponential law Eq. (38). In fact, because the evolution
is very slow it is reasonable to expect that the magnetization
distribution should be close to the equilibrium one Eq. (6) as

044123-9



V. I. TOKAR PHYSICAL REVIEW E 109, 044123 (2024)

FIG. 5. Time derivative of FFE found numerically from Eq. (27)
for HTM with the same parameters as in Fig. 2 and for the same five
time values of (from bottom to top) as in the text following Eq. (40).

illustrated in Fig. 3. In other words, at negative values of m
an accurate solution to EH density should be feasible with the
ansatz

u(m, t ) � λt + v(m, λ). (54)

After substitution in Eq. (27) one sees that the time variable
disappears from the equation. Also, the two terms in the sum
would contain vm at two successive points m − ε and m + ε,
so if the leftmost m = −1 value is known, the rest can be
found successively by recursion [45]. But at m = −1 only
one term remains on the r.h.s. of Eq. (27), so v(m = −1 + ε)
can be expressed through λ and the HTM parameters. Next,
introducing

xn+1 = e−2[vm (m+ε)−u0
m (m+ε)] − 1, (55)

Eq. (27) for xn can be cast in the form of a nonlinear recur-
rence relation

xn+1 = an
xn

1 + xn
+ bn, (56)

where

an = 1 + m

1 − m
e2u0

m (m+ε) 1 + exp
[ − 2u0

m(m + ε)
]

1 + exp
[ − 2u0

m(m − ε)
] (57)

and

bn = − 2λ

1 − m
(1 + e2u0

m (m+ε) ). (58)

(Note that in the above equations only subscript m stands for
the discrete derivative, subscripts n, n + 1 are just integer
numbers.) Thus, from the recurrence relation Eq. (56) all
v(m, λ) can be found provided a suitable value of λ is chosen
in Eq. (58). To understand how this can be done, a more
careful analysis of Eqs. (56)–(58) is in order.

To this end we first introduce a useful formal rearrange-
ment of the recurrence. As can be seen from Eq. (57), a0

is equal to zero so that according to Eq. (56) x1 is equal
to b0. Thus, the recurrence can be initiated by x1 which, as
can be seen from Eq. (53), has the lowest physically allowed
subscript. However, a simpler solution of the linear recurrence
in Appendix B is obtained if it is initiated by x0 = 0 and
a0 = 1. This is admissible because for m = −1 (n = 0) the

FIG. 6. FFE Eq. (59) calculated with the use of Eqs. (56) and
(55) for values of λ given in Table I.

first term on the r.h.s. of Eq. (56) vanishes, so with x0 = 0 a0

may be ascribed any value.
A trivial solution of the recurrence is obtained with the

choice λ = 0. Then from Eqs. (56) and (58) follows that
xn = 0. According to Eq. (55) this means that vm = u0

m, that
is, the equilibrium solution is recovered. This ought to be
expected because λ = 0 corresponds to a stationary state.
Solutions of Eq. (56) will be convenient to visualize with the
use of FFE

f̃ (m, λ) = v(m, λ) − s(m). (59)

Curve 1 in Fig. 6 corresponds to the fully decayed state (bar-
ring the remainder neq

A ∼ 10−38), i.e., to the equilibrium state
v = u0.

A less trivial solution can be obtained for small xn satisfy-
ing

max |xn| � 1, (60)

in which case xn in the denominator in Eq. (56) can be ne-
glected and a closed-form solution obtained (see Appendix B)

xn =
n−1∑
l=0

bl exp

⎛
⎝ n−1∑

k=l+1�n−1

ln ak

⎞
⎠. (61)

Using Eq. (58) two immediate conclusions can be made: (i)
xn ∝ λ and (ii) all xn for n � 1 are negative. Thus, when
max |xn| → 1 (xn → −1), a singularity at m = −1 + 2nε cor-
responding to n will arise in xn, hence, also in EH and FFE
Eq. (59) which means that the solution is unphysical at this
value of λ.

TABLE I. Values of parameter λ for curves shown in Fig. 6 and
the fit of data in Fig. 2 to Eq. (38).

Curve 107λ

1 0.0
2 6.0
3 5.6
4 5.551
5 5.5501
6 5.550092
7 5.5500919602
8 5.5500919601
Fit 5.55009
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Thus, the physical values should be sought in the interval
0 � λ � λmax with the upper limit found as the largest λ at
which the solution does not diverge. This has been done via
a trial and error process for the same HTM parameters as in
Fig. 2. The results are presented in Fig. 6 and Table I. The
range of calculations has been extended beyond m = 0 into
the region where according to Fig. 5 solution Eq. (54) is still
valid. It has been found that v(m, λ) is very sensitive to the
precise value of λ near λmax. For example, curves 7 and 8
correspond to λ values that differ on a unit in the eleventh
significant digit. Yet curve 7 shows that the value is still too
large (the solution diverges) while curve 8 already goes deep
down and if assumed to be correct predicts nA ∼ 10−27, that
is the decay is practically terminated. In fact, the curve is
drawn farther than the range of validity of Eq. (56) as can
be seen by comparing Figs. 5 and 6. But even at the upper
end of the region of validity m � 0.4 the value of f̃ is such
that nA ∼ 10−10. This, however, is an overestimation because
the negative derivative of curve 8 indicates that the true value
of f̃ near minimum B should be noticeably smaller. Anyway,
we are going to compare the calculated lifetimes with those
of Ref. [10] defined as the weighted time averages so the
contributions of small nA(t ) were insignificant. Thus, in our
case a single value of λmax should be sufficient to determine
the lifetime from Eq. (40). This is consistent with the data
shown in Figs. 2 and 5 where λ ≈ 5.55009×10−7 (see Table I)
was sufficient to describe the decay from nA ≈ 0.9 to 10−12.
The agreement of λ found from the recurrence relation with
that determined in a fit to the solution of the exact evolution
equation to all six significant digits provided by the fitting
software supports the suggestion that the heuristic technique
based on recurrence Eq. (56) does make possible an accurate
determination of lifetimes of the metastable states in HTM.
Similar agreement between the two techniques has been found
for several other sets of HTM parameters.

The values of τ calculated in this way are shown in Fig. 4
by filled symbols. The excellent agreement with the results
of Ref. [10] is illustrated by comparison with the analytic
expression suggested in that paper,

τ̃ = π√|mSP|(hSP − h)
eN� f 0

. (62)

where � f 0 has been defined in Eq. (39). In our calculations
the notion of scaling in the vicinity of the spinodal has not
been used because in some cases, such as the one depicted in
Fig. 1, the simulated systems were quite far from it. Therefore,
to make comparison with Eq. (41) of Ref. [10] � f 0 for the
barrier height has been used instead of the scaling expres-
sion. The comparison with the latter has also been performed
with the agreement being only slightly worse than in Fig. 4,
arguably, for the above mentioned reason. The upper limit
of the data presented in Fig. 4 has been defined by the fact
that for the calculations to be meaningful the second term in
the denominator of Eq. (56) 1 + xn should contribute to the
recursion from n = 1 onward. Therefore, x1 = O(λ) should
exceed the smallest number able to change the result when
added to unity. In the double precision arithmetic used in
calculations it should be larger than ∼2×10−16. The use of
software with this quantity being much smaller would make
possible to predict much larger lifetimes.

In principle, analytical expression of the type of Eq. (62)
should be possible to derive from the condition xn → −1.
However, this would necessitate knowledge of an analytical
expression for xn which would be difficult to obtain because
Eq. (56) becomes strongly nonlinear in this regime.

However, the leading exponential behavior in N can be
estimated in the linear approximation Eq. (61). To this end in
the expression Eq. (58) for bn we retain only factor λ, which
needs to be found, and in the summation over k only the first
two factors in the expression Eq. (57) will be kept because
the last factor does not contribute to the logarithm in the limit
ε → 0. With the use of Eq. (20) the first two factors in Eq. (57)
can be unified in exp[2 f 0

m(mk )]; here and below mn, ml and
mk are connected to n, l, k via Eq. (53). Next, approximat-
ing 2

∑
l (k) ≈ N

∫
dml (k) (dml (k) � 2/N) and integrating over

dmk one arrives at an estimate

max
n

|xn| ∼ max
mn

λeN f 0(mn )
∫ mn

−1
dmle

−N f 0(ml )

∼ λeN[ f 0(C)− f 0(A)] ≡ λeN� f 0 � 1. (63)

where the integration over ml for large N has been estimated
by Laplace’s method, and within the range of validity of
Eq. (56) the maximum is attained at mn = mC . The estimate
Eq. (39) now follows from Eq. (40).

The evolution of HTM for h > hSP (in the geometry of
Fig. 1) has been found to be not very interesting, mainly be-
cause it is not universal as there is no locally stable minimum
in f 0 at mA. The decay of initial state Eq. (35) starts imme-
diately and strongly depends on the arbitrary parameter a. At
large h � hSP the minimum in f 0 will be moving toward mB

according to MF Eq. (50) in which case the time dependence
of nA will be close to the step function nA(t ) ≈ θ [−m0(t )].
However, in the vicinity of the spinodal when h approaches
hSP from above the MF evolution slows down [10] and the
diffusion mechanism starts to dominate. The exponential be-
havior similar to Eq. (38) has been observed for h → h+

SP but
in the absence of the double-well structure of f 0 its origin is
obscure. The second minimum at mB has been formed which
presupposes the existence of the barrier in FFE f h > hSP

but whether this kinetically induced shape plays the same
role as the double-well structure of equilibrium f 0 is unclear.
Besides, when h > hSP the evolution towards thermal equilib-
rium has been found to be very fast so analytical interpolation
to numerically inaccessible regions is not as useful as in the
case of escape over high barriers.

To sum up, the techniques developed in the present paper
have made possible to substantiate the heuristic expression
Eq. (62) for the lifetime of metastable states in HTM sug-
gested in Ref. [10] for about eight orders of magnitude larger
values of τ , an order of magnitude larger |�| > 20 in Eq. (29),
and for FFE wells farther from the spinodal point up to the
symmetric case at zero external field corresponding to the
deepest possible well at a given temperature.

B. Néel relaxation and hysteresis

As has been noted earlier, the absence of surfaces sep-
arating the regions of differently oriented spins—hence, no
mechanism of domain formation—as well as the exponential
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dependence of the metastable lifetimes on the system size
makes HTM a viable model of the Néel relaxation (NR) [24]
in single-domain magnets with strong uniaxial anisotropy.
Additional argument in favor of this possibility gives a com-
mon practice to describe NR within the framework of Brown’s
discrete orientation model based on the Kramers transition-
state theory of escape from the potential well [35,46,47] which
also successfully describes HTM data, as we saw in Sec. IV A.
An advantage of the HTM approach is that unlike in Brown’s
description the barrier separating local minima need not be
high [46,47]. The restriction can be detrimental in modeling
hysteresis with the external pumping field amplitude exceed-
ing HSP when the energy well becomes shallow or disappears
altogether during some time intervals.

Another feature of hysteresis in single-domain magnets
that has not yet been satisfactorily described theoretically is
that the area of the hysteresis loop should tend to zero in the
zero-frequency limit [20,48]. However, this behavior is not
reproduced by MF equations which has been frequently used
in hysteresis studies [20,26,27]. The MF equation predicts
the loop area to be finite at zero frequency which could be
attributed to the inadequacy of MF approximation in slowly
varying external fields. But as we have shown in Sec. V A, in
the thermodynamic limit the average magnetization in HTM
satisfies the MF equation exactly which may cast doubt on the
soundness of HTM in the description of hysteresis. Appar-
ently, the explanation lies in the fact that in nonequilibrium
kinetics the limits N → ∞ and t → ∞ are not always inter-
changeable [49]. In HTM this can be seen from Eq. (38) where
the limits τ → ∞ and t → ∞ taken in different order give
different results. This problem does not arise in short-range
IM where τ is finite.

Because the equilibrium can be reached only if τ is finite,
in HTM this means finite N . The characteristic timescale sep-
arating the two types of behavior is determined by τ (h = 0)
which in the present context can be identified with NR time
τN. When the period 1/ν (ν is the oscillation frequency) of the
external field oscillations is much smaller then τ , the escape
over barrier contributes negligibly to the evolution so hystere-
sis can be described within the MF approach. In the opposite
limit 1/ν � τ the system equilibrates by means of escapes. At
h = 0 the magnetization will be close to zero, as can be seen
from Eq. (38) where at t → ∞ nA, nB → 1/2 the densities
of up and down spins will be the same. The response to a
weak external field in this case will be that of a paramagnet or,
more precisely, of a superparamegnet because the magnetized
nanoparticles are not elementary spins and the temperature is
below Tc. In the 1/ν � τ and weak external field the magnetic
properties can be phenomenologically described within the
linear response theory [49,50].

In recent years, hysteresis and NR in single-domain mag-
netic nanoparticles attracted much attention in connection
with biomedical applications, in particular, in hyperthermia
via hysteresis losses [25,51,52]. This interdisciplinary tech-
nique has many aspects that need be investigated to develop
its comprehensive description. The results of the present paper
can be useful in qualitatively clarifying a difficulty encoun-
tered in the studies of hysteresis which was pointed out
in Ref. [52]. Namely, while purely hysteretic behavior for
τ � ν−1 and superparamagnetic behavior for τ � ν−1 are

covered by existing phenomenological approaches, though
only for small amplitudes of the oscillating field in the second
case [50], the intermediate regime τ ∼ ν−1 has not yet been
satisfactorily described theoretically. But it cannot be avoided
in realistic setups because the admissible for biomedical ap-
plications nanoparticles have broad size distributions so that
the whole region of τ (N ) values may be covered in practice.
In the HTM-based approach all frequencies and all field am-
plitudes can be described within the same formalism, though
the problem of very long simulation times needed at large N
should be addressed.

VII. CONCLUSION

In this paper a nonlinear master equation (NLME) describ-
ing the evolution of the effective Hamiltonian (EH) density
has been suggested to overcome the numerical difficulties
caused by the exponential dependence of nonequilibrium
probability distribution (NPD) that enter into the linear ME
[6] on the system size N . In contrast, NLME scales at most
as O(N ) and can be reduced to a set of O(1) equations in the
case of translationally invariant systems.

To illustrate some salient features of NLME in a simple
framework, the problem of decay of metastable states in the
kinetic Husimi-Temperley model (HTM) has been considered.
The problem was previously studied in the framework of
linear ME in Refs. [10,18,19] which results have been used for
comparison purposes. An excellent agreement has been found
between numerical NLME solution and the asymptotic ana-
lytic expression for the lifetime of metastable states suggested
in Ref. [10] for decay in the vicinity of the spinodal. With
the use of NLME it has been possible to cover much broader
range of parameters and to achieve much better accuracy. In
particular, far from spinodal case of zero external field has
been simulated.

The exponential dependence of lifetime on the system
size in HTM ensures that in macroscopic systems the life-
time will reach values so large that from physical standpoint
the metastable states will behave as effectively stable ones.
Because of this, for large N it is reasonable to take ther-
modynamic limit N → ∞. It has been shown that in this
case NLME simplifies to a nonlinear first-order differential
equation possessing, in particular, two locally stable solutions
which can be combined to construct stationary EH different
from the equilibrium one. To solve the differential equation,
a system of characteristic equations has been derived which,
in particular, reduces to the conventional MF equation [23]
for magnetization corresponding to the fluctuating free-energy
extrema.

The MF equation that has been widely used in modeling
hysteresis [20,26] was found to fail in the low frequency
region [20]. In the present paper it has been shown that at large
but finite system size NLME should be able to qualitatively
reproduce the correct behavior. Besides purely theoretical in-
terest this should also be useful in modeling Néel relaxation in
magnetic nanoparticles which is important in some biomedi-
cal applications [25].

An example of NLME application to IM was discussed
in Ref. [3]. In a simple pair approximation to EH (which
was also used in Ref. [34]) it was found that NLME leads
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to a qualitatively more sound description of the spinodal de-
composition than the MF approximation to ME used, e.g., in
Ref. [12]. Specifically, NLME predicted a power-law growth
of the volumes of the separating phases while the MF ap-
proximation predicts an exponential behavior. The latter is
incompatible with the relaxational nature of the stochastic
dynamics where the growth exponents cannot be positive [6].
Besides, the characteristic length scale in the MF solution
remains constant throughout the growth while NLME predicts
a coarse-graining behavior in qualitative agreement with ex-
perimental observations.

Switching from a linear ME to the nonlinear equation may
seem counterintuitive because the former can be amenable to
treatment with the use of powerful techniques of liner algebra.
However, they seems to be efficient only when the stochastic
matrices are much smaller than the Avogadro number charac-
teristic of the size of macroscopic systems [53]. In statistical
physics this case is usually studied in the thermodynamic
limit. But NLME has been obtained via substitution of EH
into the Boltzmann factor. The subsequent thermodynamic
limit has led to a well defined NLME for EH which, however,
cannot be linearized back because the corresponding NPD
would contain the Boltzmann factor with infinite argument.

The inherently nonlinear nature of ME was also noted in
Ref. [6] (see Remark in Ch. V.8) where it was argued that a
linear-nonlinear dichotomy is purely mathematical and does
not reflect the underlying physics. For example, the linear
Liouville equation is equivalent to Newton’s equations which
in the case of interacting particles are nonlinear, yet it is the
latter that are used in most calculations. Yet another example
is given by the BBGKY hierarchy of an infinite number of
linear equations which in practical calculations is usually ap-
proximated by a finite number of nonlinear ones, such as the
Boltzmann transport equation.

These observations may signify that stochastic kinetics in
the thermodynamic limit is inherently nonlinear.
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APPENDIX A: THE HAMILTON-JACOBI FORMALISM

Because Eq. (45) contains only derivatives of u but not the
function itself, according to Ref. [44] it can be cast in the form
of the Hamilton-Jacobi equation [54]

ut + H(m, q, t ) = 0, (A1)

where

q = um(m, t ), (A2)

and

H = − cosh2 q (m + tanh q)
[

tanh u0
m(m, t ) − tanh q

]
(A3)

is the r.h.s. of Eq. (45) with minus sign. In the Hamiltonian
formalism the total time derivative of any function g(m, q, t )
of the “coordinate” m and “momentum” q can be calculated

as

ġ ≡ dg

dt
= ∂g

∂t
+ {g, H}, (A4)

where the Poisson bracket is defined as {a, b} = ambq − aqbm.
Now the canonical Hamiltonian equations are easily found as

ṁ = Hq, (A5)

q̇ = −Hm. (A6)

Further assuming that at some t = t0 an initial Hamiltonian
density u(m, t0) is known, by choosing any admissible value
m0 and setting q(t0) equal to um(m0, t0) one can find m(t )
and q(t ) from the solution of the initial value problem for
Eqs. (A5) and (A6). Next integrating equation

u̇ = qHq − H (A7)

obtained from Eqs. (A4), (A5), (A2), and (A1) one arrives
at a solution for u(m, t ) in parametric form where at each t
the values of u at different m are found from the solution of
the above initial-value problem for all possible m0 = m(t0).
Such a solution is a particular case of the general method of
characteristics [43].

A rigorous derivation of the Hamiltonian-Jacobi formalism
in the general case of many variables can be found in Ref. [44]
but for our Eq. (A1) the following heuristic arguments should
suffice. First we observe that the partial derivative um in
Eq. (45) couples the values of function u(m, t ) at neighbor
points m ± ε so by using, e.g., the method of lines one should
solve a system of N → ∞ coupled ordinary evolution equa-
tions. In the method of characteristics one tries to reduce the
problem to only a few such equations. To this end one may
observe that by taking the total time derivative of Eq. (A2) in
the conventional way one gets

q̇ = umt + ummṁ = −Hm − Hqumm + ummṁ, (A8)

where the second equality has been obtained by differentiating
Eq. (A1) with respect to m by considering q in H as just
another notation for um. Now if we demand that Eq. (A5) was
satisfied, then Eq. (A6) would follow from Eq. (A8). Equa-
tion (A7) also is easily obtained by differentiating u(m, t ),
using Eq. (A1) and applying the chain rule. Next assum-
ing m = m(t ) on the characteristic line, substituting it in
Eqs. (A5), (A6), and (A7) one arrives at a system of three
evolution equations for three unknown functions. It is to be
noted that Eqs. (A5) and (A6) are sufficient to derive Eq. (A4)
which shows the consistency of our assumptions.

APPENDIX B: LINEAR RECURRENCE [45]

Let us consider a linear recurrence relation

xn+1 = anxn + bn (B1)

initiated by x0; an and bn, n = 0, 1, . . . , N are presumed to be
known. Now by introducing

Xn = xn∏n−1
k=0 ak

(B2)
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and dividing both sides of Eq. (B1) by
∏n

k=0 ak one arrives at
a linear difference equation

Xn+1 − Xn = bn/

n∏
k=0

ak, (B3)

which can be solved as

Xn = X0 +
n−1∑
l=0

bl∏l
k=0 ak

. (B4)

In the main text it was assumed that x0 = 0 which in combi-
nation with Eq. (B2) gives X0 = 0 and

xn =
n−1∑
l=0

bl

n−1∏
k=l+1�n−1

ak

=
n−1∑
l=0

bl exp

⎛
⎝ n−1∑

k=l+1�n−1

ln ak

⎞
⎠. (B5)
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