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Confined run-and-tumble particles with non-Markovian tumbling statistics
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Confined active particles constitute simple, yet realistic, examples of systems that converge into a nonequi-
librium steady state. We investigate a run-and-tumble particle in one spatial dimension, trapped by an external
potential, with a given distribution g(t ) of waiting times between tumbling events whose mean value is equal
to τ . Unless g(t ) is an exponential distribution (corresponding to a constant tumbling rate), the process is
non-Markovian, which makes the analysis of the model particularly challenging. We use an analytical framework
involving effective position-dependent tumbling rates to develop a numerical method that yields the full steady-
state distribution (SSD) of the particle’s position. The method is very efficient and requires modest computing
resources, including in the large-deviation and/or small-τ regime, where the SSD can be related to the the
large-deviation function, s(x), via the scaling relation Pst (x) ∼ e−s(x)/τ .
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I. INTRODUCTION

Active particles [1–10], in contrast with their passive
Brownian counterparts, use energy that they pump out of their
environment in order to move. Activity leads to breaking of
time-reversal symmetry, and as a result, even single active par-
ticles are out of (thermal) equilibrium. Many natural examples
of active systems may be found in biology, from molec-
ular motors [11–14] to cells [15–21], to animals [22–25].
Moreover, active systems have been experimentally realized
and studied. This has been done by fabricating artificial
particles (such as Janus particles) or robots that propel them-
selves [6,21,26–35] leading to behavior which is similar to
that of the natural examples.

The statistical behavior of active systems may be quite
remarkable indeed, and very different to the equilibrium
behavior exhibited by passive systems, both for active, many-
body systems (“active matter”) [36–49] and even at the
single-particle level [27–31,50–76]. A setting that has at-
tracted much recent interest is that of a single active particle
trapped by an external potential. Such a particle eventu-
ally reaches a nonequilibrium steady state that differs from
the Boltzmann-Gibbs statistics [27,28,30,31,52–56,60,63,66–
73], its first-passage properties do not follow the Arrhenius
law [51,74,75], and it may acquire an effective drift even if it
is placed in a periodic potential [77].

The nonequilibrium nature of active matter makes its ana-
lytical study very challenging. Some relatively simple models
admit exact solutions. One example is the run-and-tumble
particle (RTP), which, in the absence of external forces, moves
at a constant speed but changes its orientation at a constant
rate. In one dimension, the RTP model is exactly solvable
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with [42,71] or without [71,74,78–84] an external potential,
and in some special cases, these results may be extended to
higher dimensions [52,72,75,83,85,86]. In some less simple
settings, active systems are amenable to a perturbative treat-
ment in various regimes [53,55,73,87]. However, in many
cases one must resort to numerical methods. The challenge
posed by active systems becomes especially pronounced when
studying large deviations (i.e., rare events), which often can-
not be studied by brute-force Langevin dynamics simulations.
Large deviations have become a major theme of ongoing
interest in statistical mechanics [88–94], and in particular,
large deviations in active systems are important because they
are often very strongly affected by the activity of the system,
while the effects on the typical fluctuations may be weaker.

In a vast majority of previous works, the stochastic dynam-
ics of active particles that were studied were assumed to be
Markovian. By this we mean that the particle’s instantaneous
position and internal state (e.g., for an RTP the internal state
is its orientation) contain sufficient information to predict the
statistics of its future dynamics, and it is not necessary to
know the full history of the particle’s dynamics (see Ref. [95]).
Markovian dynamics are “memory free,” and the Markovian
assumption facilitates the analysis considerably, but it also
restricts the class of models that may be analyzed. It is also
not so obvious if this assumption indeed holds for realistic
systems, such as living cells, for which one may reasonably
expect that some effects of memory are present; see Ref. [96]
and references therein.

In the present work, we consider an RTP with a given
distribution g(t ) of waiting times between tumbling events
with mean waiting time τ . The particular case where g(t ) is
an exponential distribution corresponds to a constant tumbling
rate, recovering the standard (Markovian) RTP model. For
any nonexponential g(t ), the model becomes non-Markovian
and very challenging to study. Our model may be thought of
as an extension of the continuous-time random walk model,
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whose large-deviation properties have attracted much interest
recently [97,98]. In order to study the model, we develop a
numerical method which allows us to compute the nonequilib-
rium steady-state distribution (SSD) of the particle, including
in the regime of large deviations and/or small τ . Many of
the existing large-deviation numerical methods are based on
generating realizations of the stochastic process under study
that are biased toward the rare event of interest [55,99–112].
In contrast, our method circumvents the need to generate
realizations of the process, while relying on some theoretical
insights that we derive. It should thus be viewed as a combined
theoretical and numerical framework.

The remainder of the paper is organized as follows. In
Sec. II we define the non-Markovian RTP model precisely
and introduce the key theoretical concepts for studying the
nonequilibrium steady state that is reached when this particle
is placed in a trapping potential. In Sec. III we use these con-
cepts to describe the numerical method by which the steady
state can be computed. In Sec. IV we present results that we
obtained using this method for three particular waiting time
distributions g(t ): exponential (which serves as a benchmark
to verify that our results agree with the known, exact solu-
tion), semi-Gaussian, and half-t . In Sec. V we summarize and
discuss our main findings.

II. MODEL DEFINITION AND THEORETICAL
FRAMEWORK

We consider an overdamped particle moving in a one-
dimensional (1D) potential field U (x). For simplicity we
assume that U (x) is mirror symmetric U (x) = U (−x) and
has a unique minimum at x = 0. The particle is subject to an
active telegraphic (dichotomous) noise that switches between
two values σ (t ) = ±σ0. This is known as the 1D RTP model.
We further assume that the running times [i.e., the times
between consecutive switching events of the sign of σ (t )]
are drawn from a general distribution g(t ) [

∫ ∞
0 g(t )dt = 1].

We denote the mean running time by τ = ∫ ∞
0 tg(t )dt . The

most thoroughly studied case is when g(t ) = exp(−t/τ )/τ ,
for which σ (t ) describes tumbling (switching) at a constant
(time-independent) rate γ = 1/τ . For any other distribution
function, g(t ), the process is non-Markovian.

The Langevin equation describing the dynamics of the
particle is

μẋ − F (x) − σ (t ) = 0, (1)

where μ is the friction coefficient and F (x) = −U ′(x). Since
the particle has no inertia, it is confined to the interval −X0 <

x < X0, where |F (X0)| = σ0 [assuming that such X0 exists,
and that −X0 < x(t = 0) < X0]. Its instantaneous direction of
motion is that of σ (t ), and for a given orientation, the speed is
an injective function of x given by

μv±(x) = σ0 ± F (x), (2)

where the subscripts ± denote the speeds when the particle
moves in the positive and negative directions, respectively.

Here we introduce a theoretical-numerical framework for
calculating the SSD of the particle, Pst (x). Our approach is
not based on straightforward Langevin dynamics simulations,
which tend to be inefficient in the large-deviation regime

|x| � X0, especially when τ is small. Instead, we begin the
analysis by considering the probability flux which is constant
at steady state, Jst (x) = J . Since the particle is confined to
a finite interval, we have that Jst = 0. In what follows, we
consider the steady-state statistics of the particle and therefore
drop the subscript “st” for brevity.

A. Steady-state currents

The steady-state flux is the difference between the currents
of particles moving in the positive and negative directions,
J (x) = I+(x) − I−(x). We denote by P+(x) and P−(x) the
distributions corresponding, in steady state, to right- and left-
moving particles, respectively. These are related to the SSD
P(x) via

P(x) = P+(x) + P−(x), (3)

and because of the symmetry of the problem, both of them
are normalized to

∫ ∞
−∞ P±(x)dx = 1/2 (rather than unity) and

satisfy P+(x) = P−(−x). The associated currents are given
by I±(x) = P±(x)v±(x). Since J = 0, we have that I+(x) =
I−(x), and so we adopt the same notation I (x) for both, i.e.,

I (x) = P+(x)v+(x) = P−(x)v−(x). (4)

We now arrive at a key part of the derivation, which is the
introduction of the space-dependent effective switching rates,
γ±(x). These rates express the probability, per unit time, of a
particle to tumble (i.e., flip its orientation) when traveling in
the vicinity of x. We denote by it±(x), the associated tumbling
current densities (per unit length per unit time)

it±(x) = γ±(x)P±(x), (5)

which from Eq. (4) can be also written as

it±(x) = I (x)
γ±(x)

v±(x)
. (6)

Due to the occasional switches in the direction of motion,
the current changes, over a small distance dx, by dI (x) =
[it−(x) − it+(x)]dx. Thus, we arrive at the differential equation

dI

dx
= I (x)

[
γ−(x)

v−(x)
− γ+(x)

v+(x)

]
, (7)

with the solution

I (x) = I (x = 0) exp

{∫ x

0

[
γ−(y)

v−(y)
− γ+(y)

v+(y)

]
dy

}
. (8)

From Eqs. (3) and (4), we have that

P(x) = I (x)

[
1

v+(x)
+ 1

v−(x)

]
. (9)

Furthermore, because F (0) = 0, we have from Eq. (2) that
v±(0) = σ0/μ, and we thus arrive at the result that

P(x)

P(x = 0)
= σ 2

0

σ 2
0 − F 2(x)

× exp

{
μ

∫ x

0

[
γ−(y)

σ0 − F (y)
− γ+(y)

σ0 + F (y)

]
dy

}
.

(10)
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B. Relating γ±(x) to g(t )

A derivation similar to the one presented in the previous
subsection was introduced in Ref. [113]. However, in that
paper the rates γ±(x) were simply taken to be given functions,
i.e., the model studied there was a Markovian RTP with space-
dependent tumbling rates (and velocities). In contrast, in our
non-Markovian model, γ±(x) are a priori unknown, but we
can relate them to the function g(t ), which characterizes the
statistics of switching times.

When g(t ) = exp(−t/τ )/τ , the switching rates are both
time and space independent, i.e., γ±(x) = γ = 1/τ , and we
recover the well-known result [42,71,114–119]

P(x)

P(x = 0)
= σ 2

0

σ 2
0 − F 2(x)

× exp

{
2μ

τ

∫ x

0

[
F (y)

σ 2
0 − F 2(y)

]
dy

}
. (11)

To proceed in the general case, we introduce the transition
probability density per unit length, �+(a, b), that the particle
travels directly (i.e., without switching directions in between),
starting at point x = a and stopping at point x = b > a. Simi-
larly, �−(a, b) denotes the probability density of a movement
interval that starts at x = a and ends at x = b < a. Due to the
symmetry of the problem with respect to x = 0, it is clear that
�+(a, b) = �−(−a,−b). The tumbling current densities (5)
satisfy the following set of coupled equations:

it+(x) =
∫ x

−X0

it−(y)�+(y, x)dy, (12)

it−(x) =
∫ +X0

x
it+(y)�−(y, x)dy. (13)

These equations are obtained by integrating over the position
y of the last tumbling event before the tumbling at position
x. In order to express the transition probability densities, we
consider the traveling time along the interval from from x = a
to x = b, which is given by

t+(a, b) =
∫ b

a

dx

v+(x)
, (14)

if a < b, and by

t−(a, b) = t+(−a,−b), (15)

if a > b. Since the particle always moves at the instantaneous
direction of the noise, the probability densities associated
with these traveling times are g[t±(a, b)]. These probability
densities per unit time are related to the transition densities
per unit length, via

�±(y, x) = g[t±(y, x)]
∂t±
∂y

= g[t±(y, x)]

v±(y)
. (16)

From Eqs. (12), (13), and (16) we find that

it+(x) =
∫ x

−X0

it−(y)
g[t+(y, x)]

v+(y)
dy, (17)

it−(x) =
∫ X0

x
it+(y)

g[t−(y, x)]

v−(y)
dy. (18)

Equations (17) and (18) are a set of integral equations for the
tumbling current densities it±(x), and they constitute the main

results of the theoretical part of our analysis. In these equa-
tions, the function g(t ) is given and so are v±(x), as they are
given immediately from the external force F (x) via Eq. (2).
Given the solution it±(x) to these equations, one can ob-
tain I (x) by integrating the equation dI/dx = it−(x) − it+(x),
yielding the steady-state distribution P(x) through Eq. (9).
However, solving Eqs. (17) and (18) for general g(t ) and F (x)
is a highly nontrivial task. In the next section, we present a
numerical method for solving these equations.

III. THE NUMERICAL SCHEME

A. Computing the tumbling current densities it
±(x)

The set of integral equations (17) and (18) can be solved
numerically. For this purpose, we discretize the support inter-
val (−X0,+X0) into an even number N of small bins of size
δx = 2X0/N . Denoting the end points by x0 = −X0 and xN =
+X0, we use the integer variable i to index the bin extending
from xi−1 to xi = xi−1 + δx. We then determine the travel time
between any two points xi and x j for i, j = 1, 2, . . . , N . This
can be done either analytically (if possible) or numerically.
Because of the symmetry of the problem, we only consider the
travel times in the positive direction. In the case of a numerical
integration, it is possible to use Eq. (14) to determine the travel
time, t+( j, i), between x j and xi � x j , but the vanishing of
v+(x) close to the edge of the support, x � X0, imposes severe
restrictions on the bin size, δx. Therefore, it is recommended
to compute t+( j, i) by numerically integrating the equation of
motion (1) with a small integration time step δt . Note that
in this process, the Langevin equation (1) is not treated as a
stochastic, but as a deterministic equation, with σ (t ) = +σ0

for a particle moving rightwards.
It is tempting to write the discretized version of Eq. (17) as

it+(xi ) =
i∑

j=1

it−(x j )
g[t+( j, i)]

v+(x j )
δx. (19)

However, similarly to the considerations discussed above re-
garding the computation of the travel times, we must keep in
mind here that Eq. (17) is a re-expression of Eq. (12) where
the transition probability per unit length, �+(y, x), is replaced
with the transition probability per unit time, g[t+(y, x)]. The
conversion between them is the origin of the factor 1/v+(y)
appearing in the integrand in Eq. (17) [see Eq. (16)], which is
the inverse ratio between the length of an infinitesimal element
around y and the infinitesimal time that the particle spends in
that element. This differential form is valid only if the travel
time is small, which is not the case when particle approaches
the edge of the support y � X0. This problem can be solved by
noticing that∫ xi

xi−1

g[t+(y, x)]

v+(y)
dy = G[t+( j, i)] − G[t+( j, i − 1)]

≡ δG( j, i), (20)

where G(t ) = ∫ t
0 g(s)ds is the cumulative distribution func-

tion of the traveling time t . We identify the function δG( j, i) as
the probability of a particle to stop in the ith bin if the move-
ment forward begins at x j � xi−1. Note that for any j < N ,
δG( j, N ) = 1 − G[t+( j, N − 1)/τ ], because the travel time to
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xN = +X0 diverges. With these considerations, the discretized
version of Eq. (17) is given by

it+(xi ) =
i∑

j=1

it−(x j )δG( j, i + 1), (21)

which holds for i = 1, 2, . . . , N − 1 (i.e., excluding the edges
x0 = −X0 and xN = +X0). Using the symmetry of the prob-
lem it+(x) = it−(−x), we rewrite Eq. (21) as

pt
+(xi ) =

i∑
j=1

pt
+(xN− j )δG( j, i + 1). (22)

Notice that in the last equation, we replaced the notation it+(xi )
with pt

+(xi ). This is done in order to highlight that pt
+(xi ) is

the tumbling probability, rather than the tumbling current, of
a right-moving particle in the ith bin. In (22), we have a set
of (N − 1) linear equations which can be solved by various
numerical techniques. We use a simple iterative method, start-
ing from the initial state, pt

+(xn
i ) = p0, and iterating the set of

equations until the stationary solution is obtained, typically
after several tens of iterations. Notice that the numerically
derived probability is not properly normalized but, as we show
below, the normalization cancels when we attempt to estimate
the switching rates γ (xi ) and the SSD relative to the origin
P+(xi )/P+(xN/2 = 0).

B. Computing the SSD and the switching rates

From the solution for the tumbling probabilities, pt
+(xi ),

we can evaluate the SSD and the switching rates using
the following expressions: Similarly to the logic behind the
derivation of Eq. (22), it is easy to see that the discretized
steady-state distribution is given by

P+(xi ) =
i∑

j=1

pt
+(xN− j ){1 − G[t+( j, i)]}. (23)

After the evaluation of P+(xi ), the discrete steady-state prob-
ability should be normalized to half. Here we skip this step
because we are only interested in the probability relative to
the center of the potential well.

While pt
+(xi ) measures the distribution of tumbling points,

the ratio pt
+(xi )/P(xi ) measures the tumbling probability of a

right-moving particle located in the ith bin to tumble during
the time interval that it travels through the bin. This quantity
is proportional to the switching rate, γ+(xi ). Explicitly, the
switching rate is obtained by dividing this ratio by the time,
t+(i − 1, i), that the particle spends in the bin

γ+(xi ) = 1

t+(i − 1, i)

pt
+(xi )

P+(xi )
. (24)

This expression is also insensitive to the normalization of
P+(xi ) because, as evident from Eq. (23), the SSD normal-
ization factor is proportional to normalization factor of the
tumbling probabilities. Equation (24) suffers from the same
problem encountered in Eq. (19), namely the fact that it
assumes that the travel time in the bin is small. This is
not the case near the edge of the support where the travel
times become increasingly large. Since the tumbling ratio

pt
+(xi )/P(xi ) � 1, it implies that Eq. (24) would yield switch-

ing rates that become vanishingly small. To fix this problem,
we compute the effective switching rate from the following
equation:

pt
+(xi )

P+(xi )
= 1 − exp [−γ+(xi )t+(i − 1, i)], (25)

which compares the computed stopping ratio to the corre-
sponding ratio in the case that the switching rate is constant
during the travel time [i.e., as if the distribution of running
times is exponential with τ = 1/γ+(xi )]. As can be easily
seen, Eqs. (24) and (25) coincide in the limit γ+(xi )t+(i −
1, i) � 1.

IV. COMPUTATIONAL RESULTS

In this section we demonstrate how the noise statistics of
running times influences the SSD and the effective switching
rates. For this purpose, we consider a particle in a potential
field given by U (x) = (2/π ){1 − cos[(π/2)x]}, which means
that

F (x) = − sin[(π/2)x]. (26)

We set the noise amplitude to σ0 = 1 and the friction coeffi-
cient to μ = 1.75. For these parameters, the particle is bound
in the interval |x| < X0 = 1, which is discretized into bins of
size δx = 10−3. The travel times in the present case can be
calculated analytically:

t+( j, i) = μ

∫ xi

x j

dx

1 − sin[(π/2)x]

= 2μ

π

{
tan

[π

4
(1 + xi )

]
− tan

[π

4
(1 + x j )

]}
. (27)

We also measured t+( j, i) numerically by integration of
Langevin equation (1) with time step δt = 10−6. The numeri-
cal integration results were in full agreement with Eq. (27).

We study three different distribution functions, g(t ), of the
following running times: (i) exponential, (ii) semi-Gaussian,
and (iii) half-t . The first example serves as a way to test the
accuracy of the method. The other two case studies feature,
respectively, distribution functions decaying faster and (much)
slower than the exponential distribution with the same aver-
age waiting times. As we will see below, the computational
method introduced above is not only very accurate including
in the large-deviation regime but also very efficient and re-
quires very modest computing resources. One only needs to
compute the travel time, t+( j, i), between any pair of bins j �
i, which for the simulations presented herein was done on a PC
in less than 24 h of CPU time. Once the times are computed,
they can be used for the evaluation of the cumulative function
G[t+( j, i)] of any distribution function g(t ), and the iterations
needed to find the solution of the set of equations (22) take
only a few seconds.

A. Exponential distribution (Markov process)

We begin by considering the (exactly solvable) case g(t ) =
exp(−t/τ )/τ . For this distribution function of travel times,
the solution for the SSD is given by Eq. (11). Introducing the
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FIG. 1. The function, sτ (x) [which is related to the SSD P(x)
via Eq. (29)] for to an exponential distribution of running times,
g(t ) = exp(−t/τ )/τ , for τ = 1 (black circles) and τ = 10 (blue
squares). The red line shows the analytical solution (30). The inset is
a magnification of the central region 0 < x < 0.9.

function

sτ (x) ≡ −τ ln

[
I (x)

I (x = 0)

]
, (28)

we rewrite Eq. (11) as

sτ (x)

τ
= − ln

[
σ 2

0 − F 2(x)

σ 2
0

P(x)

P(x = 0)

]

= 2μ

τ

∫ x

0

[
F (y)

σ 2
0 − F 2(y)

]
dy . (29)

We thus find that for the exponential g(t ), sτ (x) is independent
of τ , and coincides with the large-deviation-function (LDF)
s(x) that describes the SSD in the limit τ → 0 via P(x) ∼
e−s(x)/τ (which is a large-deviation principle) [53,55]. For the
force function (26), it is given by

s(x) = 4μ

π

[
1 − cos

(
π
2 x

)
cos

(
π
2 x

)
]
. (30)

The computational results for sτ (x) are plotted in Fig. 1 for
τ = 1 (black circles) and τ = 10 (blue squares). The red line
shows the analytical solution (30). The inset is a magnification
of the central region 0 < x < 0.9, before the rapid increase in
sτ (x) near the edge of the support. As can be clearly seen,
the computational results for both values of τ are almost
indistinguishable, and the fit to the analytical solution is nearly
perfect.

In Fig. 2 we plot the dimensionless local switching rate,
τγ+(x), for τ = 1 and τ = 10. For both values of τ , the
computational results exhibit excellent agreement with the ex-
pected result that τγ+(x) = 1, up to minor (smaller than 0.1%)
discretization errors. Notice the general trend that these errors
almost disappear for x > 0.5. This is expected since longer
running times, which are less sensitive to space discretization,
are required for right-moving particles to reach (and tumble)
this region of the potential trap.

-1 -0.5 0 0.5 1
x

0.96

0.98

1

1.02

1.04

τγ
+
(x
)

 τ=1
 τ=10

FIG. 2. The dimensionless local switching rate, τγ+(x), corre-
sponding to an exponential distribution of running times, for τ = 1
(black solid line) and τ = 10 (blue dashed line).

B. Semi-Gaussian distribution

Next, we consider the case where

g(t ) = 2

πτ
exp

[
− 1

π
(t/τ )2

]
. (31)

Setting τ = 1 and τ = 10 as in Sec. IV A, and defining the
function sτ (x) as in Eq. (28), we present in Fig. 3 the results
for sτ (x). The shape of the curves are quite similar to the
shape of the sτ (x) in Fig. 1, i.e., grow moderately for |x| � 0.9
and exhibit a steep incline when approaching the edge of the
support. However, in the present case, the (exact) sτ (x) does
depend on τ . In the inset on Fig. 3, we see a magnification of
the central region, including also results for τ = 0.1 that are
plotted with red triangles and deviate only weakly from the
data for τ = 1 (black circles). We note that for τ = 0.1, the
SSD becomes so small close to the edge of the support, that
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FIG. 3. The function sτ (x) [which is related to the SSD P(x) via
Eqs. (9) and (28)] corresponding to a semi-Gaussian distribution of
running times [Eq. (31)] for τ = 1 (black circles) and τ = 10 (blue
squares). The inset is a magnification of the central region 0 < x <

0.9, with data also corresponding to τ = 0.1 which is plotted with
red triangles.
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FIG. 4. The dimensionless local switching rate, τγ+(x) corre-
sponding to a semi-Gaussian distribution of running times, for τ =
0.1 (dashed-dotted red line), τ = 1 (black solid line), and τ = 10
(blue dashed line).

it could not be computed beyond the range |x| < 0.95 with
double precision floating point.

In Fig. 4 we plot the dimensionless local switching rate,
τγ+(x), for τ = 0.1, τ = 1, and τ = 10. As expected, the
switching rate is not constant and, moreover, depends also on
τ . We do, however, observe that all three curves are monoton-
ically increasing and approach the same values on the left and
right ends of the interval. These limits can be understood by
noting that the switching rate can be formally written as

γ+(x) =
〈

g(t )

1 − G(t )

〉
t=t+(y�x,x)

, (32)

where the average, with the proper weights, is taken over all
possible trajectories leading directly to point x from a point
y � x, and t+(y, x) is the travel time between the points [see
Eq. (14)]. Close to the left end of the support (x → −1), most
of the trajectories are short, and the travel times t+(y, x) � τ ;
therefore

γ+(x → −1) → g(0). (33)

In the present case this yields τγ+(x → −1) → 2/π �
0.637, in excellent agreement with the numerical data. On
the right end of the support (x → 1), the different curves
seem to approach the limit τγ+(x → 1) → 4. This limit can
be related to the asymptotic behavior of sτ (x) near the edge
of the support, which becomes independent of τ because of
the divergence of the travel times in this region (i.e., the
diminishing of the velocity). Explicitly, for x → 1, Eq. (7) is
well approximated by

d ln[I (x)]

dx
� −γ+(x)

v+(x)
= μγ+(x)

σ0 + F (x)
. (34)

For the force function (26) with σ0 = 1, we obtain from
Eqs. (29) and (34) that

sτ (x → 1)

τ
� 2γ+(x → 1)μ

π
tan

[π

4
(1 + x)

]

� 8γ+(x → 1)μ

π2

1

1 − x
. (35)
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FIG. 5. The SSD, P(x), corresponding to a half-t distribution of
running times [Eq. (36)] for τ = 0.1 (dashed-dotted red line), τ = 1
(black solid line), and τ = 10 (blue dashed line).

This result applies to any function g(t ) (for the force function
considered herein), as long as γ+(x) does not vanish when
x → 1 (as in the example discussed in the following subsec-
tion). In particular, it implies that τγ+(x → 1) is independent
of τ , in agreement with our numerical results and consistent
with the large-deviation principle. It is easy to check that the
LDF (30) of the exponential distribution function [in which
case γ+(x) = 1/τ ] has the same asymptotic form as the gen-
eral Eq. (35).

C. Half-t distribution

Consider the distribution function of running times,

g(t ) = 1

τ
[1 + (t/τ )2]−3/2, (36)

which is a special case of the algebraically decaying half-t dis-
tribution with average running time equal to τ and diverging
higher moments. Figure 5 shows the SSDs (which have been
normalized to unity) for τ = 0.1, τ = 1, and τ = 10. Since
the distribution function g(t ) is fat tailed, it is not surprising
to find that the SSD is rather flat for τ = 10. For τ = 1 and
τ = 0.1, the SSD adopts a bell shape, but one which is far less
narrowly peaked compared to the SSDs corresponding to the
exponential distribution (Sec. IV A) with similar τ . This is the
reason why, in this case, we do not plot the functions sτ (x).
In fact, it is not clear whether the large-deviation principle
applies here, as can be understood from Fig. 6, where we plot
the dimensionless switching rate for the different values of τ .
All three curves approach the limit τγ+(x) → 1 for x → −1,
which is consistent with Eq. (33). On the other end of the
interval, we see that all three curves converge to the limit
τγ+(x → 1) → 0. As noted above, the general asymptotic
form (35) does not hold in such cases. The vanishing of γ+(x)
close to the right edge of the support means that the stopping
probability of the particle does not assume a local exponential
form, see Eq. (25), which is required for the SSD to take the
form P(x) ∼ exp[−s(x)/τ ] in the large-deviation regime.
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FIG. 6. The dimensionless local switching rate, τγ+(x) corre-
sponding to a half-t distribution of running times, for τ = 0.1
(dashed-dotted red line), τ = 1 (black solid line), and τ = 10 (blue
dashed line).

V. DISCUSSION

To summarize, we have developed a numerical method for
computing the SSD of a non-Markovian RTP, characterized by
a waiting time distribution g(t ) between tumbling events and
trapped by an external potential in 1D. Our method succeeds
in obtaining numerical results even in regions of space for
which the SSD is extremely small, i.e., representing very
rare events. These events are associated with situations in
which the RTP is close to the edges of the SSD’s support,
and they become rarer as the mean time between tumbles τ

is decreased. Our method does not involve generating (naive
or biased) realizations of the RTP’s dynamics. Instead, it is
based on an analytical derivation that leads to a set of integral
equations whose solution yields the SSD. We essentially solve
these integral equations numerically.

To illustrate our method, we applied it to three different
distributions g(t ): (i) Exponential, (ii) semi-Gaussian, and (iii)
half-t . In the first example, one recovers the standard (Marko-
vian) RTP, whose SSD is known exactly. This case serves as

a useful benchmark for our method. The last example leads to
very different scaling behaviors since g(t ) is fat tailed.

The computation of the SSD, and the function sτ (x) that
is closely related to it, also enables us to compute the LDF,
s(x). This is done by combining results for different values of
τ and considering the asymptotic behavior of sτ (x) in the limit
τ → 0. Near the edge of the SSD’s support, the LDF is char-
acterized by (i) a diverging function and (ii) the asymptotic
value of the position-dependent tumbling rate γ+(x). These
depend on the form of the external force, F (x), and on the
distribution function of the waiting times, g(t ) [under mild
assumptions regarding g(t )], but not on τ . For the specific
external force (26), we obtained analytically that s(x) diverges
as a power law. This particular behavior appears to be related
to a special property of the force (26): Its derivative, F ′(x),
vanishes at the edge. In the more generic case in which this
does not occur, other behaviors are to be expected (e.g., loga-
rithmic divergence [55]). Note that s(x) is an extremely useful
object. Given s(x) for a specific potential, one can immedi-
ately compute from it the rate function, 	(z) (see definition
in Refs. [53,55]), that describes dynamical fluctuations of the
RTP’s position in the absence of external forces. From the
knowledge of 	(z), one can then work in the opposite route
and obtain s(x) for other potentials [53].

Our method (perhaps with minor adjustments) may be ap-
plicable to nonconfining potentials as well and could therefore
prove useful to study escape or first-passage statistics, or be-
havior within periodic potentials, for non-Markovian RTPs.
It would be also interesting to extend our method to more
general settings, e.g., to higher dimensions or to other pos-
sible non-Markovian active models (e.g., one could consider
non-Markovian versions of the active Brownian particle). Fi-
nally, it is also left to check how well the numerical method
works in some “exotic” cases like the Pearson random walk
model [120] in 1D, where the distribution function g(t ) of
tumbling times is not continuous but discrete.
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