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Large deviations in statistics of the convex hull of passive and active particles: A theoretical study
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We investigate analytically the distribution tails of the area A and perimeter L of a convex hull for different
types of planar random walks. For N noninteracting Brownian motions of duration T we find that the large-L
and -A tails behave as P (L) ∼ e−bN L2/DT and P (A) ∼ e−cN A/DT , while the small-L and -A tails behave as
P (L) ∼ e−dN DT/L2

and P (A) ∼ e−eN DT/A, where D is the diffusion coefficient. We calculated all of the coefficients
(bN , cN , dN , eN ) exactly. Strikingly, we find that bN and cN are independent of N for N � 3 and N � 4,
respectively. We find that the large-L (A) tails are dominated by a single, most probable realization that attains the
desired L (A). The left tails are dominated by the survival probability of the particles inside a circle of appropriate
size. For active particles and at long times, we find that large-L and -A tails are given by P (L) ∼ e−T �

per
N (L/T ) and

P (A) ∼ e−T �area
N (

√
A/T ), respectively. We calculate the rate functions �N exactly and find that they exhibit multiple

singularities. We interpret these as DPTs of first order. We extended several of these results to dimensions d > 2.
Our analytic predictions display excellent agreement with existing results that were obtained from extensive
numerical simulations.
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I. INTRODUCTION

A. Background

Brownian motion (BM) is a fundamental stochastic pro-
cess that appears in many systems ranging from biology,
physics, finance, computer science, and many more [1]. BM
represents a broad universality class in the sense that for
many models of random walks (RWs) and/or models of
active particles—particles that generate dissipative, persis-
tent motion by extracting energy from their surroundings
[2–6]—the long-time typical behavior converges to that of
a BM (passive). Examples of active matter arise in many
biological systems like cellular tissue behavior [7], bacterial
motion [8,9], formation of fish schools [10], and many more.
Active particles exhibit a wide range of interesting behav-
ior like non-Boltzmann stationary state [11,12], clustering at
boundaries [13], jamming [14], etc. Different models of RWs
and/or active particles are used to model various realistic sys-
tems such as movement of animals, self-propelled particles,
polymers, etc.

The convex hull of a trajectory is the minimal convex set
that contains all of the points along the trajectory. Convex
hulls of stochastic trajectories have attracted much recent
interest and they find many applications. For instance, they
provide a natural way to define the home range of animals,
which is the territory that the animal covers during a certain
period of time. The area and perimeter of the convex hull thus
gives a quantitative measurement of the home range [15,16].
Apart from the home range, the convex hull is a useful tool for
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analyzing other phenomena, for instance to detect different
phases in intermittent stochastic trajectories [17] or to study
the spread of animal epidemics [18].

The mean perimeter and area of convex hull of a RW as
a function of number of steps t is known (in the limit of
large number of steps where it converges to BM) [19]. In the
large-t limit, the mean perimeter and area scale as 〈L〉 ∼ √

t
and 〈A〉 ∼ t , respectively. These results have been extended to
many systems in the literature of physics [20–30] and mathe-
matics [31–33]. For example, using the connection to extreme
value statistics, exact results have been obtained for the mean
perimeter and mean area for the convex hull of N nonin-
teracting planar BMs [20,21]. In addition, the mean volume
and surface area of the convex hull in arbitrary dimensions
d has been calculated for a single BM and Brownian bridge
[31–33], Levy processes [34], and a single BM in a confined
geometry [35].

It is natural to try to give a more detailed characterization
of the convex hull statistics beyond the average behaviors.
Analytical calculations of the variance and higher-order mo-
ments of the distribution of these quantities are difficult [36].
To our knowledge, the only case for which an analytic result
exists for the higher moments is for Brownian bridges [37],
which is a BM constrained to end at its starting point. It is
also called a “closed” BM (in contrast with the unconstrained
“open” BM).

It is especially interesting and challenging to analytically
understand the full distributions (including the large-deviation
tails) of observables related to the convex hull (e.g., its
perimeter or area). At present, they are rather poorly under-
stood from an analytic point of view. One reason for this
is that the convex hull constitutes a rather complex physical
object, in the sense that it is affected, in a very nontrivial way,
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by temporal correlations of the physical process. Fluctuations
of the convex hull perimeter or area therefore depend on the
nonequilibrium dynamics of the stochastic process. Moreover,
these observables do not fall into one of the “standard” exist-
ing categories of observables (e.g., “dynamical observables”
[38]) for which the there exist generic theoretical frameworks
for the study of large-deviation statistics.

In contrast, extensive numerical studies of the properties of
convex hulls have been performed. These studies investigated
not only the regime of typical fluctuations, but also used
advanced importance-sampling techniques to probe far into
the the large-deviation regimes, describing convex hulls that
are much larger or much smaller than average. The full distri-
butions of the observables like area (A) and perimeter (L) in
d = 2 dimensions, as well as their extensions to higher dimen-
sions volume (V ) and surface area (A) have been numerically
computed for different types of stochastic processes. These in-
clude the single planar BM or bridge [23], multiple BMs [24],
BM in higher dimensions [25], self-avoiding RW [26,27],
run and tumble particle (RTP) [28], and BM with resetting
[29]. These numerical simulations were able to calculate the
atypical fluctuations with probabilities that are in some cases
extremely small, of order 10−1000 or even less. However,
a comprehensive theory describing these numerical results
is still lacking. Analytically there has been partial recent
progress in mathematical literature for the “right” tails for the
perimeter and area of a single random walker (under certain
assumptions) [39,40].

In this paper, we calculate exactly the distribution of the
tails of A, L, V and A for different types of stochastic
processes by studying the large deviation function (LDF)
[38,41] encoding the dynamics. One of the important fea-
tures of these LDFs that they may exhibit singularities which
can be interpreted as dynamical phase transitions (DPTs)
[42–49]. We consider both passive and active particles. We
find that the physical picture in the right and left tails of
the distributions is markedly different. As shown below, the
right tails are dominated by a single, optimal large-scale
trajectory of the process. In contrast, the left tails are dom-
inated by realizations of the process that remain within a
circle of appropriate size. The understanding of these physical
pictures is what enables us to obtain the distribution tails
analytically.

B. Model definitions

Let us now define precisely the theoretical models for
which we aim to study the convex-hull area and perimeter
distributions.

(i) Brownian motion. The motion of a BM in arbitrary
dimension is described by the following Langevin equation:

ṙ(t ) =
√

2D ξ(t ), (1)

where r(t ) is the position of the particle at time t and 0 < t <

T , D is the diffusion constant, and ξ(t ) are Gaussian white
noises with 〈ξ(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). Here 〈.〉
denotes the ensemble average over realizations of the noise.

In d = 2, dimensional analysis yields the following
scaling relations of the perimeter and the area dis-
tribution in the physical parameters (i.e., L, A, D,

and T ) [23]:

P (L) = 1√
DT

P

(
L√
DT

)
, (2)

P (A) = 1

DT
P
( A

DT

)
, (3)

where the functions P and their arguments are dimensionless.
(ii) Active particles. A generic theoretical model for active

particles can be written as

ṙ(t ) = �(t ), (4)

where �(t ) represents a noise term that originates in the self-
propulsion of the particle with correlation time 1/τ . While
most of our investigations for active particles will be quite
general (under fairly mild assumptions as detailed below), for
the sake of concreteness we will also give explicit results for
particular models. Two of the most extensively studied models
in d = 2 are active Brownian particle (ABP) [50] with the
following equation of motion:

ẋ = v0 cos θ (t ), ẏ = v0 sin θ (t ), θ̇ =
√

2Dr η(t ), (5)

where η(t ) is a Gaussian white noise with 〈η(t )〉 = 0 and
〈η(t )η(t ′)〉 = δ(t − t ′), v0 is the constant speed of the particle
and Dr is the rotational diffusion constant.

Another one is RTP [11] moving on the two-dimensional
x-y plane,

ṙ(t ) = v0 σ(t ), (6)

where again v0 is the constant speed of the particle and σ(t )
is the colored noise. It is unit vector that reorients at some
constant rate γ to a new orientation that is randomly chosen
uniformly from the unit circle. Both of these models converge
to BM in appropriate limits. For instance, for the RTP, in

the limit γ → ∞ and v0 → ∞, keeping the ratio v2
0

2γ
= Deff

fixed (where Deff is the effective diffusion coefficient), σ(t )
becomes white noise and the typical fluctuations of the active
models reduce to BM with diffusion coefficient D = Deff [51].

(iii) Random walks. One can also consider random walks
that are discrete in time and/or in space [19,21–27]. As we
will show below, our mathematical formalism that deals with
active particles also addresses such random walks, under cer-
tain assumptions regarding the distribution of step sizes and
durations.

The rest of the paper is organized as follows. Our results
are all concentrated in Sec. II. We begin in Sec. II A by
calculating the right and left tails for the area and perimeter
distributions for a single planar BM. We extend these results to
N noninteracting BMsin Sec. II B. In Sec. II C, we extend the
results to active particles in d = 2, uncovering a remarkable
sequence of DPTs for the case of multiple RTPs. In Sec. II D
we consider higher dimensions, focusing on the volume and
surface area distributions for a single BM in d = 3. We con-
clude with a discussion in Sec. III. Several technical details
are given in the Appendices.

II. RESULTS

The simplest case is the single BM in d = 2. We there-
fore begin with a full analysis of the two tails for this case,
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TABLE I. Behaviors of the left and right tails of the distributions of the area A and perimeter L of the convex hull for different planar
stochastic processes of duration T : BM with diffusion coefficient D, N (multiple) BMs, active particles and N active particles, and their
extensions to d > 2 dimensions (i.e., the volume V and surface area A). Here x1 = 2.4048 . . . is the first zero of the Bessel’s function J0(x).
The case N = 2 is very simply related to the case N = 1 and the relation is given by Eq. (17). 	(z) is the rate function that describes the
distribution of the position of the active particle at long times, see Eq. (28). For the RTP, 	(z) is given in Eq. (29). The αM and βM are the
coefficients of the rate function 	(z) for the N � 3 active particles given by Eq. (41). f̃d is the smallest eigenvalue of the minus Laplace operator
on the d-dimensional ball of unit radius with absorbing boundary conditions, and Ṽd and Ãd are the volume and surface area, respectively, of
the ball of unit radius. Trajectories are open unless stated otherwise.

Dimensions Types of walk Observables Tails Open, closed

d = 2 BM Perimeter Right Open: P (L) ∼ e−L2/16DT ; closed: P (L) ∼ e−L2/4DT

Left P (L) ∼ e−4π2x2
1 DT/L2

;
Area Right Open: P (A) ∼ e−πA/2DT ; closed: P (A) ∼ e−πA/DT

Left P (A) ∼ e−πx2
1 DT/A;

N � 3 BMs Perimeter Right P (L) ∼ e−bN L2/DT , bN = 1/36
Left P (L) ∼ e−4Nπ2x2

1 DT/L2
;

Area Right P (A) ∼ e−cN A/DT , c3 = 1/
√

3, cN�4 = 1/2
Left P (A) ∼ e−Nπ2x2

1 DT/A;
Active particles Perimeter Right P (L) ∼ e−T 	(L/2T )

Area Right P (A) ∼ e−T 	(
√

2πA/T )

N � 3 active particles Perimeter Right P (L) ∼ e
−T min

M
	(αM L/T )

, αM = (2M sin π

M )−1.

Area Right P (A) ∼ e
−T min

M
	(βM

√
A/T )

, βM = ( M
2 sin 2π

M )−1/2.

d > 2 BM Surface area Right P (A) ∼ e−lA,dA2/(d−1)/DT ; lA,3 = π/4
left P (A) ∼ e− f̃d DT (Ãd /A)2/(d−1)

Volume Right P (V ) ∼ e−lV,dV 2/d /DT ; lV,3 	 5.3
Left P (V ) ∼ e− f̃d DT (Ṽd /V )2/d

followed by extensions to multiple and/or active particles.
Then we treat the case of a single BM in d = 3. The results
are summarized in Table I.

A. Single planar Brownian motion

1. Right tail: Large area (A)–large perimeter (L)

Let us begin from the simplest case of a single BM. From
the scaling forms (2) and (3) one immediately finds that large
perimeters or areas are mathematically equivalent to the short-
time and/or weak-noise limit, i.e., DT 
 A or DT 
 L2.
The probability is dominated by the most probable path con-
strained on a given value of the observable of interest (A or L)
in a short T limit. In this short T –weak noise limit, the optimal
fluctuations method (OFM) [52–64] gives the equation of the
optimal path of the motion constrained to a given value of the
observable of interest. The path probability of the trajectory
r(t ) is given by

P[r(t )] ∼ e−s/2D, (7)

where s[r(t )] is the Wiener action [1]

s[r(t )] = 1

2

∫ T

0
ṙ(t )2 dt . (8)

In the small-DT limit, we apply the saddle-point approxi-
mation and thus find that the dominant contribution to P (A)
[P (L)] comes from the minimizer r(t ) (the “optimal trajec-
tory”) of the action constrained on the value of the area
(perimeter). The action is minimized by motion with constant
speed |ṙ(t )| = constant with the additional constraints [62–65]
(see also Appendix A). The action of the optimal trajectory is

thus given by

− lnP 	 s = L2

4DT
, (9)

where L is the length of the trajectory and ln denotes the
logarithm in the natural basis. The problem thus reduces to
minimizing L constrained on a given value of the observable
(area or perimeter).

Let us start by studying the closed case which is a little
simpler. Without loss of generality we consider only trajec-
tories that are themselves the boundary of a convex shape,
because if this is not the case, then one can always find a
shorter trajectory with the same convex hull; see Fig. 1. Under
this assumption L equals the perimeter L of the convex hull.

Consider first the problem of minimizing L constrained on
A. By the argument above, the problem reduces to that of
finding a shape of minimal perimeter that encloses a given
area (the isoperimetric problem) whose solution has been
known for a very long time [66,67]: It is a circle of area A [see
Fig. 2(a)]. The area and perimeter of a circle are related via
A = L2/(4π ). Hence the probability of the right tail behaves
as [recalling that L = L and using Eq. (9)]

− lnP (A � DT ) = s = π
A

DT
. (10)

Let us now find the minimizer of L constrained on A for
an open BM. We assume that the particle begins at the origin
(at time t = 0) and, without loss of generality, that it finishes
on the x axis at time t = T . We additionally assume that the
trajectory is contained in the upper half plane y � 0 (this
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FIG. 1. Schematic diagram of the convex hull of a trajectory of
a BM. To minimize the length of the trajectory L constrained on the
convex hull area A or perimeter L, it is more favorable to follow the
dotted (straight) line than the solid line, when going between the two
points marked in the figure.

assumption will be justified a posteriori). As for the closed
case, the minimizer cannot have any concave sections. The
problem thus reduces to finding the curve of minimal length
with the area under the curve constrained to a given value A.
This problem is known as Dido’s problem [66,67], which is
the extension of the isoperimetric problem. The solution to
Dido’s problem is a semicircle of area A [see Fig. 2(b)]. For
the semicircle, the length of the trajectory and the area are
related via A = L2/2π . Hence, the probability of the right tail
for a open BM is given by

− lnP (A � DT ) = s = π

2

A

DT
. (11)

This optimal trajectory is in agreement with rigorous results
from the mathematical literature which were obtained for

FIG. 2. Solid lines: Trajectories of minimal length L, corre-
sponding to the right tails of the area and perimeter distributions.
For the area distribution, both the open and closed BMs are plotted.
Schematic diagrams of the convex hulls formed by BMs of length
L, corresponding to the right tails of the area and perimeter distri-
butions. The dotted lines are a schematic of realistic realizations that
attain large but finite area (or perimeter). For the closed case, the hull
is a circle for a fixed area A and for the open case, the hull is a half
circle for a fixed A and line segment for fixed L.

general open RWs [39]. The result (11) is also in excellent
agreement with the numerical data of Ref. [23]; see Fig. 3(a).

Now let us solve the minimization problem of the length
L constrained on the perimeter L. For the closed case, as
shown above, L = L and therefore the minimization problem
has a very large degeneracy of solutions (any closed trajectory
which is the boundary of a convex shape is a minimizer). For
open motion, we assume again that the trajectory stays in the
upper half plane (taking the endpoint to be on the x axis) and
hence the relation between L and L is L = L + , where 

is the distance between the endpoints of the BM. The minimal
L is obtained when the curve approaches straight line [see
Fig. 2(c)], and then one has  	 L so

L = L +  	 2L. (12)

Hence, the right tail of P (L) behaves as

− lnP (L �
√

DT ) ∼
{

L2

16DT , open,

L2

4DT , closed.
(13)

The results are in excellent agreement with the numerical data
of Ref. [23]; see Fig. 3(b).

2. Left tail: Small area (A)–small perimeter (L)

The small-A (or small-L) limit with constant T is mathe-
matically equivalent, according to Eq. (3), to the long-T limit
at constant A (or constant L). In other words, the particle must
survive inside the convex hull itself for an unusually long time.
The least unlikely way for this to happen is if the convex hull
takes the shape of a circle of area A (or perimeter L). We thus
argue that P (A) [or P (L)] is, in the leading order, given by the
survival probability inside a circle of area A (or perimeter L).
In the leading order, it does not matter whether the BM is open
or closed (the difference only affects a short time window in
the trajectory, close to t = T ).

In the long-time limit (large T ), the survival probability

Sprob(T |R) of a BM inside a d-dimensional ball of radius R
is, in the leading order, independent of the initial position
within the ball and is dominated by the smallest eigenvalue
(in absolute value) of the Laplace operator with absorbing
boundary conditions. Therefore, it is given by (see, e.g., [68])

− ln Sprob(T |R) 	

⎧⎪⎪⎨
⎪⎪⎩

π2

4R2 D T, d = 1,

x2
1

R2 D T, d = 2,

π2

R2 D T, d = 3,

(14)

where x1 = 2.4048 . . . is the first positive root of the Bessel
function J0(z).

Using this, we obtain the left tails for the area and
perimeter distributions by considering the survival proba-
bilities in a circle of given area (or of given perimeter),
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FIG. 3. Right tails of the distributions (in log scale) of the area (a) and perimeter (b) of the convex hull for an open planar BM. The blue
solid line depicts the data of P (A) from [23] and can be seen to be in excellent agreement with the red dashed lines which denote our theoretical
predictions. Parameters are D = 1/2, and T = 1000 (a) and and T = 1400 (b).

yielding

− lnP (A 
 DT ) 	 πx2
1

DT

A
, (15)

− lnP (L 

√

DT ) 	 4π2x2
1

DT

L2
. (16)

These formulas hold both for the open and closed BMs. The
scaling behaviors in these results are in agreement with the
numerical results in Ref. [23] but the numerical coefficients
observed there were different. We believe that this discrepancy
is because the numerical simulations use a sufficient number
of time steps to observe the continuous BM behavior.

B. Multiple Brownian motions

In this subsection, we consider N > 1 noninteracting BMs,
beginning from the case N = 2 which is particularly simple.
In this case, by concatenating the two trajectories we obtain a
trajectory that could be considered as that of a single BM of
twice the duration. Therefore, the distributions for N = 2 are
exactly related to those for N = 1 via

P (∗, T )|N=2 = P (∗, 2T )|N=1 (17)

(where the time dependence is denoted explicitly and ∗ repre-
sents area, perimeter, or other such observable). In particular,
the distribution tails can thus be obtained immediately from
the results reported above for the N = 1 case.

Therefore, in the rest of this subsection we will assume
that N � 3. Let us consider first the right tail. Here, following
a similar approach to the one we used above for the case
N = 1, we find that this tail is dominated by the (multiparticle)
trajectory that minimizes the sum of the Wiener actions stot,
constrained on a given value of the area or perimeter. The
minimum is obtained for trajectories for which each particle’s
speed is constant, and the sum of the Wiener actions is given
by stot = (

∑N
i=1 L2

i )/4DT , where Li is the length of the tra-
jectory of particle i.

In order to proceed to solve this minimization problem we
next assume that the full trajectories of the N particles, except
perhaps some of the endpoints, are all in the interior of the

convex hull (this assumption will be justified a posteriori).
Thus only the endpoints of these trajectories are important,
and the optimal trajectories must be straight lines. This sim-
plifies the minimization problem considerably, because now
we are just minimizing a function of the endpoints (and not a
functional of the entire trajectories).

For any 3 � M � N there exists a solution to this mini-
mization problem for which M of the particles travel the same
distance Li = L in straight lines, and leaving the origin at
equally spaced angles, while the remaining N − M particles
remain near the origin. Thus, the convex hull that is formed by
these trajectories is a regular polygon of M sides (see Fig. 4
for an example with N = 6 and M = 5 in shaded region). The
action sM = stot for each of these solutions can be expressed
as

sM (L) = b̃M
L2

DT
, (18)

sM (A) = c̃M
A

DT
. (19)

FIG. 4. Schematic diagram of the convex hull formed by N BMs
of length L. Here N = 6, M = 5, and θ = 2π

M is the angle between
two BMs participating in the solution. As explained in the text,
the solutions with M = 3 and M = 4 are the optimal solution for
perimeter and area, respectively.
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TABLE II. Coefficients of the action sM (L) and sM (A), respec-
tively, given in Eq. (18) for N noninteracting BMs. The minimum is
obtained at M = 3 (M = 4) for the perimeter (area) case.

M b̃M = (16M sin2 π

M )−1 c̃M = (2 sin 2π

M )−1

3 1/36 = 0.027 . . . 1/
√

3 = 0.57 . . .

4 1/32 = 0.031 . . . 1/2 = 0.5

5 (5 + √
5)/200 = 0.036 . . .

√
2/

√
5 + 5 = 0.525 . . .

6 1/24 = 0.041 . . . 1/
√

3 = 0.577 . . .

7 0.047 . . . 0.639 . . .

M � 1 	M/16π 2 	M2/4π

The coefficients b̃M and c̃M are of geometric origin: They are
calculated from the relation between L and L or A, respec-
tively, for a regular M-sided polygon. For an M-sided polygon
(for example Fig. 4 for M = 5), the perimeter is L = Ma,
where a = 2L sin θ is the length of each side of the polygon,
which implies L = (2M sin π

M )L. Similarly, the area is given
by A = (M sin π

M cos π
M )L2. Finally, using that the total action

is sM = ML2/4DT , we obtain the coefficients

b̃M = 1

16M sin2 π
M

, c̃M = 1

2 sin 2π
M

. (20)

These solutions all represent local minima of the action
sM , and in order to find the global minimum, we must now
perform an additional minimization over M = 3, 4, . . . , N .
This amounts to minimizing the coefficients b̃M and c̃M over
M for the perimeter and area, respectively. These coefficients
are tabulated in Table II. We find, and show explicitly in
Appendix B 1, that M = 3 (M = 4) is minimal (over all values
M = 3, 4, . . . ) for the perimeter (area) case. Therefore the
optimal convex hull shape is an equalateral triangle whose
center is the origin for the perimeter case and for the area case
with N = 3 and a square centered at the origin for the area
case with N � 4. So the probability is now expressed for any
N � 3 as (see Table I)

P (L) ∼ e−bN L2/DT , bN = min
3�M�N

b̃M = b̃3 = 1
36 ,

P (A) ∼ e−cN A/DT , (21)

cN = min
3�M�N

c̃M =
{

c̃3 = 1√
3
, N = 3,

c̃4 = 1
2 , N � 4.

(22)

Thus, rather remarkably, the right tail of the perimeter (area)
distribution becomes, in the leading order, independent of
N for N � 3 (N � 4). These theoretical predictions exhibit
excellent agreement with the numerical observations from
Ref. [24]; see Appendix B 2.

The left tails of the distributions of A and L for N nonin-
teracting particles behave very similarly to the single particle
case. They are dominated by the survival probability of N
particles inside a circle of appropriate area (or perimeter).
Since the particles are noninteracting, the latter probability is
simply given by that of a single particle, raised to the power
N . Using the middle line of (14) together with the relations

between the radius of a circle and its perimeter and area, one
finds

P (A) ∼ e−πx2
1 NDT/A, (23)

P (L) ∼ e−4π2x2
1 NDT/L2

. (24)

C. Active particles

As described above, for a broad class of models of active
models, the long-time typical behavior is diffusive, with an
effective diffusion coefficient that can be found (see examples
above for the cases of the RTP and ABP). Thus, we expect
that both the typical fluctuations and the near tails of the
area and perimeter distributions behave, at long times T � τ

(where, to remind the reader, τ is the correlation time of the
active noise), and coincide with those of BM. The signatures
of activity are expected to be found in the far tails of the
distribution. In this subsection, we will focus on the behavior
in the right tail. The left tail probabilities are still expected to
be given by the long-time survival probabilities inside circles
of appropriate sizes. We do not attempt to calculate these
survival probabilities in the current work; see, however, the
recent Ref. [69] in which this was achieved for the ABP
(see also the related work [70] where the RTP in d = 1 was
studied).

1. Coarse graining

For active particles, in the long-time limit (where T is
much larger than the correlation time τ of the noise �), one
can coarse grain the noise �(t ) that is coarse grained by aver-
aging it over intermediate timescales τ 
 t 
 T [71–79],

�̄(t ) = 1

t

∫ t+t

t
�(t ′) dt ′. (25)

The probability of a coarse-grained noise history �̄(t ) is given
(in the leading order) by the “temporal additivity principle,”

P[�̄(t )] ∼ exp{−s[�̄(t )]}, (26)

where the action s[�̄(t )] is now given by

s[�̄(t )] =
∫ T

0
	[�̄(t )] dt . (27)

Here we assume that the long-time position distribution
P (x, y, t ) of the particle satisfies an large deviation principle
(LDP) [38,41] with a rate function 	(z), i.e., that

P (x, y, t ) ∼ e−t	(x/t,y/t ). (28)

	(z) is known for several standard models of active particles
including RTP and ABP. For the RTP [Eq. (6)] it was calcu-
lated exactly to be [51,78,80]

	(v) = 2γφ(v/v0), φ(z) = 1 −
√

1 − z2. (29)

For ABP [see Eq. (5)], the 	 was found exactly in
Refs. [81–83] in terms of the smallest eigenvalue that gives
periodic solutions to the Mathieu equation. In fact, the LDP
(28) holds for many types of random walks in discrete time
and/or space, where the rate function can be found from
Cramér’s theorem, see, e.g., Ref. [41].
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The coarse-grained Langevin equation, obtained by replac-
ing �(t ) by �̄ in Eq. (4), is

ṙ(t ) = �̄(t ). (30)

For rotationally invariant statistics of the noise �(t ), the 	[z]
is also rotationally symmetric, 	[z] = 	[z].

As in the case of BM, the minimizer of (27) is obtained for
trajectories for which the argument of 	 is of constant mod-
ulus which simply equals the speed L/T (see Appendix A).
Therefore, we simply get

s = T 	(L/T ), (31)

where L is the length of the trajectory. Thus, we find that
here, too, the problem boils down to minimizing L under the
constraints.

2. Right tail for a single active particle

Using Eq. (31), we find that the right tails of the area
and perimeter distributions can be calculated by replacing
L2/4DT in Eq. (9) by T 	(L/T ). Thus, the right tails of the
perimeter and area distributions for the closed and open cases
are given by

lnP (L) 	
{−γ T 	(L/T ), closed,

−γ T 	(L/2T ), open,
(32)

lnP (A) 	
{−γ T 	(

√
4πA/T ), closed,

−γ T 	(
√

πA/T ), open.
(33)

To give an explicit, concrete example, let us consider the
RTP. For the RTP, using Eq. (29) the right distribution tails for
the open case are given by

lnP (L) 	 −γ

(
T −

√
T 2 − L2

v2
0

)
; L �

√
DeffT , (34)

lnP (A) 	 −γ

(
T −

√
T 2 − 4πA

v2
0

)
; A � DeffT, (35)

where Deff is the effective diffusion coefficient. Figure 5
shows the right tail of the perimeter for T = 512, which fits
well with the experimental data from Ref. [28]. For small
|z| 
 1, the 	(z) can be approximated as a parabola,

	(z) 	 z2

2
, (36)

which corresponds to passive limit and the action in Eq. (27)
reduces to the Wiener action (8) [1], which is the BM limit.
As a result, the near right tail of the distribution,

√
DeffT 


L 
 v0T , coincides with that of the BM result, see Fig. 5.

3. Dynamical phase transitions for multiple active particles

Let us now analyze the case of N > 1 active particles. We
first consider the case N = 2. At T � τ , the argument used
above for BMs, to relate the cases N = 2 and N = 1, still
holds (but only approximately). Thus, Eq. (17) still approxi-
mately holds at long times both in the typical-fluctuations and
large-deviation regimes.

Let us now analyze the case N � 3, focusing on the right
tail. The analysis is similar to the case of N � 3 BMs stud-
ied above (see Sec. II B). One must minimize the sum of
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exp(- γ T Φ(L/2 T))
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FIG. 5. Right tail of the distribution P (L) of perimeter L of the
convex hull for a RTP for walk length T = 512 and γ = v0 =
1. The blue circles depict the numerical data from Ref. [28] and
the red dashed lines denote our theoretical prediction. The yellow
dot-dashed line denotes the corresponding BM result, obtained by
applying the parabolic Brownian approximation (36) of the rate
function 	(z). The Brownian approximation can be seen to correctly
describe the near tail of the distribution, but it breaks down in the far
tail.

the coarse-grained actions stot = T
∑N

i=1 	(Li/T ). We again
assume that the trajectories of the N active particles reside
within the interior of the convex hull, except for some of the
trajectories’ endpoints. Thus, the optimal paths are all straight
lines, and the problem reduces to that of minimizing stot with
respect to the endpoints of the trajectories. Again we find that
for each 3 � M � N there exists a solution in which M par-
ticles exit the origin at equally spaced angles, and each travel
a distance of Li = L, while the remaining N − M particles
stay near the origin, creating a convex hull whose shape is a
regular polygon with M sides, see Fig. 4. However, the actions
sM = stot of these solutions, sM = MT 	(L/T ), are different
to those of the BMs’ case. As a result, the optimal value of
M may, too, be different, and as we show below, it can in fact
change within the tail, leading to DPTs which are generically
of the first order.

Therefore, the right tails of the perimeter and area distribu-
tions are determined by the solution with optimal M, i.e., that
minimizes sM ,

P (L) ∼ e−T �N (L/T ), (37)

P (A) ∼ e−T �N (
√

A/T ), (38)

where the large-deviation functions �N are related to the sM’s
above via

�N (L/T ) = min
3�M�N

M	(αML/T ), (39)

�N (
√

A/T ) = min
3�M�N

M	(βM

√
A/T ). (40)

Here the coefficients αM and βM are calculated from the geo-
metric relation between L and L or A, respectively, similarly to
the multiple BMs in Fig. 4 in Sec. II B, i.e., L = (2M sin π

M )L
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(a) (b)

FIG. 6. The rate function ψN (z) that describes the right distribution tail for (a) area A and (b) perimeter L for N RTPs. The solid blue line
depicts ψN→∞ while the dashed lines correspond to ψN for finite values of N = 3, 4, . . . (from bottom to top). The dotted lines correspond
to ψ̃M in regions where they are not optimal for any value of N (again increasing with M from bottom to top). The circles denote the critical
points zM at which the optimal solution changes from one local minima (M) to another local minima (M + 1), signaling a first-order DPT. The
blue parabolic dot-dashed lines correspond to the BM approximations [for N � 4 in (a)] and are seen to give the correct asymptotic behavior
at z 
 1, describing the near right tail of the distribution. The vertical, gray dot-dashed lines denote the value that the area or perimeter cannot
possibly exceed for any N , corresponding to a convex hull which is a circle of radius v0T .

and A = (M sin π
M cos π

M )L2. Hence the αM and βM are related
to b̃M and c̃M as:

αM = 4
√

M b̃M = 1

2M sin π
M

, (41)

βM = 2
√

c̃M/M = 1√
M sin π

M cos π
M

. (42)

Let us now give explicit results for the particular case
of multiple RTPs. Here the rate functions are conveniently
written as

�N (v) = 2γψN (v/v0), (43)

where the ψN ’s are dimensionless and are given by

ψN (z) = min
3�M�N

ψ̃M (z) (44)

and ψ̃M is related to the dimensionless rate function φ in
Eq. (29) that describes the position distribution of a single
particle,

ψ̃M (z) = Mφ(aMz) = M
(
1 −

√
1 − a2

Mz2
)

=
⎧⎨
⎩

M
[
1 −

√
1 − z2

4M2 sin2 (π/M )

]
(perimeter)

M
[
1 −

√
1 − z2

M sin (π/M ) cos (π/M )

]
(area)

,

(45)

where aM = αM, βM for perimeter and area, respectively.
In the near right tails, the value of M that dominates is the

same as for the case of BMs. For T � τ , the right tail of the N
active particles behave like the N noninteracting BMs where
the action for M = 3 in case of perimeter and M = 4 in case
of area dominates. Further into the right tail (for sufficiently
large N), however, activity dominates and the M = 4 (for
perimeter) and M = 5 (for area) become the optimal solution.

This leads to singularity in the rate function ψN (z) which we
interpret as a DPT, at a critical value of z, shown by the solid
black circle in Fig. 6. Further into the tail further successive
DPTs occur from M = i to M = i + 1 for i = 3, . . . , M − 1
in case of perimeter and for i = 4, . . . , M − 1 in case of area.
So the right tail of the distribution exhibits N − 3 and N − 4
DPTs for perimeter and area, respectively. As the transitions
occur when the graphs of two ψ̃M’s cross each other, this
transition is of first order in nature, i.e., the first derivative of
ψN jumps at the critical point.

The coordinates of the critical points can be calculated by
requiring ψ̃M (z) = ψ̃M+1(z), which, using Eq. (45), gives

M
(
1 −

√
1 − a2

Mz2
) = (M + 1)

(
1 −

√
1 − a2

M+1z2
)
. (46)

The solution to this equation yields the critical points z = zM ,
which are given by

zM = −
2
√

M(M + 1)
√

a2
M+1(M + 1) − a2

MM

a2
MM2 − a2

M+1(M + 1)2
. (47)

The first few critical points are at

z3 = 2
√

6 = 4.898 . . . , z4 = 2

√
8
√

5 − 10 = 5.617 . . . ,

(48)
for the perimeter, and at

z4 = 1.141 . . . , z5 = 1.489 . . . , (49)

for the area, respectively. The corresponding critical values of
L and A are given by L = zMv0T and A = (zMv0T )2.

More generally, it is reasonable to expect that similar DPTs
may occur in many models of active particle, and not just in
the particular case of the RTP as shown here. In particular,
if the particle’s speed is bounded, e.g., for the ABP, then we
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conjecture that the qualitative picture is very similar to that of
the RTP.

D. d > 2

Let us now consider the convex hull in higher dimensions
(d > 2). The arguments above can be extended straight-
forwardly to study the volume (V ) and surface area (A)
distributions of the convex hull in higher dimensions d > 2.
For instance, for a single BM, this leads to the following
behaviors in the tails:

P (V ) ∼
{

e−lV,dV 2/d /DT , V � (DT )d/2

e− f̃d DT (Ṽd /V )2/d
, V 
 (DT )d/2

, (50)

P (A) ∼
{

e−lA,dA2/(d−1)/DT , A � (DT )(d−1)/2

e− f̃d DT (Ãd /A)2/(d−1)
, A 
 (DT )(d−1)/2 . (51)

Here f̃d is the smallest eigenvalue of the minus Laplace
operator on the d-dimensional ball of unit radius with ab-
sorbing boundary conditions; Ṽd and Ãd are the volume and
surface area, respectively, of the ball of unit radius (see, e.g.,
Ref. [68]); and lV,d (lA,d ) is a coefficient calculated from
the geometric relations between the L and V (A) in d > 2
dimensions. The coefficients for the right tails are found by
minimizing L constrained on V (or A). This minimization
problem appears to become more difficult as d is increased.
The scaling behaviors (50) were conjectured and numerically
observed in Ref. [25].

For d = 3 we conjecture that the curve of minimal length
constrained on a convex-hull surface area A is in fact confined
to a plane (which, without loss of generality, can be taken to
be the xz plane) and follows the edge a semicircle of area
A/2. The convex hull is thus a semicircle shaped slice of
infinitesimal width, so its surface area is A. The reasoning
behind this conjecture is as follows. The curve is optimal with
respect to deformations within the xz plane; this follows from
the solution to the d = 2 problem conditioned on the area A
(see above). On the other hand, both the curve’s length L and
the convex hull’s surface area A are mirror symmetric with
respect to deformations of the curve in the y direction (per-
pendicular to the curve). It follows that for the semicircular
curve, the variation of L constrained on A indeed vanishes,
and therefore this curve is a natural candidate for the (global)
constrained minimizer. For this curve, A and L are related via
A/L2 = π and using this in Eq. (9) leads to a coefficient of
lA,d=3 = π/4.

Very strong evidence in favor of our conjecture is that
this coefficient is in agreement with the numerically observed
coefficient from Ref. [25]; see Ref. [84]. To further verify our
conjecture, we numerically minimized L constrained on A
using a gradient descent algorithm and found that the shortest
curve conditioned on a given surface area indeed appears to be
a semicircle (see Fig. 7). To summarize, the scaling behaviors
of the tails of the surface-area distribution in d = 3 are given
by

P (A) ∼
{

e−πA/4DT , A � DT
e−4π3DT/A, A 
 DT

, (52)

where we also plugged in the values of f̃3 and Ã3.

FIG. 7. The shortest curve in the three-dimensional space whose
convex hull has a given surface area, obtained numerically using a
gradient-descent algorithm. The figure shows the projection of the
trajectory onto the xz plane. The y components of all the points are
very small on the scale of the figure.

For the volume (in d = 3) we were not able to obtain
an analytical result for the coefficient lV,3, but it was found
numerically to be 	5.3 in Ref. [25] (see Ref. [84]). The tail
behaviors of the volume distribution are thus given by

P (V ) ∼
{

e−5.3V 2/3/DT , V � (DT )3/2

e−(4π2/3)2/3DT/V 2/3
, V 
 (DT )3/2 , (53)

where we plugged in the values of f̃3 and Ṽ3.
One can extend the analysis to N > 1 particles and/or to

active particles, as we did above for the case d = 2, but we
will not do so here. We do expect, however, that some of
the qualitative features that we found in d = 2 will hold in
arbitrary d . In particular, we expect that (i) the relations found
above between N = 2 and N = 1 hold in arbitrary d . (ii) In
the leading order, the right tails of P(V ) and P(A) become
independent of N for sufficiently large N . (iii) For N active
particles, the right tails of P(V ) and P(A) will be described
by rate functions that are simply related to the rate function
	, and for sufficiently large N , first-order DPTs will occur.

III. DISCUSSION

We analytically studied the tails of the distributions of area
A and perimeter L of convex hulls formed by the motion of
active or passive particles in the plane, and analogous quanti-
ties in d > 2. We achieved this by identifying the scenario(s)
that dominate the contribution to the probabilities of the rare
events in question. Our findings are summarized in Table I.

In the left tails, the scenario is that of long-time survival
of the particles inside a circle of appropriate size. In the right
tails, the OFM is valid, i.e., the probabilities are dominated
by the most likely trajectory (or coarse-grained trajectory in
the case of active particles) constrained on the observable.
Remarkably, we found that the right tails of P (L) and P (A)
for N BMs become, in the leading order, independent of N at
N � 3 and N � 4, respectively. This is because the optimal
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path involves significant motion of only three (four) of the
particles for the perimeter (area) distribution.

For a single arbitrary rotational-invariant active particle,
we calculated the exact LDFs that describe the right tails of
the distributions of the area and perimeter at times T that are
much longer than the microscopic characteristic timescale of
the particle. Remarkably, we found that these LDFs are simply
related to the rate function 	 that describes the long-time
position distribution of the active particle; see Eqs. (32) and
(33). We then extended these results to N noninteracting active
particles; see Eqs. (39) and (40). We found that, depending on
	, there may be DPTs in the right tails, signaling a sudden
change in the behavior of the system as critical values of
L (or A) are crossed. We illustrated this by calculating the
LDFs explictily for the case of the RTPs, where we found
that for N > 3 (N > 4), the right tail of the perimeter (area)
distribution exhibits N − 3 (N − 4) such DPTs, which are all
of the first order. Note that although we stated our results
in the context of active particles, they are more general and
cover a broad class of models (e.g., RWs that are discrete
in time and/or space) for which the large-deviation principle
(28) holds (with a rotationally invariant 	).

Finally, we have considered the distribution of surface area
and hypervolume of the convex hull for a BM in d > 2 dimen-
sions, with special emphasis on the case d = 3. We calculated
the left tails: They are again given by the survival probability
inside a hypersphere of appropriate size. We were able to
obtain the scaling behavior in the right tails up to a numerical
constant, which is found by solving a minimization problem.
This problem appears to be difficult to solve analytically in
general, but we were able to obtain its solution for the surface
area case in d = 3. In other cases, one can solve the problem
numerically.

In many of the cases that we studied here, we were able
to compare our theoretical predictions with existing numer-
ical data, showing excellent agreement in the right tails in
all cases. We hope that this work will stimulate additional
numerical investigations (in particular, in the left tails where
we believe that more extensive numerical work is needed in
order to observe convergence to the theoretical results).

Several interesting future directions of research remain. It
would be interesting to extend our results to nonrotationally
invariant active particles [40] and/or to the case in which
there is an external drift acting on the particle [22]. Another
interesting future direction is to analytically study the tail
distributions for self-avoiding RWs, which were investigated
numerically in Refs. [26,27]. Finally, it would be interesting
to study the left tails for active particles (by analyzing their
long-time survival probabilities in circles of given sizes) and
also to study the N � 1 limiting behaviors of the distributions
[24] for both active and passive particles.
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APPENDIX A: MINIMAL-ACTION TRAJECTORIES
HAVE CONSTANT SPEED

In this Appendix we show that the optimal paths have
constant speed. We will show it for active particles with
rate function 	 and treat BM as a particular case in which
	(z) ∝ z2. For concreteness, we treat the case d = 3, but the
proof immediately extend to any dimension.

The action of a trajectory of an active particle in d = 3,
corresponding to the coarse-grained equation (30), is

s[�r(t )] =
∫ T

0
	(

√
ẋ2 + ẏ2 + ż2) dt . (A1)

Consider a given curve in the xyz space, represented in para-
metric form by (x0(s), y0(s), z0(s)) with 0 � s � 1. Then all
time-dependent trajectories that follow this curve can be writ-
ten in the form

(x(t ), y(t ), z(t )) = (x0[ f (t )], y0[ f (t )], z0[ f (t )]) (A2)

for some monotonically increasing function f : [0, 1] →
[0, T ] that satisfies f (0) = 0, f (1) = T .

Restricting ourselves to trajectories that follow such a
curve, we rewrite the action (A1) as a functional of the func-
tion f . By using the chain rule in (A1) one obtains

s[�r(t )] =
∫ T

0
	

(
ḟ
√

x′2
0 + y′2

0 + z′2
0

)
dt, (A3)

where we use the shorthand notation x′
0 ≡ x′

0[ f (t )] and simi-

larly for y′
0 and z′

0. The Lagrangian L = 	( ḟ
√

x′2
0 + y′2

0 + z′2
0 )

does not explicitly depend on time t , so the Hamiltonian H is
conserved. In order to calculate H , we calculate the conjugate
momentum of f ,

p = ∂L

∂ ḟ
= 	′( ḟ

√
x′2

0 + y′2
0 + z′2

0

)√
x′2

0 + y′2
0 + z′2

0 , (A4)

which yields

H = ḟ p − L

= ḟ
√

x′2
0 + y′2

0 + z′2
0 	′( ḟ

√
x′2

0 + y′2
0 + z′2

0

)
−	

(
ḟ
√

x′2
0 + y′2

0 + z′2
0

)
= E = constant in time. (A5)

So H is conserved in time. One can rewrite H in Eq. (A5)
as a function only of the speed v =

√
ẋ2 + ẏ2 + ż2, as H =

v 	′(v) − 	(v). It follows that the speed along the trajectory
is constant in time and is given by√

ẋ2 + ẏ2 + ż2 = const = L/T, (A6)

where L is the length of the curve (x0, y0, z0). Plugging this
back into Eq. (A1) one finds that the action evaluated along the
optimal trajectory [constrained on a given curve (x0, y0, z0)] is
given by

s[�r(t )] =
∫ T

0
	

(L
T

)
dt = T 	

(L
T

)
. (A7)

The expression (A7) is an increasing function of L, and
therefore its minimization with respect to curves (x0, y0, z0)
(under various constraints such as convex-hull perimeter or
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FIG. 8. Coefficients b̃M and c̃M as a function of M. The M = 3
and M = 4 are optimal solutions for perimeter and area, respectively,
i.e., they minimize the functions b̃M and c̃M over integer values
M � 3.

area) boils down to the minimization of the length of the curve
(under the constraints), as explained in the main text.

It is straightforward to extend this argument to arbitrary
dimension d > 1.

APPENDIX B: MULTIPLE BROWNIAN MOTIONS

1. Showing that M = 3, 4 are optimal

In this section, we explicitly show that M = 3 and M = 4
solutions are optimal for multiple BMsfor perimeter and area,
respectively, as stated in Sec. II B. As tabulated in Table II, the
coefficients b̃M and c̃M of the action

b̃M = 1

16M sin2 π
M

, c̃M = 1

2 sin 2π
M

, (B1)

obtain their minima at M = 3 and M = 4, respectively.
It is fairly easy to see that c̃M attains its minimum (for M �

2) at M = 4. This is because for M = 4, the sine function in

the denominator attains its maximal value 1. Let us now show
that b̃M attains its minimum (for integer M > 2) at M = 3.
For this, let us first minimize b̃M for real values of M > 2
or, equivalently, maximize g(M ) = 1/b̃M = 16M sin2 π

M . The
requirement g′(M ) = 0 yields the transcendental equation

tan
π

M
= 2π

M
. (B2)

This equation has a unique (real) solution, M = 2.695 . . . ,
which corresponds to the global minimum of b̃M for real
M > 2. Therefore, the minimum of b̃M for integer M > 2 is
at M = 3. b̃M and c̃M are plotted, as functions of real M, in
Fig. 8.

2. Comparison with numerics

In this subsection, we compare our expressions (21) and
(22) for the right tails of the convex-hull perimeter and area
distributions for N noninteracting BMs with the numerical
data taken from Ref. [24] (see Fig. 9). We used webplotdig-
ital software to collect the data from the Figs. 11 and 12 of
Ref. [24]. The numerical data provided in Ref. [24] is for RW
in discrete time and standard Gaussian step distribution. The
parameters that they chose were such that the time step was
unity, corresponding to a diffusion coefficient D = 1/2, and
they used T = 50.

For the perimeter distribution, we observe excellent agree-
ment with our prediction for the coefficient bN = 1

36 , for all
N � 3 [see Fig. 9(a)]. Indeed, we find that the numerical
data for N = 3 and N = 4 both fall on the same theoretical
curve. For the area distribution, we find that the numerical
results are in excellent agreement with our predictions for the
coefficients, c3 = 1/

√
3 and cN = 1/2 for all N � 4. Indeed,

we find that the numerical results for N = 4 and N = 6 both
fall on the same theoretical curve [see Fig. 9(b)].

(a) (b)

FIG. 9. Right tail distribution of (a) P (L) and (b) P (A) for multiple BMs. The markers depict the data of the distributions from Ref. [24]
and the dashed and dotted lines denote our theoretical predictions for the distribution tails.
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