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Effective mass approach to memory in non-Markovian systems
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Recent pioneering experiments on non-Markovian dynamics done, e.g., for active matter have demonstrated
that our theoretical understanding of this challenging yet hot topic is rather incomplete and there is a wealth
of phenomena still awaiting discovery. It is related to the fact that typically for simplification the Markovian
approximation is employed and as a consequence the memory is neglected. Therefore, methods allowing to
study memory effects are extremely valuable. We demonstrate that a non-Markovian system described by
the Generalized Langevin Equation (GLE) for a Brownian particle of mass M can be approximated by the
memoryless Langevin equation in which the memory effects are correctly reproduced solely via the effective
mass M∗ of the Brownian particle which is determined only by the form of the memory kernel. Our work
lays the foundation for an impactful approach which allows one to readily study memory-related corrections to
Markovian dynamics.

DOI: 10.1103/PhysRevE.109.044116

I. INTRODUCTION

The role of memory in dynamics of systems is an is-
sue which seems to attract everlasting activity in multiple
contexts reaching even far beyond the scope of physics.
Recent renaissance of this conundrum is attributed to ac-
tive matter [1–6], spin glasses [7], protein-folding kinet-
ics [8], random walk theory [9–12], search strategies [13,14],
animal mobility [15], nonlinear fluctuation-dissipation rela-
tion [16], quantum stochastic processes [17,18], quantum
simulations [19,20], and tomography [21], to name a few. Un-
derstanding the role of memory in physics therefore appears
both as a hot topic and a major challenge.

The origin of memory in system dynamics is typically
related to its complexity, in particular due to a large number
of degrees of freedom. It may be an effect of properties of
the system itself such as viscoelasticity [22–26] or emerge as
a result of interplay with environment such as hydrodynamic
interactions between the system and the surrounding fluid in
its immediate vicinity [27–29]. It can result also from either
external or internal nonequilibrium noise [30–33].

The emanation of memory is typically assisted by the
emergence of correlated thermal fluctuations. However, to
simplify the system one often employs the Markovian ap-
proximation in which they are modeled as the δ-correlated
Gaussian process and consequently its dynamics is described
by the memoryless equation. However, this idealization has
little in common with physical reality. In particular, even at the
deep fundamental level of quantum realm energy of the sys-
tem coupled to thermal vacuum diverges when the Markovian
approximation is imposed [34]. Consequently, “non-Markov
is the rule, Markov is the exception” [35].
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Markovian dynamics is in principle completely character-
ized if the transition probability distribution and the initial
state of the system is known. In contrast, non-Markovian
dynamics is completely described by an infinite set of
multidimensional probability distributions which cannot be
determined from the lower-dimensional ones. This fact reveals
that analysis of non-Markovian systems is much more difficult
to handle even for selected cases. Moreover, it explains why
recent pivotal results on dynamics with presence of memory
have been often first discovered with pioneering experiments
and only later explained theoretically. Therefore, methods al-
lowing to investigate memory effects are extremely valuable
since our understanding of the non-Markovian dynamics is
rather incomplete and there is a wealth of phenomena still
awaiting discovery.

To address this urgent problem, we consider the GLE
formalism as a universal framework for investigating the non-
Markovian dynamics. For a Brownian particle of mass M
subjected to a potential U (x, t ) and driven by thermal equi-
librium fluctuations η(t ) modeled as a zero-mean stationary
Gaussian process the GLE reads [32]

Mv̇(t ) + �

∫ t

0
K (t − s)v(s)ds = −U ′(x(t ), t ) + η(t ), (1)

where x(t ) is a position of the particle at time t , v(t ) = ẋ(t )
is its velocity and � stands for the dissipation constant (the
friction coefficient). The correlation function of η(t ) is related
to the memory kernel K (t ) characterized by the memory time
τc via the fluctuation-dissipation theorem [36],

〈η(t )η(s)〉 = �kBT K (|t − s|), (2)

where kB is the Boltzmann constant and T is temperature
of the system. Due to this relation the memory time τc is
equivalent to the correlation time of thermal fluctuations. We
note that Eq. (1) assumes the bilinear coupling between the
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system and thermostat and is no longer valid if a nonlinear
interaction takes place [37].

Despite several decades of studies in the GLE frame-
work its memoryless version, which nevertheless captures
the memory-induced properties of the system, has not been
proposed. Our paper is therefore first of its kind to demon-
strate that the effects of short memory in non-Markovian
dynamics (1) can be absorbed solely into effective mass of
the particle in the corresponding memoryless equation for
which the joint process {x(t ), v(t )} is Markovian. Moreover,
our approximation is applicable for a wide class of integrable
memory kernels K (t ) [38], including, e.g., both the power law
(with the exponent larger than 2) and the Gaussian decay.

In contrast, another approach to the GLE is to use the
Markovian embedding [39–42] of the dynamics into the mul-
tidimensional Markovian process, in which the evolution of
the pair {x(t ), v(t )} is, however, still non-Markovian. More-
over, this procedure is exact only for a few selected cases
while for the others it is a nonunique approximation. If, e.g.,
K (t ) ∼ (1 + t/τc)−α , then one has to consider the infinite-
dimensional Markovian process [43] whose analysis is as
complicated as the starting non-Markovian one. It can be
handled only by arbitrary truncation of the problem dimen-
sionality and therefore the question on the impact of finite
dimension effects on the so obtained results always arises.
However, if, e.g., K (t ) ∼ exp [−(t/τc)2], then the Markovian
embedding is impossible.

We note that the idea behind our scheme is similar to the
effective mass approach [44,45] frequently encountered in
condensed matter physics. There it describes the mass that
the particle (e.g., electron) seems to have under influence of
external fields or interactions with other entities. It often helps
to radically simplify a complicated system by modeling it
as the free particle with the effective mass. Here, the latter
allows one to replace complex non-Markovian dynamics with
much more straightforward Markovian one which, however,
still takes into account the memory effects.

The paper is organized as follows. In the next section we
derive the effective mass approach for a system described
by the GLE. In Sec. III we validate this new method for a
fundamental problem of nonequilibrium statistical physics,
namely, transport of a driven Brownian particle in a periodic
potential and discuss its limitations. Finally, Sec. IV provides
a summary and conclusions.

II. EFFECTIVE MASS APPROACH

The standard Markovian approximation to the GLE is ob-
tained for the case

K (t ) = 2δ(t ). (3)

Then Eq. (1) is reduced to the memoryless form

Mv̇(t ) + �v(t ) = −U ′(x, t ) + ξ (t ), (4)

where zero-mean thermal noise ξ (t ) is a δ-correlated Gaussian
process (white noise),

〈ξ (t )ξ (s)〉 = 2�kBT δ(t − s). (5)

It means that the memory effects are completely neglected.
We want to propose a more refined method for the situation

when the memory time (or the correlation time of thermal
fluctuations) is short but nonzero. The similar case appears,
e.g., in investigation of the overdamped dynamics when for-
mally the dimensionless mass of the particle is zero and the
strong damping regime for which it is small but nonzero; see
Ref. [46].

In the following, we consider a class of integrable memory
kernels K (t ) for which∫ ∞

0
K (t )dt = 1,

∫ ∞

0
tK (t )dt is finite. (6)

The first integral is related to the finite dissipation (damping)
strength, see Eq. (4.17) in Ref. [47], whereas the second one
refers to the finite memory time, see Eq. (4.18) in Ref. [47].
By virtue of the relation (2) thermal noise correlation function
should decay sufficiently fast in the long-time limit t → ∞,
at least as fast as K (t ) ∼ 1/t2+ε for a certain ε > 0. Examples
of such cases are the exponential (the Drude model), Gaussian
and algebraic decay with the exponent larger than two [48], to
name only a few. Let us mention that similar integrability con-
ditions for the thermostat correlation functions are imposed
in the mathematical theory of the weak coupling limit for
quantum open systems [38].

We redefine the function K (t ) to note explicitly its depen-
dence on the memory time τc, namely,

K (t ) = 1

τc
K∗(t/τc). (7)

We observe that if K (t ) is normalizable to unity then it is so
also for K∗(t ). Moreover, K (t ) is the Dirac δ sequence on
the interval (0,∞) and in the limit τc → 0 Eq. (1) reduces
to Eq. (4).

A. Time domain

The integral term in the GLE (1) can be rewritten as

I =
∫ t

0
K (s)v(t − s)ds

= 1

τc

∫ t

0
K∗(s/τc)v(t − s)ds

=
∫ t/τc

0
K∗(u)v(t − τcu)du. (8)

For short but nonzero memory time τc 	= 0, when the memory
kernel K (t ) decays rapidly, we expand the function v(t − τcu)
into a Taylor series

v(t − τcu) ≈ v(t ) − τcuv̇(t ) (9)

and neglect the terms of the order higher than τc. Conse-
quently, the leading term in Eq. (8) reads

I ≈ v(t ) − ετcv̇(t ), (10)

where the dimensionless parameter ε is given by the relation

ε =
∫ ∞

0
uK∗(u)du, (11)

for which we extended the upper limit of integration to infin-
ity provided that τc is sufficiently small, i.e.,

∫ t/τc

0 F (u)du ≈
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∫ ∞
0 F (u)du for any function F (u). Finally, the original

GLE (1) is approximated by the Langevin equation

(M − ετc�)v̇(t ) + �v(t ) = −U ′(x, t ) + η(t ). (12)

Here, the dissipative term proportional to v(t ) reads �v(t )
for which the corresponding memory kernel is expressed by
the Dirac δ function. By virtue of the fluctuation-dissipation
relation (2) one finds that thermal noise η(t ) in such a case
is δ-correlated and the original GLE is approximated by the
following equation:

M∗v̇(t ) + �v(t ) = −U ′(x, t ) + ξ (t ), (13)

where ξ (t ) is white thermal noise obeying the fluctuation-
dissipation relation given by Eq. (5).

The effective mass of the particle is identified as

M∗ = M − ετc� = M

(
1 − ε

τc

τL

)
. (14)

Equation (13) means that the non-Markovian dynamics with
short memory time can be approximated by the much simpler
corresponding Markovian one but with the effective mass of
the system. We note that the latter depends on the ratio of
two characteristic times τc/τL, where τL = M/� stands for
the well-known velocity relaxation time of the free Brown-
ian particle. Moreover, this ratio needs to satisfy the relation
τc/τL < 1/ε so that the effective mass is positive M∗ > 0.
Otherwise, the system is nondissipative and various unphysi-
cal effects such as an increase of the particle energy to infinity
as time grows may emerge. In particular, for the strict white
noise limit τc → 0 the effective mass is equal to the actual
mass M∗ = M, whereas, e.g., for an exponentially decaying
kernel

K (t ) = 1

τc
e−t/τc (15)

the parameter ε = 1 and the effective mass is

M∗ = M

(
1 − τc

τL

)
, (16)

while for the Gaussian decay

K (t ) = 2

τc
√

π
e−(t/τc )2

, (17)

the parameter ε = 1/
√

π and the effective mass is larger,

M∗ = M

(
1 − 1√

π

τc

τL

)
. (18)

B. Frequency domain

We transform the GLE (1) from the time domain t to the
complex valued frequency domain z. Because the memory
term is the convolution of two functions its Laplace transform
L is the product of the Laplace transforms of the individual
functions. We focus on the left hand side L of the original
GLE (1) for which

L{L}(z) = L
{

Mv̇(t ) + �

∫ t

0
K (t − s)v(s)ds

}
(z)

= MzL{v̇}(z) + �L{K}(z)L{v}(z), (19)

FIG. 1. The average velocity 〈v̂〉 of a Brownian particle as a
function of the correlation time τ for f = 0.1 obtained from (i) the
GLE (33), (ii) the effective mass approach (35) and (iii) the standard
Markovian approximation τ → 0 when m∗ = m. The parameters are
{m = 1, a = 15, ω = 4, f = 0.1, D = 10−3}.

where for any function F (t )

L{F }(z) =
∫ ∞

0
F (t )e−zt dt . (20)

The Laplace transform of the memory kernel reads

L{K}(z) =
∫ ∞

0

1

τc
K∗(t/τc)e−zt dt

=
∫ ∞

0
K∗(u)e−τczudu

=
∫ ∞

0
K∗(u)[1 − τczu + ...]du

≈ 1 − ετcz, (21)

where ε is defined in Eq. (11) and as previously we neglected
terms of the order higher than τc provided that it is small.
Inserting this formula into Eq. (19) gives

L{L}(z) = (M − ετc�)zL{v̇}(z) + �L{v}(z). (22)

The inverse Laplace transform corresponds to the left-hand
side of Eq. (13). This method gives another interpretation of
the effective mass. Since the memory kernel K (t ) character-
izes the two-point correlation function of thermal fluctuations
its transform L{K}(z) is related to their power spectrum. We
therefore infer that the leading small frequency correction to
the Markovian approximation of the GLE is the effective mass
M∗ = M − ετc� = M(1 − ετc/τL ).

III. VALIDATION AND LIMITATION

It is often argued that if τc is much smaller than other
characteristic timescales in the system the impact of memory
is negligible and the Markovian approximation τc → 0 can
be applied. It allows one to radically simplify the underly-
ing analysis. However, we now demonstrate that even when
τc 	= 0 is the smallest timescale of the system, naive use of the
Markovian approximation τc → 0 can give completely wrong
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results as the influence of short memory may be still promi-
nent. In contrast, we show that our scheme offers the same
advantages as the Markovian approximation but the impact
of short memory can be absorbed into the effective mass M∗
of the system and consequently it yields correct predictions.
To validate our approach we compare three results obtained
from: (i) Eq. (1) for small τc > 0, (ii) the effective mass
method (13) with M∗ < M, and (iii) the standard Markovian
approximation τc → 0 when M∗ = M.

We limit ourselves to the situation in which the standard
method of the GLE handling in the form of the Marko-
vian embedding is exact, so that the results obtained in this
way can serve as a reference for validation of the effective
mass approach. The simplest case meeting this require-
ment is the exponentially decaying memory kernel K (t ) =
1/τc exp (−t/τc) for which the Markovian embedding allows
one to convert the original GLE (1) into a set of ordinary
stochastic differential equations [32]. Let us define the aux-
iliary stochastic process w(t ) via the relation

w(t ) = �

τc

∫ t

0
e−(t−s)/τcv(s) ds. (23)

Then Eq. (1) is transformed into the equivalent form

Mv̇(t ) = −U ′(x(t ), t ) − w(t ) + η(t ), (24a)

ẋ(t ) = v(t ), (24b)

ẇ(t ) = − 1

τc
w(t ) + �

τc
v(t ), (24c)

η̇(t ) = − 1

τc
η(t ) + 1

τc
ξ (t ), (24d)

where the zero-mean Gaussian white noise ξ (t ) obeys
〈ξ (t )ξ (s)〉 = 2�kBT δ(t − s) and the last equation of this set
describes the Ornstein-Uhlenbeck noise with the exponential
correlation function.

As a system of interest we pick a driven Brownian particle
in a periodic potential. For such a case the potential reads

U (x, t ) = V0 sin(2πx/L) − [A cos (�t ) + F ]x, (25)

where V0 is half of the barrier height of the periodic potential
with the spatial period L. A cos (�t ) represents the external
driving of amplitude A and angular frequency � while F is a
static bias which breaks the spatial symmetry of the system
and induces the directed transport. This model constitutes
a fundamental problem of nonequilibrium statistical physics
appearing in numerous contexts including normal and anoma-
lous transport [49–56]. The quantity of interest for a present
study will be the average velocity of the Brownian particle
reading

〈v〉 = lim
t→∞

1

t

∫ t

0
〈ẋ(s)〉ds, (26)

where the brackets 〈·〉 indicate the average over the initial
conditions and realizations of thermal noise η(t ). The former
is mandatory for the deterministic dynamics when ergodicity
of the system may be broken and the results can be affected
by the specific choice of initial conditions [57,58].

The set of ordinary stochastic differential equations (24)
with a nonlinear, time-dependent potential given by Eq. (25)

FIG. 2. The average velocity 〈v̂〉 of the Brownian particle as a
function of the static bias f for τ = 0.025. Other parameters are the
same as in Fig. 1.

cannot be solved analytically. For this reason we had to resort
to numerical computations using CUDA environment on mod-
ern desktop graphics processing unit. This approach allowed
us to accelerate calculations by several orders of magnitude
as compared to standard methods [59]. We employed a weak
second-order predictor corrector algorithm to simulate the
corresponding dynamics.

In doing so we first transformed the GLE (1) into the
dimensionless form. We introduce the dimensionless position
and time

x̂ = x

L
, t̂ = t

τ0
, τ0 = �L2

V0
. (27)

The rescaled potential takes the form

Û (x̂, t̂ ) = V̂0(x̂) − x̂[a cos(ωt̂ ) + f ], (28)

where

V̂0(x̂) = sin(2π x̂), a = L

V0
A, ω = τ0�, f = L

V0
F.

(29)
Thermal noise transforms according to

η̂(t̂ ) = L

V0
η(τ0t̂ ). (30)

The exponentially decaying memory kernel scales as

K̂ (|t̂ − ŝ|) = 1

τ
e−|t̂−ŝ|/τ , τ = τc

τ0
, (31)

where τ is the dimensionless correlation time of thermal fluc-
tuations. Finally, the rescaled mass reads

m = M

τ0�
. (32)

With such a choice of length and timescales, the dimension-
less friction coefficient γ = 1.

The original GLE (1) describing the non-Markovian dy-
namics after such a scaling procedure is transformed to the
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form

m ˙̂v(t̂ ) +
∫ t̂

0
K̂ (t̂ − ŝ)v̂(ŝ)dŝ = −Û ′(x̂, t̂ ) + η̂(t̂ ). (33)

The fluctuation-dissipation relation now is

〈η̂(t̂ )η̂(ŝ)〉 = DK̂ (|t̂ − ŝ|), D = kBT

V0
. (34)

The corresponding effective mass approach reads

m∗ ˙̂v(t̂ ) + v̂(t̂ ) = −Û ′(x̂, t̂ ) + ξ̂ (t̂ ), (35)

where the rescaled effective mass

m∗ = m − τ = 1

τ0
(τL − τc) (36)

is a difference of the dimensionless mass m and the memory
time τ = τc/τ0. It can be represented also as a difference
of two characteristic timescales τL and τc in units of the
third characteristic time τ0 = �L2/V0 describing the interval
in which the overdamped particle moves from the maximum
to minimum of the spatially periodic part of the potential (28).
Last but not least, thermal noise is δ-correlated, i.e.,

〈ξ̂ (t̂ )ξ̂ (ŝ)〉 = 2Dδ(t̂ − ŝ). (37)

The dimensionless average velocity of the Brownian particle
〈v̂〉 = (τ0/L)〈v〉 was averaged over the ensemble of 216 =
65 536 thermal noise realizations as well as the initial con-
ditions x̂(0) and v̂(0) distributed uniformly over the interval
[0,1] and [−2; 2], respectively. Each trajectory of the system
was simulated up to the final time t f = 2 × 104 × τ̂ω with
a time step h = 10−3 × τ̂ω where τ̂ω = 2π/ω stands for the
period of the external driving force a cos (ωt̂ ).

In the following part of the paper, we consider the ex-
emplary parameter regime: {m = 1, a = 15, ω = 4, f = 0.1,
D = 10−3}.

In Fig. 1 we show the average velocity 〈v̂〉 of the Brownian
particle as a function of the memory time τ for the static
bias f = 0.1. We compare three results obtained from (i) the
dimensionless GLE (33) via the exact Markovian embedding,
(ii) the effective mass approach with m∗ < m (35), and (iii)
the standard Markovian approximation τ → 0 when m∗ = m.
The first observation is that although the memory time τ is two
orders of magnitude smaller than other characteristic times of
the system like τ̂L = m = 1 or τ0 = 1 the standard Marko-
vian approximation completely fails to predict the average
velocity of the particle 〈v̂〉. One often claims that in such
a case this simplification can be done. This example shows
that it is not true in general and a special caution is needed
even when the memory time τ is much smaller than the other
timescales. In contrast, the average velocity 〈v̂〉 calculated us-
ing the effective mass approach perfectly follows the solution
obtained from the full GLE up to τ ≈ 0.07. The correctness
of the effective mass approach is stable over the variation
of the system parameters. In Fig. 2 we present the average
velocity 〈v̂〉 as a function of the static bias f for the memory
time τ = 0.025. Again, the studied system in the Markovian
limit τ → 0 fails to correctly predict the behavior of the
non-Markovian system, however, the characteristic obtained
for the effective mass approach perfectly fits the original
curve.

0

0.04

0.08

0.12

0.1 1 10 100

τ → 0

〈v̂(
t̂)
〉

t̂

FIG. 3. Time evolution of the mean velocity averaged over the
external driving period 〈v̂〉 for τ = 0.025 and f = 0.1. Other param-
eters are the same as in Fig. 1.

Moreover, this equivalence is not limited only to the
asymptotic long-time state of the system but it is preserved
also in the transient regime. Let us define the velocity aver-
aged over the period T = 2π/ω of the external driving force

v̂(t̂ ) = 1

T

∫ t̂+T

t̂
v̂(s)ds. (38)

In Fig. 3 we show how the velocity 〈v̂(t̂ )〉 evolves from
the initial state of system to its asymptotic regime. The curve
corresponding to the effective mass approach agrees with
the response of the non-Markovian system modeled by the
GLE. This fact must be contrasted with the standard Marko-
vian approximation τ → 0 which is not correct in both the
intermediate and asymptotic situation. Finally, we would
like to note that the range of applicability of the effective
mass approach is not restricted to the case of short mem-
ory time τ � 1. What matters is the relation of the latter
to the characteristic time describing the velocity relaxation
τ̂L = m. When it is long, i.e., m 
 1, then the effective mass
approach can be correct even for the memory time of the
order of the other timescales, e.g., τ ≈ τ0 = 1. In Fig. 4 we
illustrate such a case. The standard Markovian approxima-
tion is defined for τ → 0 when the memory time is much
smaller than the other timescales of the system. Therefore,
one would not expect that the non-Markovian system could
be approximated by the Markovian model when it is not
the case. In contrast, we show that the mass correction in
the effective mass approach correctly reproduces the memory
effects in the Markovian model even when the correlation time
τ is of the order of the other characteristic timescales such
as τ0.

IV. SUMMARY

In conclusion, we presented an approximation that trans-
forms the non-Markovian dynamics in presence of short
memory into Markovian one which captures the memory-
induced properties of the system. Effects of short memory
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FIG. 4. The average velocity 〈v̂〉 of the Brownian particle as a
function of the memory time τ for m = 149, a = 50, ω = 0.2, f =
0.1 and D = 0.01. The effective mass approach is correct up to τ ≈
τ0 = 1.

are reflected there solely in effective mass of the particle
which is determined only by the form of the memory ker-
nel or, equivalently, by the correlation function of thermal

fluctuations. It implies that complexity of the underlying
dynamics can be radically reduced by (i) exploiting the cor-
respondence between the memory and mass correction to
significantly limit the parameter space of the problem and
(ii) transforming the stochastic integrodifferential into the
stochastic differential equation.

This approach works universally for a wide class of in-
tegrable memory kernels provided that the memory time is
much shorter than the characteristic timescale describing the
velocity relaxation. Therefore, our work lays the foundation
for impactful methodology which allows one to study correc-
tions to Markovian dynamics resulting from correlations or
memory in a vast number of systems described by the Gen-
eralized Langevin Equation. These often neglected memory
corrections can radically change the system behavior. Since
the effective mass approach makes investigation of the role of
memory much easier and accessible we expect the emergence
of vibrant follow-up works with insights on non-Markovian
dynamics as well as new memory-induced effects.
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