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Optimal work extraction from quantum batteries based on the expected utility hypothesis
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Work extraction in quantum finite systems is an important issue in quantum thermodynamics. The optimal
work extracted is called ergotropy, and it is achieved by maximizing the average work extracted over all the
unitary cycles. However, an agent that is non-neutral to risk is affected by fluctuations and should extract work
by following the expected utility hypothesis. Thus, we investigate the optimal work extraction performed by
a risk non-neutral agent by maximizing the average utility function over all the unitary cycles. We mainly
focus on initial states that are incoherent with respect to the energy basis, achieving a probability distribution
of work. In this case we show how the optimal work extraction will be performed with an incoherent unitary
transformation, namely a permutation of the energy basis, which depends on the risk aversion of the agent. We
give several examples, in particular also the work extraction from an ensemble of quantum batteries is examined.
Furthermore, we also investigate how work extraction is affected by the presence of initial quantum coherence
in the energy basis by considering a quasiprobability distribution of work.
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I. INTRODUCTION

Work extraction in isolated finite quantum systems is per-
formed by a cyclical change of the Hamiltonian parameters
(a unitary cycle). For instance, these quantum systems can be
used to temporarily store energy, and thus they can be used
as quantum batteries in a consumption center where an agent
will extract useful work from them (see, e.g., Ref. [1] for a
review). Work is typically affected by stochastic fluctuations
so that the extraction is not deterministic. Thus, typically an
agent aims to extract an amount of work making a choice
(among the different unitary cycles) under uncertainty. When
the agent is neutral to risk, he or she will choose the unitary
operator which maximizes the average work extracted. In this
case, the optimal work extracted is given by the ergotropy and
the optimal unitary cycle leads the initial state of the system
to a passive state [2]. However, if the agent takes in account
the risk of his or her choice, then he or she can make his or
her choice relying on the expected utility hypothesis, first for-
malized by von Neumann and Morgenstern within the theory
of games and economic behavior in 1944 [3]. Depending on
the risk aversion of the agent, the latter can choose a unitary
cycle that leads to a nonpassive final state. Formally, risk
aversion can be characterized in terms of a utility function,
which quantifies the satisfaction gained from a choice. Thus,
the work extracted can be thought of as wealth and the utility
can be used to select the unitary cycle. Furthermore, when the
work satisfies some fluctuation theorems, these can influence
the expected utility and the choice performed by the agent
[4,5]. In particular, in Ref. [5], we investigated how an entropy
coming from a detailed fluctuation theorem can influence the
decision of the agent. Here we focus on a completely different
problem that is the optimal work extraction performed by a
risk non-neutral agent, generalizing the concept of ergotropy
by looking on the expected utility hypothesis. We aim to
answer to the questions: What is the optimal unitary cycle of

work extraction when the expected utility hypothesis is taken
in account? How does this differ from ergotropy? How should
we select among different initial states that provide different
work extraction statistics? To answer to these questions, in
Sec. II we introduce some preliminary notions. In Sec. II A we
review the concept of ergotropy, corresponding to the optimal
work extraction by an agent neutral to risk. In Sec. II B we
introduce some rudiments of expected utility theory. To get
a probability distribution of work, we focus on initial states
which are incoherent with respect to the energy basis. Then
we study the optimal work extraction by an agent non-neutral
to risk in Sec. III. We mainly focus on an exponential utility
function, from a general point of view in Sec. III A, and by
considering particular cases which are a qubit in Sec. III A 1, a
qutrit in Sec. III A 2, two qubits in Sec. III A 3, and an ensem-
ble of quantum batteries in Sec. III A 5. We also discuss the
case of an arbitrary utility function in Sec. III B. In particular,
we prove that the optimal expected utility function is achieved
by a cycle that is an incoherent unitary transformation in the
energy basis. Furthermore, in Sec. IV we briefly investigate
how the expected utility (by considering an exponential util-
ity function) is affected by the presence of initial quantum
coherence in the energy basis. When the initial state is not
incoherent, there may not be a probability distribution for the
work done, as proven by a no-go theorem [6]. This is related
to the quantum contextuality as discussed in Ref. [7]. Thus, to
perform our study we adopt the quasiprobability distribution
of work introduced in Ref. [8], which is selected if some
fundamental conditions need to be satisfied [9].

II. PRELIMINARIES

We start our discussion by introducing some preliminary
notions, which are the ergotropy (see Sec. II A) and some
rudiments about the expected utility theory (see Sec. II B).
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A. Ergotropy

Following Ref. [2], we focus on a quantum system with a
finite Hilbert space of dimension d . The system is prepared in
the initial state

ρ =
d∑

k=1

rk|rk〉〈rk| (1)

and with the initial Hamiltonian

H =
d∑

k=1

εk|εk〉〈εk|, (2)

where rk � rk+1 and εk < εk+1. The system is thermally iso-
lated, and an agent extracts an amount of average work by
cyclically changing some Hamiltonian parameters, so that at
the end of the cycle the final Hamiltonian is equal to the initial
one H . Thus, the agent performs a unitary cycle with a unitary
time-evolution operator U = T e−i

∫ τ

0 H (t )dt generated by the
time-dependent Hamiltonian H (t ) such that H (0) = H (τ ) =
H , where t = 0 and t = τ are the initial and final time and T
is the time ordering operator. The final state is UρU † and the
average work is minus the change of average energy and reads

W (ρ,U ) = E (ρ) − E (UρU †), (3)

where the average energy of the initial and final state is calcu-
lated with respect to the Hamiltonian H , and we have defined
E (ρ) = Tr{Hρ}. The optimal work extraction is achieved by
maximizing the average work in Eq. (3) over all the unitary
cycles, i.e.,

E (ρ) ≡ max
U

W (ρ,U ) = W (ρ,UE ) � 0. (4)

The optimal value E (ρ) is called ergotropy, and it is achieved
by performing the optimal unitary cycle with unitary operator,

UE =
d∑

k=1

eiφk |εk〉〈rk|. (5)

The ergotropy is zero if and only if the initial state is passive,
i.e., commutates with the Hamiltonian, [ρ, H] = 0, and the
populations with respect to the energy basis are sorted in de-
creasing order, rk = 〈εk|ρ|εk〉. The unitary cycle with operator
UE lowers the average energy in the best way. However, the
agent can be non-neutral to risk; in this case he or she will
take in account the work fluctuations.

B. Expected utility hypothesis

Work can be thought of as a stochastic quantity w affected
by fluctuations. For our purposes we aim to define a prob-
ability distribution of work, and then we consider a general
incoherent initial state in the basis of energy, i.e., a state
such that ρ = �(ρ), where �(ρ) ≡ ∑

k |εk〉〈εk|ρ|εk〉〈εk| is
the dephasing map. The initial state reads

ρ =
d∑

k=1

pk|εk〉〈εk|, (6)

where pk’s are related to rk’s by a permutation πk of the
indices, i.e., rk = pπk for all k. For instance, if the permutation
is the identity πk = k, then we get rk = pk and we can easily

check that the state ρ is passive. For the unitary cycle with
time-evolution operator U , we define the extracted work as the
random variable w having the two-projective-measurement
probability distribution [10,11],

p(w, ρ,U ) =
∑
k,n

pk|〈εn|U |εk〉|2δ(w − εk + εn). (7)

To introduce some notions of expected utility theory, we focus
on an agent who must choose between two procedures that
yield two different stochastic works w1 and w2 having certain
probability distributions. Thus, the works wα is extracted in
a procedure with initial state ρα and unitary time-evolution
operator Uα , for α = 1, 2. To give an example, we consider
an agent who must choose between extracting a fixed work
w1 = wdet or flipping a coin and extracting a work w2 =
whead if heads or nothing otherwise. The utility function u(w)
quantifies the satisfaction gained from a choice, i.e., the risk
aversion, so that the agent will choose the procedure extract-
ing the work w1 instead of w2 if [12,13]

〈u(w1)〉 > 〈u(w2)〉, (8)

which represents the expected utility hypothesis. Thus, in our
example, an agent with the utility function u(w) will choose
to flip the coin if u(0) + u(whead ) > 2u(wdet ) is neutral to the
choice if equality holds or will choose deterministic work
wdet otherwise. It is easy to see that the inequality in Eq. (8)
remains unchanged if we perform an affine transformation on
the utility function, i.e., the transformation u(w) �→ au(w) +
b, where a is a positive variable. This means that the utility
function is defined up to affine transformations. The work
w can be further characterized by the certainty equivalent,
denoted with wCE, defined such that

u(wCE) = 〈u(w)〉. (9)

Thus, the certainty equivalent is obtained as the Kolmogorov-
Nagumo average of the wealth, i.e., wCE = 〈w〉KN ≡
u−1(〈u(w)〉), where u(w) is a strictly monotonic function. The
meaning of the certainty equivalent becomes more clear if we
consider as usual a strictly increasing utility function u(w) so
that Eq. (8) is equivalent to wCE

1 > wCE
2 , where wCE

1,2 is the
certainty equivalent corresponding to the work w1,2. To under-
stand in simple terms how the agent’s risk aversion depends
on the utility function u(w), we start by noting that if u(w)
is a linear function, then the certainty equivalent coincides
with the average value, i.e., wCE = 〈w〉. In this case, the agent
prefers the procedure maximizing the average work and it is
neutral to risk. Instead, if u(w) is a strictly increasing concave
function, then the agent is averse to risk, since, by applying the
Jensen’s inequality to Eq. (9), we get wCE < 〈w〉. On the other
hand, if u(w) is a strictly increasing convex function, then the
agent will prefer to risk since wCE > 〈w〉. For instance, in
our example, if u(w) is a convex function, then by applying
Jensen’s theorem we get the inequality u(0) + u(whead ) �
2u(whead/2). Then, if whead > 2wdet from the previous dis-
cussion, the agent will flip the coin. In summary, in terms of
the certainty equivalent, we say that the agent is risk averse
if wCE < 〈w〉, risk neutral if wCE = 〈w〉, and risk loving if
wCE > 〈w〉. Furthermore, the utility function allows us to
quantify how risk averse an agent is. For a utility function
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which is concave and strictly increasing, risk aversion can
be measured with the Arrow-Pratt coefficient of absolute risk
aversion defined as

rA(w) = −u′′(w)

u′(w)
, (10)

which is non-negative. It is clear that risk aversion depends on
how much the utility function u(w) is concave. Then the sim-
pler quantifier of risk aversion should be the second derivative
u′′(w). However, u′′(w) is not invariant under affine transfor-
mations, but we can work around this problem by dividing it
by the first derivative u′(w), which explains Eq. (10). More
details can be found, e.g., in Refs. [12,13].

III. OPTIMAL WORK EXTRACTION

Given the initial state ρ in Eq. (6) and the initial Hamilto-
nian H in Eq. (2), we aim to calculate the maximum over all
the unitary cycles with unitary time evolution U of the average
value of a utility function u(w), i.e.,

U (ρ) ≡ max
U

∫
p(w, ρ,U )u(w)dw

=
∫

p(w, ρ,Uu)u(w)dw. (11)

This equation defines the optimal expected utility U (ρ) and
the optimal unitary cycle with unitary operator Uu. These are
the main objects of investigation of this paper. In particular,
for a given unitary operator U , we get the average of the utility
function,

〈u(w)〉 =
∫

p(w, ρ,U )u(w)dw (12)

=
∑
k,n

〈εn|U |εk〉pku(εk − εn)〈εk|U †|εn〉. (13)

Then we can get some advantage in the calculation of the
maximum in Eq. (11) if u(εk − εn) factorizes as u(εk − εn) =
u(εk )u(−εn). In this case, from Eq. (13) we get

〈u(w)〉 =
∑
k,n

〈εn|U |εk〉pku(εk )〈εk|U †|εn〉u(−εn), (14)

= Tr{Uρu(H )U †u(−H )}. (15)

A natural choice can be the exponential function u(w) =
−e−rw/r. To discuss further the characteristics of this choice,
we focus on r > 0, so that u(w) is a concave function and thus
the agent is averse to risk. In this case the agent aims to opti-
mize the work fluctuations by minimizing the average 〈e−rw〉
over all the unitary cycles. To explain this, we note that if the
probability distribution p(w, ρ,U ) is a Gaussian having vari-
ance σ 2

w = 〈w2〉 − 〈w〉2, then we get 〈e−rw〉 = e−r〈w〉+r2σ 2
w/2,

then the agent wants to maximize the quantity 〈w〉 − rσ 2
w/2.

In simple terms, the agent prefers to reduce the spread along
with getting maximum work. In general, minimizing 〈e−rw〉
is equivalent to maximize the Kolmogorov-Nagumo average
〈w〉KN, obtaining the maximum,

ECE(ρ) = max
U

〈w〉KN = −1

r
min

U
ln〈e−rw〉. (16)

FIG. 1. The average work 〈w〉 and 〈e−rw〉 corresponding to the
optimal unitary operator in the function of r for a single battery with
d = 3. We put p1 = 0.1, p2 = 0.4, p3 = 0.5, ε1 = 0, ε2 = 0.579, and
ε3 = 1. We calculate the optimal unitary operator by selecting the
unitary operator giving the minimum value of 〈e−rw〉.

In our case, the Kolmogorov-Nagumo average can be
expressed in terms of the cumulants series,

〈w〉KN =
∞∑

n=1

(−r)n−1

n!
κn(w), (17)

where κn(w) is the nth cumulant of the work, e.g., κ1(w) =
〈w〉, κ2(w) = σ 2

w, κ3(w) = 〈(w − 〈w〉)3〉, κ4(w) = 〈(w −
〈w〉)4〉 − 3σ 4

w, and so on. In particular, the average of Eq. (17)
has been recently discussed in Ref. [14] when w is replaced
with the energy. A further explanation is given by considering
the Chernoff bound

Pr(w < x) � 〈e−rw〉erx, (18)

where Pr(w < x) is the probability to get a work smaller than
a fixed amount x. Thus, by minimizing 〈e−rw〉, we minimize
the upper bound of the probability Pr(w < x) and so the left
tail of the work probability distribution. In particular, this
bound can be asymptotically saturated for a large number of
quantum batteries for an optimal value of r, and x < 〈w〉,
as we will see in Sec. III A 5. Thus, in this case the agent
maximizes the probability Pr(w � x) = 1 − Pr(w < x) to get
a work w that is not smaller than x. Furthermore, we note that,
for a given state ρ, work fluctuations are typically connected
to the average work: If the agent wants to optimize work
fluctuations somehow, e.g., minimizing 〈e−rw〉, then he or she
can inevitably reduce the work extracted in average (see, e.g.,
Fig. 1). In the end, we note that, from the expected utility
hypothesis, given a set of states, the agent prefers to extract
work from the state with the largest value of ECE, where the
fluctuations are minimal, although the corresponding average
work, i.e., the ergotropy E , can be lower than that of other
states. Finally, a similar discussion can be done for r < 0.
In this case, the agent is risk loving and will prefer large
fluctuations.

A. Exponential utility function

We focus on the following exponential utility func-
tion defined such that the absolute risk aversion, Eq. (10),
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is constant:

u(w) = 1

r
(1 − e−rw ), (19)

for r 	= 0, and u(w) = w for r = 0, which is a strictly increas-
ing function. The agent is risk averse for r > 0, risk neutral
for r = 0, and risk loving for r < 0, and the absolute risk
aversion of Eq. (10) is constant and it is rA(w) = r. For a
linear u(w), i.e., r = 0, we get the ergotropy and Uu = UE .
In order to calculate the maximum in Eq. (11) over all the
unitary operators we note that:

Theorem 1. In general, for any r the stationary points are
incoherent unitary operators expressed as

UI =
d∑

k=1

eiφk |εk〉〈επk |, (20)

where πk is a permutation.
Thus, we have d! nontrivial stationary points since the

phases φk play a trivial role, i.e., do not appear in the expecta-
tion value of the utility function.

Proof. To prove that the stationary points are of the form
of Eq. (20), we start by considering

〈u(w)〉 = 1

r
(1 − Tr{Uρv(H )U †v(−H )}), (21)

where we have define the function v(w) = e−rw, so that v(x +
y) = v(x)v(y). We calculate the variation

δ〈u(w)〉 ∝ Tr{δUρv(H )U †v(−H )}
+ Tr{Uρv(H )δU †v(−H )}. (22)

We note that δU = XU , where X is infinitesimal and such that
X † = −X . A variation over the set of the unitary operators can
be obtained by considering a curve in the set, which has the
Schrödinger equation U̇ = MU , with M† = −M, where the
derivative has been done with respect to the parameter s of the
curve, and thus the variation is given by δU = U̇δs = XU ,
where X = Mδs. We get

δ〈u(w)〉 ∝ Tr{X [Uρv(H )U †, v(−H )]}. (23)

By considering X arbitrary, we get the stationary condition

[Uρv(H )U †, v(−H )] = 0. (24)

Since v(−H ) and ρv(H ) are diagonal operators in the basis of
energy, Uρv(H )U † must be diagonal in the same basis if the
commutator in Eq. (24) is zero, which implies the stationary
points in Eq. (20) and completes the proof.

Then Eq. (11) reduces to a maximum over all the d!
permutations πk ,

U (ρ) = max
πk

1

r

[
1 −

d∑
n=1

pπn e−r(επn −εn )

]
. (25)

To calculate the optimal value U (ρ), we define yk = erεk /r,
so that yk < yk+1. Then, we sort {pke−rεk } in decreasing order,
i.e., we choose the permutation πk such that pπk e−rεπk = uk

with uk � uk+1. From these considerations, we get our main

result,

U (ρ) = 1

r

(
1 −

d∑
k=1

ukerεk

)
. (26)

Concerning the optimal certainty equivalent, from Eq. (9) we
get

ECE(ρ) = u−1(U (ρ)) = −1

r
ln (1 − rU (ρ)), (27)

which is equivalent to Eq. (16) and generalizes the ergotropy
E (ρ) to an agent non-neutral to risk. Let us study these ob-
jects. Operatively, the optimal values can be calculated by
sorting the elements {pke−rεk } in decreasing order achieving
the sorted uk . If for a given r the elements are already sorted
in decreasing order, i.e., pke−rεk � pk+1e−rεk+1 or equivalently
uk = pke−rεk , then the agent prefers to do nothing. In this case
U (ρ) = 0. Interestingly, if there are at least two populations
pk and pn different from zero, then there is always some r
such that uk 	= pke−rεk , and for this r we get U (ρ) > 0, and
the agent prefers to try to extract work instead to do nothing.
To prove it, we consider k > n and we search r such that

pne−rεn < pke−rεk , (28)

which is satisfied for

r <
1

εn − εk
ln

pn

pk
. (29)

Thus, we deduce that:
Theorem 2. U (ρ) > 0 if and only if

r < max
k,n|k>n

1

εn − εk
ln

pn

pk
= 1

εn̄ − εk̄
ln

pn̄

pk̄
. (30)

For instance, if the initial state is thermal pk = e−βεk /Z ,
where Z = ∑

k e−βεk and β is the inverse temperature, then
the condition in Eq. (30) reduces to r < −β. It results that
U (ρ) � 0 and it is zero if and only if pk+1e−rεk+1 � pke−rεk

for all k or, equivalently, Eq. (30) is not satisfied. States such
that pk+1e−rεk+1 � pke−rεk for all k are a generalization of the
passive states achieved for r = 0. Concerning the optimal cer-
tainty equivalent in Eq. (27), we note that since ECE(ρ) needs
to be real, from Eq. (27) it results the bound U (ρ) < 1/r when
r > 0. In this case we get ECE(ρ) � 0 since the argument of
the logarithm is smaller than 1. Furthermore, by noting that for
r = 0 we get the ergotropy and for r < 0 the argument of the
logarithm is larger than 1, we get that in general ECE(ρ) � 0.
Since u(0) = 0, we get ECE(ρ) = 0 if and only if U (ρ) = 0.
Moreover, since for r > 0 we have 0 � U (ρ) < 1/r, we get
U (ρ) → 0 as r → ∞. We note that U (ρ) and ECE(ρ) can be
also related to the Tsallis and Rényi divergences defined as

DTsallis
α (p||q) = 1

α − 1

⎛
⎝∑

j

pα
j q

1−α
j − 1

⎞
⎠, (31)

DRényi
α (p||q) = 1

α − 1
ln

⎛
⎝∑

j

pα
j

qα−1
j

⎞
⎠, (32)

which for α > 0 are non-negative and equal to zero if and
only if p = q, where p = {pi} and q = {qi} are two proba-
bility distributions such that pi � 0,

∑
i pi = 1, qi � 0, and
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∑
i qi = 1. It is easy to see that there is a relation for the case

of thermal populations pk = e−βεk /Z . In this case, by defining
qk = pπk , from Eqs. (26) and (27) we get

U (ρ) = −βDTsallis
α (q||p), (33)

ECE(ρ) = −βDRényi
α (q||p), (34)

where α = 1 + r/β. In particular, for α > 0, namely r > −β,
both the divergences are non-negative for any permutation πk ,
which means that p = q and the optimal permutation is πk =
k. This is in perfect agreement with the condition in Eq. (30).

To see how the optimal values U and ECE differ from
the egotropy, we start to define the characteristic function of
work as χ (x, ρ,U ) = ∫

eixw p(w, ρ,U )dw [alternatively also
the definition χ (x, ρ,U ) = ∫

e−xw p(w, ρ,U )dw is typically
used], which is the generating function of the work moments,
and the generating function of work cumulants g(x, ρ,U ) =
ln χ (x, ρ,U ). In general, the optimal values can be
expressed as

U (ρ) = 1

r
[1 − χ (ir, ρ,Uu)], ECE(ρ) = −g(ir, ρ,Uu)

r
.

(35)
Thus, to achieve the optimal unitary cycle, we are minimizing
χ (ir, ρ,U )/r over all the unitary cycles instead of the average
energy of the final state E (UρU †) for the ergotropy. Since
the optimal incoherent unitary changes by jumping from a
permutation to a different one, we expect that there is a neigh-
borhood of zero such that if r ∈ (δ−, δ+), then we get the
optimal unitary operator Uu = UE , where δ− < 0 and δ+ > 0.
Thus, for r ∈ (δ−, δ+) we get

U (ρ) = 1

r
[1 − χ (ir, ρ,UE )], ECE(ρ) = −g(ir, ρ,UE )

r
,

(36)
from which we have

U (ρ) = E (ρ) − r

2
〈w2〉E + O(r2), (37)

ECE(ρ) = E (ρ) − r

2
[〈w2〉E − E2(ρ)] + O(r2), (38)

where 〈wn〉E = ∫
wn p(w, ρ,UE )dw, e.g., 〈w〉E = E (ρ).

Given two states ρ and ρ ′, by following the expected utility
hypothesis an agent prefers the one with largest optimal value
U (or equivalently ECE). Thus, if the agent is near to be neutral
to risk, r ∈ (δ−, δ+), then the selection of the initial state is
determined by the ergotropy and its higher moments (or cu-
mulants). In general, given two states ρ and ρ ′, it is important
to compare the optimal expected utilities of the two states. To
deduce a sufficient condition for the inequality U (ρ) � U (ρ ′),
we start by considering

U (ρ) − U (ρ ′) = 1

r

d∑
k=1

(u′
k − uk )erεk , (39)

=
d−1∑
k=1

erεk+1 − erεk

r

k∑
j=1

(u j − u′
j )

− erεd

r

d∑
j=1

(u j − u′
j ), (40)

where we used the summation by parts [15]. All the pa-
rameters with apostrophe, e.g., u′

k , correspond to ρ ′. Since
εk < εk+1, and y(x) = erx/r is a strictly increasing function,
we get (erεk+1 − erεk )/r > 0, thus the weak majorization gives
a sufficient condition, which is

{uk} �w {u′
k} and

⎡
⎣r < 0 or

1

r

d∑
j=1

(u j − u′
j ) = 0

⎤
⎦

⇒ U (ρ) � U (ρ ′)

⇒ ECE(ρ) � ECE(ρ ′), (41)

where the weak majorization is defined such that {uk} �w {u′
k}

if and only if

k∑
j=1

u j �
k∑

j=1

u′
j for k = 1, . . . , d. (42)

As r → 0, we get that U (ρ) − U (ρ ′) is equal to the ergotropy
difference E (ρ) − E (ρ ′) and the condition

∑d
j=1(u j −

u′
j )/r = 0 is equal to E (ρ) = E (ρ ′), i.e., the two states have

the same average energy. Of course, also the majorization
gives a sufficient condition for r 	= 0, which is

{uk} � {u′
k} ⇒ U (ρ) � U (ρ ′) ⇒ ECE(ρ) � ECE(ρ ′), (43)

where the majorization is defined such that {uk} � {u′
k} if and

only if

k∑
j=1

u j �
k∑

j=1

u′
j for k = 1, . . . , d − 1 (44)

and
∑d

k=1 uk = ∑d
k=1 u′

k . This implies that both U (ρ) and
ECE(ρ) are Schur-concave functionals of {uk}. Let us now give
some examples.

1. d=2

For d = 2 we get a qubit where the computational basis
can be defined as |ε1〉 = |0〉 and |ε2〉 = |1〉. We have only two
permutations which are the identity π

(I )
k , defined as π

(I )
1 = 1

and π
(I )
2 = 2, i.e., in the usual notation (1,2), and the NOT

gate π
(NOT)
k defined as π

(NOT)
1 = 2 and π

(NOT)
2 = 1, i.e., in the

usual notation (2,1). It is easy to see that the optimal Uu is the
identity for r > r∗, whereas we get the NOT permutation (2,1)
and U (ρ) > 0 for r < r∗ (see Fig. 2). To find r∗ in the function
of the populations, we require that the expected utility 〈u(w)〉
for (2,1), which reads

〈u(w)〉(2,1) = 1

r
[1 − p2e−r(ε2−ε1 ) − p1e−r(ε1−ε2 )], (45)

is zero. From this condition we get

r∗ = 1

ε
ln

1 − p

p
, (46)

where ε = ε2 − ε1 and p = p1. We note that for r = 0, the
identity permutation (1,2) is selected for p1 > 1/2 (passive
state) and the NOT permutation (2,1) for p1 < 1/2 (active
state), in agreement with the ergotropy, which is nonzero
only if the state is active. For an initial active state such
that p1 < 1/2, we get r∗ > 0, so that a risk-averse agent for
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FIG. 2. Optimal permutation in the plane (p, r). In the orange
region we get the NOT (2,1) and in the white region the identity
(1,2). The critical value r = r∗ is the bottom boundary of the white
region.

0 < r < r∗ prefers to gamble and to perform the cycle with
NOT permutation, since the state is active and average work
can be extracted. For an initial passive state p1 > 1/2, we
get r∗ < 0, so that a risk-loving agent prefers to do nothing
(i.e., the identity) for 0 > r > r∗ and does not gamble by
performing the NOT permutation (2,1). We can have a deter-
ministic work extraction, i.e., the probability distribution is a
Dirac delta, when p1 = 1 or p2 = 1. When p1 = 1 we get the
ground-state ρ = |ε1〉〈ε1|, and the identity is preferred for any
r. Instead for p2 = 1 we get the excited-state ρ = |ε2〉〈ε2|, and
the NOT is preferred for any r. This is because in both cases
we obtain a deterministic protocol for extracting the work.

2. d=3

For d = 3, i.e., a qutrit, we have 3! = 6 permutations. We
focus on an active state (the ergotropy is nonzero) with pk+1 �
pk for all k. For r = 0, we get the ergotropic permutation
(3,2,1), and the average utility is equal to the ergotropy and
it is nonzero. Let us see how permutation are selected as the
risk aversion change. For r 	= 0, for this permutation we get

〈u(w)〉(3,2,1) = 1

r
[1 − p3e−r(ε3−ε1 ) − p2 − p1e−r(ε1−ε3 )].

(47)
As r → −∞, we get

〈u(w)〉(3,2,1) ∼ 1

r
[1 − p2 − p3e−r(ε3−ε1 )]. (48)

On the other hand, for the permutation (3,1,2) we get

〈u(w)〉(3,1,2) = 1

r
[1 − p3e−r(ε3−ε1 )

− p1e−r(ε1−ε2 ) − p2e−r(ε2−ε3 )]. (49)

As r → −∞ we get

〈u(w)〉(3,1,2) ∼ 1

r
[1 − p3e−r(ε3−ε1 )]. (50)

Thus, since ε3 − ε1 is the largest difference and for p3 	= 0
appears only in the expected utility with permutations (3,2,1)
and (3,1,2), as r decreases from zero to −∞, if p2 	= 0,
then the optimal permutation jumps from (3,2,1) to (3,1,2).
Conversely, for r → ∞ all the utility expectation values are

FIG. 3. In the top left panel, we plot the probability Pk in the
function of r. Pk is the probability to get a permutation k, where
k = (1, 2, 3), (1, 3, 2), . . . , (3, 2, 1), by choosing randomly p1 and
p2, e.g., by flipping a coin. In detail, Pk is calculated as the frequency
to get a certain permutation in the plane (p1, p2). In the remaining
panel, the optimal permutation in the plane (p1, p2) for different
value of r. In detail, we put r = 0 (top right panel), r = −1 (bottom
left panel), and r = 1 (bottom right panel). We consider the energies
εk = k.

negative except the identity that is zero, and thus the optimal
permutation is the identity (1,2,3). However, for intermediate
values of r, between the permutations (3,2,1) and (1,2,3) there
may be other permutations, depending on the values of pk and
the values of energies εk . For other states, such that pk+1 � pk

is not satisfied for some k, the ergotropic permutation is not
(3,2,1), but a similar behavior occurs (see Fig. 3).

3. d=2+2

We consider a bipartite system of two qubits. The Hilbert
space of a qubit has the computation basis {|0〉, |1〉}. The
Hamiltonian of a qubit is Hqubit = ε|1〉〈1|, so that the Hamilto-
nian of the total system is H = I ⊗ Hqubit + Hqubit ⊗ I , giving
the energies ε1 = 0, ε2 = ε3 = ε, and ε4 = 2ε and the eigen-
states |ε1〉 = |00〉, |ε2〉 = |01〉, |ε3〉 = |10〉, and |ε4〉 = |11〉.
We start to consider the initial state ρ = ρ⊗2

qubit , where ρqubit =
p|0〉〈0| + (1 − p)|1〉〈1|. Thus, the populations of the total
system are p1 = p2, p2 = p3 = p(1 − p), and p4 = (1 − p)2.
In this case, it is easy to see that the ergotropy E (ρ) can be
extracted with an incoherent unitary operator UE = U ⊗2

E ,qubit

without generating correlations in the final state UEρU †
E . The

local incoherent unitary operator UE ,qubit is the ergotropic one
for d = 2. We have UE ,qubit = I if the state ρqubit is passive,
i.e., for p � 1/2, whereas UE ,qubit = UNOT ≡ |0〉〈1| + |1〉〈0|
for p < 1/2. For r 	= 0, we find that two permutations are
essentially involved: the identity π

(I )
k = k, i.e., the permuta-

tion (1,2,3,4), and the NOT permutation π
(NOT)
k , such that
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π
(NOT)
1 = 4, π

(NOT)
2 = 3, π

(NOT)
3 = 2, π

(NOT)
4 = 1, i.e., the

permutation (4,3,2,1). Then we have the optimal unitary oper-
ator Uu = U ⊗2

qubit , where Uqubit = I if r � r∗, whereas Uqubit =
UNOT if r < r∗, where r∗ is again the one in Eq. (46). To prove
it, we consider the permutation (4,3,2,1) which gives

〈u(w)〉(4,3,2,1) = 1

r
(1 − p4e−2rε − p3 − p2 − p1e2rε ), (51)

so that r∗ is solution of 〈u(w)〉(4,3,2,1) = 0 and we get Eq. (46).

4. Initial correlations

To study the role of initial correlations, we label the two
qubits of Sec. III A 3 with A and B, and we consider an initial
state showing correlations between the two parties A and B.
Thus, we consider an initial incoherent state in Eq. (6), such
that ρ 	= πρ , where πρ = ρA ⊗ ρB. The reduced states are
given by calculating the partial trace, getting ρA = TrB{ρ}
and ρB = TrA{ρ}. The mutual information IA:B(ρ) = S(πρ ) −
S(ρ) = S(ρA) + S(ρB) − S(ρ) is nonzero, so that there are
only classical correlations, since the initial state ρ is classical-
classical. In detail, S(ρ) = −Tr{ρ ln ρ} is the von Neumann
entropy. We find that the optimal permutation corresponding
to the initial state ρ can be different from the one corre-
sponding to the initial state ρ ′ = πρ . Furthermore, uk does not
necessarily majorize u′

k , and there are states such that U (ρ) <

U (πρ ) for r < rI , whereas U (ρ) > U (πρ ) for r > rI . For in-
stance, for the state with populations p1 = 0.33, p2 = 0.34,
p3 = 0.22, and p4 = 0.11, we get rI ≈ −0.8. In particular, for
r = 0, we get δT (ρ) ≡ E (ρ) − E (πρ ) � 0 for two qubits (see
Ref. [16]), which suggests that rI is nonpositive. Then, for
certain initial states, a very risk-loving agent tends to prefer
the uncorrelated state πρ instead of the correlated state ρ, i.e.,
the agent prefers to discharge the correlations between the two
qubits A and B.

5. Ensemble of quantum batteries

As a last nontrivial example, we consider an ensemble of n
quantum batteries, where every battery has the Hamiltonian H
in Eq. (2) and it is prepared in the state ρ. We recall that a state
ρ is called completely passive if ρ⊗n is passive for any number
n of batteries. One can show that a state ρ is completely
passive if it is equal to the Gibbs state ρβ ≡ e−βH/Z , where
Z = Tr{e−βH } and β is solution of S(ρβ ) = S(ρ), where S(ρ)
is the von Neumann entropy. This can be understood by noting
that E (ρ⊗n) � n[E (ρ) − E (ρβ )] for any n. In particular, it is
possible to perform a unitary cycle such that

E (ρ⊗n) ∼ n[E (ρ) − E (ρβ )] (52)

as n → ∞, which optimizes the average work extracted (see
Ref. [17]). Here we aim to calculate ECE(ρ⊗n) for the most
interesting case r > 0 and thus for a risk-averse agent, which
tries to minimize the work fluctuations. Thus, the agent aims
to minimize

〈e−rw〉 = Tr{ρ⊗n(e−rH )⊗nU †(erH )⊗nU } (53)

over all the unitary operators U . We calculate the trace in
Eq. (53) with respect to the basis of the energy eigenstates
|i1, . . . , id〉 ≡ |{ik}〉 = ⊗n

k=1|εik 〉 of the n batteries system.

Given a state |{ik}〉, we define ni as the number of the in-
dices ik that are equal to i. Then the energy of this state is
εn1...nd ≡ ε{ni} = ∑d

i=1 niεi, so that its value is specified by
the occupation numbers set {ni}. The Hilbert space of the n
batteries system can be expressed as the direct sum

H =
⊕

n1,...,nd |∑i ni=n

Hn1...nd , (54)

where the subspace Hn1...nd has dimension

Wn1...nd = n!

n1! · · · nd !
. (55)

Namely, Wn1...nd is calculated as the number of states |{ik}〉
having occupation numbers {ni}.

In general the average 〈e−rw〉 is minimum when U is an
incoherent unitary operator, which performs a permutation of
the states |{ik}〉. This incoherent unitary operator, given an
initial state |{ik}〉 ∈ H{ni} with the initial occupation numbers
{ni}, leads to a final state |{īk}〉 ∈ H{n̄i} with the final occu-
pation numbers {n̄i}. We can write this incoherent unitary
operator as

U =
⊕

n1,...,nd |∑i ni=n

Un1...nd , (56)

where Un1...nd : Hn1...nd → H′
n1...nd

. In particular, the subspace
H′

n1...nd
has dimension W{ni}, and in general we can define the

number

Wn̄1...n̄d |n1...nd =
∑

|{ik}〉∈H{ni }

∑
|{īk}〉∈H{n̄i }

∣∣〈{īk}|U{ni}|{ik}〉
∣∣2, (57)

where |〈{īk}|U{ni}|{ik}〉| is zero or 1, since U is an incoherent
unitary operator. Thus, we note that∑

n̄1...n̄d |∑i n̄i=n

Wn̄1...n̄d |n1...nd = Wn1...nd , (58)

from which we define the conditional probability

pn̄1...n̄d |n1...nd = Wn̄1...n̄d |n1...nd

Wn1...nd

. (59)

To evaluate the trace in Eq. (53), we note that for the state ρ⊗n

we get the occupation numbers {ni} (and so the energy εn1...nd )
with probability

pn1...nd = Wn1...nd pn1
1 · · · pnd

d . (60)

Thus, from Eq. (53), we get the expectation value

〈e−rw〉 =
∑

n1...nd |∑i ni=n

∑
n̄1...n̄d |∑i n̄i=n

pn1...nd pn̄1...n̄d |n1...nd

×e−r
∑

i (ni−n̄i )εi . (61)

The optimal U , i.e., the optimal conditional probabilities
pn̄1...n̄d |n1...nd are such that Eq. (61) is minimum. We note that,
for a given set {ni}, determining pn̄1...n̄d |n1...nd for all {n̄i} is
equivalent to determinate the operator U{ni} up to irrelevant
phases, since U is an incoherent unitary operator.

To perform our calculations, we focus on a large number n
of batteries. Then, by defining p̃i = ni/n, we get

Wn1...nd ∼ enH ( p̃) (62)
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as n → ∞, where H ( p̃) = −∑
i p̃i ln p̃i is the Shannon en-

tropy of the distribution probability p̃ = { p̃i}. Thus, the
probability in Eq. (60) reads

pn1...nd ∼ e−nD( p̃||p), (63)

where D( p̃||p) = −H ( p̃) −∑
i p̃i ln pi is the Kullback-

Leibler divergence, and we have defined the probability
distribution p = {pi}. Furthermore, without loss of generality
we assume

pn̄1...n̄d |n1...nd ∼ e−nD( p̄) (64)

for a certain function D( p̄) � 0 of the probability distribution
p̄ = { p̄i}, with p̄i = n̄i/n. To minimize Eq. (61) we can pro-
ceed similarly to the maximization of average work given in
Appendix A, resulting in Eq. (52). As n → ∞ we get

〈e−rw〉 ∼
∑

n1...nd |∑i ni=n

∑
n̄1...n̄d |∑i n̄i=n

e−nD( p̃||p)e−nD( p̄)

×e−nr
∑

i ( p̃i−p̄i )εi . (65)

We can obtain a lower bound of this expression by considering
that, for a given set {ni = np̃i},∑

n̄1...n̄d |∑i n̄i=n

pn̄1...n̄d |n1...nd

∑
i

n̄iεi ∼ n
∑

i

p′
iεi, (66)

where {n′
i = np′

i} with H (p′) = H ( p̃), which is Eq. (A4)
proven in Appendix A. Thus

exp

⎧⎨
⎩r

∑
n̄1...n̄d |∑i n̄i=n

pn̄1...n̄d |n1...nd

∑
i

n̄iεi

⎫⎬
⎭ ∼ er

∑
i n′

iεi . (67)

Since h(x) = erx is a convex function, we can use the Jensen’s
inequality 〈h(x)〉 � h(〈x〉), from which∑

n̄1...n̄d |∑i n̄i=n

pn̄1...n̄d |n1...nd er
∑

i n̄iεi � er
∑

i n′
iεi . (68)

Then, it results the lower bound

〈e−rw〉 �
∑

n1...nd |∑i ni=n

e−nD( p̃||p)e−nr
∑

i ( p̃i−p′
i )εi . (69)

As for the maximization of the average work (see Ap-
pendix A), only a distribution p̃ = p̃∗ dominates in the sum,
which is the one that makes stationary the Lagrangian F̃ [ p̃] =
f [ p̃] + μ

∑
i p̃i, where

f [ p̃] = D( p̃||p) + r
∑

i

( p̃i − p′
i
∗)εi, (70)

and the choice p′ = p′∗ makes 〈e−rw〉 minimal. By requiring
δF̃ [ p̃] = 0, we get that the stationary point p̃ = p̃∗ satisfies
the equations

ln p̃i − ln pi + 1 + rεi − r
∑

j

ε j

∂ p′
j
∗

∂ p̃i
+ μ = 0. (71)

Thus, from Eq. (69) we get the bound

〈e−rw〉 � e−n f [p̃∗], (72)

where equality in Eq. (72) asymptotically holds for the con-
ditional probabilities of the form in Eq. (A2), and then the

FIG. 4. The optimal certainty equivalent ECE(ρ⊗n) versus the
number n of batteries (blue points). We put r = 1, p1 = 0.538, p2 =
0.237, p3 = 0.225, ε1 = 0, ε2 = 0.579, and ε3 = 1. For the asymp-
totic value in Eq. (75) (red dashed line) we get f [ p̃∗] ≈ 0.0043.

bound in Eq. (72) can be saturated and the right side gives the
minimum value of 〈e−rw〉. The optimal unitary operator U is
such that U{ni} : H{ni} → H{n′

i} for {ni = np̃∗
i }. To determinate

p′∗, we start by noting that p̃∗
i depends only on p′

i
∗ through

the partial derivatives ∂ p′
j
∗
/∂ p̃∗

i , with j = 1, . . . , d , then it is
easy to see that ∂ p̃∗

i /∂ p′
j
∗ = 0 for all i, j. The optimal p′ = p′∗

makes stationary the Lagrangian F ′[p′] = f [ p̃∗] + λ[H (p′) −
H ( p̃∗)] + ν

∑
p′

i (where in f [ p̃∗] we replaced p′
i
∗ with p′

i),
from which we get the equations

rεi + λ(ln p′
i + 1) + ν = 0, (73)

giving

p′
i
∗ = e−βεi

Z
, (74)

with Z = ∑
i e−βεi and β solution of H (p′∗) = H ( p̃∗). Thus,

the optimal certainty equivalent reads

ECE(ρ⊗n) ∼ n f [ p̃∗]

r
, (75)

which is checked for d = 3 in Fig. 4. An approximated ex-
pression for small r is given in Appendix B.

It is important to note that for r 	= 0 we get p̃∗ 	= p, thus we
can minimize and maximize simultaneously the asymptotic
values of 〈e−rw〉 and 〈w〉, respectively, differently from the
result shown in Fig. 1 for a single battery. This because the
maximization of the asymptotic value of 〈w〉 fixes only the op-
erator U{ni} for typical occupation numbers {ni = npi}. Then
for r 	= 0 we are free to choose U{ni} with {ni = np̃∗

i } in order
to get the minimum asymptotic value of 〈e−rw〉. Furthermore,
for large n, the Chernoff bound is saturated as usual, and we
get

Pr(w < x) ∼ e−nI (x) = e−n supr>0( f [p̃∗]−rx/n), (76)

where I (x) is the so-called rate function. We note that Eq. (76)
defines a relation x(r) between x and the optimal r. This
explains how calculating ECE for a given risk aversion r is
equivalent to minimize the probability Pr(w < x) for x =
x(r), as n → ∞. In the end, as for the case n = 1, we ex-
pect that there is a neighborhood of zero such that if r ∈
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(δ−, δ+), then we get the optimal unitary operator Uu = UE .
In this case, for r ∈ (δ−, δ+), we get the generating functions
χ (ir, ρ⊗n,UE ) ∼ e−n f [p̃∗] and g(ir, ρ⊗n,UE ) ∼ −n f [ p̃∗], e.g.,
the ergotropy cumulants can be calculated as κE ,m(w) ∼
n(−1)m+1∂m

r f [ p̃∗]|r=0, where κE ,1(w) = E (ρ⊗n), κE ,2(w) =
〈w2〉E − E2(ρ⊗n), and so on. For instance, the first two cumu-
lants can be obtained from the small r expressions given in
Appendix B.

B. Arbitrary utility function

For an arbitrary utility function we get Eq. (13). By con-
sidering δU = XU , we get the variation

δ〈u(w)〉 =
∑
k,n

(〈εn|XU |εk〉〈εk|U †|εn〉

−〈εn|U |εk〉〈εk|U †X |εn〉)pku(εk − εn). (77)

It is easy to see that the variation δ〈u(w)〉 is zero if U = UI ,
where UI is an incoherent unitary operator of the form in
Eq. (20). In principle, we can also have nonincoherent unitary
operators as stationary points. If the maximum of 〈u(w)〉 over
all the unitary cycles is achieved for an incoherent unitary
operator of the form of Eq. (20), then we get

U (ρ) = max
πk

d∑
k=1

pπk u(επk − εk ). (78)

We find that Theorem 1 results to be a corollary of the follow-
ing theorem:

Theorem 3. If the utility function u(w) is a monotonic
function, then the stationary points are incoherent unitary op-
erators of the form of Eq. (20), from which we obtain Eq. (78).

Proof. To prove it, we write Eq. (77) as

δ〈u(w)〉 =
∑
k,n, j

〈εn|X |ε j〉〈ε j |U |εk〉〈εk|U †|εn〉

×pk[u(εk − εn) − u(εk − ε j )]. (79)

By considering 〈εn|X |ε j〉 arbitrary, from δ〈u(w)〉 = 0 we get

d∑
k=1

〈ε j |U |εk〉〈εk|U †|εn〉pk[u(εk − εn) − u(εk − ε j )] = 0

(80)

for all n and j. The d equations for n = j are automatically
satisfied. The equations for j < n can be achieved from the
equations j > n by complex conjugation. Thus we focus only
on the equations for j > n. If u(w) is a monotonic function
(on the support of the work), e.g., u(x) > u(y) for any x > y,
then for all k we get u(εk − εn) − u(εk − ε j ) 	= 0 for any j >

n. For k’s such that pk 	= 0, then Eq. (80) is satisfied if and
only if 〈ε j |U |εk〉〈εk|U †|εn〉 is zero for j > n. This happens
only if the unitary transformation applied to the projector of
energy, i.e., U |εk〉〈εk|U †, is a projector of energy such that
the off-diagonal elements (with respect to the energy basis)
are zero, i.e., U maps |εk〉 to eiφk |επk 〉, for k such that pk 	= 0.
The complementary subspace generated by |εk〉 with k such
that pk = 0 does not play any role in the expectation value,
and thus we can consider an incoherent unitary operator of
the form reported in Eq. (20).

From the proof, we note that, in addition to the fact that the
optimal incoherent unitary operator still remains defined up to
irrelevant phases φk , the corresponding optimal permutation
can be not unique (it is unique only if ρ has full rank). We note
that a deterministic optimal work extraction can be obtained
from a pure state ρk̄ = |εk̄〉〈εk̄|. In this case, by consider-
ing a strictly increasing utility function u(w), from Eq. (78)
we get U (ρk̄ ) = u(εk̄ − ε1). Given a general incoherent state
ρ = ∑

k pk|εk〉〈εk|, by using the Jensen’s inequality, it is easy
to see that an agent that is averse to risk (u(w) is concave)
prefers to extract the certain amount of work wdet = E (ρk̄ ) =
W (ρk̄,UE ) = εk̄ − ε1, i.e., U (ρ) < U (ρk̄ ), if W (ρ,Uu) < wdet

or if E (ρ) < wdet. On the other hand, for a risk-loving agent
[u(w) is convex] W (ρ,Uu) > wdet implies that U (ρ) > U (ρk̄ )
and thus, in this case, the agent prefers to extract work from
the state ρ instead of the deterministic work extraction from
ρk̄ .

Furthermore, from Eq. (78), we can give a sufficient con-
dition such that U (ρ) > 0, analogously with Theorem 2.
For simplicity, we assume that u(x) is a strictly increasing
function and u(0) = 0. If there are n and k > n such that
pnu(εn − εk ) + pku(εk − εn) > 0, then we can consider the
permutation πk such that πk = n, πn = k, and πs = s for
s 	= n, k. Thus, since u(0) = 0, for this permutation we get
〈u(w)〉πk = pnu(εn − εk ) + pku(εk − εn) > 0. By noting that
u(εn − εk ) < u(0) = 0 and u(εk − εn) > u(0) = 0, we get:

Theorem 4. U (ρ) > 0 if there are some n and k > n such
that

pk

pn
>

|u(εn − εk )|
u(εk − εn)

. (81)

By considering that for the exponential utility func-
tion u(w) of Eq. (19) we get |u(εn − εk )|/u(εk − εn) =
er(εk−εn ), we note that the result is in perfect agreement with
Theorem 2.

We now proceed by discussing how the optimal value U (ρ)
differs from the ergotropy E (ρ) as done for the exponential
utility function. Given an arbitrary utility function u(w), we
write it as u(w) = w + δ(w), where δ(w) = u(w) − w de-
pends on some parameter r and we assume that the agent
tends to be neutral to risk, i.e., δ(w) → 0 as r → 0. Then,
there is a neighborhood of zero such that if r ∈ (δ−, δ+),
then we get Uu = UE and thus U (ρ) = E (ρ) + 〈δ(w)〉E . By
considering u′(0) > 0, we can redefine u(w) by multiplying
it by a positive constant such that we get the Taylor series
around zero δ(w) = u′′(0)w2/2 + · · · . Thus, for r ∈ (δ−, δ+)
we have

U (ρ) = E (ρ) − rA(0)

2
〈w2〉E + · · · , (82)

where rA(0) is the absolute risk aversion in Eq. (10) evalu-
ated at w = 0. Then, Eq. (82) generalizes Eq. (37) achieved
for an exponential utility function to an arbitrary one.
Similarly to the exponential case, given a set of states,
the selection of the initial state with largest U is deter-
mined by the ergotropy and its higher moments through
the absolute risk aversion rA(0) (in first approximation). Fi-
nally, to conclude our analysis, let us further discuss the
conditions such that U (ρ ′) > U (ρ). To do this we focus
on the case d = 2. In general, the utility function reads
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u(w) = ue(w) + uo(w), where ue(w) = ue(−w) and uo(w) =
−uo(−w), defined as ue,o(w) = [u(w) ± u(−w)]/2. For sim-
plicity we consider u(0) = ue(0) = 0. Given a state ρ =
p|ε1〉〈ε1| + (1 − p)|ε2〉〈ε2|, we get the NOT permutation as
the optimal one and

U (ρ) = ue(ε2 − ε1) + (1 − 2p)uo(ε2 − ε1) (83)

if ue(ε2 − ε1) + C(p) > 0, where C(p) ≡ (1 − 2p)uo(ε2 −
ε1), or the identity permutation and U (ρ) = 0 otherwise.
Given another state ρ ′ = p′|ε1〉〈ε1| + (1 − p′)|ε2〉〈ε2|, if
U (ρ) > 0 and U (ρ ′) > 0, then we get the general condition

U (ρ ′) > U (ρ) ⇔ C(p′) > C(p). (84)

For the exponential utility function, C(p′) > C(p) is equiva-
lent to p > p′. In particular this general condition is equivalent
to the majorization condition in Eq. (43) when this can be
applied, e.g., for u1 + u2 = u′

1 + u′
2. However, for an arbitrary

utility function, C(p′) > C(p) is not equivalent to p > p′. For
instance, we can consider a quadratic utility function u(w) =
aw + bw2. In this case, for a < 0 we get that C(p′) > C(p)
is equivalent to p > p′, and for a = 0 we get U (ρ ′) = U (ρ)
for any ρ and ρ ′ such that U (ρ) > 0 and U (ρ ′) > 0. This
shows how the majorization condition does not hold for an
arbitrary utility function, i.e., U (ρ) and ECE(ρ) are not Schur-
concave functionals of {uk}. Thus, finding a general condition
that holds for an arbitrary utility is extremely difficult if not
downright impossible, although some conditions can be found
for specific utility functions. In general, depending on the
specific utility function, the only way to see if U (ρ ′) > U (ρ)
can be to explicitly calculate U (ρ) and U (ρ ′) from Eq. (78) by
finding the corresponding optimal permutations.

IV. INITIAL QUANTUM COHERENCE

If there is initial quantum coherence in the energy basis,
i.e., [ρ, H] 	= 0, for the unitary cycle with unitary time-
evolution U , then we get the quasiprobability distribution
[8,9],

pq(w, ρ,U ) =
∑
k, j,i

Re〈εi|ρ|ε j〉〈ε j |U †|εk〉〈εk|U |εi〉

×δ(w − qεi − (1 − q)ε j + εk ). (85)

In particular, it reduces to the quasiprobability distribution of
Ref. [18] for q = 0, 1 and the one of Ref. [19] for q = 1/2.
We aim to calculate the optimal value in Eq. (11), where
the average in Eq. (11) is now calculated with respect to the
quasiprobability distribution pq(w, ρ,U ) instead of the prob-
ability distribution p(w, ρ,U ). We focus on the exponential
utility function in Eq. (19). We get

〈u(w)〉 = 1

r
(1 − ReTr{Uv(qH )ρv((1 − q)H )U †v(−H )}).

(86)
Of course, for r = 0 we get the ergotropy E (ρ) and in general
we still get U (ρ) � 0, since we get 〈u(w)〉 = 0 for the identity
U = I . To find the optimal Uu, we consider

δ〈u(w)〉 ∝ ReTr{X [Uv(qH )ρv((1 − q)H )U †, v(−H )]}.
(87)

The variation δ〈u(w)〉 is zero and 〈u(w)〉 is maximum if there
exists a unitary operator U = Uu which reads

Uu =
d∑

k=1

eiφk |εk〉〈uk (q)|, (88)

where we define |uk (q)〉 and uk such that Aq|uk (q)〉 =
uk|uk (q)〉, where Aq = v(qH )ρv((1 − q)H ) and uk � uk+1. In
this case, we get the optimal expected utility of the form in
Eq. (26), with the new uk’s defined above. We have that uk’s
are non-negative and do not depend on q.

Proof. To prove it, let us show that the eigenvalues uk

of Aq do not depend on q. It is enough to note that Aq =
e−rqHρe−rH erqH is a similarity transformation of A0 = ρe−rH ,
and thus Aq has the same eigenvalues of A0, namely uk’s do not
depend on q. To prove that they are real, we consider q = 1/2,
in this case A1/2 = A†

1/2 and they are also non-negative since
A1/2 = BB†, where B = e−rH/2ρ1/2.

However, since Aq and A0 are related by a similarity trans-
formation, we get

|uk (q)〉 ∝ e−rqH |uk (0)〉, (89)

and then the states |uk (q)〉 in general are not mutual
orthogonal, Uu in Eq. (88) is not unitary, and Aq 	=∑

uk|uk (q)〉〈uk (q)|, except for q = 1/2. In general only for
q = 1/2, A1/2 = A†

1/2 and |uk (1/2)〉’s are mutual orthogonal,
so that Uu in Eq. (88) is a unitary operator. Then, the max-
imum value U (ρ) in Eq. (26) (with uk sorted eigenvalues of
Aq) can be achieved with the optimal unitary operator Uu in
Eq. (88) only for the quasiprobability representation achieved
for q = 1/2. Furthermore, in this case we note that the suffi-
cient conditions in Eqs. (41) and (43) still hold with uk defined
above. To get some insights for q 	= 1/2, we write

〈u(w)〉 = 1

r

[
1 − ReTr

{
Sqe− r

2 Hρe− r
2 H S−1

q v(−H )
}]

(90)

= 1

r

⎛
⎝1 −

∑
k, j

u jx jkerεk

⎞
⎠, (91)

where we have defined Sq = Ue−qrH e
r
2 H , and x jk =

Re〈εk|Sq|u j (1/2)〉〈uj (1/2)|S−1
q |εk〉. We have that

∑
j x jk =∑

k x jk = 1, so that if x jk � 0 for all j and k, then we get
that x jk’s are the entries of a doubly stochastic matrix. Thus,
from the Birkhoff’s theorem, the matrix with entries x jk can be
expressed as a convex combination of permutation matrices.
Then the expected utility can be expressed as

〈u(w)〉 = 1

r

[
1 −

∑
α

θα

∑
k

u
π

(α)
k

erεk

]
, (92)

where θα’s (which depend on the state ρ, the unitary operator
U and the parameter q) sum to 1. The optimal value reads

U (ρ) = 1

r

[
1 −

∑
α

θ̄α

∑
k

u
π

(α)
k

erεk

]
, (93)
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which depends on q only through the coefficients θ̄α . How-
ever, in a neighborhood of q = 1/2, we have that xkk � 1 and
x jk � 0 for all k and j 	= k, and all the equalities hold only for
q = 1/2. For instance, let us focus on the case d = 2, where
we have x12 = x21 and x11 = x22. For q 	= 1/2, we find x12 < 0
and so Eq. (93) is an affine combination with θ̄I + θ̄NOT = 1,
where θ̄NOT < 0 and θ̄I > 1.

Proof. To prove it, we note that for any d , for U = Uu,
we get ∂qx jk|q=1/2 = 0 for all j and k. Thus, q = 1/2 is
a stationary point of all the entries x jk . In particular, for
q = 1/2, xkk = 1, and x jk = 0 for all k and j 	= k. Due
to the symmetry under the transformation q �→ 1 − q, the
stationary point can be a minimum or a maximum. We
find that ∂2

q x jk|q=1/2 = 2r2[〈uk (1/2)|H2|uk (1/2)〉δk, j −
|〈uk (1/2)|H |uj (1/2)〉|2] + · · · . Actually, the omitted
part is equal to −2[〈εk (1/2)|M2

1/2|εk (1/2)〉δk, j −
|〈εk (1/2)|M1/2|ε j (1/2)〉|2], where ∂qUu = iMqUu, with
M†

q = Mq, in detail Mq = iUu∂qU †
u . This contribution has

the same form of the one coming from the Hamiltonian but
with opposite sign. However, due to the symmetry under the
transformation q �→ 1 − q, we get ∂qUu|q=1/2 = 0, i.e., the
omitted part is equal to zero. Then ∂2

q xkk|q=1/2 > 0 (since
we get a variance, which is positive) and ∂2

q x jk|q=1/2 < 0 for
k 	= j, which completes the proof. This means that, e.g., for
d = 2, θ̄I gets its minimum value for q = 1/2 that is equal to
1 and θ̄NOT gets its maximum value for q = 1/2 that is equal
to zero. Then θ̄I > 1 and θ̄NOT < 0 for q 	= 1/2.

Then, in this case, we find that the decomposition in
Eq. (93) holds for any d , with

∑
α θ̄α = 1, where θ̄I � 1 and

θ̄α � 0 for α 	= I , and all the equalities hold only for q = 1/2
(the proof in Appendix C). This affine decomposition implies
that the optimal expected utility U (ρ) in the function of q gets
its minimum value for q = 1/2. This means that an agent who
selects a quasiprobability representation obtains at least the
optimal value U (ρ) achieved for q = 1/2.

A. Coherent contribution

We define the coherent contribution to the expected utility
as

Uc(ρ) = U (ρ) − U (�(ρ)). (94)

For q = 1/2, we have that Uc(ρ) � 0; thus the agent prefers
the state with quantum coherence instead of the dephased
�(ρ). This generalizes the r = 0 result Ec(ρ) = E (ρ) −
E (�(ρ)) � 0 in Ref. [20].

Proof. To prove it, we use Eq. (43). We note that �(ρ) is a
unital map, i.e., �(I ) = I , and

�(v(qH )ρv((1 − q)H )) = �(ρ)e−rH , (95)

then uk majorizes u′
k , where u′

k are the sorted eigenvalues
of �(ρ)e−rH . For r 	= 0, the condition

∑d
j=1(u j − u′

j ) = 0 is
equivalent to Tr{ρv(H )} = Tr{�(ρ)v(H )} which is satisfied.
Thus by using Eq. (43), we get Uc(ρ) � 0.

A similar definition can be given for the coherent contribu-
tion to the certainty equivalent

ECE,c(ρ) = ECE(ρ) − ECE(�(ρ)), (96)

such that ECE,c(ρ) � 0 for q = 1/2. For r = 0, we get the
ergotropy and so Uc(ρ) = U (UIρUI ), where UI is the optimal
incoherent unitary operator for the initial state �(ρ). How-
ever, for r 	= 0 a similar equality does not hold since, while
the work is additive under composition of unitary cycles, i.e.,
if U = UcUI , we get W (ρ,U ) = W (UIρUI ,Uc) + W (ρ,UI ),
the expected utility 〈u(w)〉 (or the certainty equivalent) is not
[when u(w) is nonlinear]. Finally, to study the behavior of the
utility as a function of initial quantum coherence, we focus on
a qubit in the state

ρ = p|ε1〉〈ε1| + (1 − p)|ε2〉〈ε2| + c|ε1〉〈ε2| + c∗|ε2〉〈ε1|,
(97)

where |c| � √
p(1 − p), and H = ε|ε2〉〈ε2|. The case c = 0

was discussed in Sec. III A 1. For q = 1/2 the coherent con-
tribution can be exactly calculated and reads

Uc(ρ) = (|η| −
√

4|c|2erε + η2)
e−rε − 1

2r
, (98)

where η = p(1 + erε ) − 1. Thus, we deduce that, in this par-
ticular case, Uc(ρ) increases as the initial quantum coherence
|c| increases for any r. In the end, we also note that the results
of an ensemble of n batteries of Sec. III A 5 can be easily
generalized in the presence of quantum coherence for q = 1/2
(see Appendix D).

V. CONCLUSION

An agent that is non-neutral to risk performs the selection
of a work extraction procedure with a given work statistics
by looking on the expected utility, which characterizes the
satisfaction of the selection. Here we answer to the question:
Given a Hamiltonian, from which state does a risk non-neutral
agent prefer to extract work? To answer to this question, we
introduce the optimal expected utility by maximizing over
all unitary cycles, generalizing the concept of ergotropy. The
selection is made thanks to the expected utility hypothesis,
comparing the optimal expected utility among the available
initial states and choosing the state with the highest one.
For incoherent initial states, we find the form of the optimal
expected utility, which is achieved by an optimal incoherent
unitary transformation. In the case of an exponential utility
function, we find that majorization gives a sufficient condition
to perform the selection. The optimal incoherent unitary cycle
is investigated with the help of some examples, which are a
qubit, a qutrit, and two qubits. Furthermore, we examine an
ensemble of quantum batteries, also showing that it is possible
to get the maximum certainty equivalent and the ergotropy
at the same time for certain unitary cycles. In particular, a
general formula for the generating function of the ergotropy
cumulants trivially follows from our results. Interestingly,
concerning the effects of the initial quantum coherence, by
adding quantum coherence in an initial incoherent state the
optimal expected utility increases so that the agent prefers
the state with initial quantum coherence instead of the in-
coherent one. For instance, for a qubit the agent prefers the
state with more initial quantum coherence if the populations
remain fixed. In the end, we think that expected utility gives
an important criterion on how to optimize work extraction
from quantum batteries in situations where the fluctuations are

044119-11



GIANLUCA FRANCICA AND LUCA DELL’ANNA PHYSICAL REVIEW E 109, 044119 (2024)

relevant. For instance, a single realization of the unitary cycle,
which gives the maximum average work (i.e., the ergotropy),
can give a random work far from the average value. In this
case, searching an alternative unitary cycle that optimizes the
extraction process by also looking at reducing fluctuations can
be vital for agents averse to risk, and one way to achieve this
is to maximize the expected value of a suitable utility rather
than average work.
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APPENDIX A: MAXIMUM WORK EXTRACTABLE FROM
AN ENSEMBLE OF QUANTUM BATTERIES

Let us focus on the average work and derive the result of
Eq. (52). The average work can be obtained from Eq. (61) by
considering that 〈e−rw〉 ∼ 1 − r〈w〉 as r → 0, getting

〈w〉 =
∑

n1...nd |∑i ni=n

∑
n̄1...n̄d |∑i n̄i=n

pn1...nd pn̄1...n̄d |n1...nd

×
∑

i

(ni − n̄i )εi. (A1)

In the limit n → ∞, the sums over {ni} give integrals over
{ p̃i}. Thus, in the first sum of Eq. (A1), only a distribu-
tion p̃ = p̃∗ = { p̃∗

i } gives the dominant contribution, which
makes stationary the Lagrangian F̃ [ p̃] = D( p̃||p) + D( p̄∗) +
μ
∑

i p̃i, where we have introduced the Lagrange multiplier
μ such that

∑
i p̃i = 1 and p̄∗ = { p̄∗

i } is a stationary point
which gives the dominant contribution of the second sum of
Eq. (A1). Before we give the precise definition of p̄∗, we
note that the maximization of the asymptotic value of the
average work in Eq. (A1) gives a condition that fixes the
conditional probabilities pn̄1...n̄d |n1...nd , i.e., the operator U{ni},
only for the occupation numbers {ni = np̃∗

i }. Thus, we focus
on {ni = np̃∗

i }. We note that there are unitary operators U
giving

pn̄1...n̄d |n1...nd =
∏

i

δn̄i,n′
i
, (A2)

where the set {n′
i} is defined such that the number Wn̄1...n̄d |n1...nd

is equal to Wn1...nd for {n̄i} = {n′
i} and zero otherwise. Thus,

as n → ∞, n′
i = np′

i, where p′ = {p′
i} has the same Shan-

non entropy of p̃∗, H (p′) = H ( p̃∗). We aim to show that the
optimal U{ni} gives conditional probabilities of the form of
Eq. (A2). By considering only the term p̃ = p̃∗ in the first sum
in Eq. (A1), and noting that pn̄1...n̄d |n1...nd ∼ e−nD( p̄), we get∑

n̄1...n̄d |∑i n̄i=n

e−nD( p̄)
∑

i

n̄iεi ∼ ne−nD( p̄∗ )
∑

i

p̄∗
i εi, (A3)

where p̄∗ makes stationary the Lagrangian F̄ [ p̄] = D( p̄) +
μ̄
∑

i p̄i, where we have introduced the Lagrange multiplier
μ̄ such that

∑
i p̄i = 1. We note that the left side of Eq. (A3)

is not smaller than
∑W{ni }

i=1 Ei/W{ni}, where Ei are the en-
ergies of the states |{ik}〉 sorted such that Ei � Ei+1. By
considering εi � 0, we get that Eq. (A3) is larger than ε2

and thus different from zero as n → ∞. This implies that
the stationary point p̄∗ is such that D( p̄∗) = 0; otherwise,
Eq. (A3) exponentially decays to zero as n → ∞. By noting
that Wn̄1...n̄d |n1...nd ∼ en[H ( p̃∗ )−D( p̄)], since D( p̄∗) = 0, for {n̄i =
np̄∗

i } we get Wn̄1...n̄d |n1...nd ∼ enH ( p̃∗ ), and thus Wn̄1...n̄d |n1...nd ∼
Wn1...nd with {ni = np̃∗

i }. Then we deduce that p̄∗ = p′, since
p′ is a general distribution probability defined such that
Wn′

1...n
′
d |n1...nd ∼ Wn1...nd . Thus, pn̄1...n̄d |n1...nd decays exponen-

tially as p̄i is different from p′
i, and we get∑

n̄1...n̄d |∑i n̄i=n

pn̄1...n̄d |n1...nd

∑
i

n̄iεi ∼ n
∑

i

p′
iεi. (A4)

Furthermore, since D( p̄∗) = 0, from δF̃ [ p̃] = 0 we get the
stationary point p̃∗ = p, and so U{ni} : H{ni} → H{n′

i} for the
typical values of the occupation numbers {ni = npi}. Thus, by
considering only the stationary points in the sums in Eq. (A1),
the average extracted work can be expressed as

〈w〉 ∼ n
∑

i

(pi − p′
i )εi. (A5)

The value of p′ = p′∗ that maximizes the asymptotic formula
in Eq. (A5) will make stationary the Lagrangian F ′[p′] =∑

i p′
iεi + λH (p′) + ν

∑
i p′

i, where we have introduced the
Lagrange multipliers λ such that H (p′) = H (p) and ν such
that

∑
i p′

i = 1. By requiring that δF ′[p′] = 0, we get

p′
i
∗ = e−βεi

Z
, (A6)

where Z = ∑
i e−βεi with β solution of H (p′∗) = H (p). This

means that the final average energy is asymptotically equal
to the one of the completely passive state, and so we get the
result in Eq. (52).

APPENDIX B: EXPRESSIONS FOR SMALL r

For small r, by looking for a solution p̃∗
i = ∑

s=0 p̃s,irs of
Eq. (71), and μ = ∑

s=0 μsrs, we get p0,i = pi, μ0 = −1, thus
as r → 0 we get the conventional result for the optimal p′∗

with β solution of H (p′∗) = H (p). At the first order we get

p̃1,i =
∑

j

∂β

∂ p̃i

∂

∂β

(
e−βε j

Z

)∣∣∣∣
p̃i=pi

ε j pi − εi pi − μ1 pi, (B1)

μ1 =
∑
i, j

∂β

∂ p̃i

∂

∂β

(
e−βε j

Z

)∣∣∣∣
p̃i=pi

ε j pi −
∑

i

εi pi, (B2)

from which

p′
i
∗ =

(
e−βεi

Z

)∣∣∣∣
p̃i=pi

+
∑

j

∂β

∂ p̃ j

∂

∂β

(
e−βεi

Z

)∣∣∣∣
p̃ j=p j

p̃1, j r+O(r2)

(B3)

044119-12



OPTIMAL WORK EXTRACTION FROM QUANTUM … PHYSICAL REVIEW E 109, 044119 (2024)

and

f [ p̃∗] =
∑

i

p̃2
1,i

2pi
r2 + r

∑
i

(pi + p̃1,ir − p′
i
∗)εi + O(r3).

(B4)

APPENDIX C: AFFINE DECOMPOSITION

We consider the d × d matrix x with entries x jk , such
that

∑
j x jk = ∑

k x jk = 1, xkk � 1 and x jk � 0 for all k and
j 	= k. We aim to show that there is an affine combination of
permutation matrices P(α) such that

x =
∑

α

θαP(α), (C1)

with
∑

α θα = 1, θI � 1 and θα 	=I � 0, with P(I ) = I . For
d = 2, Eq. (C1) is true since we have

x =
(

θI θNOT

θNOT θI

)
= θI P

(I ) + θNOTP(NOT). (C2)

For d = 3, we get 3! = 6 permutations, which are I : (1, 2, 3),
2 : (1, 3, 2), 3 : (2, 1, 3), 4 : (2, 3, 1), 5 : (3, 1, 2), and 6 :
(3, 2, 1). We get that Eq. (C1) is true by choosing

θ2 = x11 − θI , θ3 = x33 − θI , θ6 = x22 − θI , (C3)

θ4 = x12 − x33 + θI , θ5 = x13 − x22 + θI , (C4)

and θI any real such that θI � maxk xkk . By considering x11 �
x22 � x33, we get that θα in Eq. (C3) are trivially nonpositive
and θα in Eq. (C4) are also nonpositive since θ4 � x23 � 0
and θ5 � x32 � 0. To prove it for any d , we define θI =
maxk xkk = xk̄k̄ � 1 and the matrix x̃ = [x − θI P(I )]/(1 − θI ).
We get that the entries are non-negative x̃ jk � 0 and

∑
j x̃ jk =∑

k x̃ jk = 1, and then x̃ is a doubly stochastic matrix. Since

x̃k̄k̄ = 0, from the Birkhoff’s theorem we get the convex
combination

x̃ =
∑
α 	=I

θ̃αP(α), (C5)

from which

x = θI P
(I ) + (1 − θI )

∑
α 	=I

θ̃αP(α), (C6)

which is equal to Eq. (C1) by noting that θα = (1 − θI )θ̃α � 0
for α 	= I .

APPENDIX D: ENSEMBLE OF QUANTUM BATTERIES
WITH INITIAL QUANTUM COHERENCE

We focus on q = 1/2, so that we get

〈e−rw〉 = Tr{(e− rH
2 ρe− rH

2 )⊗nU †(erH )⊗nU }. (D1)

We can consider the spectral decomposition e− rH
2 ρe− rH

2 =∑d
i=1 ui|ui〉〈ui|, where we recall that ui � 0. The optimal uni-

tary U maps a state ⊗k|uik 〉 to a state |{īk}〉. For simplicity,
we assume that ui’s are nondegenerate. Then, by proceeding
as for the incoherent case in Sec III A 5, we get the optimal
certainty equivalent in Eq. (75) with

f [ p̃] = −H ( p̃) −
∑

i

p̃i ln ui − r
∑

i

p′
i
∗
εi, (D2)

where p̃ is solution of

ln p̃i − ln ui + 1 − r
∑

j

ε j

∂ p′
j
∗

∂ p̃i
+ μ = 0, (D3)

and p′∗ is given by Eq. (74).
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