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Whether the strong coupling to thermal baths can improve the performance of quantum thermal machines
remains an open issue under active debate. Here we revisit quantum thermal machines operating with the
quasistatic Carnot cycle and aim to unveil the role of strong coupling in maximum efficiency. Our analysis builds
upon definitions of excess work and heat derived from an exact formulation of the first law of thermodynamics
for the working substance, which captures the non-Gibbsian thermal equilibrium state that emerges at strong
couplings during quasistatic isothermal processes. These excess definitions differ from conventional ones by an
energetic cost for maintaining the non-Gibbsian characteristics. With this distinction, we point out that one can
introduce two different yet thermodynamically allowed definitions for efficiency of both the heat engine and
refrigerator modes. We dub them excess and hybrid definitions, which differ in the way of defining the gain for
the thermal machines at strong couplings by either just analyzing the energetics of the working substance or
instead evaluating the performance from an external system upon which the thermal machine acts, respectively.
We analytically demonstrate that the excess definition predicts that the Carnot limit remains the upper bound
for both operation modes at strong couplings, whereas the hybrid one reveals that strong coupling can suppress
the maximum efficiency rendering the Carnot limit unattainable. These seemingly incompatible predictions thus
indicate that it is imperative to first gauge the definition for efficiency before elucidating the exact role of strong
coupling, thereby shedding light on the ongoing investigation on strong-coupling quantum thermal machines.
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I. INTRODUCTION

Quantum thermal machines (QTMs) [1–3] perform ener-
getic tasks such as energy conversion and extraction at the
nanoscale. With quantum systems as working substances,
QTMs are capable of harnessing quantum resources to
facilitate the operation process and achieve unparalleled ca-
pabilities that are provably impossible with classical counter-
parts [4–7]. As such, QTMs are becoming potential platforms
for demonstrating the quantumness of energetic tasks and
contrasting classical and quantum thermodynamics, as high-
lighted by recent intriguing theoretical proposals [4,5,7–18]
and delicate experimental realizations [6,19–30] to name just
a few.

Concerning the thermodynamics of QTMs, it is recognized
that the description of QTMs does not permit a complete
adoption of the well-established classical framework as QTMs
can display distinct features beyond the capability of the
classical description. One feature that attracts recent attention
asserts that working substances of QTMs can experience pos-
sible strong system-bath couplings as their surface area can
become comparable to their volume [6,15,19,21,23,24,27,31],
rendering the weak-coupling assumption inapplicable. Inves-
tigating strong-coupling QTMs becomes urgent. On the one
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hand, the field of strong-coupling quantum thermodynam-
ics has witnessed significant progress over the decades with
a number of self-consistent strategies formulated (see a re-
cent review [32] and references therein). Nevertheless, no
consensus on a universal framework for strong-coupling quan-
tum thermodynamics has been reached as one lacks prior
knowledge of thermodynamic behavior of systems at strong
couplings. Applying the existing strong-coupling quantum
thermodynamic frameworks to QTMs, one can reveal their
own thermodynamic signatures of strong coupling that allow
for verification with current experimental capabilities, thereby
providing benchmarks for establishing a universal framework
for strong-coupling quantum thermodynamics. On the other
hand, strong coupling can enable non-negligible system-bath
correlation and entanglement, which are useful operational
resources for QTMs. In this regard, a recent study [33] sug-
gests that the strong coupling is inevitable when devising
steady-state entanglement QTMs.

To date, substantial efforts have been put into the
investigation of strong-coupling QTMs [5,11,13,18,34–
45]. To circumvent the theoretical and numerical challenges
imposed by strong couplings, one typically focuses on either
specific models and methodologies [5,11,34,36,37,39,42,43]
or specific thermodynamic settings [13,18,40,41,44,45],
yielding somewhat contradictory conclusions on the role of
strong couplings. Whereas some studies claim that strong
coupling could bring up operational advantages to potentially
enhance the performance of QTMs [5,18,33,37,38,41,44,45],
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FIG. 1. Sketch of the study. (a) Quantities and energetics during a quasistatic isothermal process. Upper panel: Weak coupling limit with
conventional heat definition Q due to bath energy loss and conventional work definition W due to external drivings which are not shown in the
figure. The first law of thermodynamics for the system reads �ES = Q + W [see Eq. (3)]. Lower panel: Strong coupling scenario with both
conventional quantities Q, W and excess quantities Qex = Q − Qec [see Eq. (4)], Wex = W + Qec [see Eq. (5)] with Qec an energetic cost for
maintaining the non-Gibbsian thermal state. In this scenario, the first law of thermodynamics for the system reads �ES = Qex + Wex [Eq. (5)].
Directions of arrows reflect our positive sign convention of thermodynamic quantities. (b) Energy flow representation of a heat engine mode at
strong couplings. Due to the difference between W and Wex, one may come up with different definitions for thermodynamic efficiency η which
differ in gain as highlighted by the orange and green dashed circles (see details in Sec. IV). (c) Energy flow representation of a refrigerator
mode at strong couplings. Due to the difference between Qc and Qex,c, one may carry out different definitions for the coefficient of performance
ηCOP which differ in gain as highlighted by the orange and green dashed circles (see details in Sec. V).

there are opposite perspectives indicating that strong
coupling is merely detrimental to the operation of
QTMs [11,13,34,36,39,40,42,43]. Thus, elucidating the
exact role of strong coupling in the performance of QTMs
still warrants further investigation. Here we focus on QTMs
operating with a quasistatic Carnot cycle and analyze the
strong-coupling effect on their maximum efficiency.

Noting that the thermal equilibrium state can deviate from
a canonical Gibbsian form at strong couplings [46,47], we uti-
lize the excess heat and work definitions proposed in Ref. [35]
which naturally account for such a scenario through an ex-
act formulation of the first law of thermodynamics for the
working substances at strong couplings. Remarkably, these
excess definitions ensure thermodynamic relations between
quantities to satisfy the same forms across the weak to strong
couplings in the quasistatic limit, thereby providing a promis-
ing strategy to lift the ambiguity in defining heat and work
at strong couplings. Compared with conventional heat and
work definitions based on the change of system density matrix
and Hamiltonian, respectively, the excess counterparts differ
by an energetic cost term indispensable for maintaining the
non-Gibbsian characteristics.

We note that excess work and heat sufficiently determine
the energetics of the working substances, whereas the con-
ventional ones, when applying at strong coupling, are instead
associated with external work and heat sources [see Fig. 1(a)
for an illustration]. With this distinction, we point out that
there is a flexibility in defining a thermodynamic figure of
merit for QTMs at strong couplings, depending on how one
defines the gain of applying the QTMs in that limit. For
clarity, here we just consider the efficiency [coefficient of
performance (COP)] as the corresponding figure of merit for
the heat engine (refrigerator) mode.

Specifically, we propose that one can define two thermo-
dynamically allowed definitions for the chosen figure of merit

at strong couplings. The first definition involves just the ex-
cess quantities in an analogy with the weak-coupling scenario
where one utilizes quantities in the first law of thermody-
namics to define the figure of merit. We dub it an “excess”
definition for later convenience. The excess definition treats
the excess work (excess heat from the cold bath) as the gain
of applying a heat engine (refrigerator), thereby evaluating
the performance from solely the system energetics in a way
similar to the weak-coupling scenario; see the orange dashed
circles in Figs. 1(b) and 1(c). Alternatively, one can recall
the design purpose of QTMs and evaluate their performance
from the standpoint of the external systems upon which the
QTMs act. In this spirit, one should take the conventionally
defined work (conventionally defined heat out of the cold
bath) as the gain for a heat engine (refrigerator), thereby
yielding a “hybrid” definition which involves both excess and
conventionally defined quantities; see green dashed circles in
Figs. 1(b) and 1(c).

These two definitions for the figure of merit coincide only
at weak couplings where the energetic cost for maintaining
the non-Gibbsian feature vanishes and both reduce to the
Carnot limit as expected in the quasistatic limit. However, a
distinction between the two definitions emerges at strong cou-
plings. We demonstrate that the excess definition still recovers
the Carnot limit for both quasistatic quantum heat engine
and quantum refrigerator modes at strong couplings, whereas
the hybrid definition leads one to a conclusion that strong
coupling plays a negative role as it suppresses the maximum
efficiency, rendering the Carnot limit unattainable at strong
couplings. Therefore, our results indicate that an uncertainty
in the definition for the figure of merit would hinder a thor-
ough evaluation of the strong-coupling effect on the optimal
performance. Nevertheless, focusing on the quasistatic limit,
we suggest that the hybrid definition is more preferable than
the excess one in practical applications as it takes into account
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the overall effect of QTMs exerted on external systems and
thus closely reflects the designed purpose of QTMs.

This paper is organized as follows. For the sake of com-
pleteness, we first recap excess heat and work definitions [35]
in Sec. II by considering an arbitrary quasistatic isothermal
process during which the system can strongly couple to the
thermal bath. In Sec. III we present details of the adopted
quantum Carnot cycle and expressions for excess quantities
using relations carried out in Sec. II. Then in Secs. IV and V
we analyze the heat engine mode and refrigerator mode,
respectively. We explicitly propose two different yet thermo-
dynamically allowed definitions for the figure of merit of both
operation modes. We further demonstrate the strong-coupling
effect on optimal performance using both definitions. Finally,
we present a few remarks and conclude the study in Sec. VI.

II. EXCESS HEAT AND WORK AT STRONG COUPLINGS

To analyze thermodynamic performance of QTMs, one
should first settle the definitions for heat and work. At weak
couplings, one usually starts from the changes of system en-
ergy and identify the part associated with an entropic change
as the heat [48,49] and attribute the remaining part to the
work. However, definitions for heat and work are subtle
at strong couplings, and no consensus on their definitions
has been reached [32]. Here we adopt the framework de-
veloped in Ref. [35], which guarantees the applicability of
the aforementioned thermodynamic interpretations of heat
and work [48,49] at strong couplings. For the sake of com-
pleteness and to fix the notation, we will briefly recap the
definitions for the excess quantities defined in Ref. [35] with
a particular emphasis on clarifying their physical meanings,
which will be the basis for proposing and constrasting differ-
ent definitions for the figure of merit at strong couplings.

Consider a quasistatic isothermal process in which a
quantum system coupled to a single thermal bath at a tem-
perature T = β−1 (setting h̄ = 1 and kB = 1 hereafter) can
stay in an instantaneous thermal equilibrium state. When
the system-bath coupling strength deviates from the weak-
coupling regime, the system equilibrium state ρS is no longer
of a Gibbsian form ρth = e−βHS /ZS with the system Hamilto-
nian HS and ZS = Tr[e−βHS ] [46,47],

ρS = TrB

[
e−βHtot

Ztot

]
�= ρth. (1)

Here Htot denotes the total Hamiltonian including the sys-
tem, the bath (B), and the system-bath interaction, Ztot =
Trtot[e−βHtot ], and TrB denotes a trace operation over bath
degrees of freedom.

We consider the von Neumann entropy of the system state
S = −Tr[ρS ln ρS] which can become a thermodynamic en-
tropy when one has perfect knowledge of the system [50]. The
system von Neumann entropy S satisfies [35,51]

S = β(ES − F ). (2)

Here ES = Tr[HSρS] denotes the internal energy of the
system, F = F + T D(ρS||ρth) is the nonequilibrium free en-
ergy [51–53] with F = −T ln ZS the Helmholtz free energy,
and D(ρS||ρth) = Tr[ρS (ln ρS − ln ρth)] the quantum relative
entropy between ρS and ρth accounting for the non-Gibbsian

nature of ρS at strong couplings. We remark that in the
quantum domain the strong-coupling equilibrium state ρS can
contain nonzero coherence in the energy basis of the system
Hamiltonian [47]; therefore the quantum relative entropy in-
volved in the nonequilibrium free energy definition cannot
reduce to the Kullback-Leibler divergence between classical
distributions. Nevertheless, the same form of the first law
holds as well in classical systems described in terms of dis-
tributions at strong couplings. Taking S as the thermodynamic
entropy [50], we can then regard F as a thermodynamic free
energy at strong couplings. It is evident that F � F with the
equality attained at weak couplings where ρS = ρth, implying
an additional capacity to perform work using information
of relative entropy [53] at strong couplings. We remark that
Eq. (2) defines an exact form of the first law of thermody-
namics for isothermal processes under an arbitrary coupling
strength.

To define heat and work applicable at strong couplings, one
can start from considering infinitesimal changes of thermody-
namic quantities at hand. We first have

δES = Tr[δρSHS] + Tr[ρSδHS] ≡ δQ + δW. (3)

Here δW ≡ Tr[ρSδHS] represents the work generated by
external driving fields in the system Hamiltonian, and
δQ ≡ Tr[δρSHS] represents the heat exchanged with the
thermal bath [35]. To see this, we denote the to-
tal Hamiltonian Htot = HB + V + HS with HB and V the
bath Hamiltonian and system-bath interaction, respec-
tively. We first have δW = δTr[Htotρ] = Tr[ρδHS] with
ρ the total density matrix by noting Tr[Htotδρ] = 0 as
a result of the quantum Liouville equation for ρ. We
then find δTr[Htotρ] = δTr[HBρ] + δTr[HSρ] + δTr[V ρ] �
δTr[HBρB] + δES = δW with δTr[V ρ] being negligible for
a constant coupling in the quasistatic limit and ρB the re-
duced bath state. Comparing it with Eq. (3), we can find
δQ = −δTr[HBρB]. One recalls that the usual semiclassical
modelings of cyclic QTMs do not explicitly include pure
work sources and loads in the Hamiltonian but assume their
presence through external driving fields in the system Hamil-
tonian [54]. In this sense, we emphasize that W defines the
amount of work that can be harnessed by external work loads
even at strong couplings. Hereafter, we set the sign convention
that positive heat and work increase the internal energy of the
system.

At weak couplings, Q and W unambiguously define the
heat and work, respectively, and quantify the energetics of
the working substance according to Eq. (3) [see the upper
panel of Fig. 1(a)]. In a quasistatic isothermal process, we
have ρS = ρth diagonal in the energy basis, hence the heat Q
induces a pure entropic change. However, this is no longer the
case at strong couplings as we will show below. Nevertheless,
we remark that one can still use Q and W at strong couplings
as they are still well-defined thermodynamic quantities in that
regime [see the lower panel of Fig. 1(a)].

Inserting Eq. (3) into Eq. (2), we find

δS = β(δQ − δQec) ≡ βδQex. (4)

Here δQec ≡ δF − δW denotes an energetic cost for main-
taining the non-Gibbsian characteristics [35] and corresponds
to an energy part of δQ that does not induce an entropic

044118-3



JUNJIE LIU AND KENNETH A. JUNG PHYSICAL REVIEW E 109, 044118 (2024)

change. δQex ≡ δQ − δQec thus defines an excess heat ac-
companying with a pure entropic change, in accordance with
the definition for a thermodynamic heat [48,49]. Hence, we
take Qex as the appropriate heat definition for the working
substance at strong couplings in the quasistatic limit. Notably,
Qex reduces to Q at weak couplings as Qec vanishes in that
limit.

With the definition of excess heat, we can rewrite Eq. (3)
as

δES = δWex + δQex. (5)

Here the excess work δWex ≡ δW + δQec = δF , reducing
to δW at weak couplings, precisely corresponds to the
nonequilibrium free energy change, in accordance with the
conventional expectation for the work in the quasistatic limit.

From the first law of thermodynamics, Eq. (2), one
generally finds �F (t ) = �ES (t ) − T �S(t ) with �A(t ) =
A(t ) − A(0) for an arbitrary quantity A. Meanwhile, we
have �ES (t ) = Qex(t ) + Wex(t ) in terms of excess quanti-
ties, which, together with the second law T �S(t ) � Qex(t ),
implies �ES (t ) � T �S(t ) + Wex(t ). Altogether, we arrive
at a principle of maximum work applicable at strong cou-
plings −�F (t ) � −Wex(t ) with the equality taken in the
quasistatic limit. Hence, one can regard −Wex as the maximum
work that the working substance can provide during a qua-
sistatic isothermal process according to our sign convention.
As such, we take Wex as the work definition for the working
substance at strong couplings which together with the excess
heat Qex completely determines the energetics of the working
substance [see the lower panel of Fig. 1(a) for an illustration].
However, as we remarked before, only the part W of Wex

can be harnessed by external systems. Noting Qec = Wex − W ,
one can also interpret Qec as the amount of work that cannot
be harnessed by external systems.

III. QUANTUM CARNOT CYCLE

To operate QTMs, we consider a quasistatic Carnot cycle
consisting of two quasistatic isothermal strokes and two qua-
sistatic adiabatic strokes. Taking the heat engine mode as an
example, we have four strokes following the given order.

(i) A quasistatic hot isothermal expansion stroke. During
this stroke, a quantum working substance is attaching to a hot
thermal bath at temperature Th with the system Hamiltonian
changing from HA

S to HB
S ; We use superscripts to distinguish

quantities at different stages induced by, e.g., tuning con-
trol parameters. To realize expansion of quantum working
substances with discrete energy levels {En}, one needs to
change all energy levels EA

n → EB
n = ξEA

n with the same ratio
0 < ξ < 1 [8]. During this stroke, we can use definitions
in the previous section to express excess work and heat in
terms of the nonequilibrium free energy and entropy changes,
respectively,

Wex,h = FB − FA, Qex,h = Th(SB − SA). (6)

We also have a formal definition Wh ≡ ∫ B
A Tr[ρS (t ) d

dt HS (t )] dt
which denotes the work generated by driving fields during
this stroke. In practice, once HS (t ) and the governing equa-
tion of motion for ρS (t ) are specified during an isothermal
process, we can estimate the nonequilibrium free energy and

entropy changes directly, thereby obtaining the values of the
excess work and heat, respectively. Wh can also be estimated
using its formal definition, which, together with the relation
Qec,h = Wex,h − Wh and the value of Wex,h, further gives an
evaluation of the energetic cost. We take a two-level sys-
tem with a time-dependent Hamiltonian HS (t ) = �(t )

2 σz, for
example, to illustrate how to implement the calculation. To
realize an expansion stroke, one should first specify a detailed
driving protocol �(t ) such that �B < �A while ensuring the
quasistatic requirement. Then one utilizes numerical method-
ologies such as the one in [55] to simulate the evolution
dynamics of ρS (t ) at strong couplings. With ρS (t ) and HS (t ),
one can then calculate Wh according to the aforementioned
definition. The same dynamical information also allows us to
directly compute the entropy S and the nonequilibrium free
energy F , and consequently, the values of Wex,h and Qex,h

based on the definitions in Eq. (6). The energetic cost Qec,h

is obtained as the difference between Wex,h and Wh.
(ii) A quasistatic adiabatic expansion stroke. During this

stroke, the working substance is detached from the hot thermal
bath, rendering heat exchanges impossible and leaving the
system entropy unchanged, SC = SB. The temperature of the
working substance drops from Th to Tc accomplished by an
internal energy change which comes in the form of work. By
requiring that all energy gaps of the working substance change
by the same ratio Tc/Th, one can ensure that the end points
of the adiabatic expansion stroke coincide with those of an
isothermal processes [8]. Hence we can still adopt the first law
of thermodynamics given in the previous section to rewrite the
work,

Wex,a1 = Wa1 = EC
S − EB

S = FC − FB − (Th − Tc)SB. (7)

To simulate this stroke with the aforementioned two-level
system, one needs to choose a driving protocol �(t ) such that
�C = (Tc/Th)�B. The evolution of ρS (t ) is now governed by
the quantum Liouville equation dρS (t )/dt = −i[HS (t ), ρS (t )]
with initial condition ρB

S . With ρS (t ) and HS (t ), one can cal-
culate the entropy S and the nonequilibrium free energy F
with their changes during this stroke to determine the value of
Wex,a1.

(iii) A quasistatic cold isothermal compression stroke.
During this stroke, the working substance is attaching to a
cold thermal bath at temperature Tc with all energy levels
increasing EC

n → ED
n = ξ ′EC

n by the same ratio ξ ′ > 1. For a
two-level system, the compression is thus realized by increas-
ing the energy gap. We have

Wex,c = FD − FC, Qex,c = Tc[SD − SB], (8)

and similarly, Wc ≡ ∫ D
C Tr[ρS (t ) d

dt HS (t )] dt . Similar to the hot
isothermal stroke, one can calculate the excess quantities to-
gether with the energetic cost for the two-level system by just
devising a quasistatic driving protocol with the requirement
�D > �C .

(iv) A quasistatic adiabatic compression stroke. During this
stroke, the system is detached from the cold thermal bath, and
the temperature of the working substance increases from Tc

to Th along with all energy gaps of the working substance
increasing by the same ratio Th/Tc. Similar to the second
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adiabatic stroke, we find

Wex,a2 = Wa2 = EA
S − ED

S = FA − FD + (Th − Tc)SA. (9)

Here we have used the fact that SD = SA. For the two-level
system, one requires a driving protocol with �A = (Th/Tc)�D

and then follows the procedures in the adiabatic expansion
stroke to calculate the corresponding thermodynamic quanti-
ties. After this stroke, we couple the working substance to the
hot thermal bath again, thus completing the thermodynamic
cycle. The Carnot cycle for the refrigerator mode can be ob-
tained by reversing the aforementioned orderings of strokes as
well as each stroke’s operational direction, and the associated
thermodynamic quantities can be expressed in an analogous
way.

In the following section we will distinguish between two
possible sets of definitions for the figure of merit of quantum
Carnot thermal machines [see Figs. 1(b) and 1(c)]. The first
definition, which we dub an excess one, involves just ex-
cess quantities, amounting to characterizing the performance
from solely the system energetics in complete analogy with
the weak-coupling scenario. The second definition instead
evaluates the performance from the action on an external sys-
tem and inevitably contains both the conventional and excess
quantities, thereby bearing the name of a hybrid definition.

IV. QUANTUM CARNOT HEAT ENGINE

We first focus on the cyclic quantum Carnot heat engine
operating with the Carnot cycle stated in Sec. III. At weak
couplings, one utilizes Qh and total work W ≡ ∑

i=h,a1,c,a2 Wi

to define the efficiency, which, however, cannot be directly
applied to the strong-coupling regime [18,35]. Hence, to un-
veil the strong-coupling effect on the efficiency, one needs to
decipher an appropriate definition for the efficiency first. In
this regard, one should bear in mind that a thermodynamic
efficiency quantifies how worth a gain at the expense of a cost
is.

For a heat engine operated at strong couplings, the actual
cost should be the excess heat Qh

ex during the hot isother-
mal process that the working substance absorbs. As for the
gain, we point out that one can have two possible choices
at strong couplings due to the distinction between Wex ≡∑

i=h,a1,c,a2 Wex,i and W .
Through introducing excess heat and work that have the

same interpretations as their weak-coupling counterparts, one
actually builds up complete analog between weak and strong
couplings in terms of the first law of thermodynamics [Eq. (3)
for weak coupling and Eq. (5) for strong coupling extended to
a two-bath scenario]. At weak couplings, one can just utilize
W and Qh involved in the first law of thermodynamics to
define a thermodynamic efficiency which recovers the Carnot
bound in the quasistatic limit. Following this spirit and noting
the analog, one can define a thermodynamic efficiency using
just excess quantities at strong couplings

ηex ≡ − Wex

Qex,h
. (10)

This definition amounts to evaluating the performance of heat
engines from solely the energetics of the working substance
and treating Wex as the gain in analogy with the weak-coupling

scenario. We dub it an excess definition. Using results in
Sec. III, one identifies

Wex = (Th − Tc)[SA − SB]. (11)

Inserting Eq. (11) into Eq. (10), one finds that the inside effi-
ciency definition exactly coincides with the Carnot efficiency

ηex = Th − Tc

Th
= ηc. (12)

Hence, one concludes that the strong couplings have no im-
pact on the maximum efficiency when defining the efficiency
of a heat engine from a complete analogy with the weak-
coupling scenario. This result was first obtained in Ref. [35]
and was stated as a manifestation of the thermodynamic uni-
versality of the Carnot efficiency.

Alternatively, as we remarked before, only the part W can
be directly harnessed by external systems as it is associated
with external driving fields. Hence, if one evaluates the perfor-
mance of a quantum Carnot heat engine from the standpoint
of external systems, one then naturally refers to W as the gain
of the machine since a part of the excess work manifests as
an energetic cost which cannot be harnessed by external sys-
tems. This viewpoint brings up a thermodynamic efficiency
definition

ηhyb ≡ − W

Qex,h
= ηc +

∑
i=h,c Qec,i

Qex,h
. (13)

In arriving at the second equality, we have used the relation
W = Wex − ∑

i=h,c Qec,i and Eq. (12). As this efficiency def-
inition involves both conventional and excess quantities, we
refer to it as a hybrid definition. It is evident that ηhyb and ηex

are identical only at weak couplings where Qec,i vanishes. At
strong couplings, the two definitions ηex and ηhyb are no longer
equivalent. We note that the second term on the right-hand
side of Eq. (13) arises when Qec,i becomes nonzero. Recalling
that Qec,i quantifies the energetic cost for maintaining the non-
Gibbsian state during the isothermal strokes, we can attribute
the second term to the effect of strong coupling.

To ensure that the hybrid efficiency ηhyb is thermodynam-
ically allowed, we need to check whether it can surpass the
Carnot efficiency due to the presence of an extra term. To this
end, we can analyze the sign of this extra term, which is solely
determined by the numerator

∑
i=h,c Qec,i as the denominator

Qex,h is always positive in a heat engine. We first note that
−Wex > 0 and −W > 0 in a heat engine according to our
sign convention. With the principle of maximum work, we
know that −Wex corresponds to the maximum work that the
engine can generate as it is just the nonequilbrium free energy
change during a cycle, while −W is the amount of the work
that can be harnessed by an external work load eventually. It
is reasonable to expect that the external work load cannot gain
more work than the engine can provide, hence one should have
|Wex| � |W | or equivalently, −Wex � −W . From this inequal-
ity, we can infer that −∑

i=h,c Qec,i = W − Wex � 0 with the
equality attained at weak couplings. Hence the second term on
the right-hand side of Eq. (13) is always nonpositive, leading
to a constraint on the hybrid efficiency definition ηhyb,

ηhyb � ηc. (14)
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Here the equality is met at weak couplings where
∑

i Qec,i =
0. At strong couplings with

∑
i Qec,i < 0, one generally

expects ηhyb < ηc, rendering ηhyb a valid thermodynamic ef-
ficiency consistent with the second law of thermodynamics.
More importantly, adopting ηhyb as the efficiency definition
would lead one to conclude that the strong coupling has a
negative effect in the sense that it prevents the maximum ef-
ficiency of the strong-coupling heat engine from reaching the
Carnot efficiency, unlike their weak-coupling counterparts.

V. QUANTUM CARNOT REFRIGERATOR

We now turn to a cyclic quantum Carnot refrigerator
operating with a reversed Carnot cycle. The corresponding
expressions for the excess work and heat are obtained by
reversing the sign of those listed in Sec. III.

To define a coefficient of performance (COP) for the re-
frigerator, one similarly needs to specify the cost and the
resulting gain. Here the cost should be the excess work Wex,
which directly induces the free energy change of the working
substance in the quasistatic limit. As for the gain, one also has
two different choices, similar to the heat engine mode.

Here one still has an analogy between the weak and strong-
coupling scenarios after introducing excess thermodynamic
quantities. Inspired by the COP definition Qc/W at weak
couplings using just quantities involved in the first law of
thermodynamics, one can also evaluate the performance of the
refrigerator mode using just the excess quantities describing
the energetics of the working substance at strong coupling,

ηex
COP ≡ Qex,c

Wex
. (15)

Here the excess heat Qex,c during the cold isothermal stroke
is identified to be the gain of the refrigerator mode by not-
ing the analogy with the weak coupling scenario. We dub
it an excess COP definition. For the reversed Carnot cycle,
one has Qex,c = Tc[SB − SA] and Wex = (Th − Tc)[SB − SA],
which are opposite in sign to those shown in Sec. III, yielding

ηex
COP = ηc

COP. (16)

Here ηc
COP ≡ Tc/(Th − Tc) is just the classical Carnot limit

of the COP. Namely, the optimal COP of the refrigerator at
strong couplings can reach the Carnot limit just as was the
case for the weak-coupling scenario if adopting the excess
definition for the COP, thereby implying no strong-coupling
effect on the optimal performance.

Nevertheless, during the cold isothermal expansion stroke,
one recognizes that the total amount of energy extracted out
of the cold bath should be Qc instead of Qex,c, which induces
a system entropic change. Recall that the design purpose of
a quantum absorption refrigerator is to extract energy out
of a cold bath, and one should instead treat Qc as the gain of
the refrigerator. Therefore, one can have an alternative COP
definition

η
hyb
COP ≡ Qc

Wex
= ηc

COP + Qec,c

Wex
. (17)

In arriving at the second equality, we have used Eq. (16) and
the relation Qc = Qex,c + Qec,c. Similar to the heat engine
mode, we refer to η

hyb
COP as a hybrid COP definition. We note

that ηex
COP and η

hyb
COP become equivalent only at weak couplings

where the energetic cost Qec,c vanishes. At strong couplings,
these two COP definitions ηex

COP �= η
hyb
COP due to a nonzero

energetic cost Qec,c for maintaining the non-Gibbsian state
during the cold isothermal stroke. We thus take the presence
of the second term on the right-hand side of Eq. (17) as a sign
of strong coupling in the quasistatic limit.

With the presence of an extra term on top of ηc
COP, exam-

ining whether the hybrid COP definition η
hyb
COP is consistent

with the second law of thermodynamic becomes necessary.
We note that the denominator Wex of the extra term in Eq. (17)
is positive in a refrigerator, hence the sign of the extra term is
fully determined by the numerator Qec,c. To analyze the sign
of Qec,c, let us focus on the cold isothermal expansion stroke
of the reversed Carnot cycle. During this stroke, the work-
ing substance generates work output, implying Wex,c < 0 and
Wc < 0. Since |Wex,c| defines the maximum work, we should
have |Wex,c| � |Wc|, or equivalently, Wex,c � Wc. We thus find
Qec,c = Wex,c − Wc � 0. Hence, the hybrid COP definition is
upper bounded by the Carnot COP, rendering it a valid COP
definition,

η
hyb
COP � ηc

COP. (18)

Here the equality is attained only at weak couplings where
Qec,c = 0. At strong couplings, we generally expect η

hyb
COP <

ηc
COP. Therefore, similar to the heat engine mode, the hybrid

COP definition also unveils a negative effect of strong cou-
pling by noting that only a weak-coupling setup can reach the
Carnot COP in the quasistatic limit.

VI. DISCUSSION AND CONCLUSION

We remark that both the excess and hybrid definitions
for the figure of merit are thermodynamically valid, and one
cannot definitively exclude one definition from the two based
on pure thermodynamic principles at strong couplings. Nev-
ertheless, we recommend that the hybrid definition for the
figure of merit should be used in actual applications of quan-
tum thermal machines as it faithfully recognizes the design
capability of quantum thermal machines, that is, exerting a
thermodynamic useful action on the targeted external systems.

We also emphasize that the present results are specifically
obtained in the quasistatic limit. Turning to the finite-time
operation regime where the efficiency at maximum power is
of special interest [56], we note that non-Gibbsian states can
arise even at weak couplings due to the finite-time driving
fields during isothermal strokes. Hence, we cannot simply
associate strong-coupling effects with the emergence of the
non-Gibbsian character of the system state in finite time
cycles. We further remark that one can still define a nonequi-
librium free energy to account for an arbitrary finite time
isothermal process; however, additional dissipation induced
by finite-time drivings prevents us from identifying excess
heat and work from the entropy and nonequilibrium free en-
ergy changes, respectively. Extending the present framework
to the finite-time regime and addressing strong-coupling ef-
fects on the efficiency at maximum power therein remains an
open question that warrants further investigation.
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Considering that the Gibbs state is completely passive, one
may naturally expect that a non-Gibbsian thermal equilib-
rium state has a finite ergotropy [57] that allows for work
extraction. To see this is indeed the case, we adopt the total
ergotropy definition describing scenarios with many identical
system copies, Etot = ES − ER

S [58]. Here ER
S = Tr[HSρR] is

the mean system energy evaluated with respect to a Gibb-
sian reference state ρR = e−HS/TR/ZR that has the same von
Neumann entropy S of ρS . Since ER

S = FR + TRS with F =
−TR ln ZR and ES = F + TRS, we can express the total er-
gotropy as Etot = F − FR, which vanishes only when ρS

reduces to a Gibbsian form. In the quasistatic limit, one can
further replace the changes of F and S with the excess work
and heat, respectively, thereby obtaining a relation between
total ergotropy change and excess thermodynamic quantities.

Furthermore, it is well known in classical thermodynam-
ics that a quasistatic cycle implies a vanishing total entropy
production, which in turn, combined with the usual first law
of thermodynamics, leads to the celebrated Carnot theorem.
With this result in mind, it seems that our outside view that
strong coupling can suppress the maximum efficiency is in-
compatible with the quasistatic cycle we adopted. To clarify,
we first note that delivering a definition for the total entropy
production over a cycle at strong couplings faces an ambi-
guity as well. Following the excess definition, it is evident
that the total entropy production over a cycle should read

ex = −Qex,h/Th − Qex,c/Tc. Then the result ηex = ηc for the
heat engine follows from the combination of conditions ηex =
−Wex/Qex,h, Wex + Qex,h + Qex,c = 0 and 
ex = 0. However,
inspired by the hybrid definition, one can argue that the
total entropy production over a cycle should be defined as

hyb = −Qh/Th − Qc/Tc which quantifies the entropy change
associated with the heat out of the baths. Taking the heat
engine mode as an example, we have ηhyb = −W/Qex,h =
(Qh + Qc)/(Qh − Qec,h) with the equality W + Qh + Qc = 0
[cf. Eq. (3)]. Adapting the rationale that leads to Eq. (18), we
can infer Qh − Qec,h � Qh such that ηhyb � (Qh + Qc)/Qh =

ηc with the last equality obtained using the quasistatic condi-
tion 
hyb = 0. Hence, our result is fully compatible with the
quasistatic condition.

In conclusion, we addressed strong-coupling quantum
Carnot thermal machines in the quasistatic limit with a
pure analytical treatment, with the consideration that it is
challenging to numerically implement a proper quasistatic
thermodynamic cycle. We revealed that the quantum thermal
machine allows for multiple definitions for the figure of merit
at strong couplings. As a result, one cannot reach conclusive
results regarding the strong-coupling effect on maximum ef-
ficiency. Specifically, we proposed two possible definitions,
dubbed excess and hybrid ones. We have analytically shown
that the excess definition which just considers the energet-
ics of the working substance exactly recovers the Carnot
limit at strong couplings, thereby implying that there is no
strong-coupling effect on the maximum efficiency. In contrast,
we demonstrated that the hybrid definition which evaluates
the gain from the perspective of the external system upon
which the quantum thermal machine acts predicts a suppres-
sion effect of the strong coupling, rendering the Carnot limit
unattainable at strong couplings. Notably, the latter result
extends that in Ref. [43] to regimes beyond the linear re-
sponse. Our results thus point out that it is necessary to first
gauge the definition for the figure of merit before trying to
elucidate the strong-coupling effect on the performance. We
believe this work highlights an important issue in the field
and will lead to further investigations on the nature of strong-
coupling quantum thermodynamics and quantum thermal
machines.
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