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Exact solution to quantum dynamical activity
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The quantum dynamical activity constitutes a thermodynamic cost in trade-off relations such as the quantum
speed limit and the quantum thermodynamic uncertainty relation. However, calculating the quantum dynamical
activity has been a challenge. In this paper, we present the exact solution for the quantum dynamical activity by
deploying the continuous matrix product state method. Moreover, using the derived exact solution, we determine
the upper bound of the dynamical activity, which comprises the standard deviation of the system Hamiltonian
and jump operators. We confirm the exact solution and the upper bound by performing numerical simulations.
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I. INTRODUCTION

Uncertainty relations are pivotal relations that outline what
is feasible or impractical in the real world. The most promi-
nent example is Heisenberg’s uncertainty principle, which
shows the uncertainty associated with conjugate observables
such as position and momentum operators [1,2]. Another
well-studied uncertainty relation in quantum systems is the
quantum speed limit (QSL) [3–5]. The QSL corresponds to
the energy-time uncertainty, which imposes a restriction on
how quickly a quantum system can transition between states.
The concept of a speed limit was recently generalized in
classical stochastic systems, referred to as the classical speed
limit (CSL) [6–11]. Recently, a closely related uncertainty
principle known as the thermodynamic uncertainty relation
(TUR) has been actively studied in the fields of stochastic
and quantum thermodynamics [12–20]. The TUR states that
higher accuracy should come at a higher thermodynamic cost.
In CSLs and classical TURs, along with entropy production,
the most studied thermodynamic cost is the dynamical activ-
ity [21], which quantifies the activity of a Markov process
[see Eq. (10)]. The dynamical activity plays a central role
in the thermodynamic costs of CSLs [6,10] and classical
TURs [14,16].

The concept of classical dynamical activity is generalized
to incorporate quantum effects and referred to as quantum
dynamical activity. The quantum dynamical activity is defined
in the dynamics determined by the Lindblad equation [Eq. (3)]
and has recently been studied in quantum stochastic ther-
modynamics [20,22,23]. Suppose that the dynamics begin at
t = 0 and end at t = τ > 0. Let B(τ ) be the quantum dynam-
ical activity within the interval [0, τ ] [defined in Eq. (13)].
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Consider the number of jump events in a continuous measure-
ment. The relative variance follows the quantum TUR [20]:

Var[N (τ )]

〈N (τ )〉2 � 1

B(τ )
, (1)

where N (τ ) is a counting observable that counts the number
of jump events within the interval [0, τ ], and 〈N (τ )〉 and
Var[N (τ )] are the mean and variance of N (τ ), respectively.
The quantum TUR of Eq. (1) states that a higher precision can
be achieved provided that the system allows for more quantum
dynamical activity. Moreover, B(τ ) appears in the QSL in a
continuous-measurement setting. Let ρ(0) and ρ(τ ) be the ini-
tial and final density operators governed by the Lindblad equa-
tion, and let LD(ρ(0), ρ(τ )) ≡ arccos[

√
Fid(ρ(0), ρ(τ ))] be

the Bures angle between the initial and the final states, where
Fid(ρ1, ρ2) ≡ (Tr

√√
ρ1ρ2

√
ρ1)2 is the quantum fidelity. Sub-

sequently, the following QSL holds [22]

LD(ρ(0), ρ(τ )) � 1

2

∫ τ

0
dt

√
B(t )

t
. (2)

As the Bures angle determines the distance between the two
density operators, Eq. (2) states that, for the system to change
its state more, the system demands more quantum dynamical
activity. Considering a closed quantum limit, Eq. (2) is re-
duced to the Mandelstam-Tamm bound [3]. The appearance of
B(t ) in the two distinct uncertainty relations, given by Eqs. (1)
and (2), is not a coincidence. These are the two aspects of the
same geometric inequality [22].

Equations (1) and (2) show that the quantum dynamical
activity B(t ) serves as a fundamental cost in systems de-
scribed by the Lindblad equation. However, deriving its exact
expression remains challenging because the quantum dynami-
cal activity was defined using the quantum Fisher information
[Eq. (13)], which lacks a closed-form representation. In this
study, we derive the exact solution for the quantum dynamical
activity [Eq. (20)]. The calculation is based on a continuous
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matrix product state (cMPS), which encodes the dynamics
into the quantum field. Moreover, we derive the upper bounds
for the quantum dynamical activity, comprising the moments
of the Hamiltonian and jump operators. We find that the
upper bound is tight for short durations. We validate the
exact solution and the upper bound by performing numerical
simulations.

II. METHODS

The quantum dynamical activity is defined in the Lindblad
equation. Let ρS (t ) be the density operator of the system of
interest. The Lindblad equation is represented by [24,25] ρ̇S =
LρS , where L is the Lindblad superoperator defined by

LρS = −i[HS, ρS] +
NC∑

m=1

D[Lm]ρS. (3)

Here, D[L]ρS = LρSL† − 1
2 {L†L, ρS} denotes the dissipator.

The Lindblad equation incorporates both the classical Markov
process and the closed-quantum evolution. The classical
Markov process and closed quantum dynamics are repre-
sented by HS = 0 and Lm = 0, respectively, in Eq. (3).
The Lindblad equation can be expressed using the Kraus
representation

ρS (t + dt ) =
∑

m

Vm(dt )ρS (t )Vm(dt )†, (4)

where Vm(dt ) denotes the Kraus operator:

V0(dt ) ≡ IS − idtHeff , (5)

Vm(dt ) ≡
√

dtLm (1 � m � NC ). (6)

Here, Heff is the effective (non-Hermitian) Hamiltonian, de-
fined as

Heff ≡ HS − i

2

∑
m

L†
mLm. (7)

The Kraus operator satisfies the completeness relation∑NC
m=0 Vm(dt )†Vm(dt ) = IS . From the Steinspring representa-

tion, m in Eq. (4) can be identified as the output when the
environment is measured. The dynamics conditioned on the
output is referred to as the quantum trajectory. For detailed
information on the continuous measurement, see the recent
review paper [26].

The matrix product state (MPS) is a mathematical model
often used to represent quantum systems comprising multiple
particles. Recently, advancements have been made in the use
of MPS to account for single-dimensional systems residing
in continuous state spaces [27,28]. This development is com-
monly referred to as cMPS. The cMPS has proven useful
in exploring the thermodynamics of trajectory. It has been
applied in the study of phase transitions and the influence
of gauge symmetry in both classical and quantum Markov
processes [29–31]. Additionally, we recently used cMPS to
derive quantum TURs [20,22,32,33]. Consider a cMPS for
continuous measurement expressed by [27,28]

|�(τ )〉 = V (τ ) |ψS (0)〉 ⊗ |vac〉 . (8)

Here, V is an operator defined by

V (τ ) = Te−i
∫ τ

0 dt(Heff ⊗IF +∑
m iLm⊗φ†

m (t )), (9)

where T denotes the time-ordering operator, IF is the identity
operator in the field, and φm(s) is a field operator that sat-
isfies the canonical commutation relation [φm(s), φ†

m′ (s′)] =
δmm′δ(s − s′). |vac〉 is the vacuum state that vanishes with
φm(s) for all m. The cMPS encodes all the information of
the continuous measurement by creating particles by applying
φ†

m(s) to the vacuum state. The advantage of using the cMPS
for continuous measurement is that the statistics of jump
events and the system state can be encoded into a pure state.
Therefore, we can treat the time evolution of the cMPS as
described by closed quantum dynamics.

First, we review the classical dynamical activity. We
consider the dynamics within [0, τ ], where τ > 0. The dy-
namical activity within [0, τ ] in a classical Markov process is
defined as

Acl(τ ) ≡
∫ τ

0

∑
ν,μ (ν �=μ)

Pμ(t )Wνμ(t )dt, (10)

where Wνμ(t ) is the transition rate from the μth to νth state
at time t, and Pμ(t ) is the probability of being the μth state
at time t . Acl(t ) quantifies the average number of jump events
within interval [0, τ ]. The Lindblad equation describes a clas-
sical Markov process by considering HS = 0 in Eq. (3). The
classical dynamical activity can then be represented as

A(τ ) ≡
∫ τ

0

∑
m

TrS[LmρS (t )L†
m]dt, (11)

where TrS is the partial trace with respect to the system (TrF

is defined analogously for the field). Equivalence between
Acl(τ ) and A(τ ) for the classical limit can be verified by
taking Lνμ = √

Wνμ |ν〉 〈μ|, where Wνμ is the transition rate
defined above and |μ〉 corresponds to the classical μth state.
Let us move on to the quantum dynamical activity. Recently,
the classical dynamical activity has been generalized to the
quantum domain, which is referred to as the quantum dy-
namical activity [20,22]. The quantum dynamical activity
corresponds to the quantum Fisher information for a particular
parametrization of Lm and HS . Let us first recall the quantum
Fisher information in a general scenario. Let |ψ (ϑ )〉 be an
arbitrary state vector parametrized by parameter ϑ . The quan-
tum Fisher information is

F (ϑ ) ≡ 4[〈∂ϑψ (ϑ ) | ∂ϑψ (ϑ )〉 − |〈∂ϑψ (ϑ ) | ψ (ϑ )〉|2],

(12)

where |∂ϑψ (ϑ )〉 ≡ ∂ϑ |ψ (ϑ )〉. Using Eq. (12), we can intro-
duce the quantum dynamical activity. Let θ be a hypothetical
parameter to be estimated, defined as θ ≡ t/τ . For a classical
Markov process, the classical dynamical activity is identical
to the Fisher information of the scaled path probability mul-
tiplied by θ2. Therefore, the quantum dynamical activity is
analogously defined by [22]

B(t ) = 4θ2(〈∂θ�(τ ; θ )|∂θ�(τ ; θ )〉 − |〈�(τ ; θ )|∂θ�(τ ; θ )〉|2),

(13)
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where |�(τ ; θ )〉 is the cMPS parametrized by

|�(τ ; θ )〉 ≡ V (τ, 0; θ ) |ψS (0)〉 ⊗ |vac〉 , (14)

with V (s2, s1; θ ) being the operator defined as

V (s2, s1; θ ) ≡ Te
∫ s2

s1
ds(−iθHeff ⊗IF+√

θ
∑

m Lm⊗φ†
m (s)). (15)

For θ = 1, |�(τ ; θ )〉 is reduced to the cMPS in Eq. (8) and
B(t ) becomes B(τ ). Having defined the quantum dynamical
activity, we now proceed to its calculation. The general Fisher
quantum information F (ϑ ) defined in Eq. (12) can be repre-
sented as F (ϑ ) = 8

dϑ2 (1 − |〈ψ (ϑ + dϑ )|ψ (ϑ )〉|). Therefore,
using Eq. (13), the quantum dynamical activity can be calcu-
lated as

B(t ) = 8θ2

dθ2
(1 − |〈�(τ ; θ + dθ )|�(τ ; θ )〉|). (16)

Recall that 〈�(τ ; θ + dθ |�(τ ; θ ))〉 = TrS[|�(τ ; θ )〉 〈�(τ ;
θ + dθ )|] = TrS[�(τ )], where �(τ ) obeys the two-sided Lind-
blad equation [34]. We can numerically calculate the quantum
dynamical activity directly using a sufficiently small dθ .

In addition to direct numerics, an asymptotic represen-
tation of B(τ ) is also known. Suppose that Eq. (3) has a
steady-state solution. For τ → ∞, Ref. [20] showed that the
quantum dynamical activity B(τ ) can be represented as

B∞(τ ) ≡ τ (a + bc)(τ → ∞), (17)

where the first term corresponds to the rate of the classical
dynamical activity:

a ≡
∑

m

TrS
[
Lmρss

S L†
m

]
, (18)

with ρss
S being the steady-state density operator of the Lind-

blad equation, Lρss
S = 0. Equation (18) corresponds to the

classical dynamical activity [Eq. (11)]. In Eq. (17), the second
term bc quantifies the effect of coherent time evolution in the
Lindblad equation (see Appendix G for the expression). As
mentioned in the classical dynamical activity, A(τ ) quantifies
the extent of the activity of dynamics. The Lindblad equa-
tion consists of two contributions: smooth dynamics induced
by the effective Hamiltonian Heff and discontinuous dynamics
induced by the jump operators Lm. Since A(τ ) includes only
the contribution from Lm, bc reflects the dynamics of the
effective Hamiltonian. The evaluation of bc requires a pseu-
doinverse calculation in the Choi-Jamiołkowski isomorphism
that is difficult to perform in general dynamics. Equation (17)
shows that, for τ → ∞, the quantum dynamical activity is
linear over time. Therefore, at least for τ → ∞, we cannot
expect superlinear scaling of the quantum dynamical activity.

III. RESULTS

Although quantum dynamical activity plays an important
role in QSL and TUR, the calculation relies on direct numerics
[Eq. (16)], or asymptotic calculations for τ → ∞ [Eq. (17)].
In this study, we derive B(t ) analytically and its upper bound
of B(t ), which has a clear physical interpretation. Our first re-
sult is the analytical expression of B(t ). We define the adjoint

Lindblad equation for the operator O as follows:

Ȯ = L†O ≡ i[HS,O] +
NC∑

m=1

D†[Lm]O, (19)

where L† is the adjoint superoperator with D† being the
adjoint dissipator defined by D†[L]O ≡ L†OL − 1

2 {L†L,O}.
The adjoint Lindblad equation is employed for the time evo-
lution of the Hamiltonian or jump operators as opposed to
the density operators. This concept aligns with the Heisenberg
picture of quantum mechanics. Subsequently, we find that the
exact solution to B(τ ) is

B(τ ) = A(τ ) + 8
∫ τ

0
ds1

∫ s1

0
ds2Re(TrS[H†

effȞS (s1 − s2)

× ρS (s2)]) − 4

(∫ τ

0
dsTrS[HSρS (s)]

)2

, (20)

where ȞS (t ) ≡ eL
†t HS is the Heisenberg interpretation of the

Hamiltonian HS . For example, in the closed quantum limit
Lm = 0, the operator becomes eL

†tO = eiHStOe−iHSt . Equa-
tion (20) represents the first result of this study. A detailed
derivation of Eq. (20) is shown in Appendix A. Note that
Eq. (20) is represented only by the physical quantities of the
primary system. Equation (20) shows that B(t ) comprises the
classical contribution A(t ) and quantum correction given by
the second and third terms. For τ → ∞, Eq. (20) is identical
to Eq. (17) (Appendix G). We now discuss the limiting cases
in Eq. (20). For the classical limit, where HS = 0, B(τ ) is
reduced to A(τ ). By contrast, for the closed quantum limit,
Lm = 0, B(τ ) becomes

B(τ ) = 4τ 2
(
TrS

[
H2

S ρS
] − TrS[HSρS]2

)
, (21)

which is the variance of HS multiplied by 4τ 2. Substitut-
ing Eq. (21) into Eq. (2) reproduces the Mandelstam-Tamm
bound [3]. This indicates that the exact representation covers
the two limiting cases (the classical limit and the closed quan-
tum limit).

After completing our calculations, we realized that
Ref. [35] analytically calculated the quantum dynamical ac-
tivity. Reference [35] presents the following expression:

B(τ ) = A(τ ) + 4(I1 + I2) − 4

(∫ τ

0
dsTrS[HS (s)ρS (s)]

)2

.

(22)

Here, I1 and I2 are defined as I1 ≡ ∫ τ

0 ds1
∫ s1

0 ds2 TrS

[K2 exp(L(s1 − s2))K1ρS (s2)] and I2 ≡ ∫ τ

0 ds1
∫ s1

0 ds2 TrS

[K1 exp(L(s1 − s2))K2ρS (s2)], respectively. Here, K1 and K2

are superoperators defined by K1• = −iHeff • + 1
2

∑
k Lk • L†

k

and K2• = i • H†
eff + 1

2

∑
k Lk • L†

k = (L − K1)•, respec-
tively. Moreover, Ref. [35] showed that Eq. (22) can be
reduced to Eq. (17) for τ → ∞. However, the expression in
Eq. (22) is represented by superoperators K1 and K2, which
are difficult to interpret physically. In Appendix D, we show
that our result [Eq. (20)] can be derived via Eq. (22).

Another advantage of deriving the exact representation is
that it is possible to obtain bounds with a more intuitive phys-
ical interpretation. Specifically, from Eq. (20), we can obtain
an upper bound to B(τ ) comprising the standard deviation of
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the operators in the Lindblad equation, that is, B(τ ) � B(τ ),
where B(t ) denotes its upper bound given by

B(τ ) ≡ A(τ ) + 8
∫ τ

0
ds1σHS (s1)

∫ s1

0
ds2σHeff (s2), (23)

where σO (s) ≡
√

〈 (O − 〈O 〉 (s))† (O − 〈O 〉 (s)) 〉 =√
〈O†O〉(s) − |〈O〉(s)|2 for arbitrary operator O. When O

is Hermitian, σO corresponds to the conventional standard
deviation. Equation (23) is the second result of this study,
the proof of which is shown in Appendix B. Some comments
are in order. The upper bound of Eq. (23) comprises two
contributions: the classical dynamical activity A(τ ) and the
quantum correction given by the standard deviations of HS

and Heff . For τ � 1, the major contribution comes from
the classical part, which indicates that B(τ ) is linear with
respect to τ for a short time. However, for τ → ∞, B(τ )
depends linearly on τ when the Lindblad equation has a
single steady-state solution [20]. Therefore, the upper bound
of Eq. (23) becomes loose for a large τ because the second
contribution in Eq. (23) is of O(τ 2). We also comment on
the equality condition when B(τ ) = B(τ ), verifying that
this equality is satisfied for the classical limit (HS = 0) and
the closed quantum limit (Lm = 0) is straightforward. As
mentioned previously, B(τ ) is O(τ ) for τ → ∞ as long
as the Lindblad equation has a single steady-state solution
while B(τ ) is O(τ 2). Therefore it is unlikely that equality is
satisfied in other cases (we discuss the equality condition in
Appendix B).

The upper bound of Eq. (23) includes the standard devi-
ations of HS and Heff . It is possible to obtain another upper
bound that uses the standard deviations of HS and

∑
m L†

mLm

[please see Eq. (B12) in Appendix B], which is not as tight as
Eq. (23).

IV. NUMERICAL SIMULATION

To verify the exact expression [Eq. (20)] and the upper
bound [Eq. (23)] of B(τ ), we perform numerical simulations.
Consider a widely employed two-level atom model driven by
a classical laser field. Let |e〉 and |g〉 be the excited and ground
states, respectively. The Hamiltonian and jump operators are
given by

HS = � |e〉 〈e| + �

2
(|e〉 〈g| + |g〉 〈e|), (24)

L = √
κ |g〉 〈e| , (25)

where �, �, and κ are model parameters. The jump operator
L induces a jump from the excited state to the ground state
at the transition rate κ . We compare B(τ ) calculated using
the following approaches under steady-state conditions. The
direct method calculates B(τ ) by using the quantum Fisher
information in Eq. (16). The results of the direct method
are treated as the ground truth for the quantum dynamical
activity. The exact method, which is the approach proposed
in this study, calculates the quantum dynamical activity using
Eq. (20). The asymptotic method is based on Eq. (17), which
holds for τ → ∞. We also evaluate the upper bound B(τ )
defined by Eq. (23). For comparison, we calculate the classical
dynamical activity using Eq. (18).
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FIG. 1. Comparison of quantum dynamical activity as a function
of t for the driven two-level model calculated by the exact method
B(τ ) [Eq. (20)] (the solid line) and the asymptotic method B∞(τ )
[Eq. (17)] (the dot dashed line). We also provide the corresponding
classical dynamical activity A(τ ) [Eq. (11)] (the dotted line) and
the upperbound B(τ ) [Eq. (23)] (the dashed line). Since results
corresponding to the exact and direct [Eq. (16)] methods completely
agree, we only show the result of the exact method. The parameters
are � = 1, κ = 0.5, and � = 1.

Figure 1 shows the comparison of the methods. We plot
the quantum dynamical activity as a function of τ . First, we
compare the direct method [Eq. (16)] and the exact solution
[Eq. (20)] to determine whether the two approaches agree
completely. This verifies the validity of Eq. (20). Therefore,
we do not plot the direct method, as shown in Fig. 1. In
Fig. 1, the solid, dot dashed, and dotted lines denote the exact
solution, the asymptotic solution, and the classical dynamical
activity, respectively. The asymptotic method converges to
the direct method for τ → ∞. However, the two results are
approximately ten times apart for a smaller τ , indicating that
the exact method presented in this manuscript is important for
a short time τ . The exact result for τ → 0 is close to that
for the classical quantum dynamical activity, indicating that
quantumness cannot improve the precision of the counting
observable for a short time according to the quantum TUR
[Eq. (1)]. For the two limiting cases τ → 0 and τ → ∞, the
quantum dynamical activity is linear with respect to time. In
the intermediate interval, namely from τ ∼ 10−1 to τ = 101,
the quantum dynamical activity exhibits superlinear scaling
with respect to time. This implies that the precision of the
counting observable can be improved superlinearly. This be-
havior broadly applies to general dynamics, as established by
the upper bound in Eq. (23). The upper bound of the quan-
tum dynamical activity scales as O(τ ) + O(τ 2). Therefore,
when τ � 1, the O(τ ) component dominates the quantum
dynamical activity, indicating that we cannot expect a quan-
tum advantage over a short time period. Next, we consider the
upper bound derived from Eq. (23), plotted using the dashed
line in Fig. 1. The upper bound is above the exact solution
(solid line), which verifies the accuracy of the upper bound.
Because the quantum dynamical activity is linear as a function
of τ for τ → ∞, the upper bound becomes loose for this large
time limit, because the upper bound is O(τ 2).
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Thus far, we have discussed the effects of the differ-
ence between classical and quantum dynamical activities on
the TUR. When considering the TUR, the lower bound is
given by the reciprocal of the dynamical activity, allowing
a simple understanding of the qualitative difference between
linear and superlinear scaling with respect to τ . However, this
clarity disappears with the speed limits, because their upper
bounds include the integral [right-hand side of Eq. (2)], which
obscures clear differences. Nevertheless, a quantum system
provides a larger proportionality constant, resulting in a higher
upper bound.

V. CONCLUSION

In this study, we derived the exact solution for the quantum
dynamical activity using cMPS. In addition, we obtained the
upper bound for the quantum dynamical activity, which com-
prises the standard deviation of the operators of the Lindblad
equation. Numerical simulations are performed to validate
the results. Our findings are expected to enhance our under-
standing of quantum nonequilibrium dynamics, considering
the crucial role of quantum dynamical activity in uncertainty
relations, such as QSLs and quantum TURs.
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APPENDIX A: DERIVATION
OF EXACT SOLUTION [EQ. (20)]

1. Preparation

We derive ancillary relations to derive Eq. (20). Let us
apply φm(s′) and φm(s′)† at time s′ ∈ [0, s) to |ψS (0)〉 ⊗
|vac〉 〈ψS (0)| ⊗ 〈vac| from the left and right, and denote by
the resulting operator F ([0, s)). For t � s, the first relations
are given by

TrF,S[dφm(t )F ([0, s))] = TrF,S[dφ†
m(t )F ([0, s))] = 0,

(A1)

TrF,S[dφm(t )dφ
†
m′ (t )F ([0, s))] = dsδm,m′TrF,S[F ([0, s))],

(A2)

where

dφm(s) ≡
∫ s+ds

s
ds′φm(s′), (A3)

and TrF,S[•] denotes TrS[TrF [•]] = TrF [TrS[•]]. Equa-
tions (A1) and (A2) can be derived from the canonical
commutation relation. The second relation is the unitarity
of V:

TrF,S[V (s, s1; θ )F ([0, s1))V (s, s1; θ )†] = TrF,S[F ([0, s1))],

(A4)

where s � s1. Using V (s, s1; θ ) = V (s, s − ds; θ )V (s − ds,
s1; θ ) and the cyclic property of the trace, we have

TrF,S[V (s, s − ds; θ )†V (s, s − ds; θ )V (s − ds, s1; θ )F ([0, s1))

× V (s − ds, s1; θ )†]

= TrF,S[V (s − ds, s1; θ )F ([0, s1))V (s − ds, s1; θ )†]

+ O(ds2), (A5)

where we use Eq. (A1) and Eq. (A2). By repeatedly using
Eq. (A5), we have Eq. (A4). Since TrF [〈�(τ ; θ ) |�(τ ; θ )〉]
provides the density matrix of the time scaled by θ (Ref. [22]),
the third relation is given by

TrF [|�(s; θ )〉 〈�(s; θ )|] = ρS (θs). (A6)

2. Derivation

By differentiating Eq. (14) with respect to θ , we obtain

|∂θ�(τ ; θ )〉 =
∫ τ−ds

0
V (τ, s + ds; θ )

× dV (s; θ )V (s, 0; θ ) |ψS (0)〉 ⊗ |vac〉

=
∫ τ−ds

0
V (τ, s + ds; θ )dV (s; θ ) |�(s; θ )〉 ,

(A7)

where

dV (s; θ ) ≡ ∂θV (s + ds, s; θ )

= −iHeff ⊗ IF ds + 1

2
√

θ

∑
m

Lm ⊗ dφ†
m(s). (A8)

First, we calculate the term

K≡ 〈∂θ�(τ ; θ )|∂θ�(τ ; θ )〉 = TrF,S[|∂θ�(τ ; θ )〉〈∂θ�(τ ; θ )|].
(A9)

Substituting Eq. (A7) into this relation, we obtain

K =
∫ τ−ds

0

∫ τ−ds

0
TrF,S[V (τ, s1 + ds; θ )dV (s1; θ ) |�(s1; θ )〉

× 〈�(s2; θ )| dV (s2; θ )†V (τ, s2 + ds; θ )†]. (A10)

Here, the first integral corresponds to s1 and the second inte-
gral corresponds to s2. We decompose K into the sum of terms
s1 = s2 and s1 �= s2 which are written as Ks1=s2 and Ks1 �=s2 .
When s1 = s2 = s, from Eq. (A4), we obtain

Ks1=s2 =
∫ τ−ds

0
TrF,S[dV (s; θ ) |�(s; θ )〉 〈�(s; θ )| dV (s; θ )†]

=
∫ τ−ds

0
TrF,S[dV (s; θ )†dV (s; θ ) |�(s; θ )〉 〈�(s; θ )|].

(A11)

By using Eq. (A1), Eq. (A2) for dV (s; θ )†dV (s; θ ), and using
Eq. (A6), we obtain

Ks1=s2 = 1

4θ

∫ τ−ds

0
dsTrF,S

[∑
m

L†
mLm |�(s; θ )〉 〈�(s; θ )|

]

= 1

4θ2

∫ t

0
ds

∑
m

TrS[LmρS (s)L†
m] = 1

4θ2
A(t ).

(A12)
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Next, we calculate Ks1 �=s2 . When s1 > s2, applying Eq. (A4) to Eq. (A10), we obtain

∫ τ−ds

0

∫ s1−ds

0
TrF,S[dV (s1; θ ) |�(s1; θ )〉 〈�(s2; θ )| dV (s2; θ )†V (s1, s2 + ds; θ )†V (s1 + ds, s1; θ )†]. (A13)

From Tr[FG]∗ = Tr[G†F†], we find that the case of s1 < s2 is the complex conjugate of this equation. Therefore, using the
cyclic property of the trace, we obtain

Ks1 �=s2 = 2
∫ τ−ds

0

∫ s1−ds

0
Re(TrF,S[V (s1 + ds, s1; θ )†dV (s1; θ ) |�(s1; θ )〉 〈�(s2; θ )| dV (s2; θ )†V

(
s1, s2 + ds; θ )†]

)
. (A14)

Applying Eq. (A1) and Eq. (A2) for V (s1 + ds, s1; θ )†dV (s1; θ ), we obtain

Ks1 �=s2 = 2
∫ τ

0
ds1

∫ s1−ds

0
Re

(
TrF,S

[(
−iHeff + 1

2

∑
m

L†
mLm

)
|�(s1; θ )〉 〈�(s2; θ )|V (s2; θ )†V (s1, s2 + ds; θ )†

])

= −2
∫ τ

0
ds1

∫ s1−ds

0
Re(TrF,S[iHS |�(s1; θ )〉 〈�(s2; θ )| dV (s2; θ )†V (s1, s2 + ds; θ )†]). (A15)

Considering the term proportional to dφm(s2) in dV (s2; θ )† in Eq. (A15), we obtain

−
∫ τ

0
ds1

∫ s1−ds

0
Re

(
TrF,S

[
iHS |�(s1; θ )〉 〈�(s2; θ )| 1√

θ

∑
m

L†
m ⊗ dφm(s2)V (s1, s2 + ds; θ )†

])
. (A16)

Using the canonical commutation relation and combining dφm(s2) with dφ†
m(s2) in

V (s1, 0; θ ) = V (s1, s2 + ds; θ )V (s2 + ds, s2; θ )V (s2, 0; θ ), (A17)

and recall that Eq. (14), Eq. (A16) yields

−
∑

m

∫ τ

0
ds1

∫ s1

0
ds2Re(TrF,S[iHSV (s1, s2 + ds; θ )Lm |�(s2; θ )〉 〈�(s2; θ )| L†

mV (s1, s2 + ds; θ )†])

≡ −
∑

m

∫ τ

0
ds1

∫ s1

0
ds2Re(Fm(s1, s2; θ )). (A18)

Since Tr[F]∗ = Tr[F†], we have

Fm(s1, s2; θ )∗ = −TrF,S[iV (s1, s2 + ds; θ )Lm |�(s2; θ )〉 〈�(s2; θ )| L†
mV (s1, s2 + ds; θ )†HS] = −Fm(s1, s2; θ ), (A19)

where we use the cyclic property of the trace in the second equality. From this result, we find that Fm(s1, s2; θ ) is a purely
imaginary number and Eq. (A18) is equal to zero. Therefore, from Eq. (A8) and Eq. (A15), we obtain

Ks1 �=s2 = 2
∫ τ

0
ds1

∫ s1

0
ds2Re(TrF,S[HS |�(s1; θ )〉 〈�(s2; θ )| H†

effV (s1, s2; θ )†]). (A20)

From V (s1, 0; θ ) = V (s1, s2; θ )V (s2, 0; θ ) and Eq. (14), we obtain

Ks1 �=s2 = 2
∫ τ

0
ds1

∫ s1

0
ds2Re(TrS[TrF [HSV (s1, s2; θ ) |�(s2; θ )〉 〈�(s2; θ )| H†

effV (s1, s2; θ )†])

= 2
∫ τ

0
ds1

∫ s1

0
ds2Re(TrS[TrF [H†

effV (s1, s2; θ )†HSV (s1, s2; θ ) |�(s2; θ )〉 〈�(s2; θ )|]]). (A21)

Since Eq. (A1) and Eq. (A2) also hold for TrF [•] instead of TrF,S[•], we apply these relations to the time in [s1 − ds, s1):

TrF [H†
effV (s1, s2; θ )†HSV (s1, s2; θ ) |�(s2; θ )〉 〈�(s2; θ )|]

= H†
effTrF

[
V (s1 − ds, s2; θ )†

∑
m

Vm(ds′)†HSVm(ds′)V (s1 − ds, s2; θ ) |�(s2; θ )〉 〈�(s2; θ )|
]
, (A22)
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where ds′ ≡ θds, and Vm comprises the Kraus operators, which are defined in Eq. (5) and Eq. (6). Generalizing Eq. (A22), we
obtain

TrF [H†
effV (s1, s2; θ )†HSV (s1, s2; θ ) |�(s2; θ )〉 〈�(s2; θ )|]

= H†
eff

∑
mN−1

· · ·
∑
m0

Vm0 (ds′)† · · ·VmN−1 (ds′)†HSVmN−1 (ds′) · · ·Vm0 (ds′)TrF [|�(s2; θ )〉 〈�(s2; θ )|]

= H†
eff

∑
mN−1

· · ·
∑
m0

Vm0 (ds′)† · · ·VmN−1 (ds′)†HSVmN−1 (ds′) · · ·Vm0 (ds′)ρS (θs2), (A23)

where N ≡ (s1 − s2)/ds = θ (s1 − s2)/ds′ and we use Eq. (A6) in the last equality. Since the integration range in Eq. (A23) is
the same as [0, θ (s1 − s2)] = [0, Nds′], we find that

ȞS (θ (s1 − s2)) ≡
∑
mN−1

· · ·
∑
m0

Vm0 (ds′)† · · ·VmN−1 (ds′)†HSVmN−1 (ds′) · · ·Vm0 (ds′) = eL
†θ (s1−s2 )HS. (A24)

Substituting Eq. (A23) and Eq. (A24) into Eq. (A21), we obtain

Ks1 �=s2 = 2
∫ τ

0
ds1

∫ s1

0
ds2Re(TrS[H†

effȞS (θ (s1 − s2))ρS (θs2)]) = 2

θ2

∫ t

0
ds1

∫ s1

0
ds2Re(TrS[H†

effȞS (s1 − s2)ρS (s2)]). (A25)

By combining Eq. (A12) and Eq. (A25), we obtain

4θ2 〈∂θ�(τ ; θ )|∂θ�(τ ; θ )〉 = A(t ) + 8
∫ t

0
ds1

∫ s1

0
ds2Re(TrS[H†

effȞS (s1 − s2)ρS (s2)]). (A26)

Finally, we calculate the term 〈�(τ ; θ )|∂θ�(τ ; θ )〉. Substituting Eq. (A7) into

〈�(τ ; θ )|∂θ�(τ ; θ )〉 = TrF,S[|∂θ�(τ ; θ )〉 〈�(τ ; θ )|], (A27)

and using Eq. (A4), we obtain

TrF,S[|∂θ�(τ ; θ )〉 〈�(τ ; θ )|] =
∫ τ−ds

0
TrF,S[V (τ, s + ds; θ )dV (s; θ ) |�(s; θ )〉 〈�(s; θ )|V (s + ds, s; θ )†V (τ, s + ds; θ )†]

=
∫ τ−ds

0
TrF,S[dV (s; θ ) |�(s; θ )〉 〈�(s; θ )|V (s + ds, s; θ )†]

=
∫ τ−ds

0
TrF,S[V (s + ds, s; θ )†dV (s; θ ) |�(s; θ )〉 〈�(s; θ )|]. (A28)

Similarly to Eq. (A15), by using Eq. (A1) and Eq. (A2) for V (s + ds, s; θ )†dV (s; θ ), we obtain

〈�(τ ; θ )|∂θ�(τ ; θ )〉 = −i
∫ τ

0
dsTrF,S[HS |�(s; θ )〉 〈�(s; θ )|] = − i

θ

∫ t

0
dsTrS[HSρS (s)]. (A29)

Therefore, we have

4θ2| 〈�(τ ; θ )|∂θ�(τ ; θ )〉 |2 = 4

(∫ t

0
dsTrS[HSρS (s)]

)2

. (A30)

By substituting Eq. (A26) and Eq. (A30) into Eq. (13), we obtain Eq. (20).

APPENDIX B: DERIVATION OF UPPER BOUND [EQ. (23)]

Let F be an arbitrary operator of the primary system. We define the mean and standard deviation of F as follows:

〈F 〉(s) ≡ TrS[FρS (s)], (B1)

σF (s) ≡
√

〈(F − 〈F 〉(s)IS )†(F − 〈F 〉(s)IS )〉 =
√

〈F †F 〉(s) − |〈F 〉(s)|2. (B2)
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In the following, we drop IS which is multiplied by constants. We derive the upper bound of Ks1 �=s2 . By setting θ = 1 in Eq. (A23)
and Eq. (A24), we obtain

Ks1 �=s2 = 2

θ2

∫ t

0
ds1

∫ s1

0
ds2Re(TrS[H†

effȞS (s1 − s2)ρS (s2)])

= 2

θ2

∫ t

0
ds1

∫ s1

0
ds2Re(TrS[TrF [H†

effV (s1, s2)†HSV (s1, s2) |�(s2)〉 〈�(s2)|]])

= 2

θ2

∫ t

0
ds1

∫ s1

0
ds2Re(TrF,S[HS |�(s1)〉 〈�(s2)| H†

effV (s1, s2)†]), (B3)

where V (s1, s2) ≡ V (s1, s2; 1), |�(s1)〉 ≡ |�(s1; 1)〉, and |�(s2)〉 ≡ |�(s2; 1)〉. By using Eq. (A4) and Eq. (A6), the trace term
can be written as

TrF,S[HS |�(s1)〉 〈�(s2)| H†
effV (s1, s2)†] = TrF,S[(HS − 〈HS〉(s1)) |�(s1)〉 〈�(s2)| (Heff − 〈Heff〉(s2))†V (s1, s2)†]

+ 〈HS〉(s1)〈Heff〉(s2)∗. (B4)

Therefore, we have

Ks1 �=s2 �
2

θ2

∫ t

0
ds1

∫ s1

0
ds2|TrF,S[�HS (s1) |�(s1)〉 〈�(s2)| �Heff (s2)†V (s1, s2)†]|

+ 2

θ2

∫ t

0
ds1

∫ s1

0
ds2Re(〈HS〉(s1)〈Heff〉(s2)∗), (B5)

where �F (s) ≡ F − 〈F 〉(s). The second term on the right-hand side can be written as

2

θ2

∫ t

0
ds1

∫ s1

0
ds2Re(〈HS〉(s1)〈Heff〉(s2)∗) = 2

θ2

∫ t

0
ds1

∫ s1

0
ds2〈HS〉(s1)〈HS〉(s2) = 1

θ2

(∫ t

0
ds〈HS〉(s)

)2

. (B6)

Regarding the first term on the right-hand side in Eq. (B5), by applying the Cauchy-Schwarz inequality, we obtain

|TrF,S[�HS (s1) |�(s1)〉 〈�(s2)| �Heff (s2)†V (s1, s2)†]|

= |〈�(s2) | �Heff (s2)†V (s1, s2)†�HS (s1) | �(s1)〉|

�
√

〈�(s1) | �HS (s1)2 | �(s1)〉
√

〈�(s2) | �Heff (s2)†�Heff (s2) | �(s2)〉
= σHS (s1)σHeff (s2). (B7)

Here, we use Eq. (A4) (unitarity of V) in the inequality and use Eq. (A6) in the final equality. By combining this inequality with
Eq. (B1), Eq. (B5), and Eq. (B6), we obtain

Ks1 �=s2 �
2

θ2

∫ t

0
ds1σHS (s1)

∫ s1

0
ds2σHeff (s2) + 1

θ2

(∫ t

0
dsTrS[HSρS (s)]

)2

. (B8)

By combining Eq. (A9), Eq. (A12), and Eq. (A30) with this inequality, we obtain

B(t ) � B(t ) ≡ A(t ) + 8
∫ t

0
ds1σHS (s1)

∫ s1

0
ds2σHeff (s2). (B9)

From Eq. (B2), we obtain

σHeff (s)2 =
〈

H2
S + 1

4

(∑
m

L†
mLm

)2

+ i

2

[∑
m

L†
mLm, HS

]〉
(s) − (〈HS〉(s))2 − 1

4

(〈∑
m

L†
mLm

〉
(s)

)2

. (B10)

Applying the Robertson inequality 1/2|〈[F, G]〉| � σF σG, we obtain

σHeff (s)2 �
∣∣∣∣∣1

2

〈[∑
m

L†
mLm, HS

]〉
(s)

∣∣∣∣∣ + σ 2
HS

(s) + 1

4
σ 2

L†L(s) �
(

σHS (s) + 1

2
σL†L(s)

)2

, (B11)

where σL†L(s) denotes the standard deviation of the operator
∑

m L†
mLm. Substituting this inequality into Eq. (B9), we obtain

B(t ) � A(t ) + 4

(∫ t

0
dsσHS (s)

)2

+ 4
∫ t

0
ds1σHS (s1)

∫ s1

0
ds2σL†L(s2). (B12)
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When the equality holds between the exact solution Eq. (20)
and the upper bound Eq. (23), the first term of the right-hand
side in Eq. (B4) must be nonnegative from Eq. (B5). Fur-
thermore, by the equality condition of the Cauchy-Schwarz
inequality, it is necessary and sufficient for one of the fol-
lowing conditions to hold for 0 � s2 � s1 � t and a(s1, s2) ∈
[0,∞):

(i)

�HS (s1) |�(s1)〉 = a(s1, s2)V (s1, s2)�Heff (s2) |�(s2)〉 ,

(B13)

(ii)

V (s1, s2)�Heff (s2) |�(s2)〉 = 0. (B14)

APPENDIX C: SPECIFIC CASE OF EXACT
REPRESENTATION

By letting Gm ≡ [HS, Lm] for 1 � m � NC and r ∈ R, we
assume that

G†
mLm + L†

mGm = 2rHS. (C1)

This condition agrees with the closed quantum system and the
classical limit. In this case, the exact solution of Eq. (20) can
be simplified as follows:

B(t ) = A(t ) + 8

r
Re

( ∫ t

0
ds(exp (r(t − s)) − 1)

× TrS
[
H†

eff HSρS (s)
]) − 4

(∫ t

0
dsTrS[HSρS (s)]

)2

.

(C2)

Since [HS, L†
m] = −G†

m, we have

HSL†
mLm = L†

mHSLm − G†
mLm = L†

mLmHS + L†
mGm − G†

mLm.

(C3)

Using this relation for the Kraus operators [Eqs. (5) and (6)],
we have∑

m

Vm(ds)†HSVm(ds) = HS − 1

2

∑
m

(L†
mGm − G†

mLm)ds

+
∑

m

L†
mGmds + O(ds2)

= (1 + rds)HS, (C4)

where we use Eq. (C1). Generalizing Eq. (C4), we obtain

ȞS (s) = exp(rs)HS. (C5)

Substituting this relation into Eq. (20), the second term yields

8
∫ t

0
ds1

∫ s1

0
ds2Re(exp (r(s1 − s2))TrS[H†

effHSρS (s2)])

= 8Re

(∫ t

0
ds2

∫ t

s2

ds1 exp (r(s1 − s2))TrS[H†
effHSρS (s2)]

)

= 8

r
Re

(∫ t

0
ds(exp (r(t − s)) − 1)TrS[H†

effHSρS (s)]

)
.

(C6)

APPENDIX D: DERIVATION OF EQ. (20) FROM REF. [35]

As mentioned in the main text, our main result [Eq. (20)]
can be derived from Ref. [35], which is elaborated in this
section. Reference [35] derived the following representation:

B(t ) = A(t ) + 4(I1 + I2) − 4

(∫ t

0
dsTrS[HSρS (s)]

)2

, (D1)

I1 ≡
∫ t

0
ds1

∫ s1

0
ds2TrS[K2 exp

(
L̂(s1 − s2)

)
K1ρS (s2)],

(D2)

I2 ≡
∫ t

0
ds1

∫ s1

0
ds2TrS[K1 exp(L̂(s1 − s2))K2ρS (s2)],

(D3)

where •̂ denotes the vectorization of an operator [26], and K1

and K2 are the following superoperators:

K1• = −iHeff • +1

2

∑
k

Lk • L†
k , (D4)

K2• = i • H†
eff + 1

2

∑
k

Lk • L†
k = (L − K1) • . (D5)

For Eq. (D4) and Eq. (D5), by using the cyclic property of the
trace, we have

TrS[K1•] = −iTrS[HS•], (D6)

TrS[K2•] = iTrS[HS•]. (D7)

By representing exp(L̂(s − u)) using the Kraus operators
[Eqs. (5) and (6)] and applying the cyclic property of the trace,
we obtain

I1 = i
∫ t

0
ds1

∫ s1

0
ds2TrS[ȞS (s1 − s2)K1ρS (s2)]

=
∫ t

0
ds1

∫ s1

0
ds2TrS[ȞS (s1 − s2)HeffρS (s2)]

+ i

2

∫ t

0
ds1

∫ s1

0
ds2

∑
k

TrS[ȞS (s1 − s2)LkρS (s2)L†
k ],

(D8)

where we use Eq. (D4). Similarly, we have

I2 =
∫ t

0
ds1

∫ s1

0
ds2TrS[ȞS (s1 − s2)ρS (s2)H†

eff ]

− i

2

∫ t

0
ds1

∫ s1

0
ds2

∑
k

TrS[ȞS (s1 − s2)LkρS (s2)L†
k ].

(D9)

Since ȞS (s) is Hermite from Eq. (A24), it follows that
TrS[ȞS (s1 − s2)HeffρS (s2)]∗ = TrS[ȞS (s1 − s2)ρS (s2)H†

eff ].
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Hence, we have

I1 + I2 = 2
∫ t

0
ds1

∫ s1

0
ds2Re(TrS[H†

effȞS (s1 − s2)ρS (s2)]).

(D10)

APPENDIX E: VECTORIZATION OF EXACT SOLUTION

In this section, we provide another representation of the
quantum dynamical activity B(τ ) with a single integral using
vectorization.

Let ρ be the density operator represented as follows:

ρ =
∑
i, j

ρi j |i〉 〈 j| . (E1)

Using Choi-Jamiołkowski isomorphism, ρ can be
represented as

|ρ〉〉 ≡
∑
i, j

ρi j | j〉 ⊗ |i〉 . (E2)

Thus, it naturally follows that 〈〈ρ| ≡ |ρ〉〉†. By adopting this
notation, we can redefine the inner product to represent the
Hilbert-Schmidt inner product as follows:

Tr[A†B] = 〈〈A | B〉〉. (E3)

Moreover, the following identity holds:

|ABC〉〉 = (C� ⊗ A)|B〉〉. (E4)

We assume that the matrix representation of the Lind-
blad superoperator is diagonalizable and assume that the
steady state ρss

S is unique. We define the left and right
eigenvector as

L̂|x j〉〉 = λ j |x j〉〉, (E5)

〈〈y j |L̂ = 〈〈y j |λ j . (E6)

These satisfy the following conditions:

〈〈yi|x j〉〉 = δi j . (E7)

For λ0 = 0, we have 〈〈y0| = 〈〈I| and |x0〉〉 = |ρss
S 〉〉. Here, I is

the identity operator in the vectorized space. The vectorized
Lindblad superoperator is decomposed as follows:

L̂ =
∑
j �=0

λ j |x j〉〉〈〈y j |. (E8)

The matrix exponential can be written as

exp
(
L̂t

) = ∣∣ρss
S

〉〉〈〈I| +
∑
j �=0

exp(λ jt )|x j〉〉〈〈y j |. (E9)

We represent the second term of the right-hand side of Eq. (20)
using vectorization. Using the Hermitian property of ȞS (s)
and the cyclic property of the trace, we can write the second
term as

8
∫ t

0
ds1

∫ s1

0
ds2Re(TrS[ȞS (s1 − s2)HeffρS (s2)]). (E10)

Using the cyclic property of the trace and applying the Kraus
operators to HeffρS (s2), we obtain

8
∫ t

0
ds1

∫ s1

0
ds2Re〈〈I|ĤS exp(L̂(s1 − s2))Ĥeff |ρS (s2〉〉.

(E11)

Substituting Eq. (E9) into this equation and changing the order
of the integral, we have

8
∫ t

0
ds2

∫ t

s2

ds1Re〈〈I|ĤS exp(L̂(s1 − s2))Ĥeff |ρS (s2〉〉

= 8TrS
[
HSρ

ss
S

] ∫ t

0
ds(t − s)TrS[HSρS (s)] + 8

∫ t

0
ds2

∫ t

s2

ds1Re〈〈I|ĤS

∑
j �=0

exp(λ j (s1 − s2))|x j〉〉〈〈y j |Ĥeff |ρS (s2〉〉

= 8TrS
[
HSρ

ss
S

] ∫ t

0
ds(t − s)TrS[HSρS (s)] + 8Re

∫ t

0
ds〈〈I|ĤS

∑
j �=0

1

λ j
(exp(λ j (t − s)) − 1)|x j〉〉〈〈y j |Ĥeff |ρS (s)〉〉

= 8TrS
[
HSρ

ss
S

] ∫ t

0
ds(t − s)TrS[HSρS (s)] + 8Re

∫ t

0
ds〈〈I|ĤSL̂D(exp(L̂(t − s)) − 1)Ĥeff |ρS (s)〉〉, (E12)

where

L̂D ≡
∑
j �=0

1

λ j
|x j〉〉〈〈y j |. (E13)

L̂D is the Drazin pseudoinverse, which satisfies

L̂DL̂ = L̂L̂D = P, (E14)

L̂D = PL̂+P, (E15)
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where L̂+ denotes the Moore-Penrose pseudoinverse, and

P ≡ I − ∣∣ρss
S

〉〉〈〈I| =
∑
j �=0

|x j〉〉〈〈y j |. (E16)

By combining Eq. (20) and Eq. (E12), we obtain

B(t ) = A(t ) + 8TrS
[
HSρ

ss
S

] ∫ t

0
ds(t − s)TrS[HSρS (s)] + 8 Re

∫ t

0
ds〈〈I|ĤSL̂D(exp(L̂(t − s)) − 1)Ĥeff |ρS (s)〉〉

− 4

(∫ t

0
dsTrS[HSρS (s)]

)2

. (E17)

APPENDIX F: APPROXIMATIONS OF EXACT SOLUTION

We provide two approximations when t is either small or large. Let ν ≡ min j>0 |Reλ j | and let

γ (t ) ≡ max

⎛
⎜⎝1

t

⎛
⎝∑

j �=0

1

|λ j |

⎞
⎠

2

, exp(−νt )

⎞
⎟⎠. (F1)

We first provide an approximation of the quantum dynamical activity when γ (t ) � 1. From I = |ρss
S 〉〉〈〈I| + ∑

j �=0 |x j〉〉〈〈y j |, we
have

|ρS (t )〉〉 = ∣∣ρss
S

〉〉 + ∑
j �=0

exp(tλ j )|x j〉〉〈〈y j |ρS (0)〉〉. (F2)

From Eq. (F2), the second term in Eq. (E12) can be written as

−8tRe〈〈I|ĤSL̂DĤeff

∣∣ρss
S

〉〉 + 8Re〈〈I|ĤS (L̂D)2(1 − exp(L̂t ))Ĥeff |ρss〉〉

+ 8Re
∫ t

0
ds

∑
j,k �=0

1

λ j
(exp(λ jt + (λk − λ j )s) − exp(λks))〈〈I|ĤS|x j〉〉〈〈y j |Ĥeff |xk〉〉〈〈yk|ρS (0)〉〉. (F3)

By integrating the third term in Eq. (F3), we obtain

8Re
∑
j �=0

(
t exp(λ jt )

λ j
− 1

λ2
j

(exp(λJt ) − 1)

)
〈〈I|ĤS|x j〉〉〈〈y j |Ĥeff |x j〉〉〈〈y j |ρS (0)〉〉

+ 8Re
∑

j �=k; j,k �=0

(
1

λ j (λk − λ j )
(exp(λkt ) − exp(λ jt )) − 1

λ jλk
(exp(λkt ) − 1)

)
〈〈I|ĤS|x j〉〉〈〈y j |Ĥeff |xk〉〉〈〈yk|ρS (0)〉〉. (F4)

By combining Eq. (F3) and Eq. (F4), the second term in Eq. (E12) is expressed as

−8tRe〈〈I|ĤSL̂DĤeff

∣∣ρss
S

〉〉 + tO(γ (t )). (F5)

Hence, we have

B(t ) = A(t ) + tZ + 8TrS
[
HSρ

ss
S

] ∫ t

0
ds(t − s)TrS[HSρS (s)] − 4

(∫ t

0
dsTrS[HSρS (s)]

)2

+ O(tγ (t )), (F6)

where

Z ≡ −8Re〈〈I|ĤSL̂DĤeff

∣∣ρss
S

〉〉
. (F7)

Note that the degree of 8TrS[HSρ
ss
S ]

∫ t
0 ds(t − s)TrS[HSρS (s)] − 4(

∫ t
0 dsTrS[HSρS (s)])2 is at most one with respect to t from

Eq. (F2). When ρS (0) = ρss
S , the equation can be simplified as

B(t ) = A(t ) + tZ + O(tγ (t )). (F8)

044114-11
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Next, we provide an approximation when we can ignore O(t3). From exp(L̂t ) − 1 ∼ L̂t and Eq. (E14), the equation Eq. (E12)
yields

8TrS
[
HSρ

ss
S

] ∫ t

0
ds(t − s)TrS[HSρS (s)] + 8Re

∫ t

0
ds(t − s)〈〈I|ĤSPĤeff |ρS (s)〉〉 = 8Re

∫ t

0
ds(t − s)〈〈I|ĤSĤeff |ρS (s)〉〉

= 8Re
∫ t

0
ds(t − s)TrS[HSHeffρS (s)]. (F9)

By substituting this equation into Eq. (E17), we obtain

B(t ) = A(t ) + 8Re
∫ t

0
ds(t − s)TrS[HSHeffρS (s)] − 4

(∫ t

0
dsTrS[HSρS (s)]

)2

+ O(t3). (F10)

Furthermore, from ρS (t ) = ρS (0) + O(t ), we obtain

B(t ) = A(t ) + 4t2ReTrS[�HS�HeffρS (0)] + O(t3). (F11)

Since the second term includes 4t2σ 2
HS

(0), this equation corresponds to the upper bound Eq. (23).

APPENDIX G: ASYMPTOTIC EXPRESSION OF B(τ )

In Ref. [20], the quantum dynamical activity B(τ ) was
evaluated within the limit of τ → ∞. In this section, we
review its representation.

Suppose that the Lindblad equation has a steady-state solu-
tion. Using vectorization, the quantum dynamical activity for
τ → ∞ can be represented as

B∞(τ ) ≡ τ (a + bc) = τ (a + 4Z1 + 4Z2), (G1)

where Z1 and Z2 are defined as

Z1 = −〈〈I|K̂1
(
I − ∣∣ρss

S

〉〉〈〈I|)L̂+(
I − ∣∣ρss

S

〉〉〈〈I|)K̂2

∣∣ρss
S

〉〉
,

(G2)

Z2 = −〈〈I|K̂2
(
I − ∣∣ρss

S

〉〉〈〈I|)L̂+(
I − ∣∣ρss

S

〉〉〈〈I|)K̂1

∣∣ρss
S

〉〉
.

(G3)

Here, + denotes the Moore-Penrose pseudoinverse, and I is
the identity operator in the vectorized space. Using the Drazin
inverse L̂D given by Eq. (E13), we obtain

Z1 = −〈〈I|K̂1L̂DK̂2

∣∣ρss
S

〉〉
, (G4)

Z2 = −〈〈I|K̂2L̂DK̂1

∣∣ρss
S

〉〉
. (G5)

Equivalence of Eq. (F8) and Eq. (G1)

We show that Eq. (F8) and Eq. (G1) are equivalent. From
Eq. (D4), Eq. (D5), and Lρss

S = 0, we have

K1ρ
ss
S = − i

2
Heffρ

ss
S − i

2
ρss

S H†
eff , (G6)

K2ρ
ss
S = −K1ρ

ss
S . (G7)

From Eq. (D6), we obtain

〈〈I|K̂1 • ∣∣ρss
S

〉〉 = TrS
[
K1 • ρss

S

] = −i〈〈I|ĤS • ∣∣ρss
S

〉〉
. (G8)

By combining these relations with Eq. (G4), we obtain

Z1 = − 1
2 〈〈I|ĤSL̂DĤeff

∣∣ρss
S

〉〉 − 1
2 〈〈I|ĤSL̂D

∣∣ρss
S H†

eff

〉〉
. (G9)

From Eq. (D7) and Eq. (G7), we obtain

Z2 = Z1. (G10)

From L̂D = ∫ ∞
0 dt exp(L̂t ) and the cyclic property of the

trace, and by acting exp(L̂t ) to HS , we obtain

(〈〈I|ĤSL̂DĤeff

∣∣ρss
S

〉〉)∗ =
∫ ∞

0
dtTrS

[
ȞS (t )Heffρ

ss
S

]∗

=
∫ ∞

0
dtTrS

[
ȞS (t )ρss

S H†
eff

]
= 〈〈I|ĤSL̂D

∣∣ρss
S H†

eff

〉〉
, (G11)

where we use the Hermitian of ȞS (t ). Therefore, we obtain
Z = 4Z1 + 4Z2.
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Characterization of dynamical phase transitions in quantum
jump trajectories beyond the properties of the stationary state,
Phys. Rev. Lett. 110, 150401 (2013).

[31] J. P. Garrahan, Classical stochastic dynamics and continu-
ous matrix product states: gauge transformations, conditioned
and driven processes, and equivalence of trajectory ensembles,
J. Stat. Mech: Theory Exp. (2016) 073208.

[32] Y. Hasegawa, Irreversibility, Loschmidt echo, and thermo-
dynamic uncertainty relation, Phys. Rev. Lett. 127, 240602
(2021).

[33] Y. Hasegawa, Thermodynamic uncertainty relation for quan-
tum first-passage processes, Phys. Rev. E 105, 044127
(2022).

[34] S. Gammelmark and K. Mølmer, Fisher information and the
quantum Cramér-Rao sensitivity limit of continuous measure-
ments, Phys. Rev. Lett. 112, 170401 (2014).

[35] S. Nakajima and Y. Utsumi, Symmetric-logarithmic-derivative
Fisher information for kinetic uncertainty relations, Phys. Rev.
E 108, 054136 (2023).

044114-13

https://doi.org/10.1103/PhysRevLett.121.030605
https://doi.org/10.1103/PhysRevX.10.021056
https://doi.org/10.1038/s41567-020-0981-y
https://doi.org/10.1103/PhysRevE.102.062132
https://doi.org/10.1103/PhysRevX.13.011013
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1088/1742-5468/aac91a
https://doi.org/10.1088/1751-8121/aaee34
https://doi.org/10.1103/PhysRevLett.123.110602
https://doi.org/10.1103/PhysRevX.7.031022
https://doi.org/10.1103/PhysRevLett.122.130605
https://doi.org/10.1103/PhysRevLett.125.050601
https://doi.org/10.1016/j.physrep.2020.01.002
https://doi.org/10.1038/s41467-023-38074-8
https://arxiv.org/abs/2308.07810
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/PRXQuantum.5.020201
https://doi.org/10.1103/PhysRevLett.104.190405
https://doi.org/10.1103/PhysRevLett.105.260401
https://doi.org/10.1103/PhysRevLett.104.160601
https://doi.org/10.1103/PhysRevLett.110.150401
https://doi.org/10.1088/1742-5468/2016/07/073208
https://doi.org/10.1103/PhysRevLett.127.240602
https://doi.org/10.1103/PhysRevE.105.044127
https://doi.org/10.1103/PhysRevLett.112.170401
https://doi.org/10.1103/PhysRevE.108.054136

