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Ergodic criterion of a random diffusivity model
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The random diffusivity, initially proposed to explain Brownian yet non-Gaussian diffusion, has garnered
significant attention due to its capacity not only for elucidating the internal physical mechanism of non-Gaussian
diffusion, but also for establishing an analytical framework to characterize particle motion in complex environ-
ments. In this paper, based on the correlation function C(t1, t2) = 〈D(t1)D(t2)〉 of random diffusivity D(t ), we
quantitatively propose a general criterion of determining the ergodic property of the Langevin equation with the
arbitrary random diffusivity D(t ). Due to the critical role of correlation function C(t1, t2), we derive the criterion
for the two cases with stationary diffusivity or nonstationary diffusivity, respectively. By utilizing the quantitative
criterion, we can directly judge the ergodic properties of the random diffusivity model based on the correlation
function C(t1, t2) of random diffusivity D(t ). Several typical diffusivities, including the common square of the
Brownian motion and of the (fractional) Ornstein-Uhlenbeck process, are found to contribute to different ergodic
properties, which validates our proposed criterion built on the correlation function C(t1, t2).
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I. INTRODUCTION

Anomalous diffusion is now generally considered to be a
more common phenomenon in nature than normal diffusion
[1–4]. It has been widely observed in both the microscopic
motion of molecules [5–7] and the macroscopic world [8–10].
The essential physical mechanisms as the underlying causes
of anomalous diffusion have been widely studied in recent
years [11,12], including long-range correlations (the Joseph
effect), fat-tailed probability density of increments (the Noah
effect), and nonstationarity (the Moses effect) [13]. These
different effects lead to deviations from normal diffusion, re-
sulting in anomalous diffusion characterized by the nonlinear
evolution of ensemble-averaged mean-squared displacement
(EAMSD), i.e.,

〈x2(t )〉 ∝ tμ, (1)

with the anomalous exponent μ �= 1 [14,15]. The identifi-
cation of the effects that give rise to anomalous diffusion
holds significant importance, e.g., to determine the system’s
expansion rate [16], rare event statistics [17,18], and crowding
features in the diffusion medium [19–22]. These factors are
crucial for analyzing the statistical properties associated with
the anomalous diffusion processes.

In complex systems, the long-range correlation of one
physical observable, usually characterized by the correlation
function C(t1, t2), is a common tool for analyzing the anoma-
lous dynamics. Based on the character of the correlation
function, the observable can be divided into two categories,
namely the stationary process and the nonstationary process.
The latter is also known as an aging phenomenon [23]. For
stationary processes, its correlation function is a function
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of the time difference, i.e., C(t1, t2) = Ĉ(|t2 − t1|), and the
fundamental theorems show that the stationary correlation
function C(t1, t2) contains some important dynamical infor-
mation about the physical observables [24]. For example, the
fluctuation-dissipation theorem [25] establishes a connection
between the correlation function of the observable being stud-
ied and the imaginary part of the response function in the
frequency domain. The Wiener-Khinchin theorem [26] states
that the autocorrelation function of a wide-sense stationary
random process has a spectral decomposition given by the cor-
responding power spectral density. Khinchin’s theorem [27]
provides the criterion of ergodicity of the process based on
the corresponding stationary correlation function. However,
the nonstationary correlation function C(t1, t2) of the aging
system is more difficult to characterize than the stationary
one, which complicates the theoretical analyses of the aging
system. Based on some specific scaling forms of the non-
stationary correlation function, an extension of Khinchin’s
theorem and the generalized Green-Kubo formula are given
in Refs. [28,29].

Recently, a new class of diffusion dynamics, known as
the Brownian yet non-Gaussian process with the coexistence
of the linear EAMSD and the non-Gaussian probability den-
sity function (PDF), has been discovered in a wide variety
of complex systems [30–32]. This novel family of diffu-
sion processes has a PDF that is exponentially distributed
[33] rather than Gaussian, and a superstatistical technique
[34–36] was used to reveal the physical interpretations of
the non-Gaussian PDF [37]. After that, Chubynsky and
Slater proposed a diffusing diffusivity model with diffusiv-
ity undergoing a random walk [38], and Chechkin et al.
established a minimal model with diffusing diffusivity [39]
under the framework of the Langevin equation to explain the
PDF’s transition from exponential distribution to Gaussian
distribution.
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As a generalization of the superstatistical approach, the
idea of random diffusivity has been applied to analyze the
anomalous diffusion behaviors in complex environments,
e.g., generalized gray Brownian motion [40], the general-
ized Langevin equation [41], and fractional Brownian motion
[42,43]. The physical implication of the diffusivity is that it
exhibits a gradual change in response to slow environmental
variations over an extended timescale [38]. In addition, the
ergodic properties of a general Langevin equation,

d

dt
x(t ) =

√
2D(t )ξ (t ), (2)

are investigated for superstatistical, uncorrelated, or correlated
diffusivity D(t ) [44,45], where x(t ) represents the position
of the particle, and ξ (t ) is Gaussian white noise with mean
〈ξ (t )〉 = 0 and correlation function 〈ξ (t1)ξ (t2)〉 = δ(t1 − t2).
In particular, the ergodic properties of the random diffusivity
model in a harmonic potential have also been investigated
[46].

In fact, the discussions in Ref. [44] are concentrated only
on several specific categories of diffusivity D(t ), without giv-
ing a general conclusion on how the diffusivity influences the
ergodic properties of the random diffusivity model in Eq. (2).
Hence, considering the importance of the correlation function
in analyzing the anomalous diffusion in a nonequilibrium sys-
tem, this paper explores the general criteria of determining the
ergodicity of the random diffusivity model in Eq. (2) through
the correlation function of diffusivity,

C(t1, t2) := 〈D(t1)D(t2)〉. (3)

Based on the explicit form of correlation function C(t1, t2),
the diffusivity D(t ) is classified into two categories, namely
a stationary process and a nonstationary process, in detailed
analyses.

To investigate the ergodic property of the anomalous dif-
fusion process, time-averaged mean-squared displacement
(TAMSD) is one of the most widely used quantities, precisely
defined as [47–49]

δ2(�) = 1

T − �

∫ T −�

0
[x(t + �) − x(t )]2dt, (4)

where the lag time � is much smaller than the total mea-
surement time T for obtaining a good statistical property.
The system is called ergodic if the TAMSD and EAMSD
are equivalent, i.e., δ2(�) = 〈x2(�)〉 as T → ∞, such as
Brownian motion and (tempered) fractional Brownian motion
[50–52]. The scatter of the amplitude of TAMSD is another
main quantity to characterize the ergodic property, which is
denoted by φ(η) with the dimensionless random variable η

defined as [47,48]

η := δ2(�)

〈δ2(�)〉
. (5)

The PDF φ(η) and the variance of η [namely, the ergodic-
ity breaking (EB) parameter] are the common indicators to
classify numerous anomalous diffusion processes in complex
environments.

The structure of this paper is as follows. In Sec. II, we
show the expressions of some basis statistics, such as the

EAMSD and TAMSD, of the random diffusivity model in
Eq. (2). Then we derive the general criteria of determining
the ergodicity of the random diffusivity model in Sec. III. By
taking three specific types of diffusivity D(t ), we verify the
general criteria in Sec. IV. Some discussions and summaries
are put in Sec. V. Finally, we provide some mathematical
details in the Appendixes.

II. STATISTICS OF RANDOM DIFFUSIVITY MODEL

The model studied in this paper is the Langevin equa-
tion with random diffusivity D(t ) in Eq. (2), based on which
some basic quantities have been derived in Ref. [44], such as
the EAMSD,

〈x2(t )〉 = 2
∫ t

0
dt ′

1

∫ t

0
dt ′

2〈
√

D(t ′
1)D(t ′

2)ξ (t ′
1)ξ (t ′

2)〉

= 2
∫ t

0
dt ′

1

∫ t

0
dt ′

2〈
√

D(t ′
1)D(t ′

2)〉δ(t ′
1 − t ′

2)

= 2
∫ t

0
〈D(t ′)〉dt ′, (6)

the correlation function of the displacement x(t ),

〈x(t )x(t + �)〉 = 〈x2(t )〉 = 2
∫ t

0
〈D(t ′)〉dt ′, (7)

and the ensemble-averaged time-averaged mean-squared dis-
placement (EATAMSD),

〈δ2(�)〉 = 1

T − �

∫ T −�

0
〈x2(t + �)〉 − 〈x2(t )〉dt

= 2

T − �

∫ T −�

0

∫ t+�

t
〈D(t ′)〉dt ′dt . (8)

Considering the condition � 	 T , the EATAMSD exhibits
the asymptotic behavior [44]

〈δ2(�)〉 
 2�

T

∫ T

0
〈D(t ′)〉dt ′ = 2�〈D(T )〉, (9)

with D(T ) := 1
T

∫ T
0 D(t )dt representing the time average

of diffusivity D(t ) throughout the entire observation period
[0, T ].

It can be found that although the diffusivity D(t ) is ran-
dom in the Langevin equation (2), the basic quantities, such
as the EAMSD and EATAMSD, depend only on the mean
diffusivity 〈D(t )〉, rather than the specific distribution of D(t ).
In other words, taking the EAMSD and EATAMSD as the
research objects of the overdamped Langevin equation (2),
the random diffusivity with a finite mean would yield the same
diffusion behavior as a fixed diffusivity. Therefore, in addition
to the EAMSD and EATAMSD, the potential influences of
the random diffusivity D(t ) would be uncovered through an
investigation on more detailed quantities, such as the distribu-
tion of the TAMSD or the ergodic properties of the Langevin
equation (2). Another view of research on the potential in-
fluences of the random diffusivity D(t ) is conducted on an
underdamped Langevin equation [53,54].

As for the distribution of the TAMSD, an intuitive phys-
ical explanation between a random walk and the Langevin
equation shows that the number of jumps between a time
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interval (t, t + �) is in proportion to the integral of diffusivity
2

∫ t+�

t D(t ′)dt ′ [44,45]. Considering that the TAMSD has the
same distribution as that of the total number of jumps [55] and
the corresponding expression of the EATAMSD in Eq. (8), the
TAMSD behaves like [44]

δ2(�) 
 2

T − �

∫ T −�

0

∫ t+�

t
D(t ′)dt ′dt . (10)

Furthermore, considering the condition � 	 T , we have a
simpler form for TAMSD, i.e. [44],

δ2(�) 
 2�

T

∫ T

0
D(t )dt = 2�D(T ), (11)

which is consistent with Eq. (9) by taking the ensemble aver-
age on both sides. It can be found that the TAMSD in Eq. (11)
depends on the random diffusivity D(t ) itself, rather than the
mean diffusivity 〈D(t )〉.

To explicitly evaluate the TAMSD δ2(�), one can investi-
gate another two common quantities, namely the scatter PDF
φ(η) quantifying the stochasticity of TAMSD, and the er-
godicity breaking (EB) parameter characterizing the variance
of the TAMSD [44,47,48]. For the random diffusivity model
in Eq. (2), the scatter PDF φ(η) is the distribution of the
dimensionless random variable η,

η = δ2(�)

〈δ2(�)〉

 D(T )

〈D(T )〉 , (12)

for large T , where the asymptotics can be easily obtained
from Eq. (11). Specifically, it holds that φ(η) = δ(η − 1) for
an ergodic process, while a nonergodic process has a broad
distribution of η. The scatter of TAMSD can be measured by
the variance of the dimensionless random variable η, which is
also referred to as the EB parameter:

EB = 〈η2〉 − 〈η〉2 = 〈[δ2(�)]2〉 − 〈δ2(�)〉2

〈δ2(�)〉2
. (13)

By substituting Eq. (12) into Eq. (13) under the condition
� 	 T , we obtain the EB parameter for the random diffu-
sivity model, i.e.,

EB 
 〈[D(T )]2〉 − 〈D(T )〉2

〈D(T )〉2
. (14)

If the EB parameter tends to zero as T → ∞, then η converges
to the distribution δ(η − 1) centering on its mean 〈η〉 = 1.

Although Eq. (11) has been obtained in Ref. [44], it only
shows several kinds of diffusivity D(t ) to verify Eq. (11),
without giving a general criterion on diffusivity that shows the
kind of property of diffusivity D(t ) and how it influences the
ergodic properties of the random diffusivity model in Eq. (2).
Hence this paper fills this gap by giving such a criterion.

III. ERGODICITY RELATED TO DIFFUSIVITY

Before giving the general ergodicity condition of the ran-
dom diffusivity model in Eq. (2), we first present a basic
hypothesis that

〈D(t )〉 � t−1 (15)

for large t , which implies that the integral
∫ t

0 〈D(t ′)〉dt ′ in-
creases over t . This hypothesis guarantees the increase of
the EAMSD 〈x2(t )〉 in Eq. (6). That is to say, the particles
keep diffusing even for the large-time limit. Otherwise, the
EAMSD converges to a positive constant in Eq. (6) and the
EATAMSD converges to zero as T → ∞ in Eq. (9), which
yields an obvious ergodicity breaking. In addition, when D(t )
recovers to a deterministic function, e.g., a power-law one,
D(t ) = tα−1, then Eq. (2) recovers to the scaled Brownian
motion, and the condition 〈D(t )〉 � t−1 is equivalent to the
assumption α > 0 in the discussions of scaled Brownian mo-
tion [56–58].

If the random diffusivity model in Eq. (2) is ergodic,
then the EAMSD and TAMSD are consistent, i.e., 〈x2(�)〉 

δ2(�) for the large-time limit T → ∞. Based on the results
in Sec. II, however, the EAMSD is a deterministic quantity in
Eq. (6), while the TAMSD remains a random variable depend-
ing on D(t ) in Eq. (11). Therefore, the ergodicity implies two
equalities: (i) the TAMSD δ2(�) converges to the EATAMSD
as the measurement T → ∞, i.e.,

δ2(�) 
 〈δ2(�)〉, (16)

and (ii) the EATAMSD should have the same asymptotic
behavior as the EAMSD for large lag time �, i.e.,

〈δ2(�)〉 
 〈x2(�)〉. (17)

Let us first check the second equality in Eq. (17). Substituting
Eqs. (6) and (9) into Eq. (17) yields∫ �

0
〈D(t )〉dt 
 �〈D(T )〉, (18)

which can be rewritten as

1

�

∫ �

0
〈D(t )〉dt 
 1

T

∫ T

0
〈D(t )〉dt . (19)

The asymptotics “
” above is for large lag time �, large
measurement time T , and � 	 T . Considering the hypothesis
in Eq. (15) that the integral of 〈D(t )〉 increases over time,
L’Hospital’s rule can be applied on both sides of Eq. (19),
which yields

〈D(�)〉 
 〈D(T )〉. (20)

Due to the precondition � 	 T when investigating the
TAMSD, Eq. (20) implies that the mean diffusivity 〈D(t )〉
converges to a constant value for large time.

Compared with the second equality in Eq. (17), the first
equality in Eq. (16) implies that the TAMSD δ2(�) has the
property of self-averaging. On the other hand, the asymptotic
behavior of the TAMSD δ2(�) in Eq. (11) implies that δ2(�)
has the same distribution as D(T ). Therefore, the equivalent
condition of Eq. (16) is that the time average of the diffusivity
D(T ) is also self-averaging, which implies the variance of
D(T ) tends to zero, i.e.,

〈D(T )2〉 
 〈D(T )〉2
. (21)

Similar to the procedure of applying L’Hospital’s rule in
Eq. (19), it holds that 〈D(T )〉 
 〈D(T )〉. Hence, Eq. (21) can

044115-3



ZHONGSHUAI ZHAN AND XUDONG WANG PHYSICAL REVIEW E 109, 044115 (2024)

be rewritten as

〈D(T )2〉 
 〈D(T )〉2. (22)

Now we have transformed the first equality in Eq. (16) into
a direct expression of diffusivity D(T ) in Eq. (22). With a
careful observation of Eq. (22), the right-hand side depends on
the mean diffusivity 〈D(T )〉, and the left-hand side depends
on the correlation function of diffusivity C(t1, t2) defined in
Eq. (3). Therefore, the subsequent detailed discussions are
divided into two cases, one for stationary diffusivity where
the correlation function C(t1, t2) only depends on the time
difference |t1 − t2|, and another for nonstationary diffusivity
where C(t1, t2) depends on both t1 and t2.

A. Stationary diffusivity

The well-known Khinchin theorem [27] provides a crite-
rion for the ergodicity of a process in terms of the correspond-
ing stationary correlation function. To keep this section self-
contained, we present the conclusion of Khinchin’s theorem
together with some basic notations.

Denote the state of some system as x, representing a gen-
eral point in the phase space whose dynamics is described
by a one-parameter flow Ft . Consider an observable O(x)
as a measurable function on the state space, which in time
t is O(Ft x). Then we define the finite-time average of the
observable as [28]

O(x, T ) := 1

T

∫ T

0
O(Ft x)dt, (23)

and the ensemble average

〈O〉 :=
∫

O(x)μ(dx), (24)

where μ is a stationary ensemble measure, as well as the
correlation function of the observable O(x) denoted by

CO(t1, t2) := 〈O(Ft1 ·)O(Ft2 ·)〉. (25)

Khinchin’s theorem [27,28,59] states that if the observable O
is a stationary process and its correlation function CO(t1, t2) is
irreversible, i.e., satisfying

lim
|t2−t1|→∞

CO(t1, t2) = 〈O〉2, (26)

then the process is ergodic, i.e.,

lim
T →∞

O(x, T ) = 〈O〉, (27)

for μ almost every x. Equation (27) demonstrates the ex-
istence of the infinite-time limit of the observable O for μ

almost every x, and it indicates that the system reaches a
steady state for large time.

Let us consider our random diffusivity model in Eq. (2),
where D(t ) is the quantity we are concerned with when
checking Eq. (22). Turning the observable O(x) in Khinchin’s
theorem to D(t ), we get the conclusion that if D(t ) is a
stationary process, and its correlation function satisfies the
irreversible relation

lim
|t2−t1|→∞

C(t1, t2) = lim
T →∞

〈D(T )〉2, (28)

then we can get

D(T ) 
 〈D(T )〉 (29)

for large time T . Squaring and taking the ensemble aver-
age on both sides of Eq. (29) yields Eq. (22). Note that
Khinchin’s theorem implies that the mean diffusivity 〈D(t )〉
on the right-hand side of Eq. (28) tends to a constant, which
validates the second equality in Eq. (17). Therefore, based
on Khinchin’s theorem, when the stationary diffusivity D(t )
satisfies Eq. (28), it signifies the presence of ergodic behavior
of the random diffusivity model.

B. Nonstationary diffusivity

The second type of diffusivity D(t ) is characterized by a
nonstationary process, where the correlation function C(t1, t2)
depends not only on the lag time |t1 − t2|, but also on t1 or t2.
Assuming that t1 < t2, t1 is also called the age of the system,
and the detailed analyses are commonly conducted under the
assumption that the correlation function C(t1, t2) obeys some
asymptotic scaling form [28,29].

Here we assume that [29]

C(t1, t2) 
 tν−2
1 φ

(
t2 − t1

t1

)
(30)

for large t1, t2 and t1 < t2, where the parameter ν and the
scaling function φ(·) vary for different diffusion processes.
This scaling form is effective for the majority of the non-
stationary process, and based on this scaling form, we can
directly calculate the second moment of D(T ):

〈D(T )2〉 = 1

T 2

∫ T

0

∫ T

0
C(t1, t2)dt1dt2

= 2

T 2

∫ T

0

∫ t2

0
C(t1, t2)dt1dt2


 2

T 2

∫ T

0

∫ t2

0
t1

ν−2φ

(
t2 − t1

t1

)
dt1dt2. (31)

After the substitution (t1, t2) → (s, t2), where s = t2−t1
t1

, we
find the result

〈D(T )2〉 
 2

T 2

∫ T

0
t2

ν−1dt2

∫ +∞

0
(s + 1)−νφ(s)ds

= 2T ν−2

ν

∫ +∞

0
(s + 1)−νφ(s)ds, (32)

where T represents the entire observation time, the scaling
function is φ(s), and the parameter ν can be obtained by com-
paring the correlation function of a specific diffusivity D(t )
with the scaling form in Eq. (30). Now we can determine the
condition for Eq. (22) to be established through the correlation
function of diffusivity D(t ), which is

2T ν−2

ν

∫ +∞

0
(s + 1)−νφ(s)ds 
 〈D(T )〉2. (33)

Note that Eq. (33) only guarantees the first equality in
Eq. (16), i.e., the TAMSD is self-averaging. Furthermore,
considering the second equality in Eq. (17) requires that the
mean diffusivity tends to a constant, i.e., the right-hand side
of Eq. (33) is a constant. Therefore, for an ergodic process,
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the left-hand side is also a constant, which implies ν = 2 and
the integral

∫ +∞
0 (s + 1)−νφ(s)ds converges. In other words,

there is a direct way to identify the nonergodic properties
of the random diffusivity model in Eq. (2). By rewriting the
correlation function of the diffusivity D(t ) into the scaling
form as Eq. (30), if ν �= 2 or the integral

∫ +∞
0 (s + 1)−νφ(s)ds

diverges, then Eq. (2) must be nonergodic.
The utilization of Eq. (28) [and Eq. (33)] as a criterion for

assessing the ergodicity of a diffusion process in the presence
of a stationary (and nonstationary) diffusivity D(t ) enables
us to directly analyze the impact of the diffusivity’s property
of particle motion in complex environments. This innovative
perspective facilitates the investigation of statistical properties
related to particle motion, and it provides insights into the
internal physical mechanisms underlying external diffusion
behaviors.

IV. SEVERAL SPECIFIC RANDOM DIFFUSIVITIES

In this section, we take several specific stationary and non-
stationary diffusivities D(t ) to validate the ergodic criterion
given in Sec. III. Since the diffusivity D(t ) is non-negative
in the random diffusivity model, we choose D(t ) = Y 2(t ),
with Y (t ) being some common diffusion process, such as
the Ornstein-Uhlenbeck (OU) process [39], Brownian motion,
and reflected Brownian motion [44]. In particular, to compare
with the OU process, which is stationary, we also choose Y (t )
to be the nonstationary fractional OU process.

A. D(t ) = Y 2(t )

The first selected diffusivity is the square of the OU process
D(t ) = Y 2(t ), where the OU process is modeled as [60–62]

dY (t )

dt
= −θY (t ) + σω(t ), (34)

where θ and σ are fixed parameters and ω(t ) is Gaussian
white noise. Assuming the initial condition is Y (0) = 0, we
can solve Eq. (34) through the Laplace transform and obtain

Y (t ) = σ

∫ t

0
e−θ (t−u)ω(u)du. (35)

The OU process Y (t ) tends to a steady state with a constant
second moment, which is also the mean of diffusivity D(t ):

〈D(t )〉 = 〈Y 2(t )〉 = σ 2

2θ

(
1 − e−2θt

) 
 σ 2

2θ
. (36)

In fact, the diffusivity D(t ) also tends to be stationary as its
second moment also converges to a constant, which can be
found from the correlation function of the diffusivity D(t ):

C1(t1, t2) = 〈Y 2(t1)Y 2(t2)〉


 σ 4

4θ2

(
2e−2θ (t2−t1 ) + 1

)
. (37)

The detailed calculations are conducted by using Itô’s lemma,
and they are presented in Appendix A. On the other hand,
from Eq. (36) we directly obtain the asymptotic behavior of
the square of mean diffusivity,

〈D(t )〉2 
 σ 4

4θ2
. (38)

10-1 100 101 102 103
10-2

100

102

104

 t
 

 t2

FIG. 1. EAMSD 〈x2(t )〉 and EATAMSD 〈δ2(�)〉 (red solid lines)
as well as five individual time traces δ2(�) (blue markers) for the
random diffusivity model in Eq. (2), plotted vs (lag) time. The
physical time t corresponds to EAMSD 〈x2(t )〉, while the lag time �

corresponds to the time averages 〈δ2(�)〉 and δ2(�). The theoretical
results for 〈x2(t )〉 in Eq. (6) and 〈δ2(�)〉 in Eq. (9) are shown by
black dashed lines. Both of the theoretical results coincide with the
simulated markers when the diffusivity D(t ) is taken as the square
of the OU process Y 2(t ). Other parameters: the measurement time is
T = 103, the number of trajectories used for ensemble is 103, and the
initial position is x0 = 0.

Combining Eqs. (37) and (38), we find that D(t ) is stationary
and satisfies the irreversible condition in Eq. (28). Therefore,
when the diffusivity is the square of the OU process, i.e.,
D(t ) = Y 2(t ) considered in Ref. [39], the random diffusivity
model in Eq. (2) is ergodic.

Further, for the stationary diffusivity D(t ) in this case, we
can still calculate the second moment of D(t ) with a similar
procedure to Eq. (31). By substituting the second moment of
D(t ) and Eq. (38) into Eq. (14), we obtain the EB parameter

EB 

(

1

θ
+ 2

σ 2

)
T −1, (39)

which decay to zero at the rate of T −1.
In Fig. 1, we show the simulations of the 〈x2(t )〉, 〈δ2(�)〉,

and five individual time traces δ2(�) based on the random
diffusivity model in Eq. (2) with diffusivity D(t ) = Y 2(t ),
together with the theoretical lines of 〈x2(t )〉 and 〈δ2(�)〉 ob-
tained by substituting 〈D(t )〉 into Eqs. (6) and (9). At the
large-time limit, the two MSDs, 〈x2(t )〉 and 〈δ2(�)〉, coincide
with each other, and they also overlap with the simulation
results. Five individual time traces δ2(�) coincide with each
other when � 	 T , which is consistent with the theoretical
ergodic behavior of this case. In Fig. 2, we show the cor-
responding amplitude scatter PDF φ(η). The dimensionless
random variable η exhibits a narrow distribution similar to
δ(η − 1), which is in accordance with the behavior of the EB
parameter decaying to zero as t → ∞. This also suggests that
TAMSD is self-averaging and converges to its ensemble aver-
age at T → ∞, providing further evidence for the validation
of ergodic behavior when Y (t ) is an OU process.
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FIG. 2. Amplitude scatter PDF φ(η) for the random diffusivity
D(t ) = Y 2(t ), where Y (t ) is an OU process. The markers (circle,
square, star) denote the simulations for � (= 1, 10, 100), respec-
tively. The solid lines are obtained by making simulations directly
on the trajectories of diffusivity D(t ) based on the theoretical re-
sult η 
 D(t )/〈D(t )〉 in Eq. (12). Due to the condition � 	 T , the
circle markers (� = 1) are more consistent than the star markers
(� = 100) with the solid lines. Other parameters: the measurement
time is T = 103, the number of trajectories used for ensemble is 103,
and the initial position is x0 = 0.

B. D(t ) = Y 2(s(t ))

The second diffusivity D(t ) is the square of the fractional
OU process D(t ) = Y 2(s(t )), where the fractional OU process
Y (s(t )) is described as [61]

dY (s)

ds
= −θY (s) + σζ (s),

dt (s)

ds
= τ (s), (40)

where Y (s) and t (s) denote the position and time in physical
space, and the Gaussian white noise ζ (s) and fully skewed
α-stable (0 < α < 1) Lévy noise τ (s) are independent and
responsible for the stochastic characters of the process Y (s(t ))
[63,64]. We are interested in the process Y (s(t )), i.e., the
evolution of the random variable Y with respect to the physical
time t .

For the characterization of the process, we introduce the
two-point joint PDFs [1,11]:

f1(y2, s2; y1, s1) = 〈δ(y2 − Y (s2))δ(y1 − Y (s1))〉,
h(s2, t2; s1, t1) = δ(s2 − s(t2))δ(s1 − s(t1))〉,
f (y2, t2; y1, t1) = 〈δ(y2 − Y (s(t2)))δ(y1 − Y (s(t1)))〉,

(41)

where f1(y2, s2; y1, s1) represents the two-point PDF of the
corresponding Markovian process Y (s) defined in Eq. (40),
h(s2, t2; s1, t1) denotes the two-point PDF of the inverse sub-
ordinator s(t ), and f (y2, t2; y1, t1) signifies the two-point PDF
of the fractional OU process Y (s(t )). The last one can be

formulated as

f (y2, t2; y1, t1) = 〈δ(y2 − Y (s2))δ(s2 − s(t2))

× δ(y1 − Y (s1))δ(s1 − s(t1))〉

=
∫ ∞

0

∫ ∞

0
ds1ds2h(s2, t2; s1, t1)

× f1(y2, s2; y1, s1), (42)

where the two processes Y (s) and t (s) are statistically in-
dependent in the relationship above. The Laplace transform
(t1 ↔ λ1 and t2 ↔ λ2) of h(s2, t2; s1, t1) is given by [65]

h̃(s2, λ2; s1, λ1) = δ(s2 − s1)
λα

1 − (λ1 + λ2)α + λα
2

λ1λ2

× e−s1(λ1+λ2 )α + �(s2 − s1)

× (λα
2 )

[
(λ1 + λ2)α − λα

2

]
λ1λ2

× e−(λ1+λ2 )αs1 e−λα
2 (s2−s1 ) + �(s1 − s2)

×
(
λα

1

)[
(λ1 + λ2)α − λα

1

]
λ1λ2

× e−(λ1+λ2 )αs2 e−λα
1 (s1−s2 ), (43)

where �(·) is the Heaviside step function.
The correlation function of the random diffusivity D(t ) is

given by

C2(t1, t2) = 〈Y 2(s(t1))Y 2(s(t2))〉

=
∫ ∞

0

∫ ∞

0
ds1ds2〈Y 2(s1)Y 2(s2)〉h(s2, t2; s1, t1),

(44)

where 〈Y 2(s1)Y 2(s2)〉 represents the correlation function of
the square of the OU process Y (s) and has been obtained in
Eq. (37). Then we perform the Laplace transform on both
sides, substitute Eqs. (37) and (43) into Eq. (44), and obtain
(see Appendix B for the details)

L{C2(t1, t2)} 
 σ 4

2θ2

λα
1

λ1λ2(λ1 + λ2)α

+ σ 4

2θ2

λα
2

λ1λ2(λ1 + λ2)α
− σ 4

4θ2

1

λ1λ2
. (45)

The inverse Laplace transform leads to the result with t1 < t2,

C2(t1, t2) 
 σ 4

4θ2
+ σ 4

2θ2
I

(
t1
t2

; α, 1 − α

)
, (46)

where I (z; α, 1 − α) is the normalized Beta function, defined
as

I (z; a, b) = B(z; a, b)

B(a, b)
, (47)

and

B(z; a, b) =
∫ z

0
ya−1(1 − y)b−1dy (48)

is the incomplete Beta function [66]. The correlation function
in Eq. (46) implies that the diffusivity D(t ) is a nonstationary
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process. Therefore, we check the correlation function through
the scaling form in Eq. (30), and we find that ν = 2, and

φ(s) = σ 4

4θ2
+ σ 4

2θ2
I

(
1

1 + s
; α, 1 − α

)
. (49)

Substituting the φ(s) above into Eq. (32) yields the second
moment of time-averaged diffusivity D(T ),

〈D(T )2〉 

∫ +∞

0
(s + 1)−2φ(s)ds

= σ 4

4θ2
+ σ 4

2θ2

∫ 1

0
I (z; α, 1 − α)dz. (50)

To check the ergodicity condition in Eq. (22), we also need
to evaluate the first moment of diffusivity 〈D(t )〉, which can
be expressed by

〈D(t )〉 = 〈Y 2(s(t ))〉 =
∫ ∞

0
〈Y 2(s)〉h(s, t )ds. (51)

Similar to the two-point PDF h̃(s2, λ2; s1, λ1) in Eq. (43), the
single-point PDF in Laplace transform h̃(s, λ) has also been
given in Ref. [65]:

h̃(s, λ) = λα−1e−sλα

. (52)

Therefore, performing the Laplace transform on Eq. (51) and
utilizing the single-point PDF h̃(s, λ) of inverse subordinator
s(t ) yield

〈D(T )〉 
 σ 2

2θ
. (53)

Combining Eqs. (50) and (53), we find

〈D(T )2〉 �= 〈D(T )〉2, (54)

which means that the condition in Eq. (33) fails. Therefore,
when the diffusivity is the fractional OU process, i.e., D(t ) =
Y 2(s(t )), the random diffusivity model in Eq. (2) is noner-
godic. The corresponding EB parameter is

EB 
 2
∫ 1

0
I (z; α, 1 − α)dz, (55)

which is a nonzero constant.
We show the simulation of MSDs, the amplitude scatter

PDF φ(η), and corresponding EB parameters for the random
diffusivity model with diffusivity D(t ) = Y 2(s(t )) in Figs. 3–
6. In Fig. 3, the simulations of EAMSD and EATAMSD
deviate in a short time but coincide at a long time, which is
consistent with the theoretical results of Eqs. (6) and (9). The
five individual time averages δ2(�) from different trajectories
show a near-parallel relationship, which implies the noner-
godic behavior of the model, consistent with the conclusion
in Eq. (54). On the other hand, the broad distribution of φ(η)
in Figs. 4 and 5 and the convergence of the EB parameter to a
nonzero constant in Fig. 6 also imply the ergodicity breaking.

The case with the fractional OU process Y (t ) provides
a stark contrast to the case with the OU process Y (t ) dis-
cussed in Sec. IV A. More precisely, for the OU process Y (t ),
the diffusivity D(t ) is stationary, and the two equalities in
Eqs. (16) and (17) are both valid so that the random diffusivity
model is ergodic, while for the fractional OU process Y (t ), the

10-2 100 102 104
10-2

100

102

104

106

 
 t

FIG. 3. EAMSD 〈x2(t )〉 and EATAMSD 〈δ2(�)〉 (red solid lines)
as well as five individual time traces δ2(�) (blue markers) for the
random diffusivity model in Eq. (2), plotted vs (lag) time. The
physical time t corresponds to EAMSD 〈x2(t )〉, while the lag time �

corresponds to the time averages 〈δ2(�)〉 and δ2(�). The theoretical
results for 〈x2(t )〉 in Eq. (6) and 〈δ2(�)〉 in Eq. (9) are shown by
black dashed lines. When the diffusivity D(t ) is taken as the square of
the fractional OU process Y 2(s(t )), the theoretical results of 〈δ2(�)〉
coincide with the simulated markers. The long-term consistency be-
tween the theoretical value of 〈x2(t )〉 and 〈δ2(�)〉 corresponds to the
tendency to a constant of the mean diffusivity 〈D(t )〉 in Eq. (53).
Other parameters: the measurement time is T = 104, the number
of trajectories used for ensemble is 103, and the initial position is
x0 = 0.
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FIG. 4. Amplitude scatter PDF φ(η) for diffusing diffusivity:
D(t ) = Y 2(s(t )), where Y (s(t )) is the fractional OU process. The
markers (circle, square, star) denote the simulations for � (= 1,
10, 100), respectively. The solid lines are obtained by making sim-
ulations directly on the trajectories of diffusivity D(t ) based on the
theoretical result η 
 D(t )/〈D(t )〉 in Eq. (12). Due to the condition
� 	 T , the circle markers (� = 1) are more consistent than the
star markers (� = 100) with the solid lines. Other parameters: the
measurement time is T = 103, the number of trajectories used for
ensemble is 103, and the initial position is x0 = 0.
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FIG. 5. Amplitude scatter PDF φ(η) for diffusing diffusivity:
D(t ) = Y 2(s(t )), where Y (s(t )) is the fractional OU process. The
markers (triangle, cross, rhombus) denote the simulations for T (=
100, 10 000, 10 000), respectively. The solid lines are obtained by
making simulations directly on the trajectories of diffusivity D(t )
based on the theoretical result η 
 D(t )/〈D(t )〉 in Eq. (12). Other
parameters: the lag time is � = 1, the number of trajectories used
for ensemble is 103, and the initial position is x0 = 0.

diffusivity D(t ) is nonstationary. The mean diffusivity tends to
a constant in Eq. (53), which guarantees the second equality
in Eq. (17). However, the condition in Eq. (33) fails so that
the first equality in Eq. (16) breaks. Thus the TAMSD is not
self-averaging even for large measurement time T , and the
random diffusivity model is nonergodic.

C. D(t ) = |B(t )| and D(t ) = B2(t )

The last category of diffusivity D(t ) is the reflected Brow-
nian motion [67–69] and the squared of Brownian motion

101 103 105

0.5

1.5

5

D(t)=Y2(s(t))

FIG. 6. EB parameter vs entire observation time T with diffusiv-
ity D(t ) = Y 2(s(t )). The star markers converge to a nonzero constant
for a long time, and this constant agrees with the theoretical result
in Eq. (55). Other parameters: the lag time is � = 1, the number
of trajectories used for ensemble is 104, and the initial position is
x0 = 0.

[70–72]. Since the standard Brownian motion B(t ) has sta-
tionary and independent increments, the two-point joint PDF
of (B(t1), B(t2)) is

g(x2, t2; x1, t1) = p(x1, t1)p(x2 − x1, t2 − t1) (56)

for t1 < t2, where

p(x; t ) = 1√
2πt

exp

(
−x2

2t

)
. (57)

When diffusivity D(t ) is the reflected Brownian motion,
i.e., D(t ) = |B(t )|, based on Eq. (56), we get the correlation
function

C3(t1, t2) = 〈|B(t1)B(t2)|〉

=
∫ +∞

−∞

∫ +∞

−∞
|x1x2|g(x2, t2; x1, t1)dx1dx2

= 2t1
π

[√
t2 − t1

t1
+ arccot

(√
t2 − t1

t1

)]
, (58)

which indicates that ν = 3 in Eq. (30) and

φ(s) = 2

π
(
√

s + arccot (
√

s)). (59)

Then we substitute ν and φ(s) into Eq. (32), and we obtain the
second moment of D(T ), i.e.,

〈D(T )2〉 = 2T

3

∫ +∞

0
(s + 1)−3φ(s)ds = 3T

8
. (60)

On the other hand, based on Eq. (57), the first moment of
diffusivity D(t ) is

〈D(T )〉 = 〈|B(T )|〉 =
√

2T

π
, (61)

which implies that

〈D(T )2〉 �= 〈D(T )〉2. (62)

Consequently, when D(t ) = |B(t )|, the random diffusivity
model in Eq. (2) is nonergodic. The corresponding EB param-
eter can also be obtained as

EB = 27π

64
− 1. (63)

Similarly, when the diffusivity D(t ) is the square of Brow-
nian motion, i.e., D(t ) = B2(t ), by assuming t1 < t2 and using
the independent and stationary increments of Brownian mo-
tion B(t ), we have

C4(t1, t2) = 〈B2(t1)B2(t2)〉
= 〈B2(t1)[B(t2) − B(t1) + B(t1)]2〉
= 〈B4(t1) + B2(t1)[B(t2) − B(t1)]2〉
= 2t2

1 + t1t2, (64)

which indicates that diffusivity D(t ) is a nonstationary pro-
cess. From the asymptotic scaling form of Eq. (30), we can
get ν = 4 and

φ(s) = 3 + s. (65)
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  (a): D(t)=|B(t)| (b): D(t)=B2(t)

 t2

FIG. 7. EAMSD 〈x2(t )〉 and EATAMSD 〈δ2(�)〉 (red solid lines) as well as five individual time traces δ2(�) (blue markers) for the random
diffusivity model in Eq. (2), plotted vs (lag) time. The physical time t corresponds to EAMSD 〈x2(t )〉, while the lag time � corresponds to the
time averages 〈δ2(�)〉 and δ2(�). The theoretical results for 〈x2(t )〉 in Eq. (6) and 〈δ2(�)〉 in Eq. (9) are shown by black dashed lines. Both
of these theoretical results coincide with the simulated values when the diffusivity D(t ) is taken as |B(t )| in (a) and B2(t ) in (b), where B(t ) is
the Brownian motion. Other parameters: the measurement time is T = 103, the number of trajectories used for ensemble is 103, and the initial
position is x0 = 0.

Substituting the above results into Eq. (32) yields

〈D(T )2〉 = T 2

2

∫ +∞

0
(s + 1)−4φ(s)ds = 7T 2

12
. (66)

However, the first moment of D(T ) is

〈D(T )〉 = 〈B2(T )〉 = T, (67)

which also shows that 〈D(T )2〉 �= 〈D(T )〉2. Therefore, the
random diffusivity model in Eq. (2) with the diffusivity
D(t ) = B2(t ) is also nonergodic. The corresponding EB pa-
rameter is also nonzero, which is

EB = 4
3 . (68)

We show the simulation of MSDs, the amplitude scatter
PDF φ(η), and the EB parameters for the random diffusivity
model with diffusivity D(t ) = |B(t )| [in (a)] and D(t ) = B2(t )
[in (b)] in Figs. 7–10, respectively. In Fig. 7, the discrepancy
between the EAMSD and TAMSD implies nonergodic behav-
ior. Furthermore, the five individual times δ2(�) in both (a)
and (b) remain parallel for � 	 T , which indicates that the
TAMSD is not self-averaging and has a broad distribution, as
shown in Figs. 8 and 9. The theoretical lines in Figs. 8 and
9 are obtained by using Eq. (12) and making simulations di-
rectly on the trajectories of diffusivity D(t ) without simulating
the Langevin equation (2). In Fig. 10, the EB parameter tends
towards nonzero constants as T → ∞, thereby corroborating
the findings of the broad distribution φ(η) in Figs. 8 and 9.

Although the direct way of finding the ergodicity breaking
of the random diffusivity model in Eq. (2), i.e., whether the
parameter ν is equal to 2, can be applied for the cases D(t ) =
|B(t )| and D(t ) = B2(t ), we evaluate all the related quanti-
ties, including the second moment of D(T ), mean diffusivity
〈D(T )〉, and EB parameter for a comprehensive understanding
of the diffusion behavior of the diffusivity D(t ). It can be
found that ν �= 2, and the mean diffusivity 〈D(T )〉 does not
tend to a constant for both cases here, which implies that

neither of the two equalities in Eqs. (16) and (17) works, in
contrast with the examples in Secs. IV A and IV B.

In addition to the MSDs analyzed above, we show some
sample trajectories with four kinds of diffusivities D(t ) in
Fig. 11 to enhance the intuitive understanding of the random
diffusivity processes. Based on the mean diffusivity 〈D(t )〉
in Eqs. (36), (53), (61), and (67), the larger 〈D(t )〉 implies
greater fluctuations, which can be found by comparing the
vertical coordinates of the four graphs in Fig. 11. Although
the trajectories exhibit similar fluctuations in (a) and (b) re-
sulting from the same value of 〈D(t )〉, some segments of the
trajectories in (b) are almost flat due to the presence of the
inverse subordinate s(t ) in the fractional OU process Y (s(t )).

V. CONCLUSION

The application of random diffusivity D(t ) to the physical
models describing the particle’s motion in complex systems
offers us a broader perspective for comprehending stochastic
dynamics. When investigating the ergodic property of the ran-
dom diffusivity model in Eq. (2), we found that the EAMSD
and EATAMSD depend only on the mean diffusivity 〈D(t )〉,
and the specific distribution of D(t ) might determine the dis-
tribution of the TAMSD in Refs. [44,45]. Therefore, for a
deeper examination of the ergodic property of the random dif-
fusivity processes, we propose in this paper a general ergodic
criterion for determining the ergodic property of the Langevin
equation with an arbitrary random diffusivity D(t ).

Since the ergodicity implies consistency between the
EAMSD and TAMSD, i.e., 〈x2(�)〉 
 δ2(�), both equalities
in Eqs. (16) and (17) should be satisfied. The same diffusion
behavior of the EAMSD and EATAMSD in Eq. (17) is found
to be equivalent to the tendency to zero of the mean diffu-
sivity 〈D(t )〉 in Eq. (20). As for Eq. (16), which implies the
self-averaging property of the TAMSD, it is not easy to inter-
pret directly. Inspired by Khinchin’s theorem, which provides
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(a):D(t)=|B(t)| (b): D(t)=B2(t)

FIG. 8. Amplitude scatter PDF φ(η) for two kinds of diffusivity: the diffusivity D(t ) is taken as |B(t )| in (a) and B2(t ) in (b), where B(t ) is
the Brownian motion. The markers (circle, square, star) denote the simulations for � (= 1, 10, 100), respectively. The solid lines are obtained
by making simulations directly on the trajectories of diffusivity D(t ) based on the theoretical result η 
 D(t )/〈D(t )〉 in Eq. (12). Due to the
condition � 	 T , the circle markers (� = 1) are more consistent than the star markers (� = 100) with the solid lines. Other parameters: the
measurement time is T = 103, the number of trajectories used for ensemble is 103, and the initial position is x0 = 0.
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(b):D(t)=B2(t)(a):D(t)=|B(t)|

FIG. 9. Amplitude scatter PDF φ(η) for two kinds of diffusivity: the diffusivity D(t ) is taken as |B(t )| in (a) and B2(t ) in (b), where B(t )
is the Brownian motion. The markers (triangle, cross, rhombus) denote the simulations for T (= 100, 10 000, 10 000), respectively. The solid
lines are obtained by making simulations directly on the trajectories of diffusivity D(t ) based on the theoretical result η 
 D(t )/〈D(t )〉 in
Eq. (12). Other parameters: the lag time is � = 1, the number of trajectories used for ensemble is 103, and the initial position is x0 = 0.
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(a): D(t)=|B(t)| (b):D(t)=B2(t)

FIG. 10. EB parameter vs entire observation time T with two kinds of diffusivity: D(t ) = |B(t )| in (a) and D(t ) = B2(t ) in (b). Instead of
decaying to zero, the star markers converge to a constant for a long time. This constant agrees with the theoretical result in Eq. (63) in (a) and
Eq. (68) in (b). Other parameters: the lag time is � = 1, the number of trajectories used for ensemble is 104, and the initial position is x0 = 0.
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FIG. 11. Sample trajectories with different diffusivity D(t ),
which is Y 2(t ) in (a), Y 2(s(t )) in (b), |B(t )| in (c), and B2(t ) in (d).
Here, Y (t ) is the OU process, Y (s(t )) is the fractional OU process,
and B(t ) is the Brownian motion. Other parameters: the measurement
time is T = 103, the number of trajectories in each graph is 30, and
the initial position is x0 = 0.

the criterion of ergodicity based on the stationary correlation
function of the concerned observable, we find the correlation
function C(t1, t2) of the diffusivity D(t ) plays the dominating
role in the statistical property of the TAMSD in the random
diffusivity model. Therefore, the detailed theoretical analyses
are divided into two cases distinguished by whether the diffu-
sivity D(t ) is stationary or not. Further, we propose the criteria
in Eq. (28) for the stationary diffusivity and in Eq. (33) for the
nonstationary diffusivity, respectively.

To verify our proposed criteria, we choose three categories
of diffusivity D(t ) in Sec. IV: the two equalities in Eqs. (16)

and (17) are satisfied and the system is ergodic in Sec. IV A,
the second equality is satisfied but the first equality fails so
that the system is nonergodic in Sec. IV B, and both equalities
fails and the system is obviously nonergodic in Sec. IV C. The
separate discussions of the two equalities and the carefully
selected examples help us to understand more thoroughly the
statistical property of the TAMSD. Actually, we have omitted
another typical anomalous diffusion process, namely scaled
Brownian motion with a deterministic diffusivity D(t ) = tα−1.
The investigation of the ergodic property of the scaled Brow-
nian motion implies that the first equality is satisfied but the
second equality fails for α �= 1 [44,56–58]. Since this paper
aims to propose the general criterion of the ergodic property
for arbitrary random diffusivity D(t ), we omit the example of
scaled Brownian motion in Sec. IV.

For the nonergodic cases in Sec. IV, the TAMSD is not
self-averaging and it has a broad distribution φ(η), which
shows a great similarity with the heterogeneous diffusion
processes with a space-dependent diffusivity D(x) discussed
in Ref. [73]. This might reveal some commonalities of the
anomalous diffusion phenomena in complex heterogenous en-
vironments. In addition, since the value of the diffusivity D(t )
can be regarded as the degree of diffusion at a physical time t ,
the results in this paper are also instructive in the investigation
of the ergodic properties of correlated random walks where
the correlation of the jump lengths can be characterized simi-
larly to C(t1, t2) = 〈D(t1)D(t2)〉 here.
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APPENDIX A: THE CORRELATION FUNCTION OF Y 2(t ) IN EQ. (37)

Following Eq. (35), Y (t ) can be rewritten as

Y (t ) = σ

∫ t

0
e−θ (t−u)ω(u)du := σe−θt Z (t ). (A1)

Based on Eq. (A1), we can calculate the moments of Y (t ) as

〈Y (t )〉 = 0, 〈Y 2(t )〉 = σ 2

2θ
(1 − e−2θt ). (A2)

So the correlation function of Y 2(t ) when t < s is

〈Y 2(t )Y 2(s)〉 = σ 4e−2θ (t+s)〈Z2(t )Z2(s)〉
= σ 4e−2θ (t+s)〈Z2(t )[Z (s) − Z (t ) + Z (t )]2〉
= σ 4e−2θ (t+s)(〈Z4(t )〉 + 2〈Z3(t )[Z (s) − Z (t )]〉 + 〈Z2(t )[Z (s) − Z (t )]2〉)

= σ 4e−2θ (t+s)(〈Z4(t )〉 + 〈Z2(t )〉〈[Z (s) − Z (t )]2〉)

= σ 4e−2θ (t+s)

(〈(∫ t

0
eθuω(u)du

)4
〉

+
〈(∫ t

0
eθuω(u)du

)2
〉〈(∫ s

t
eθvω(v)dv

)2
〉)

. (A3)
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To simplify the calculation, we define It = ∫ t
0 eθuω(u)du. From Itô’s lemma, we can get

d
(
I4
t

) = 4I3
t eθtω(t )dt + 6I2

t e2θt dt, (A4)

and then we know 〈(∫ t

0
eθuω(u)du

)4
〉

=
〈∫ t

0
d
(
I4
t

)〉 =
〈∫ t

0
4I3

u eθuω(u)du

〉
+

〈∫ t

0
6I2

u e2θudu

〉

= 6
∫ t

0

〈
I2
u

〉
e2θudu

= 6
∫ t

0

(e2θu − 1)

2θ
e2θudu

= 3e4θt

4θ2
− 3e2θt

2θ2
+ 3

4θ2
. (A5)

For the other one, we can directly calculate〈(∫ t

0
eθuω(u)du

)2
〉〈(∫ s

t
eθvω(v)dv

)2
〉

=
∫ t

0
e2θudu

∫ s

t
e2θvdv = (e2θt − 1)

2θ

(e2θs − e2θt )

2θ
. (A6)

Combining the results of Eq. (A5) and (A6), we can get the value of Eq. (A3):

〈Y 2(t )Y 2(s)〉 = σ 4e−2θ (t+s)

(
3e4θt

4θ2
− 3e2θt

2θ2
+ 3

4θ2
+ (e2θt − 1)

2θ

(e2θs − e2θt )

2θ

)

= σ 4

4θ2
(1 − e−2θt − 5e−2θs + 2e−2θ (s−t ) + 3e−2θ (t+s) ) 
 σ 4

4θ2
(1 + 2e−2θ (s−t ) ) (A7)

for large t and s.

APPENDIX B: THE CORRELATION FUNCTION OF Y 2(s(t )) IN EQ. (45)

Based on Eq. (A7) in the case of the OU process Y (t ), we can write the correlation function of the square of the OU process
Y (s) as

〈Y 2(s1)Y 2(s2)〉 = σ 4

4θ2

(
1 − e−2θs1 − 5e−2θs2 + 2e−2θ |s2−s1| + 3e−2θ (s1+s2 )

)
. (B1)

Then we combine Eqs. (43) and (B1) and get the correlation function of the square of the fractional OU process Y (s(t )) in
Laplace space as

L{〈Y 2(t1)Y 2(t2)〉} =
∫ ∞

0

∫ ∞

0
h̃(s2, λ2; s1, λ1)〈Y 2(s1)Y 2(s2)〉ds1ds2

= 3σ 4

4θ2

[
λα

1 − (λ1 + λ2)α + λα
2

]
λ1λ2

[
1

(λ1 + λ2)α
− 2

2θ + (λ1 + λ2)α
+ 1

4θ + (λ1 + λ2)α

]

+ σ 4

4θ2

(
λα

2

)[
(λ1 + λ2)α − λα

2

]
λ1λ2

[
1

λα
2 − (λ1 + λ2)α

(
1

(λ1 + λ2)α
− 1

λα
2

− 5

2θ + (λ1 + λ2)α
+ 5

2θ + λα
2

)

− 1

λα
2 − 2θ − (λ1 + λ2)α

(
1

2θ + (λ1 + λ2)α
− 1

λα
2

)
+ 2

λα
2 + 2θ − (λ1 + λ2)α

(
1

(λ1 + λ2)α
− 1

2θ + λα
2

)

+ 3

λα
2 − 2θ − (λ1 + λ2)α

(
1

4θ + (λ1 + λ2)α
− 1

2θ + λα
2

)]

+ σ 4

4θ2

(
λα

1

)[
(λ1 + λ2)α − λα

1

]
λ1λ2

[
1

λα
1 − (λ1 + λ2)α

(
1

(λ1 + λ2)α
− 1

λα
1

− 5

2θ + (λ1 + λ2)α
+ 5

2θ + λα
1

)

− 1

λα
1 − 2θ − (λ1 + λ2)α

(
1

2θ + (λ1 + λ2)α
− 1

λα
1

)
+ 2

λα
1 + 2θ − (λ1 + λ2)α

(
1

(λ1 + λ2)α
− 1

2θ + λα
1

)

+ 3

λα
1 − 2θ − (λ1 + λ2)α

(
1

4θ + (λ1 + λ2)α
− 1

2θ + λα
1

)]
. (B2)
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Considering the asymptotic behavior λ1, λ2 → 0 and keeping the leading terms yields

L{〈Y 2(t1)Y 2(t2)〉} 
 3σ 4

4θ2

[
λα

1 − (λ1 + λ2)α + λα
2

]
λ1λ2

1

(λ1 + λ2)α

+ σ 4

4θ2

λα
2

λ1λ2

(
1

λα
2

− 1

(λ1 + λ2)α

)
+ σ 4

4θ2

λα
1

λ1λ2

(
1

λα
1

− 1

(λ1 + λ2)α

)

= σ 4

2θ2

λα
1

λ1λ2(λ1 + λ2)α
+ σ 4

2θ2

λα
2

λ1λ2(λ1 + λ2)α
− σ 4

4θ2

1

λ1λ2
. (B3)

[1] J.-P. Bouchaud and A. Georges, Anomalous diffusion in dis-
ordered media: Statistical mechanisms, models and physical
applications, Phys. Rep. 195, 127 (1990).

[2] S. Eule and R. Friedrich, Subordinated Langevin equa-
tions for anomalous diffusion in external potentials-Biasing
and decoupled external forces, Europhys. Lett. 86, 30008
(2009).

[3] A. Cairoli and A. Baule, Anomalous processes with general
waiting times: Functionals and multipoint structure, Phys. Rev.
Lett. 115, 110601 (2015).

[4] S. Fedotov and N. Korabel, Subdiffusion in an external poten-
tial: Anomalous effects hiding behind normal behavior, Phys.
Rev. E 91, 042112 (2015).

[5] S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Bacterial
chromosomal loci move subdiffusively through a viscoelastic
cytoplasm, Phys. Rev. Lett. 104, 238102 (2010).

[6] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Ergodic
and nonergodic processes coexist in the plasma membrane as
observed by single-molecule tracking, Proc. Natl. Acad. Sci.
USA 108, 6438 (2011).

[7] C. Di Rienzo, V. Piazza, E. Gratton, F. Beltram, and F.
Cardarelli, Probing short-range protein Brownian motion in the
cytoplasm of living cells, Nat. Commun. 5, 5891 (2014).

[8] D. Brockmann and T. Geisel, Lévy flights in inhomogeneous
media, Phys. Rev. Lett. 90, 170601 (2003).

[9] M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, Lévy Flights
and Related Topics (Springer-Verlag, Berlin, 1995).

[10] A. V. Chechkin, V. Y. Gonchar, J. Klafter, R. Metzler, and L. V.
Tanatarov, Lévy flights in a steep potential well, J. Stat. Phys.
115, 1505 (2004).

[11] R. Metzler and J. Klafter, The random walk’s guide to anoma-
lous diffusion: A fractional dynamics approach, Phys. Rep. 339,
1 (2000).

[12] R. Klages, G. Radons, and I. M. Sokolov, Anomalous Transport
(Wiley-VCH, Weinheim, 2008).

[13] O. Vilk, E. Aghion, T. Avgar, C. Beta, O. Nagel, A. Sabri, R.
Sarfati, D. K. Schwartz, M. Weiss, D. Krapf et al., Unravelling
the origins of anomalous diffusion: From molecules to migrat-
ing storks, Phys. Rev. Res. 4, 033055 (2022).

[14] J. W. Haus and K. W. Kehr, Diffusion in regular and disordered
lattices, Phys. Rep. 150, 263 (1987).

[15] J.-P. Bouchaud, Weak ergodicity breaking and aging in disor-
dered systems, J. Phys. I 2, 1705 (1992).

[16] M. Scheutzow, Exponential growth rates for stochastic delay
differential equations, Stoch. Dyn. 05, 163 (2005).

[17] M. Kozłowska and R. Kutner, Anomalous transport and diffu-
sion versus extreme value theory, Physica A 357, 282 (2005).

[18] M. Assaf and B. Meerson, WKB theory of large deviations in
stochastic populations, J. Phys. A 50, 263001 (2017).

[19] J. Szymanski and M. Weiss, Elucidating the origin of anoma-
lous diffusion in crowded fluids, Phys. Rev. Lett. 103, 038102
(2009).

[20] P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. García-
Parajo, M. Lewenstein, and G. J. Lapeyre, Jr., Nonergodic
subdiffusion from brownian motion in an inhomogeneous
medium, Phys. Rev. Lett. 112, 150603 (2014).

[21] D. Krapf, Mechanisms underlying anomalous diffusion in the
plasma membrane, Curr. Top. Membr. 75, 167 (2015).

[22] A. G. Cherstvy, S. Thapa, C. E. Wagner, and R. Metzler, Non-
Gaussian, non-ergodic, and non-Fickian diffusion of tracers in
mucin hydrogels, Soft Matter 15, 2526 (2019).

[23] J. Klafter and I. M. Sokolov, First Steps in Random Walks
from Tools to Applications (Oxford University Press, New York,
2011).

[24] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and
Correlation Functions (CRC, Boca Raton, FL, 2018).

[25] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys.
29, 255 (1966).

[26] A. Dechant and E. Lutz, Wiener-khinchin theorem for nonsta-
tionary scale-invariant processes, Phys. Rev. Lett. 115, 080603
(2015).

[27] A. I. Khinchin, Mathematical Foundations of Statistical Me-
chanics (Dover, New York, 1949).

[28] S. Burov, R. Metzler, and E. Barkai, Aging and nonergodicity
beyond the Khinchin theorem, Proc. Natl. Acad. Sci. USA 107,
13228 (2010).

[29] A. Dechant, E. Lutz, D. A. Kessler, and E. Barkai, Scaling
Green-Kubo relation and application to three aging systems,
Phys. Rev. X 4, 011022 (2014).

[30] B. Wang, S. M. Anthony, S. C. Bae, and S. Granick, Anoma-
lous yet Brownian, Proc. Natl. Acad. Sci. USA 106, 15160
(2009).

[31] T. Toyota, D. A. Head, C. F. Schmidt, and D. Mizuno, Non-
Gaussian athermal fluctuations in active gels, Soft Matter 7,
3234 (2011).

[32] M. Soares e Silva, B. Stuhrmann, T. Betz, and G. H.
Koenderink, Time-resolved microrheology of actively remod-
eling actomyos in networks, New J. Phys. 16, 075010 (2014).

[33] J.-H. Jeon, M. Javanainen, H. Martinez-Seara, R. Metzler, and
I. Vattulainen, Protein crowding in lipid bilayers gives rise to

044115-13

https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1209/0295-5075/86/30008
https://doi.org/10.1103/PhysRevLett.115.110601
https://doi.org/10.1103/PhysRevE.91.042112
https://doi.org/10.1103/PhysRevLett.104.238102
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1038/ncomms6891
https://doi.org/10.1103/PhysRevLett.90.170601
https://doi.org/10.1023/B:JOSS.0000028067.63365.04
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1103/PhysRevResearch.4.033055
https://doi.org/10.1016/0370-1573(87)90005-6
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1142/S0219493705001468
https://doi.org/10.1016/j.physa.2005.06.030
https://doi.org/10.1088/1751-8121/aa669a
https://doi.org/10.1103/PhysRevLett.103.038102
https://doi.org/10.1103/PhysRevLett.112.150603
https://doi.org/10.1016/bs.ctm.2015.03.002
https://doi.org/10.1039/C8SM02096E
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1103/PhysRevLett.115.080603
https://doi.org/10.1073/pnas.1003693107
https://doi.org/10.1103/PhysRevX.4.011022
https://doi.org/10.1073/pnas.0903554106
https://doi.org/10.1039/c0sm00925c
https://doi.org/10.1088/1367-2630/16/7/075010


ZHONGSHUAI ZHAN AND XUDONG WANG PHYSICAL REVIEW E 109, 044115 (2024)

non-Gaussian anomalous lateral diffusion of phospholipids and
proteins, Phys. Rev. X 6, 021006 (2016).

[34] C. Beck, Dynamical foundations of nonextensive statistical me-
chanics, Phys. Rev. Lett. 87, 180601 (2001).

[35] C. Beck and E. G. D. Cohen, Superstatistics, Physica A 322,
267 (2003).

[36] C. Beck, Superstatistical Brownian motion, Prog. Theor. Phys.
Suppl. 162, 29 (2006).

[37] B. Wang, J. Kuo, S. C. Bae, and S. Granick, When Brownian
diffusion is not Gaussian, Nat. Mater. 11, 481 (2012).

[38] M. V. Chubynsky and G. W. Slater, Diffusing diffusivity: A
model for anomalous, yet Brownian, diffusion, Phys. Rev. Lett.
113, 098302 (2014).

[39] A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov,
Brownian yet non-Gaussian diffusion: From superstatistics to
subordination of diffusing diffusivities, Phys. Rev. X 7, 021002
(2017).

[40] V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, and R. Metzler,
Random diffusivity from stochastic equations: Comparison of
two models for Brownian yet non-Gaussian diffusion, New J.
Phys. 20, 043044 (2018).
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