
PHYSICAL REVIEW E 109, 044111 (2024)
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Using mode-coupling theory, the conditions for all allowed dynamical universality classes for the conserved
modes in one-dimensional driven systems are presented in closed form as a function of the stationary currents
and their derivatives. With an eye on the search for the golden ratio universality class, the existence of some
families of microscopic models is ruled out a priori by using an Onsager-type macroscopic current symmetry.
In particular, if the currents are symmetric or antisymmetric under the interchange of the conserved densities,
then at equal mean densities the golden modes can only appear in the antisymmetric case and if the conserved
quantities are correlated, but not in the symmetric case where at equal densities one mode is always diffusive and
the second may be either Kardar-Parisi-Zhang (KPZ), modified KPZ, 3/2-Lévy, or also diffusive. We also show
that the predictions of mode-coupling theory for a noisy chain of harmonic oscillators are exact.
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I. INTRODUCTION

The golden ratio ϕ = (1 + √
5)/2 ≈ 1.618 is undoubtedly

one of the most fascinating irrational numbers. It shows up
in completely different circumstances, from the arrangement
of seeds in sunflowers or petals in flowers [1–3], the shape
of snowflakes [4], and the statistics of signals in the hu-
man brain [5] to art and architectural masterpieces [6]. From
the mathematical viewpoint, the golden ratio is the most
irrational number, in the sense that the number for which
rational approximations like the continued fraction [7] per-
form the worst. In the realm of physics, the golden ratio
is somewhat less prominent. In particular, in the theory of
phase transitions—where rational numbers are ubiquitous in
the characteristics of universality classes—specific irrational
numbers have not been encountered until recently. Indeed, all
critical indices coming from Landau theory of phase transi-
tions [8] are rational numbers. Also, the critical exponents
produced in conformal field theories are all rational (unless
continuously varying). Generically, since various scaling re-
lations relating different critical exponents have the form of a
ratio, the rationality of critical exponents seems to be a robust
feature, leaving little room for irrationality. It has therefore
come as a surprise that the golden ratio can characterize
universal fluctuations of long-lived relaxation modes of inter-
acting many-body systems with conservation laws, governed
by the dynamical exponent z, i.e., with stationary space-time
correlations of the form

〈σ (0, 0)σ (x, t )〉 ∼ f

( |x − vt |z
t

)
, (1)

at large space and timescales. Here σ (x, t ) is a conserved
fluctuation field and v is its characteristic mode velocity.
The theory of the Fibonacci universality classes [9], based
on mode-coupling theory for nonlinear fluctuating hydrody-
namics, predicts the possibility of the coexistence of modes

with different dynamical exponents from the discrete infi-
nite set of Kepler ratios zk = Ck+1/Ck , where Ck are the
Fibonacci numbers 1, 1, 2, 3, 5, . . .. The ubiquitous diffusive
Edwards-Wilkinson (EW) mode k = 2 [10] and the celebrated
superdiffusive Kardar-Parisi-Zhang (KPZ) mode k = 3 [11]
already appear in systems with one conservation law, while
to reach the more exotic modes with k � 4 at least k − 2
conservation laws (and hence relaxation modes) are necessary.
The golden ratio ϕ = limk→∞ zk = (1 + √

5)/2 turns out to
be a remarkable exception: This truly irrational dynamical
exponent can be generated (1) already in a system with just
two long-lived relaxation modes.

With this knowledge at hand, and using fine-tuning of inter-
action parameters, we were able to demonstrate the existence
of the irrational critical exponent ϕ in driven lattice gases with
two and three conservation laws [9,12]. Also, in anharmonic
chains with two conservation laws, the golden universality
class appears for fine-tuned parameter values [13]. However,
ideally, one would like to have the means to produce a system
from the remarkable golden universality class in a robust
way, based on symmetries, instead of fine-tuning. Our present
paper presents a systematic study of properties of the inter-
actions needed to generate one or another universality class,
including the golden ratio, for a system with two conservation
laws. To emphasize that under the given assumptions some
of the results are mathematically rigorous, we use a mathe-
matical presentation in terms of propositions, theorems, and
corollaries when appropriate.

II. FLUCTUATIONS IN SYSTEMS WITH LOCAL
CONSERVATION LAWS

To set the stage, we describe the setting that we have
in mind. In this section, we keep the number of conserved
quantities arbitrary (but finite) and only point to the case
of two conservation laws in some instances to facilitate the
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detailed discussion of two conservation laws in the subsequent
sections.

A. Nonequilibrium steady state

Consider a one-dimensional many-body dynamics with
translation invariant short-range interactions with n locally
conserved densities ρα , α ∈ {1, . . . , n} where a driving force
produces macroscopic stationary currents denoted by jα . The
resulting nonequilibrium steady state (NESS) is assumed to
be unique for given values of the conserved densities, to have
nonvanishing global fluctuations of the conserved densities,
and exhibit a decay of local density correlations that is suf-
ficiently fast to guarantee that the total stationary density
fluctuations are finite. These properties are generic since in
one space dimension, stationary correlations between local
observables usually decay rapidly with distance [14]. Indeed,
for a single conservation law and translation invariant short-
range interactions no counter examples to these properties
are known except for some very special cases, viz., in sys-
tems with long-range interactions [15–17] or with facilitated
dynamics [18–22]. For two conservation laws, long-range cor-
relations accompanied by phase separation have been reported
and analyzed numerically and by mean-field theories [23–25].
All these atypical types of behavior as well as frozen systems
without density fluctuations are ruled out in the present inves-
tigation.

The total stationary density fluctuations are encoded in the
compressibility matrix K in terms of the variances Kαα of the
conserved quantities and their covariances Kαβ . Hence K is
symmetric and all matrix elements are, in general, functions
of all the conserved quantities ρα . The cross correlations given
by the covariances may be positive or negative or even vanish
for all pairs of densities while for the variances Kαα strictly
positive real numbers (excluding the atypical situations men-
tioned above). Specifically, for two conservation laws we
denote the matrix elements of the compressibility matrix K
by

K =
(

κ1 κ̄

κ̄ κ2

)
(2)

rather than by Kαβ and we usually omit the dependence of
these quantities on ρ1 and ρ2.

Also, the stationary currents jα are, in general, functions of
all densities ρα . Their derivatives with respect to the densities
are denoted by subscripts jαβ , jαβγ , and so on. The current
Jacobian J has matrix elements Jαβ = jαβ and the Hessians
Hα associated with the current-density relation have matrix
elements Hα

βγ = jαβγ . Thus, for two conservation laws, the
current Jacobian and the Hessians are the matrices

J =
(

j1
1 j1

2
j2
1 j2

2

)
, Hα =

(
jα11 jα12
jα21 jα22

)
, (3)

with the dependence on ρ1 and ρ2 also usually omitted.

B. Large-scale dynamics

The long-time relaxation of the system is assumed to be
determined by the long-wave-length Fourier modes of the
conserved quantities in the sense that at sufficiently large
times the system is locally (on a microscopic scale) in a

stationary state with densities ρα , which vary only slowly with
space and time.

The generic decay of correlations ensures bounded density
fluctuations in the NESS and, thus, in driven nonequilibrium
systems with nonvanishing stationary currents, the validity
of a coarse-grained hydrodynamic description of the con-
served densities ρα (x, t ) in terms of a continuity equation
∂tρα (x, t ) + ∂xJα (x, t ) = 0, where the currents Jα (x, t ) de-
pend on macroscopic space and time only via the densities
ρ1(x, t ), . . . , ρn(x, t ) [14,26]. Thus the hydrodynamic limit is
given by a system of hyperbolic conservation laws

∂tρα (x, t ) +
n∑

β=1

Jαβ∂xρβ (x, t ) = 0, (4)

where the current Jacobian Jαβ = ∂ρβ
jα (ρ1, . . . , ρn) is given

by the stationary current-density relation jα (ρ1, . . . , ρn) eval-
uated at the space-time point (x, t ).

Fluctuations are not captured in this deterministic large-
scale description. They are expected to be described by the
theory of nonlinear fluctuating hydrodynamics [27,28] for
fluctuation fields which are centered around a fixed stationary
mean ρα of the conserved quantities. To analyze the large-
scale behavior of these fluctuations, it is most convenient to
express them as the eigenmodes σα (x, t ) that appear in generic
form in (1) without mode index α, i.e., as those linear combi-
nations of the conserved fields for which the current Jacobian
J is diagonal for the chosen stationary densities ρα . Ac-
cording to nonlinear fluctuating hydrodynamics, these eigen-
modes then satisfy the system of coupled stochastic Burgers
equations

∂tσα + ∂x

⎛
⎝vασα +

2∑
β,γ=1

Gα
βγ σβσγ −

2∑
β=1

Dαβ∂xσβ + ξα

⎞
⎠

= 0, (5)

with the mode velocities vα , which are the eigenvalues of
the current Jacobian, with phenomenological diffusion matrix
D and with Gaussian white noises ξα . The strength of the
nonlinearity is given by the mode-coupling coefficients Gα

βγ

which depend primarily on the current Jacobian and also—in
an insubstantial way—on the static compressibilites Kαβ (see
below).

These nonlinear stochastic partial differential equa-
tions (SPDEs) can be treated by mode-coupling theory as
described in Ref. [27]. With this approach, we found in
Refs. [9,29] together with our collaborators the exact ana-
lytical scaling solution for the dynamical structure function
(1) for all modes α. This yields the Fibonacci dynamical
universality classes as follows:

(1) In the absence of the diagonal mode-coupling term,
i.e., Gα

ββ = 0 for all modes β (including the mode β = α),
the mode α is diffusive and belongs to the EW universality
class with dynamical exponent zα = 2.

(2) For the nonvanishing self-coupling term, i.e., Gα
αα 
= 0,

the mode α is superdiffusive and belongs to the KPZ uni-
versality class or a modification thereof, both with dynamical
exponent zα = 3/2.

044111-2



QUEST FOR THE GOLDEN RATIO UNIVERSALITY CLASS PHYSICAL REVIEW E 109, 044111 (2024)

(3) If Gα
αα = 0 but Gα

ββ 
= 0 for some mode β 
= α, then
mode α is in a subdiffusive Lévy universality class with the
dynamical exponent zα being a Kepler ratio of two consecutive
Fibonacci numbers or the golden ratio.

(4) The nondiagonal mode-coupling terms Gα
βγ with β 
=

γ are irrelevant for these scaling properties.
The results of Refs. [9,29] for the scaling functions are

valid for strict hyperbolicity of the underlying deterministic
PDE (4), i.e., when the eigenvalues of the current Jacobian
are nondegenerate.

It is worth stressing that the mode-coupling coefficients
Gα

ββ appearing in the macroscopic phenomenological SPDE
(4) are fully given by the stationary distribution of the under-
lying dynamics, viz., by the current Jacobian J and by the
static compressibility matrix K . In fact, whether Gα

ββ van-
ishes or not is determined by the current Jacobian J alone,
the compressibilities encoded in K only renormalize the am-
plitudes. This implies the very remarkable fact that all the
dynamical universality classes of a system can be read from
the stationary currents alone. An explicit example is provided
in Appendix B.

Specifically for two conservation laws, treated indepen-
dently in Refs. [12,13] in the same issue of the Journal of
Statistical Physics, the elusive golden ratio occurs if and only
if G1

11 = G2
22 = 0, G1

22 
= 0, and G2
11 
= 0. In this case, both

modes belong to the golden universality class with z1 = z2 =
ϕ. However, the question that has been left open and which
is addressed here are the circumstances under which these
conditions may be satisfied or not, i.e., which current-density
relations that arise from some microscopic dynamics admit or
forbid the occurrence of two golden modes.

C. Onsager-type current symmetry and microscopic dynamics

Before attacking this problem directly, we point out a
further general consequence of the generic assumption of
sufficiently rapidly decaying stationary correlations. This is
the Onsager-type current symmetry,

JK = KJT , (6)

proved rigorously first for a family of Markovian particle
systems with fully factorized stationary product measure in
Ref. [30] and later generally under very mild assumptions
concerning the decay of stationary correlations and range of
microscopic interactions for classical dynamics in Ref. [31]
and subsequently for quantum systems in Refs. [32,33]. This
current symmetry appears in many contexts in hydrodynamic
theory, see, e.g., Refs. [27,28] for a review and Refs. [34–36]
for recent applications in generalized hydrodynamics for in-
tegrable quantum systems. As pointed out in Ref. [30], the
symmetry (6) can be seen as a nonequilibrium version of
the Onsager reciprocity relations insofar as its validity relies
only on general time-reversal properties of the time evolution
and on an extremely mild assumption on the decay of corre-
lations as discussed in the rigorous proofs of Refs. [31,33].
Indeed, the proof of (6) follows arguments analogous to
those for the Onsager relations. We shall call one-dimensional
physical systems with these generic properties regular one-
dimensional hydrodynamic systems.

Remarkably and perhaps also surprisingly, this macro-
scopic current symmetry directly imposes constraints on the
existence of specific microscopic dynamics: For a given fam-
ily of invariant measures (parametrized by the conserved
densities ρα which fix K), the only physically permissible
microscopic dynamics are such that the transition rates yield
currents (which fix J) compatible with (6).

To appreciate the significance of this constraint in the
search for physical systems that exhibit the golden uni-
versality class (or any other specific Fibonacci universality
class), one must recall that for predicting universality classes
for some microscopic dynamics one needs to know which
diagonal mode-coupling matrix elements Gα

ββ vanish. This
requires knowledge of the exact stationary current-density
relation, which in turn requires knowledge of the exact invari-
ant measure of the dynamics. However, away from thermal
equilibrium, detailed balance does not hold and there is no
simple recipe for obtaining the exact invariant measure for a
given dynamics. Therefore, computing the invariant measure
for some arbitrary (even if nicely-looking) physical dynamics
is usually a hopeless endeavor.

Instead, in the search for specific universality classes one
usually works in opposite direction:

(i) One starts by defining a measure with a simple struc-
ture (such as product or matrix product measures [37,38])
that allows for computing expectation values like the station-
ary currents in explicit form as functions of the densities,
(ii) proposes a physically motivated dynamics (such as short-
range interactions) that respects the conservation laws, (iii)
proves invariance of the measure with respect to this dynam-
ics and/or adjusts parameters accordingly, and (iv) computes
stationary currents and compressibilities from (i) and (ii).
However, there is no obvious starting point for guessing such a
hypothetical dynamics (which might not even exist) and then
checking invariance with respect to the measure may be cum-
bersome due to the absence of detailed balance. Therefore,
being able to rule out a priori certain microscopic dynamics
as unphysical for a given invariant measure can be useful in
the search for dynamical universality classes.

Here the current symmetry helps. It does not provide a
sufficient condition for a microscopic dynamics to have the
specified measure as an invariant measure, but a necessary
condition that can be used to rule out a proposed dynamics.
This property can be utilized by taking step (iv) before step
(iii): If step (iv) yields a current-density relation that is in-
compatible with (6), then there is no need to go through the
potentially daunting task of step (iii). Unlike step (iii) (which
may actually be an unsoluble problem), step (iv) is easy since
the measure has been proposed in step (i) so as to facilitate the
computation of the stationary currents.

To illustrate the point, we focus on two conservation laws
and note that the current symmetry (6) then becomes

J21κ1 − J12κ2 = (J11 − J22)κ̄ . (7)

Evidently, this relation constitutes a necessary condition for
the existence of microscopic dynamics that would be compat-
ible with a predefined invariant measure—without the need
to perform an explicit check of invariance of the measure un-
der the proposed dynamics. Only the static compressibilities
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and the stationary currents of the model need to be computed
using the invariant measure.

This is highlighted in the following theorem for partially
factorized invariant measures of the form πρ1,ρ2 = π1

ρ1
π2

ρ2
,

where πα
ρα

are measures that do not necessarily further fac-
torize, such as matrix product measures. Frequently studied
models of this type are two-lane systems [39–41], where
particles of species α jump along a one-dimensional lattice
called lane α like in a system with only one conservation law,
but with a rate that depends on the particle configuration on
the other lane.

Theorem II.1. Any regular hydrodynamic two-component
system with a partially factorized invariant measure

πρ1,ρ2 = π1
ρ1

π2
ρ2

(8)

has stationary currents of the form

j1(ρ1, ρ2) = f1(ρ1) + κ1(ρ1)
∫ ρ2

dy g(ρ1, y), (9)

j2(ρ1, ρ2) = f2(ρ2) + κ2(ρ2)
∫ ρ1

dx g(x, ρ2), (10)

with the compressibilities κα (x) ∈ R+ for x ∈ R, functions
fα : R → R and interaction kernel g(x, y) ∈ R for (x, y) ∈ R2

that is the same for both currents. Moreover, for any pair
of densities (ρ1, ρ2), the off-diagonal elements of the current
Jacobian either both vanish or have equal signs.

Proof: The lower integration limits in (9) and (10) do not
need to be specified as they can be absorbed into the functions
fα (·). By writing the currents in a generic fashion as

j1(ρ1, ρ2) = f1(ρ1) + κ1(ρ1)
∫ ρ2

dy g1(ρ1, y),

j2(ρ1, ρ2) = f2(ρ2) + κ2(ρ2)
∫ ρ1

dx g2(x, ρ2),

in terms of functions fα (·), gα (·, ·) yields

J12(ρ1, ρ2) = κ1(ρ1)g1(ρ1, ρ2),

J21(ρ1, ρ2) = κ2(ρ2)g2(ρ1, ρ2).

For a factorized invariant measure, one has κ̄ = ∂1κ2 =
∂2κ1 = 0, so the current symmetry reduces to

J21(ρ1, ρ2)κ1(ρ1) = J12(ρ1, ρ2)κ2(ρ2). (11)

Since κα (·) > 0 by assumption, this implies g2(ρ1, ρ2) =
g1(ρ1, ρ2) for all (ρ1, ρ2) ∈ R2 and proves also the as-
sertion regarding the off-diagonal elements of the current
Jacobian. �

For a monotone increase or decrease of the current jα as a
function of the other density ρβ with β 
= α as in the models of
Refs. [39–41] and also assuming the existence of symmetries
between the densities, the current symmetry Theorem II.1
provides the following rather general no-go corollary.

Corollary II.2. A regular one-dimensional hydrodynamic
two-component system with the three properties

(i) partially factorized invariant measure πρ1,ρ2 = π1
ρ1

π2
ρ2

,
(ii) antisymmetric currents j2(ρ1, ρ2) = − j1(ρ2, ρ1),
(iii) monotonicity j1

2 > 0 and j2
1 > 0 (or j1

2 < 0 and
j2
1 < 0) for all densities ρ1, ρ2

does not exist.

This holds since, on the one hand, monotonicity for all
(ρ1, ρ2) requires that g(·, ·) does not change signs, while on
the other hand, the antisymmetry requires g(ρ1, ρ2)κ2(ρ2) =
−g(ρ2, ρ1)κ1(ρ2), which is contradictory since κ1 and κ2

are both strictly positive. How the current symmetry rules
out specific microscopic dynamics for a product measure is
demonstrated for a concrete example in Appendix A.

III. DYNAMICAL UNIVERSALITY CLASSES
FOR TWO CONSERVATION LAWS

In the remainder of this paper, we restrict ourselves to two
conservation laws and discuss criteria for the occurrence of
the golden and other universality classes. To this end, the
mode-coupling coefficients Gα

ββ are computed in terms of the
matrix elements of K and J . Related results of Refs. [12,13]
do not allow for immediate predictions from the stationary
currents for a given particle system, since in these works the
mode-coupling matrices are not directly expressed in term of
the stationary currents. This is achieved below.

A. Eigenmodes

The system of stochastic Burgers equations (5) is expressed
in terms of eigenmodes for which the current Jacobian J is
diagonal. For the diagonalization of J , we use as parameters
the reduced trace θ , the asymmetry ω, and the signed square
root δ of the discriminant which are defined by

θ := J11 − J22, ω := J12

J21
, δ :=

⎧⎨
⎩θ

√
1 + 4J12J21

θ2 θ 
= 0
√

4J12J21 θ = 0.

(12)

Only current Jacobians with nondegenerate eigenvalues,

λ± = 1
2 (J11 + J22 ± δ), (13)

i.e., with no-zero discriminant, are considered below which
ensures a strictly hyperbolic conservation law (4).

The following proposition concerning the diagonalization
of a 2 × 2 matrix is high school math. It serves to introduce
a notation for the eigenmodes and some of their basic proper-
ties.

Proposition III.1. Let jα be the stationary currents of a
two-component system satisfying the current symmetry (6)
with compressibility matrix K (2) with strictly positive di-
agonal elements and current Jacobian J with nonvanishing
discriminant. With the functions

u+ := δ − θ

2J21
, u− := −u+

ω
, v := 1 − u+u−, (14)

the normalization factors

z2
+ := κ1 + 2u+κ̄ + u2

+κ2, z2
− := u2

−κ1 + 2u−κ̄ + κ2,

(15)

and the matrix elements

u+
1 := 1

z+
, u+

2 := 1

z+
u+, u−

1 := 1

z−
u−, u−

2 := 1

z−
(16)

v+
1 := z+

v
, v+

2 := − z+
v

u−, v−
1 := − z−

v
u+, v−

2 := z−
v

,

(17)
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the matrices

R :=
(

u+
1 u+

2
u−

1 u−
2

)
, R−1 :=

(
v+

1 v−
1

v+
2 v−

2

)
(18)

satisfy

1 = RR−1 = RKRT , RJR−1 =
(

λ+ 0
0 λ−

)
, (19)

where 1 is the two-dimensional unit matrix.
Proof: The matrices R, R−1 read in terms of the quantities

z±, u±, and v:

R =
(

z−1
+ z−1

+ u+
z−1
− u− z−1

−

)
, R−1 = v−1

(
z+ −z−u+

−z+u− z−

)
.

The definition (14) of v immediately yields the first equality
in (19). By the definitions (15) of the normalization factors,
the diagonal elements of RKRT are equal to 1. The function
u+ satisfies the quadratic equation

J21u+ − J12u−1
+ + θ = 0,

which implies the two equalities:

1 + u+u− = θu+
J12

, 1 − u+u− = J12

δu+
.

The first equality together with the current symmetry
(37) yields (RKRT )12 = (RKRT )21 = 0. The second equality
proves the diagonalization of J . �

Corollary III.2. The column and row vectors

�v± :=
(

v±
1

v±
2

)
, �u± := (u±

1 , u±
2 )

are right and left eigenvectors of J with eigenvalues λ± and
they satisfy the biorthogonality relation

�us · �vs′ := us
1v

s′
1 + us

2v
s′
2 = δs,s′

for s, s′ ∈ {+,−}.
Since δ > 0 by assumption, the current Jacobian is diag-

onalizable for all permissible parameter values. In particular,
the tridiagonal case J12J21 = 0 is covered by the proposition
by taking appropriate limits: For J12 = 0, one gets δ = θ ,
u+ = 0, u− = −J21/θ , while for J21 = 0 one has δ = −θ ,
u+ = −J12/θ , u− = 0.

B. Mode-coupling matrices

To detail the conditions that lead to the various dynamical
universality classes predicted by mode-coupling theory, we
express in explicit form the diagonal elements of the mode-
coupling matrices in terms of the stationary currents and
compressibilities.

Definition III.3. The mode-coupling matrices Gγ are the
linear combinations

Gγ := 1

2

∑
λ

Rγ λ(R−1)T HλR−1 (20)

of transformed Hessians Hλ.
They satisfy Gγ

αβ = Gγ

βα since the Hessians Hλ are
symmetric by construction. It is also possible to express
the Hessians in terms of the mode-coupling matrices; see
Appendix C.

According to mode-coupling theory, only the diagonal
elements of the mode-coupling matrices determine the large-
scale behavior of the fluctuations. Hence, we ignore the
off-diagonal elements and also recall that the normalization
factors z± of the eigenvectors are nonzero for any permissible
choice of parameters. Therefore, the ratios

g :=
√

z+z−
v2

, y :=
√

z+
z−

(21)

are nonzero and well-defined. The theorem below expresses
the diagonal elements Gα

ββ of the mode-coupling matrices
in terms of the stationary currents and compressibilities. We
stress that the compressibilities enter only the nonzero overall
amplitude given in terms of g and y. Whether a matrix element
vanishes or not is solely determined by the current-density
relation via the Hessians and the unnormalized eigenvector
components of the current Jacobian.

Theorem III.4. The diagonal elements of the mode-
coupling matrices are given by

G1
11 = g

2
y
[
H1

11 + u+H2
11 − 2u−

(
H1

12 + u+H2
12

)
+ u2

−
(
H1

22 + u+H2
22

)]
, (22)

G1
22 = g

2
y−3

[
u2

+
(
H1

11 + u+H2
11

) − 2u+
(
H1

12 + u+H2
12

)
+ H1

22 + u+H2
22

]
, (23)

G2
11 = g

2
y3[u−H1

11 + H2
11 − 2u−

(
u−H1

12 + H2
12

)
+ u2

−
(
u−H1

22 + H2
22

)]
, (24)

G2
22 = g

2
y−1

[
u2

+
(
u−H1

11 + H2
11

) − 2u+
(
u−H1

12 + H2
12

)
+ u−H1

22 + H2
22

]
. (25)

Proof: To compute Gγ , we note that with the diagonal
normalization matrix

Z =
(

z+ 0
0 z−

)

and the rescaled diagonalization matrices

R̃ =
(

1 u+
u− 1

)
, R̃−1 = v−1

(
1 −u+

−u− 1

)
,

one has R = Z−1R̃. Furthermore, defining

S := vR̃−1 =
(

1 −u+
−u− 1

)

yields the modified mode-coupling matrix

G̃γ := 2v2Z−1Gγ Z−1 =
∑

λ

Rγ λST HλS,

with matrix elements

G̃γ

11 = 2v2

z2+
Gγ

11, G̃γ

22 = 2v2

z2−
Gγ

22,

G̃γ

12 = 2v2

z+z−
Gγ

12, G̃γ

21 = 2v2

z+z−
Gγ

21.
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The matrix multiplication can now be performed in a
straightforward fashion and yields the matrix elements

(ST HλS)11 = Hλ
11 − 2u−Hλ

12 + u2
−Hλ

22,

(ST HλS)12 = (1 + u+u−)Hλ
12 − u+Hλ

11 − u−Hλ
22,

(ST HλS)22 = Hλ
22 − 2u+Hλ

12 + u2
+Hλ

11,

and (ST HλS)21 = (ST HλS)12 by symmetry. Using the defini-
tion (20) therefore gives

G1
11 = z+

2v2

[
H1

11 − 2u−H1
12 + u2

−H1
22

+ u+
(
H2

11 − 2u−H2
12 + u2

−H2
22

)]
,

G1
22 = z2

−
2v2z+

[
H1

22 − 2u+H1
12 + u2

+H1
11

+ u+
(
H2

22 − 2u+H2
12 + u2

+H2
11

)]
,

G2
11 = z2

+
2v2z−

[
u−

(
H1

11 − 2u−H1
12

+ u2
−H1

22

) + H2
11 − 2u−H2

12 + u2
−H2

22

]
,

G2
22 = z−

2v2

[
u−

(
H1

22 − 2u+H1
12 + u2

+H1
11

)
+ H2

22 − 2u+H2
12 + u2

+H2
11

]
.

Regrouping terms yield (22)–(25). �

C. Scenarios for dynamical universality classes

Generically, i.e., for two vanishing self-coupling coeffi-
cients G1

11 
= 0 and G2
22 
= 0, mode-coupling theory predicts

two KPZ modes. To search for the golden universality class,
we consider the mode-coupling scenarios with less than two
KPZ modes in more detail. We note that u+u− 
= 1 since
v = 1 − u+u− 
= 0 by construction. It follows that u−1

− 
= u+.

1. One vanishing self-coupling coefficient

The following cases are permitted by mode-coupling
theory:

(i) Mode 1 is KPZ and mode 2 is 5/3-Lévy: This requires
G1

11 
= 0, G2
22 = 0, G2

11 
= 0, with arbitrary G1
22. Thus,

2
(
H1

12 + u+H2
12

) 
= u−1
−

(
H1

11 + u+H2
11

) + u−
(
H1

22 + u+H2
22

)
,

0 
= ω
(
u−H1

11 + H2
11

) + (
u−H1

22 + H2
22

)
,

2
(
u−H1

12 + H2
12

) = u+
(
u−H1

11 + H2
11

) + u−1
+

(
u−H1

22 + H2
22

)
.

(ii) Mode 1 is KPZ and mode 2 is diffusive: This requires
G1

11 
= 0, G1
22 = G2

22 = G2
11 = 0. Thus,

H1
22 + u+H2

22 
= −ω
(
H1

11 + u+H2
11

)
,

2
(
H1

12 + u+H2
12

) = u+
(
H1

11 + u+H2
11

) + u−1
+

(
H1

22 + u+H2
22

)
,

u−H1
22 + H2

22 = −ω
(
u−H1

11 + H2
11

)
,

2
(
u−H1

12 + H2
12

) = (u+ + u−1
− )

(
u−H1

11 + H2
11

)
.

(iii) Mode 1 is modified KPZ and mode 2 is diffu-
sive: This requires G1

11 
= 0, G1
22 
= 0, and G2

22 = G2
11 = 0.

Thus,

2
(
H1

12 + u+H2
12

) 
= u−1
−

(
H1

11 + u+H2
11

) + u−
(
H1

22 + u+H2
22

)
,

2
(
H1

12 + u+H2
12

) 
= u+
(
H1

11 + u+H2
11

) + u−1
+

(
H1

22 + u+H2
22

)
,

u−H1
22 + H2

22 = −ω
(
u−H1

11 + H2
11

)
,

2
(
u−H1

12 + H2
12

) = (u+ + u−1
− )

(
u−H1

11 + H2
11

)
.

2. Two vanishing self-coupling coefficients

This requires G2
22 = G1

11 = 0 and therefore

2
(
H1

12 + u+H2
12

) = u−1
−

(
H1

11 + u+H2
11

) + u−
(
H1

22 + u+H2
22

)
,

(26)

2
(
u−H1

12 + H2
12

) = u+
(
u−H1

11 + H2
11

) + u−1
+

(
u−H1

22 + H2
22

)
.

(27)

The remaining diagonal mode coupling coefficients take the
form

G1
22 = z2

−
2vz+

[
ω

(
H1

11 + u+H2
11

) + (
H1

22 + u+H2
22

)]
, (28)

G2
11 = z2

+
2vz−ω

[
ω

(
u−H1

11 + H2
11

) + (
u−H1

22 + H2
22

)]
. (29)

(i) Two modes are golden Lévy:

0 
= ω
(
H1

11 + u+H2
11

) + (
H1

22 + u+H2
22

)
, (30)

0 
= ω
(
u−H1

11 + H2
11

) + (
u−H1

22 + H2
22

)
. (31)

(ii) Mode 1 is 3/2-Lévy and mode 2 is EW:

0 
= ω
(
H1

11 + u+H2
11

) + (
H1

22 + u+H2
22

)
, (32)

0 = ω
(
u−H1

11 + H2
11

) + (
u−H1

22 + H2
22

)
. (33)

(iii) Two modes are EW:

0 = ω
(
H1

11 + u+H2
11

) + (
H1

22 + u+H2
22

)
, (34)

0 = ω
(
u−H1

11 + H2
11

) + (
u−H1

22 + H2
22

)
. (35)

We conclude that the conditions (26), (27), (30), and (31) must
be met for the occurrence of the golden ratio. In this case, both
modes are golden Lévy.

Remark III..5. The current symmetry imposes the con-
straints

H1
12 det (K ) = H2

11κ
2
1 − H1

11κ1κ̄ + H1
22κ̄κ2 − H2

22κ̄
2

+ J21(κ1∂1 − κ̄∂2)κ1 − J12(κ1∂1 − κ̄∂2)κ2

− (J11 − J22)(κ1∂1 − κ̄∂2)κ̄ (36)

and

H2
12 det (K ) = H2

11κ̄κ1 − H1
11κ̄

2 + H1
22κ

2
2 − H2

22κ̄κ2

+ J12(κ2∂2 − κ̄∂1)κ2 − J21(κ2∂2 − κ̄∂1)κ1

+ (J11 − J22)(κ2∂2 − κ̄∂1)κ̄ (37)

on the matrix elements of the Hessians. Hence, the diagonal
elements (22)–(25) of the mode-coupling matrix and therefore
the mode scenarios discussed above can be expressed entirely
in terms of J , K , and the diagonal elements of the Hessians
rather than in terms of J , K , and the full Hessians.
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IV. SYMMETRIC OR ANTISYMMETRIC CURRENTS
AT EQUAL DENSITIES

The golden universality class has been observed in
Refs. [12,13] on a special parameter manifold that requires
fine-tuning of densities and/or interaction parameters. We
investigate here whether it can occur in more generic circum-
stances, viz., for the symmetry property of the current-density
relation j2(ρ1, ρ2) = ± j1(ρ2, ρ1) at the point of equal densi-
ties ρ1 = ρ2, where

J11 = ±J22, (38)

J12 = ±J21. (39)

These properties of J are sufficient to show which mode-
coupling coefficients vanish.

A. Antisymmetric case

In the antisymmetric case, one has for equal densities
θ 
= 0 and ω = −1, which gives u− = u+ and λ− = −λ+. The
current symmetry implies κ̄ 
= 0, which means that a micro-
scopic physical dynamics with a partially factorized invariant
measure of the form (8) and antisymmetric current-density-
relation at equal densities does not exist.

However, nonvanishing cross correlations between the con-
served densities are not ruled out. The Hessians then have the
symmetry relations

H2
11 = −H1

22, H2
12 = −H1

12, H2
22 = −H1

11.

This yields the mode-coupling coefficients:

G1
11 = u+z+

2v2

[
u−1

+ (1 − u3
+)H1

11

− 2(1 − u+)H1
12 − (1 − u+)H1

22

]
,

G1
22 = u+z2

−
2v2z+

[ − (1 − u+)H1
11 − 2(1 − u+)H1

12

+ u−1
+ (1 − u3

+)H1
22

]
,

G2
11 = −

(
z+
z−

)3

G1
22,

G2
22 = − z−

z+
G1

11.

Hence, the following scenarios are possible:
(i) two KPZ modes: u+ 
= 1 and

u+
(
H1

22 + 2H1
12

) 
= (1 + u+ + u2
+)H1

11, (40)

(ii) two golden modes: u+ 
= 1 and

u+
(
H1

22 + 2H1
12

) = (1 + u+ + u2
+)H1

11, and (41)

H1
11 
= H1

22. (42)

(iii) two EW modes: All diagonal mode-coupling coefficients
vanish if either u+ = 1 or

2u+H1
12 = (1 + u2

+)H1
11, (43)

H1
11 = H1

22. (44)

In all allowed cases, both modes are the same. These four
cases correspond to the diagonal of the mode-coupling table
of Ref. [12].

B. Symmetric case

In the symmetric case, the properties of the Jacobian cor-
respond to θ = 0 and ω = 1 and therefore u± = ±1. The
nondegeneracy of the eigenvalues λ± implies J12J21 
= 0.
There is no conflict with the current symmetry. The Hessians
have the symmetry relations

H2
11 = H1

22, H2
12 = H1

12, H2
22 = H1

11.

From (22)–(25), one gets

G1
11 = 1

4(z−1
+ )

[
H1

11 + H1
22 + 2H1

12

]
,

G1
22 = (z−1

+ )

4(z−1
− )2

[
H1

11 + H1
22 − 2H1

12

]
,

G2
11 = G2

22 = 0.

Hence, in all three cases, mode 2 is diffusive, thus ruling out
the golden mode. Mode 1 can be KPZ, mKPZ, 3/2L, or EW.
These four cases correspond to the bottom row (rightmost
column) of the mode-coupling table of Ref. [12].

V. CONCLUSIONS

So far, the golden universality class for fluctuations in
driven systems with two conservation laws has remained
somewhat elusive. It was only found by fine-tuning the con-
served densities or interaction parameters which determine
the form of the stationary current-density relations [12,13].
In the quest for a natural occurrence that does not require
fine-tuning, we have shown that systems with currents that are
symmetric at equal densities cannot exhibit golden modes. In
fact, in this case at least one of the two modes is diffusive with
dynamical exponent z = 2 and belongs to the EW universality
whereas the other mode is KPZ, modified KPZ or 3/2-Lévy
with dynamical exponent z = 3/2 in each case.

However, the golden modes can appear with systems
with two conservation laws if the currents are antisymmetric
at equal densities. In this case, both modes belong to the
same universality class, which may be KPZ, EW, or golden.
However, such systems cannot have invariant measures that
factorize over the two conserved quantities. This property may
explain the rarity of analytical and simulation results for the
golden modes, as one often considers such systems to make
them amenable to explicit computations. On the other hand,
from a physical perspective such a factorization is highly ex-
ceptional which gives hope that the golden universality class
might be less unusual, as it appears at the present state of
the art.

The nonexistence of physical systems with antisymmet-
ric currents at equal densities and an invariant measure that
factorizes over the conserved quantities derives from the cur-
rent symmetry that arises like Onsager’s reciprocity relations
from time reversal. Thus, the current symmetry is not only of
fundamental significance but also helps rule out microscopic
dynamics in the search for other modes without having to
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check whether an invariant measure that is amenable to exact
computation of the current is invariant for a candidate mi-
croscopic dynamics. Potential applications include two-lane
versions of zero-range processes [39] or KLS models [42–45],
which are exclusion processes with next-nearest-neighbor in-
teractions with the invariant measure of a one-dimensional
Ising model for each lane.

Note added. Recently, P. Gonçalves mentioned to us that
the correctness of the scale factor C0 was communicated to
her by H. Spohn some years ago. Since we are not aware of a
published version of this observation, we decided to keep it in
this paper, without claiming originality.
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APPENDIX A: CURRENT SYMMETRY AND
CONSTRAINTS ON THE MICROSCOPIC DYNAMICS

We illustrate how the current symmetry rules out mi-
croscopic dynamics for some two-lane exclusion processes.
These driven lattice gases are defined on two one-dimensional
lattices (that we call lanes), that are indexed by α ∈ {1, 2} and
have L sites each. We view the two lanes as being arranged
in parallel, with a pair of sites on the two lanes labeled by an
integer k.

Particles jump along each lane (but not to the other) obey-
ing the exclusion rule, i.e., a jump attempt fails if the target
site is already occupied. Thus, the state of each lattice site
k is described by a pair of occupation numbers nα

k ∈ {0, 1},
indicating whether lane α is occupied by a particle or not.

To be definite, we look for jump dynamics such that the
NESS has a particularly simple form given by an invariant
measure that is a product measure factorizing over all sites of
the two lattices, i.e.,

πρ1,ρ2

(
n1

1, . . . , n1
L, n2

1, . . . , n2
L

)
=

2∏
α=1

L∏
k=1

[
(1 − ρα )

(
1 − nα

k

) + ραnα
k

]
, (A1)

with average density ρα on each lane, compressibilities κα =
ρα (1 − ρα ), and no correlations between different sites, which
implies κ̄ = 0. Well-studied examples for single-lane dynam-
ics with these property include the paradigmatic asymmetric
simple exclusion process [46–48] and the k-step exclusion
processes with long-range jumps [49,50], to mention just a
few.

We denote the stationary currents arising from these dy-
namics in the absence of any coupling between the lanes as
jα0 (ρα ). It is well-known that fluctuations in such systems
generically belong to the KPZ universality class [11]. To study
nontrivial coupled systems that may exhibit other fluctuation

patterns, we allow the transition rates in each lane to depend
on the occupation numbers of the other lane and ask whether
such models with the invariant product measure (A1) can
exist.

To be specific, we consider three cases:
(i) Totally asymmetric dynamics with equal dynamics on

both lanes such that the rate for a forward jump from site k to
a site k + r on lane 1 is enhanced by the number of particles
on sites k and k + r on lane 2 and the rate of a backward jump
from site k to a site k − r on lane 2 is enhanced by the number
of particles on sites k and k − r.

(ii) Totally asymmetric dynamics with equal dynamics on
both lanes but opposite directionality such that the rate for a
forward jump from site k to a site k + r on lane 1 is enhanced
by the number of particles on sites k and k + r on lane 2 and
the rate of a backward jump from site k to a site k − r on lane
2 is enhanced by the number of particles on sites k and k − r.

(iii) Facilitated totally asymmetric dynamics, with parallel
directionality on both lanes and rates such that a forward jump
from site k to a site k + r on lane α is enhanced by a factor bα

when a site k′ is occupied on both lanes (and k′ different from
k and the target site k + r).

In case (i), the factorization of the invariant measure yields
the exact currents

j1(ρ1, ρ2) = j0(ρ1)(1 + 2b1ρ2),

j2(ρ1, ρ2) = j0(ρ2)(1 + 2b2ρ1), (A2)

and therefore J12(ρ1, ρ2) = 2b1 j1
0 (ρ1) and J21(ρ1, ρ2) =

2b2 j2
0 (ρ2). For such dynamics, the current symmetry (11)

requires

b2 j0(ρ2)ρ1(1 − ρ1) = b1 j0(ρ1)ρ2(1 − ρ2). (A3)

Therefore, such dynamics exist if and only if b1 = b2 and
j0(x) = cx(1 − x) as in the conventional TASEP. For r = 1
this is the two-lane model of [40]. One still needs to prove
that for b1 = b2 the product measure (A1) is invariant (as in
Ref. [40]) but there is no reason to check invariance in the
more general case b1 
= b2: The macroscopic current symme-
try asserts that such a microscopic model does not exist.

In case (ii), the factorization of the invariant measure yields
the exact currents

j1(ρ1, ρ2) = j0(ρ1)(1 + 2b1ρ2),

j2(ρ1, ρ2) = − j0(ρ2)(1 + 2b2ρ1), (A4)

and therefore J12(ρ1, ρ2) = 2b1 j1
0 (ρ1) and J21(ρ1, ρ2) =

−2b2 j2
0 (ρ2). For such dynamics to exist, the current symmetry

(11) requires

b2 j0(ρ2)ρ1(1 − ρ1) = −b1 j0(ρ1)ρ2(1 − ρ2). (A5)

Therefore, such dynamics exist if and only if b1 = −b2 and
j0(x) = cx(1 − x), as in the conventional TASEP. Hence, a
model with current enhancement on both lanes due to the pres-
ence of particles on the other lane need not be considered. The
macroscopic current symmetry asserts that such a microscopic
model does not exist.
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In case (iii), the factorization of the invariant measure
yields the exact currents:

j1(ρ1, ρ2) = j1
0 (ρ1)(1 + b1ρ1ρ2),

j2(ρ1, ρ2) = j2
0 (ρ2)(1 + b2ρ1ρ2). (A6)

Thus, J12(ρ1, ρ2)=b1ρ1 j1
0 (ρ1) and J21(ρ1, ρ2)=b2ρ2 j2

0 (ρ2).
For such dynamics to exist, the current symmetry (11) requires

b2 j2
0 (ρ2)(1 − ρ1) = b1 j1

0 (ρ1)(1 − ρ2). (A7)

This is valid for all (ρ1, ρ2) if and only if b1 = b2 = 0, i.e., no
such coupled facilitated dynamics for which the fully factor-
ized measure is invariant exists.

APPENDIX B: ON THE RELIABILITY OF
MODE-COUPLING THEORY FOR NONLINEAR

FLUCTUATING HYDRODYNAMICS

Consider an infinite chain of particles of unit mass at po-
sitions q j interacting through a pair potential V (r j ), where
r j = q j − q j−1 is the interparticle distance. With the momen-
tum p j of the particles, the total energy is given by

E =
∑
j∈Z

[
1

2
p2

j + V (r j )

]
, (B1)

and the deterministic Hamiltonian dynamics for such a system
are given by

d

dt
r j (t ) = p j (t ) − p j−1(t ), (B2)

d

dt
p j (t ) = V ′(r j+1(t )) − V ′(r j (t )). (B3)

Evidently, besides the energy E also the total momentum P
and volume V , i.e., the quantities

P =
∑
j∈Z

p j, V =
∑
j∈Z

r j (B4)

are conserved under the dynamics.
For the existence of such dynamics for general potentials,

see Ref. [51]. In the special case of harmonic oscillators with
V (x) = x2/2, the system is completely integrable. This is
most easily seen by introducing the variables

η2 j−1(t ) := r j (t ), η2 j (t ) := p j (t ). (B5)

Then the two coupled Eqs. (B2) and (B3) can be expressed as
the single linear equation

d

dt
η j (t ) = η j+1(t ) − η j−1(t ), (B6)

which is explicitly solvable by Fourier transformation.
To introduce noise, an exchange of the variables

η j (t ), η j+1(t ) at exponential random times was introduced in
Ref. [52] for more general potentials and studied in detail for
the harmonic case in Ref. [53]. This random exchange violates
momentum conservation but leaves the total energy E and the
pseudovolume W , expressed in terms of the variables η j as

E =
∑
j∈Z

η2
j , W =

∑
j∈Z

η j, (B7)

conserved.

To write the generator of the stochastic dynamics for this
randomized chain of harmonic oscillators, we denote by η :=
(. . . , η j−1, η j, η j+1, . . . ) the infinite set of variables η j ∈ R
and introduce the swapped state variable ηkk+1 by the local
state variables

ηkk+1
l = ηl + (ηl+1 − ηl )δl,k + (ηl−1 − ηl )δl,k+1, (B8)

which the state reached from η after an exchange of ηk and
ηk+1. The deterministic part of the generator that yields the
Hamiltonian dynamics (B6) is denoted by A and the generator
for the random exchange is denoted by S . The full genera-
tor L acting on measurable functions f (·) is then given by
L = S + A with

S f (η) =
∑
k∈Z

[ f (ηkk+1) − f (η)],

A f (η) =
∑
k∈Z

(ηk+1 − ηk−1)
∂

∂ηk
f (η). (B9)

The invariant measure of the process is a product measure

μ(η) =
∏
k∈Z

I (ηk ), (B10)

with marginals

I (x) =
√

β

2π
e− β

2 (x−ρ)2
. (B11)

The quantities β and ρ are free parameters that can be ex-
pressed in terms of the densities of the conserved quantities
as

ρ1 := 〈 ηk 〉 = ρ, ρ2 := 〈
η2

k

〉 = ρ2 + 1

β
. (B12)

The static compressibilities are given by

κ11 := 〈 (ηk − ρ1)W 〉 = 〈
η2

k

〉 − 〈 ηk 〉2

= 1

β
= ρ2 − ρ2

1 , (B13)

κ12 := 〈 (ηk − ρ1)E 〉 = 〈
η3

k

〉 − ρ1ρ2

= 2ρ1(ρ2 − ρ2
1 ), (B14)

κ22 := 〈 (
η2

k − ρ2
)
E

〉 = 〈
η4

k

〉 − ρ2
2

= 2
(
ρ2 − ρ2

1

)(
ρ2

1 + ρ2
)
. (B15)

Hence, the compressibilty matrix reads

K = (
ρ2 − ρ2

1

)( 1 2ρ1

2ρ1 2(ρ2
1 + ρ2)

)
. (B16)

From the action of the generator on the locally conserved
quantities, one obtains the discrete continuity equations

Lηk = 2ηk+1 − 2ηk = j1
k − j1

k+1, (B17)

Lη2
k = η2

k+1 + η2
k−1 − 2η2

k + 2(ηk+1 − ηk−1)ηk = j2
k − j2

k+1,

(B18)

with the instantaneous currents

j1
k = −2ηk, j2

k = η2
k−1 − η2

k − 2ηk−1ηk. (B19)
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The stationary currents are given by

j1 := 〈
jvk

〉 = −2ρ1, j2 := 〈
je
k

〉 = −2ρ2
1 , (B20)

which yields the current Jacobian:

J = −2

(
1 0

2ρ1 0

)
. (B21)

Notice that the action of L on ηk is linear and therefore
the time evolution of ρk (t ) := 〈 ηk (t ) 〉 can be integrated by
Fourier transformation.

Using the results derived above, these stationary currents
yield the mode velocities

v1 = −2, v2 = 0, (B22)

and the mode-coupling matrices

G(1) = 0, (B23)

G(2) = −
√

2

(
1 0
0 0

)
. (B24)

Mode-coupling theory then predicts that mode 1 is diffusive
and mode 2 belongs to the 3/2-Lévy universality class.

To compute the scaling form of the dynamical structure
function [9,12,13], one needs the diffusion coefficient of mode
1. This can be computed directly and rigorously from the
linear evolution of the conserved density ηk (t ) by Fourier
transformation and yields the large-scale behavior in the mov-
ing reference frame with velocity v1 the scaling form

S1(p, t ) = 1√
2π

e−D1 p2t , (B25)

with D1 = 1. Mode-coupling theory then predicts the Fourier
transform of the scaling function for mode 2 to be [9]

S2(p, t ) = 1√
2π

e−C0 p3/2[1−i sign(p(v1−v2 ))]t , (B26)

which is a maximally asymmetric 3/2-Lévy distribution with
the scale factor

C0 =
(
G2

11

)2

2
√

D1|v1 − v2|
= 1√

2
. (B27)

On the other hand, in Ref. [53] the dynamical structure func-
tion was proved rigorously to be a fundamental solution of the

fractional PDE:

∂t u(x, t ) = − 1√
2

[(−�)3/4 − ∇(−�)1/4]u(x, t ). (B28)

A Fourier transformation reproduces the mode-coupling
prediction (B26), thus proving that the mode-coupling ap-
proximation is exact for this model and even yields the correct
scale factor C0

1.

APPENDIX C: INVERSE RELATIONSHIP BETWEEN THE
MODE-COUPLING MATRICES AND THE HESSIANS

The inverse relationship between the mode-coupling ma-
trices and the Hessians is

Hγ = 2
∑

λ

(R−1)γ λRT GλR.

Decomposing the mode-coupling matrices into their two di-
agonal components Gλ

αα and the symmetric off-diagonal part
Gλ

12 yields, after straightforward computation,

Hγ = f γ

1

(
1 u+

u+ u2
+

)
+ f̄ γ

(
2u− 1 + u+u−

1 + u+u− 2u+

)

+ f γ

2

(
u2

− u−
u− 1

)

= u+ f γ

1

(
δ+θ
2J12

1
1 δ−θ

2J21

)
+ 2u+

J12
f̄ γ

(−J21 θ

θ J12

)

+ u+J21

J12
f γ

2

(
δ−θ
2J12

−1
−1 δ+θ

2J21

)
,

where the amplitudes

f γ

1 = 2

z2+

∑
λ

(R−1)γ λGλ
11,

f̄ γ = 2

z+z−

∑
λ

(R−1)γ λGλ
12,

f γ

2 = 2

z2−

∑
λ

(R−1)γ λGλ
22

depend on the mode-coupling coefficients.

1After completing this computation, P. Gonçalves mentioned to us
that the correctness of the scale factor C0 was communicated to her
by H. Spohn some years ago. Since we are not aware of a published
version of this observation we decided to keep it in this manuscript,
without claiming originality.
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