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Prediction of depinning transitions in interface models using Gini and Kolkata indices
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The intermittent dynamics of driven interfaces through disordered media and its subsequent depinning for
large enough driving force is a common feature for a myriad of diverse systems, starting from mode-I fracture,
vortex lines in superconductors, and magnetic domain walls to invading fluid in a porous medium, to name a few.
In this work, we outline a framework that can give a precursory signal of the imminent depinning transition by
monitoring the variations in sizes or the inequality of the intermittent responses of a system that are seen prior
to the depinning point. In particular, we use measures traditionally used to quantify economic inequality, i.e.,
the Gini index and the Kolkata index, for the case of the unequal responses of precritical systems. The crossing
point of these two indices serves as a precursor to imminent depinning. Given a scale-free size distribution
of the responses, we calculate the expressions for these indices, evaluate their crossing points, and give a recipe
for forecasting depinning transitions. We apply this method to the Edwards-Wilkinson, Kardar-Parisi-Zhang, and
fiber bundle model interface with variable interaction strengths and quenched disorder. The results are applicable
for any interface dynamics undergoing a depinning transition. The results also explain previously observed near-
universal values of Gini and Kolkata indices in self-organized critical systems.
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I. INTRODUCTION

An interface driven through a disordered medium is a situ-
ation that appears in a wide variety of physical systems, such
as domain wall dynamics through a disordered magnet [1,2],
fluid front invading a disordered porous medium [3,4], vortex
lines in superconductors [5,6], and fracture front in mode-I
fracture [7,8], to name a few. As the interface is acted upon
by an external driving force, the interface will be depinned
and will keep moving indefinitely, for a critical value of
the force.

The critical value of the driving force needed for the de-
pinning transition is nontrivial, given that the dynamics of
the interface is a cooperative phenomenon, mediated by the
“elastic” interacting between the parts of the interface. As
an interface goes from pinned to moving phases, it is of-
ten characterized as a second-order transition (see, however,
Ref. [9] that deals with systems that do not fall under this
characterization). The tools of critical phenomena, namely,
the universality hypothesis, are therefore applicable for such
systems and can help in estimating the critical exponent values
[10]. However, given the nature of the systems where depin-
ning can occur, it is often also vital to have an estimate for
the distance from the imminent transition point, when such a
point is approached from the subcritical regime. For example,
if the mode-I fracture [7] is studied for a disordered sample,
then a depinning transition would imply a catastrophic fail-
ure of the sample. Similarly, if the dynamics of a magnetic
domain wall [1] is studied using an external magnetic field,
a depinning transition would mean a “catastrophic” switching
of the magnetic state of the sample (say, from majority up spin
to majority down spin) [11]. In the case of fluid flow through
porous media [3], depinning would result in a breakthrough of
the invading fluid through the medium in question, and so on.

Therefore, much effort has been spent in finding ways
to forecast imminent depinning and other similar transitions
from the statistical regularities in the response of a system
approaching such a transition [12–20]. As mentioned above,
depinning transitions are often characterized as (nonequi-
librium) critical phenomena, which results in having the
possibility of a growing correlation length within the system
that in turn, causes cooperative response statistics. Keeping
track of this growing correlation, therefore, is a rather non-
invasive and optimal monitoring pathway. Specifically, it is
known that the dynamics of a system near the depinning
transition start showing intermittent behavior. For example, in
fracture front propagation, this would be intermittent acoustic
energy emissions that have scale-free size distributions [21].
For fluid invasion, the changes in the invaded volume with
time would show similar intermittent scale-free statistics (see,
e.g., [22]). A similar observation exists for changes in magne-
tization for magnetic domain wall depinning [23]. It is natural
to expect that these intermittent dynamics, together with the
scale-free statistics of their “sizes,” would mirror the “health”
of the system in terms of their stability or the proximity to a
catastrophic (depinning) event.

For the reasons mentioned above, correlation length and
time have been used to estimate the vicinity of critical point
in many systems. For example, in sandpile models, the tem-
poral and spatial propagation of a small perturbation gives the
estimates for correlation time and length, which was used to
estimate the distance from the self-organized critical (SOC)
state [24]. In Ref. [25], correlation time estimates were made
to locate imminent large earthquake events. Other similar
analyses for Ising and related models were made as well
(see, e.g., [26–28]). However, in all such cases, the corre-
lation length or time is a two-parameter fit, involving the
critical point and the critical exponent. In models, one can
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make an accurate fit (and hence a precise estimate for the
critical point) by doing averages over many ensembles (see,
e.g., [24,26,27]). However, in real data, where such averaging
does not exist, the limitations in precision are clear (see, e.g.,
[25,28]). Therefore, it is useful to construct a framework for
precursory signals that builds on the noninvasive nature of the
measurements of correlation length or time (i.e., estimate the
relevant quantities from things such as acoustic emissions),
but produces a signal that is not reliant on averaging over
ensembles.

In recent years, some attempts were made to anticipate the
imminent critical point in a system by quantifying how un-
equal the responses of a system are as the system approaches
the critical point [29,30]. In all cases, the quantification of
inequality (or variation) in the “sizes” of response (for ex-
ample, the unequal avalanche sizes for fracture) is a central
requirement. In order to do this quantification, we borrow
the idea of inequality indices that are traditionally used in
socioeconomic systems, namely, the Lorenz curve [31] and
the inequality indices derived from it. For our purposes here,
we will use two such quantities: the Gini index (g) [32] and
the Kolkata index (k) [33]. The inequality of responses (say,
susceptibility in Ising model) would grow as the critical point
is approached. Consequently, the inequality indices (g and k
measured for the response function) would also grow. The
scaling behavior of these inequality indices was shown to
exhibit universal properties [30,34–36], and it is also known
that g and k of such response functions would cross slightly
away from the critical point.

It is, however, not well understood whether the above cal-
culations would be applicable for a time series of a response
function (say, avalanches) that is not strictly monotonic as
the critical point is approached. In other words, the aim of
the present work is to investigate the broader applicability of
the methods mentioned above for driven disordered systems,
which are vital by virtue of the catastrophic transitions associ-
ated with them. We study the Edwards-Wilkinson (EW) [37],
Kardar-Parisi-Zhang (KPZ) [38], and fiber bundle interface
model (FBM) [39,40] in their precritical states and show that
the precursory signals appear, for every single realization of
the models, just prior to the depinning transition point. This
makes the framework broadly applicable (for nonequilibrium
systems with nonmonotonic responses) and reliable.

II. QUANTIFICATION OF INEQUALITY
OF AVALANCHES: THE INEQUALITY INDICES

Inequality in the distribution of resources, such as income
or wealth, is a common issue in societies. Therefore, the
quantification of inequality was a natural question in social
sciences. Over the years, several indices were proposed to
quantify inequality. For instance, the Gini index (g) [32]
(which assesses wealth inequality) and the more recently in-
troduced Kolkata index (k) [33], among others, are used for
such quantification. Both of these inequalities are quantified
through the Lorenz curve L(p) [31]. The Lorenz curve de-
notes that the p smallest fraction of the events accounts for
the L(p) fraction of the total events. In terms of wealth, the
poorest p fraction of the individuals own L(p) fraction of
the total wealth. Along the same line, the definition could be

extended to other (non-negative) quantities, such as an
avalanche time series, where the Lorenz curve would denote
p fraction of the smallest avalanches accounting for L(p)
fraction of the total avalanche mass.

The two inequality indices g and k are then defined
through the Lorenz function [31]: with g = 1 − 2

∫ 1
0 L(p)d p

and solving the fixed point 1 − k = L(k), respectively (see the
Appendix for a detailed discussion).

The Lorenz curve L(p) is typically represented as a non-
linear curve that always lies below the line of perfect equality
[diagonal from (0,0) to (1,1)], which represents a situation
where all avalanches (or events) have equal size. The Gini in-
dex is the area between the equality line and the Lorenz curve,
normalized by the area under the equality line (1/2). The
range of g varies between 0 to 1, where g = 0 corresponds to
perfect equality (all sizes are equal) and g = 1 corresponds to
extreme inequality (all but one size is nonzero). The Kolkata
index says that the 1 − k fraction of the largest avalanche
accounts for the k fraction of total damages (avalanche mass),
and the range of k varies between 0.5 to 1, where k = 0.5
implies complete equality and k = 1 indicates the extreme
inequality. This is a generalization of the Pareto’s 80-20 law
[41].

These inequality measures have recently been used in
physical systems for various different purposes [29,34,42]. As
mentioned before, the critical scaling properties [35], predic-
tion of catastrophic events [29], etc. could be studied using
these measures. In this work, we calculate these inequality
measures of time series of avalanche sizes for multiple models
of interface depinning in the subcritical regime. Using the
inequalities or variations of sizes between the avalanches in
the subcritical phase of the models, we attempt to infer a
precursory signal that can work for driven interfaces with
a broad class of interaction kernels and for each individual
sample, independent of ensemble average.

As indicated above, both of the indices (g and k) that we
are interested in need to be evaluated from the Lorenz function
L(p). Now, from a time series with m + 1 number of terms, of
a variable that follows a power-law size distribution function
[assume P(S) = CS−δ; more realistically, lower and upper
cutoffs are necessary], the Lorenz function can be estimated
in the following way. First we arrange the series in ascend-
ing order of the size of the avalanche. Note that this is an
approximation, since the actual time series [see Fig. 1(a)] is
not strictly monotonically increasing, but the avalanche size
increases on average. Nevertheless, the ordering implies

S0 � S1 � S2 · · · � Sm. (1)

Then, the number of events with size higher than or equal to
Sr is [43] ∫ ∞

Sr

P(S)ds = m − r. (2)

Assuming P(S) = CS−δ , then

S(1−δ)
r ∝ m − r, (3)

implying

Sr ∝ (m − r)1/(1−δ). (4)
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FIG. 1. (a) The time series of avalanche sizes (in logarithmic scale) is shown along with the time variations of g and k for the quenched
Edwards-Wilkinson model as a prototype. Here the crossing of g and k occurs prior to the depinning transition point (the last avalanche in
the series). Therefore, the crossing of g and k can serve as a good indicator of an imminent depinning transition. (b) gmin and kmin are the
values where g and k come closest to each other at the earliest time. As can be seen, for δ > 2, they do not cross. For δ < 2, except at δ = 1.5,
gmin = kmin < 1, which means g and k are expected to cross each other prior to depinning. The points indicate the values at which different
models are expected to exhibit this precursory warning. It is seen that different models (EW, KPZ, FBM, and the square of avalanches in FBM)
show gmin and kmin values that are nearly universal at about 0.87, which are numerically verified later. The reason for considering the square of
avalanches for the FBM interface is discussed later.

For δ > 1, we can write

Sr ∝ (m − r)−n, (5)

with n = 1
δ−1 , where Sr is the ordered series of avalanche size

and r is the rank of avalanche size. Of course, the maximum
size (Sm), occurring at r = m, is not infinite in physical sys-
tems, but limited by an upper cutoff, typically an exponential
round-off governed by the system size.

Now, we are interested in dynamical monitoring of the
values of g and k, which requires that we only look up to
a fraction (say, b) of the whole time series and evaluate L
(and g, k), as b goes from 0 (start time) to 1 (depinning
time). Note that we always begin monitoring from the starting
time of loading (b = 0). Therefore, g(b) and k(b) estimate the
inequality of all avalanches that took place from the starting
point up to the b fraction of the depinning time. This makes
these quantities cumulative measures of inequality. At this
point, a crucial observation for further progress in the calcu-
lation is that since we are looking at the precritical dynamics
of the depinning transition, the time series of avalanches is
not stationary. Furthermore, given that we are progressively
loading the system without dissipation, the avalanche sizes, on
average, will continue to grow, as the depinning point is ap-
proached. This is captured in Fig. 1(a). Therefore, for practical
purposes, it is a fair assumption to make that until any point
of time, the actual avalanche series and that obtained after
arranging such series in the ascending order of the avalanche
sizes are close to each other at least in terms of measuring g
and k (see Fig. 7 for a comparison). We, therefore, proceed to
make the estimate of the Lorenz function (and consequently
that of g and k) from the ordered functional form of Eq. (5),
keeping in mind, however, that nonmonotonicity in avalanche

sizes might affect the g and k crossing point, and that such
nonmonotonicity might be different for different models.

Then, the Lorenz function for a time series up to b fraction
(where b = 1 implies the transition point) can be obtained
from (see, also, [35])

L(p, b, n) =
∫ pbm

0 (m − r)−ndr∫ bm
0 (m − r)−ndr

, (6)

putting m − r = x and, upon changing the limits, Eq. (6)
becomes

L(p, b, n) =
∫ m−pbm

m x−ndx∫ m−bm
m x−ndx

, (7)

which gives

L(p, b, n) = (m − pbm)−n+1 − m−n+1

(m − bm)−n+1 − m−n+1
, (8)

which takes the form

L(p, b, n) = 1 − (1 − pb)1−n

1 − (1 − b)1−n
. (9)

It is then straightforward to evaluate the Gini index as

g(b, n) = 1 − 2
∫ 1

0
L(p, b, n)d p, (10)

after substituting the value of L(p, b, n) from Eq. (9),

g(b, n) = 1 − 2

1 − (1 − b)1−n

∫ 1

0
1 − (1 − pb)1−nd p, (11)

which gives, on simplification,

g(b, n) = 1 − 2

1 − (1 − b)1−n

[
1 + (1 − b)2−n − 1

(2 − n)b

]
. (12)
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The Kolkata index needs to be obtained from the self-
consistent solution of

1 − k(n, b) = L[k(n, b)], (13)

which gives

1 − k(n, b) = 1 − [1 − k(n, b)b]1−n

1 − (1 − b)1−n
. (14)

Remembering that n = 1/(δ − 1), with δ the size distribu-
tion exponent for the avalanches, we can now evaluate g and k
as functions of b, which is a proxy of time. Therefore, we end
up with an estimate of time variation of the inequality indices
prior to the depinning transition point. It is then necessary
to estimate a precursory signal from the time variation of
these two indices. As mentioned before, for sufficiently small
values of δ, these two indices would cross each other before
depinning (i.e., for b < 1). In Fig. 1(b), we show the values of
the two indices (denoted by gmin and kmin) when they become
closest to each other for the lowest value of b, i.e., at the
earliest time. This means that if the closest approach of g and k
happens for b < b0 and again at b = b1 with b0 < b1, we then
keep the values (gmin and kmin) for b0. Now, it is seen that for
δ > 2, g and k do not become equal (gmin �= kmin), i.e., there
is a finite gap even at b = 1. For other values of δ, except at
some special cases, the two indices become equal for b < 1.
The equality of g and k prior to the transition point is then a
precursory signal of an imminent depinning transition point.

We have indicated a few points in the plots of Fig. 1(b) that
correspond to the expected values of gmin and kmin for different
models. For the cases where the avalanche size distribution
exponent is steeper than −2, there will be no crossing of g
and k. But one can then consider the square of the avalanche
sizes, which will have a shallower size distribution and will
therefore have a crossing point. We will discuss the relevant
cases of the individual models in the subsequent sections.

One final point to note before moving to the individual
models is the near-constant values of gmin and kmin for dif-
ferent values of δ < 2 (excluding δ = 1.5). This range of
δ values is observed in a very wide range of physical and
socioeconomic systems, especially in the context where they
are stipulated to be in a self-organized critical (SOC) state. A
measure of g and k for such systems, using a reasonable long-
time series that will be in a stationary state, will yield values
close to 0.87, as can be seen in Fig. 1(b). This is precisely
what was observed in the data quite extensively [30,33] (see,
also, [44,45] for citation of scientists) and also in simulations
(see, e.g., [36]).

III. MODELS AND METHODS

We now apply the methods outlined so far for three mod-
els of depinning transition: the fiber bundle interface model
[39,40], the quenched Edwards-Wilkinson model [37], and the
quenched Kardar-Parisi-Zhang model [38]. While the frame-
works presented here are general, we choose these models
since they are paradigmatic models of interface depinning.

A. Simulation methods

Here we outline the details of the simulation methods for
different kinds of interfaces that we consider, particularly
the fiber bundle interface, and quenched Edwards-Wilkinson
and KPZ interfaces. Through intermittent dynamics prior to
depinning, the avalanche statistics are recorded and subse-
quently used to measure the inequality or the variation in their
sizes.

1. Simulating FBM

For the fiber bundle model version of the interface [39],
we consider an array of discrete elements, each having a
finite failure threshold (σth), drawn from some distribution
function. When a load is applied on the interface, some of
these elements (fibers) break and the load carried by those
fibers is redistributed among the intact fibers. Those fibers
can then break, given that the load level has now increased,
triggering an avalanche. The avalanche will subsequently stop
when all intact fibers are carrying loads that are below their
failure thresholds. The number of fibers breaking between
two successive load increments is called an avalanche size.
To model a propagating interface, all fibers broken during
the avalanche are then restored with zero initial load and a
threshold value for failure drawn from the same distribution
function as before. The load on the system is then increased,
on all fibers equally, until the next breaking happens and an
avalanche starts, and the dynamics continue. The timescale of
avalanche is considered to be much smaller than the external
loading rate, which enables us to consider a constant value for
load during an ongoing avalanche.

The load redistribution process is considered to be distance
dependent, i.e., if the ith fiber is broken, the fraction of the
load received by the jth fiber is proportional to 1

|i− j|γ , where
γ = 0 is the limit of equal load sharing (mean field) and
γ → ∞ is the local load-sharing limit. In practice, as noted
elsewhere [39], γ ≈ 3 is sufficient for the model to exhibit
local load-sharing behavior.

We simulate for different values of γ and record the cor-
responding avalanches for the system size L = 10 000 and
measure the inequalities of such avalanches, as mentioned
above.

2. Simulating qKPZ and qEW

In the Edward-Wilkinson equation and Kardar-Parisi-
Zhang equation, we simulate the behavior of a one-
dimensional interface model with quenched (q) noise. We use
these two models to simulate the surface growth and evolution
of a discrete interface represented by the height variable hi(t ),
and the growth rule for the discrete interface model is

hi(t + 1) =
{

hi(t + 1) i f Gi > 0

hi(t ) otherwise,
(15)

where

Gi = hi+1(t ) + hi−1(t ) − 2hi(t ) + η(i, h) + F (16)
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for EW, and

Gi = hi+1(t ) + hi−1(t ) − 2hi(t )

+ 1

2

[
hi+1(t ) − hi−1(t )

2

]2

+ η(i, h) + F (17)

for KPZ, where η(i, h) is the random δ correlated pinning
force and F is the external driving force. Initially, the height
profile of interface hi is 0 and the periodic boundary condi-
tions are used on the system size L. The height of the interface
at each site hi is updated using Eqs. (16) and (17) [46,47]. The
pinning force η is randomly selected from a uniform distribu-
tion in the range (−2, 2) in the case of the EW equation and
(−5, 5) in the case of the KPZ equation. Any change in that
will be explicitly mentioned in the relevant places.

The simulation proceeds by applying the minimum exter-
nal driving force on the interface, which is required to move
the height of the interface. When the external driving force
is smaller than the pinning force, the interface is pinned.
When Gi is positive, the height of the interface hi is moved
by 1 and again new pinning forces, drawn from the same
distribution, are assigned to the sites. This process continues
until no more growth occurs or the local growth rate becomes
zero. During this process, the external driving force has re-
mained unchanged, and then it is increased again to restart
the dynamics. The number of updated sites in between two
stable states is the avalanche size S. When the external driving
force is stronger than the critical value, the interface moves
indefinitely, i.e., it is depinned.

IV. SIMULATION RESULTS

Here we explain the behavior of inequality indices g and
k of the avalanche time series in the case of EW, KPZ, and
fiber bundle interface model. The codes used for these simu-
lations and the measurements of inequality indices are freely
available in Ref. [48].

In Fig. 2(a), we have plotted the size distribution of
avalanche size, denoted as P(S) for the fiber bundle interface
model prior to depinning. The size distributions are shown
for various values of γ including 0, 0.5, 1, 1.5, 2, 2.5, 3.5,
4, 4.5, and 5. Here, a low value of γ (< 2) signifies the
mean-field interaction, while a high value of γ signifies the
nearest-neighbor interaction. We observe a continuous varia-
tion in the exponent value of the size distribution δ ranging
from 2.5 to 1.3 as γ varies from 0 to 5. In Fig. 2(b), we
see that γ = 2 is the point beyond which the size distribution
exponent δ is below 2. This is in line with earlier results in
Ref. [39]. The end values of the indices, denoted by g f and
k f , depend on the distribution of avalanche size exponent δ.
When these avalanches are arranged in ascending order based
on their sizes, the resulting curve will exhibit a divergence
characterized by an exponent n, where n = 1

δ−1 for n > 1,
and g f and k f will converge to 1 [35]. If the size distribution
exponent δ remains below 2, then the divergence exponent
will always be above 1.

Figure 3(a) shows the temporal evolution of g and k for
various γ values, including 0, 1, 2, 3, 4, and 5, in the FBM. We
observe that when γ is low (reflecting a mean-field regime),
with a corresponding size distribution exponent δ of 2.5, g

FIG. 2. (a) The avalanche size (prior to depinning) distribution
P(S) for the fiber bundle interface model is plotted for the different
values of γ = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 for the system
size L = 10 000. (b) The variation of the size distribution exponent
δ with γ . It can be seen that the avalanche size distribution exponent
becomes steeper than 2 for γ < 2.

and k do not cross. This implies that in the mean-field limit,
predicting depinning becomes challenging. However, when γ

exceeds 2 (indicating the localized regime), the size distribu-
tion exponent δ (magnitude) decreases to 1.3, and the crossing
of g and k is seen.

Now the problem for γ < 2 can also be solved if we simply
take the time series of S2. Since its size distribution will
be shallower, we will again see the crossing of g and k. In
Figure 3(b), we square the avalanche size before computing
the values of g and k. We observe that the crossing of g and
k occurs consistently across all values of γ . We could have
taken an even higher power of S (S3, S4, etc.) to ensure the
crossing of g and k. But the crossing would happen for an
earlier value of σ , as the power is increased. So, the precision
in the precursory signals would decay with the power used in
the avalanche series.

As mentioned earlier, the expressions in Eqs. (12) and (14)
assume monotonic variation of avalanche sizes with time (or
load). But in individual samples of simulations, this does not
hold. The approximation, therefore, can make a difference
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FIG. 3. The time variation of g and k is shown for the different values of γ = 0, 1, 2, 3, 4, and 5 for the system size L = 10 000 in the
FBM interface. Here low γ corresponds to the mean-field limit and high γ corresponds to the localized load-sharing regime. (a) The crossing
of g and k is seen when the γ value is high since the size distribution exponent value is lower there (see Fig. 2). (b) The crossing of g and k is
always seen for all values of γ when we calculate g and k by taking the square of the avalanche sizes (i.e., S2) because the size distribution of
S2 will have a smaller exponent value than that of S. However, for the γ values for which crossing was already happening for S, with S2 the
crossing happens slightly earlier. Note that for visual clarity, all curves, except γ = 0, are shifted in time.

between the actual crossing point of g and k and that estimated
using the approximation. In order to see that such deviations
do not critically affect the framework’s ability to produce
precise precursory signals for different models, we extend
this analysis to two additional models of depinning transition,
namely, the EW and KPZ models. To begin our analysis,
we first measure the size distribution exponents, denoted as
δ, for these two models. The size distribution exponent is
consistently 1.3 for EW and 1.4 for KPZ (see Fig. 4 inset).
Then we calculate g and k using the time series data of
avalanches, and in Fig. 4 we can see that the crossing of g
and k occurs in both of these cases. This suggests that the
crossing of g and k holds significant promise as an effective
early indicator preceding the depinning transition in these two
models as well.

To underline the fact that this crossing point of g and k
happens at a point (say, σ ∗) that is always before the critical
point (say, σc), we calculate the probability distribution of the
Q( σc−σ ∗

σc
) of the reduced variable σc−σ ∗

σc
for all three models

(FBM, EW, KPZ) to check how far the crossing of g and k
is happening from the depinning transition point (see Fig. 5).
Here, σc represents the critical load at which depinning initi-
ates and σ ∗ signifies the point at which g and k cross. Here
in the fiber bundle interface model, we take the values of
γ = 4 and 5. In the EW model, we take two sets: in set
1, we choose a threshold distribution in the range (−2, 2),
while in set 2, we extend the range to (−2.5, 2.5). In the KPZ
model, for set 1, we consider the threshold distribution in the
range (−5, 5), and for set 2, we consider it to be (−6, 6). In
all the cases, we consistently observe that the crossing of g
and k occurs at a distance of about 10% to 30% prior to the
depinning transition point, underscoring its robustness as a
predictive indicator. All the points of the expected gmin and
kmin values are indicated in Fig. 1(b). It is also to be noted
that in no case does the x-axis range go below zero, implying
that in every single realization the crossing happened prior
to the depinning, for all the models and pinning distributions
considered here.

FIG. 4. The variation of g and k plotted with time for the two models, Edward-Wilkinson and Kardar-Parisi-Zhang, for the system size
L = 1000. In the case of these two models, the crossing of g and k for different distributions of pinning forces (see text) is shown. Insets: The
size distributions of the avalanches prior to depinning. The exponent values are always less than 2.

044113-6



PREDICTION OF DEPINNING TRANSITIONS IN … PHYSICAL REVIEW E 109, 044113 (2024)

FIG. 5. The probability distributions of the (σc−σ∗ )
σc

are shown
for the three different models (quenched Edwards-Wilkinson model,
quenched Kardar-Parisi-Zhang model, and fiber bundle interface
model) for different threshold distributions. Here, σc is the critical
load, i.e., the depinning point, and σ ∗ is the point where g and k
cross. In the EW model, we consider two sets: in set 1, we take the
threshold distribution to be uniform in the range (−2, 2), and in set
2, we choose the threshold distribution to be uniform in the range
(−2.5, 2.5). In the KPZ model, in set 1, we take the threshold distri-
bution to be uniform in the range (−5, 5), and in set 2, we take the
threshold distribution to be uniform in the range (−6, 6). In the FBM,
we take the two values of γ = 4, 5 and the threshold distribution to
be uniform in (0,1). As can be seen, the distribution shows the peak
in between 0.1 and 0.3, which means g and k cross near 10% to 30%
away from the depinning transition point and therefore give a reliable
indication of the imminent depinning transition. Here the averages
are done over 10 000 ensembles.

V. DISCUSSION AND CONCLUSION

Forecasting the depinning transition point in interfaces
driven through disordered media is an important problem.
From catastrophic fracture propagation to magnetization
switching, such questions are relevant to physicists and engi-
neers alike. Generally, such cooperative intermittent dynamics
leading to catastrophic changes have been subjected to inves-
tigations through various rule-based (see, e.g., [12–16,19,34])
and machine-learning (see, e.g., [17,18,20,29]) studies. In
rule-based investigations, there are often strong sample-to-
sample fluctuations, and in cases of machine-learning studies,
there is a lack of a training set of experiments.

In this work, we study this question through the behav-
ior of inequality indices traditionally used in social sciences.
The Gini (g) and Kolkata (k) indices show remarkably stable
characteristics prior to the depinning transition point, when
measured using the unequal avalanches of the systems. Re-
call that the avalanches noted here are not in the stationary
state, but in the nonstationary precritical state, where the
average size of the avalanche grows with time (i.e., the ap-
plied load, assuming fixed loading rate). Given a power-law
size distribution of the avalanches, it is possible to calculate
the approximate expressions for the above two indices [see
Eqs. (12) and (14)]. Then, when the time variation of the
indices is looked at, they tend to cross each other at a point
prior to the depinning threshold [see Fig. 1(a)]. Note that this

phenomenon is not just an average or most probable event, but
something that happens on every single realization of all the
models (fiber bundle, EW, and KPZ) studied here. Figure 5
indeed shows the distribution of the relative distance from
the depinning point at which such crossing happened. It is
consistently before the critical point in each case.

As the analytical estimates indicated, for steep enough
size distributions (e.g., fiber bundle interface with γ < 2),
such crossings do not happen. In that case, however, one can
consider the square of the avalanche sizes, which will have a
much shallower distribution and will therefore show a cross-
ing in g and k. The functional form is hard to estimate since
the second moment is not convergent in such cases for fiber
bundles.

Finally, it is worth noting that the value at which the two
indices cross is near universal (about 0.87) (see Fig. 3). This is
seen from the analytical estimates and also from the numerical
simulations of different models. Therefore, the signature of
the precursor is not only widely applicable, but also near
universal. Indeed, in other contexts, such near-universality
was noted in simulations and data analysis, which are the
results of the size distribution, as noted in Eqs. (12) and (14).
In conclusion, we have outlined a framework for forecasting
the imminent depinning transition in a wide variety of inter-
faces driven through disordered media, using social inequality
indices. The indices, g and k, will cross each other at a time
prior to the transition point. The analytical estimate and nu-
merical simulations indicate that the precursory signals are
near universal for all such depinning models and are obeyed
in every realization of the simulations performed on Edwards-
Wilkinson, Kardar-Parisi-Zhang, and fiber bundle interfaces.
For a sufficiently global range of interactions, when g and k of
the avalanches do not cross, if the indices are measured using
the square of the avalanche sizes, then the crossing happens
again. This indicates that for all realistic cases, by taking a
sufficiently higher power of avalanche sizes, one can use the
framework of precursory signals proposed here. An analysis
using experimental data could be a fruitful future direction.
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APPENDIX: INEQUALITY MEASURES
FOR THE AVALANCHE TIME SERIES:
GINI (G) AND KOLKATA (K) INDICES

In this Appendix, we explore the characteristics of the
avalanche time series of the fiber bundle model (FBM),
the quenched Edwards-Wilkinson (qEW) model, and the
quenched Kardar-Parisi-Zhang (qKPZ) model. These time
series exhibit a power-law distribution P(S) ∼ S−δ , where the
probability of large avalanches is few and small avalanches
are more common. The exponent value δ remains consistent
across various system sizes and threshold distributions,
representing a universal property. However, the critical
load required for the system depinning is not universal and
strongly depends on the details of the system. Recently, it
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FIG. 6. A schematic diagram of the Lorenz function L(p), where
L(p) denotes the cumulative fraction of the avalanche mass con-
tained in the smallest p fraction of avalanches. If all avalanches were
equal, this would be a diagonal straight line, called the equality line
(indicated in the figure). The area between the equality line and the
Lorenz curve (shaded area), therefore, is a measure of the inequality
in the avalanche sizes. Two quantitative measures of such inequality
are extracted from here: the ratio of the shaded area and that under
the equality line (called the Gini index, g) and the crossing point of
the opposite diagonal—from (0,1) to (1,0), shown in the dashed line,
and the Lorenz curve, giving the Kolkata index k. The 1 − k fraction
of the largest avalanches contains a k fraction of the cumulative
avalanche mass.

has been shown [42] that some time-dependent inequality
indices that tend to converge to seemingly universal values
near the transition point can be derived from measuring the
inequality among precritical avalanche sizes. Historically,
some of those are over a century old, but used mainly in
estimating economic inequality (e.g., Gini index [32]), and
some of them have been recently introduced, such as the

Kolkata index [33]. Monitoring these quantities can serve as
a valuable indicator to predict impending failure points.

In the following section of the Appendix, we provide a
detailed explanation of how these parameters are defined from
the avalanche time series.

The Lorenz function, Gini (g) and Kolkata (k) indices,
and their approximate estimates

In the simulation of the FBM, EW, and KPZ interfaces,
the time series of the avalanches can be arranged in the as-
cending order of their sizes. Then the Lorenz function L(p)
gives the cumulative fraction of the avalanche mass (sum
of all avalanche sizes) held by the p fraction of the small-
est avalanches up to time t . It is important to note that if
all avalanches were of equal size, then the Lorenz function
would be a straight line starting from the origin and increasing
linearly up to 1. This linear curve is known as the equality
line (see Fig. 6). However, since the avalanches typically
have varying sizes, the Lorenz function is nonlinear, staying
below the equality line and monotonically increasing, with the
constraints that L(p = 0) = 0 and L(p = 1) = 1. The area
between the equality line and the Lorenz function shown as
a shaded region in Fig. 6 serves as a measure of the inequality
in avalanche sizes. The ratio of this area and that under the
equality line (1/2 by construction) is called the Gini index g,
which can be calculated by Eq. (12).

On the other hand, the ordinate value of the crossing point
of the opposite diagonal [the straight line connecting points
(0,1) to (1,0)] provides the value of the Kolkata index k, which
estimates the fraction 1 − k of the avalanches that collectively
account for the fraction k of the total avalanche mass up to that
time. The value of the k index is evaluated through Eq. (14).

As can be seen from Fig. 7, when the avalanches are kept
in their order of occurrence and when they are arranged in
the ascending order of their sizes, they do not vary too much.
Particularly, the crossing points of g and k are similar. There-
fore, the approximation made in the calculations [in writing
Eq. (5)] when the avalanches are assumed to be in ascending
order is good enough.

FIG. 7. (a) The time variation of the avalanche series (in logarithmic scale) along with g and k are plotted for the Edward-Wilkinson model
(as a prototype). (b) The same avalanches along with g and k are shown when the avalanches are arranged in the ascending order of their sizes.
Note that in the second case, the time is not the actual time order of the occurrences of the avalanches. The two figures show that as far as the
crossing point values of g and k are concerned, it is a fair approximation to considered the size-ordered series for analytical estimates.
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